A GENERAL DIVERGENCE MEASURE FOR MONOTONIC
FUNCTIONS AND APPLICATIONS IN INFORMATION THEORY

S.S. DRAGOMIR

Abstract. A general divergence measure for monotonic functions is introduced. Its connections with the f-divergence for convex functions are explored. The main properties are pointed out.

1. Introduction

Let (X, A) be a measurable space satisfying |A| > 2 and μ be a σ-finite measure on (X, A). Let P be the set of all probability measures on (X, A) which are absolutely continuous with respect to μ. For P, Q ∈ P, let p = dp/dμ and q = dQ/dμ denote the Radon-Nikodym derivatives of P and Q with respect to μ.

Two probability measures P, Q ∈ P are said to be orthogonal and we denote this by Q ⊥ P if

\[P(\{q = 0\}) = Q(\{p = 0\}) = 1. \]

Let f : [0, ∞) → (-∞, ∞] be a convex function that is continuous at 0, i.e.,

\[f(0) = \lim_{u \downarrow 0} f(u). \]

In 1963, I. Csiszár [2] introduced the concept of f-divergence as follows.

Definition 1. Let P, Q ∈ P. Then

\[I_f(Q, P) = \int_X p(x) f\left(\frac{q(x)}{p(x)}\right) d\mu(x), \]

is called the f-divergence of the probability distributions Q and P.

We now give some examples of f-divergences that are well-known and often used in the literature (see also [3]).

1.1. The Class of \(\chi^\alpha \)-Divergences. The f-divergences of this class, which is generated by the function \(\chi^\alpha \), \(\alpha \in [1, \infty) \), defined by

\[\chi^\alpha(u) = |u - 1|^\alpha, \quad u \in [0, \infty) \]

have the form

\[I_f(Q, P) = \int_X \left|\frac{q}{p} - 1\right|^\alpha d\mu = \int_X p^{1-\alpha} |q - p|^\alpha d\mu. \]

From this class only the parameter \(\alpha = 1 \) provides a distance in the topological sense, namely the total variation distance \(V(Q, P) = \int_X |q - p| d\mu \). The most prominent special case of this class is, however, Karl Pearson’s \(\chi^2 \)-divergence.

Date: 13 January, 2004.
2000 Mathematics Subject Classification. 94Axx, 26D15, 26D10.
Key words and phrases. f-divergence, Convexity, Divergence measures, Monotonic functions.
1.2. **Dichotomy Class.** From this class, generated by the function \(f_\alpha : [0, \infty) \to \mathbb{R} \)

\[
 f_\alpha (u) = \begin{cases}
 u - 1 - \ln u & \text{for } \alpha = 0; \\
 \frac{1}{\alpha(1-\alpha)} \left[\alpha u + 1 - \alpha - u^\alpha \right] & \text{for } \alpha \in \mathbb{R} \setminus \{0, 1\}; \\
 1 - u + u \ln u & \text{for } \alpha = 1;
 \end{cases}
\]

only the parameter \(\alpha = \frac{1}{2} \left(f_{\frac{1}{2}} (u) = 2 \left(\sqrt{u} - 1 \right) \right) \) provides a distance, namely, the *Hellinger distance*

\[
 H(Q, P) = \left[\int_X \left(\sqrt{q} - \sqrt{p} \right)^2 d\mu \right]^{\frac{1}{2}}.
\]

Another important divergence is the *Kullback-Leibler divergence* obtained for \(\alpha = 1 \),

\[
 KL(Q, P) = \int_X q \ln \left(\frac{q}{p} \right) d\mu.
\]

1.3. **Matsushita’s Divergences.** The elements of this class, which is generated by the function \(\phi_\alpha \), \(\alpha \in (0, 1] \) given by

\[
 \phi_\alpha (u) := |1 - u^\alpha|^{\frac{1}{\alpha}}, \quad u \in [0, \infty),
\]

are prototypes of metric divergences, providing the distances \([I_{\phi_\alpha}(Q, P)]^\alpha \).

1.4. **Puri-Vineze Divergences.** This class is generated by the functions \(\Phi_\alpha \), \(\alpha \in [1, \infty) \) given by

\[
 \Phi_\alpha (u) := \frac{|1 - u|^{\alpha}}{(u + 1)^{\alpha-1}}, \quad u \in [0, \infty).
\]

It has been shown in [3] that, this class provides the distances \([I_{\Phi_\alpha}(Q, P)]^\frac{1}{\alpha} \).

1.5. **Divergences of Arimoto-type.** This class is generated by the functions

\[
 \Psi_\alpha (u) := \begin{cases}
 \frac{\alpha}{\alpha-1} \left[(1 + u^\alpha)^{\frac{\alpha}{\alpha-1}} - 2^\frac{\alpha}{\alpha-1} (1 + u) \right] & \text{for } \alpha \in (0, \infty) \setminus \{1\}; \\
 (1 + u) \ln 2 + u \ln u - (1 + u) \ln (1 + u) & \text{for } \alpha = 1; \\
 \frac{1}{2} |1 - u| & \text{for } \alpha = \infty.
 \end{cases}
\]

It has been shown in [5] that, this class provides the distances \([I_{\Psi_\alpha}(Q, P)]^{\min(\alpha, \frac{1}{\alpha})} \) for \(\alpha \in (0, \infty) \) and \(\frac{1}{2} V(Q, P) \) for \(\alpha = \infty \).

2. **Some Classes of Normalised Functions**

We denote by \(M^\#([0, \infty)) \) the class of *monotonic nondecreasing functions* defined on \([0, \infty)\) and by \(M^1([0, \infty)) \) the class of *measurable functions* on \([0, \infty)\). We also consider \(L_1([0, \infty)) \) the class of measurable functions \(g : [0, \infty) \to \mathbb{R} \) with the property that

\[
 g(t) \leq g(1) \leq g(s) \quad \text{for } 0 \leq t \leq 1 \leq s < \infty.
\]

It is obvious that

\[
 M^\#([0, \infty)) \subseteq L_1([0, \infty)),
\]
and the inclusion (2.2) is strict.

We say that a function \(f : [0, \infty) \to \mathbb{R} \) is normalised if \(f(1) = 0 \). We denote by \(\mathcal{M}_s([0, \infty)) \) the class of all normalised measurable functions defined on \([0, \infty)\).

We also need the following classes of functions

\[
\mathcal{C}_o([0, \infty)) := \{ f \in \mathcal{M}_s([0, \infty)) \mid f \text{ is continuous convex on } [0, \infty) \} ;
\]

\[
\mathcal{D}_0([0, \infty)) := \{ f \in \mathcal{M}_s([0, \infty)) \mid f(t) = (t - 1)g(t), \forall t \in [0, \infty), \ g \in \mathcal{M}_s^{\uparrow}([0, \infty)) \};
\]

\[
\mathcal{O}_0([0, \infty)) := \{ f \in \mathcal{M}_s([0, \infty)) \mid f(t) = (t - 1)g(t), \forall t \in [0, \infty), \ g \in L_1([0, \infty)) \} .
\]

From the definition of \(\mathcal{D}_0([0, \infty)) \) and \(\mathcal{O}_0([0, \infty)) \) and taking into account that the strict inclusion (2.2) holds, we deduce that

\[
\mathcal{D}_0([0, \infty)) \subsetneq \mathcal{O}_0([0, \infty)) ,
\]

and the inclusion is strict.

For the other two classes, we may state the following result.

Lemma 1. We have the strict inclusion

\[
\mathcal{C}_o([0, \infty)) \subsetneq \mathcal{D}_0([0, \infty)) .
\]

Proof. We will show that any continuous convex function \(f : [0, \infty) \to \mathbb{R} \) that is normalised may be represented as:

\[
f(t) = (t - 1)g(t) \text{ for any } t \in [0, \infty),
\]

where \(g \in \mathcal{M}_s^{\uparrow}([0, \infty)) \).

Now, let \(f \in \mathcal{C}_o([0, \infty)) \). For \(\lambda \in [D_- f(1), D_+ f(1)] \), define

\[
g_\lambda(t) := \begin{cases}
\frac{f(t)}{t-1} & \text{if } t \in [0, 1) \cup (1, \infty) , \\
\lambda & \text{if } t = 1.
\end{cases}
\]

We use the following well known result [2, p. 111]:

If \(\Psi \) is convex on \((a, b)\) and \(a < s < t < u < b \), then

\[
\Psi(s, t) \leq \Psi(s, u) \leq \Psi(t, u) ,
\]

where

\[
\Psi(s, t) = \frac{\Psi(t) - \Psi(s)}{t - s} .
\]

If \(\Psi \) is strictly convex on \((a, b)\), equality will not occur in (2.6).

If we apply the above result for \(0 < s < t < 1 \), then we can state

\[
\frac{f(s)}{s-1} \leq \frac{f(t)}{t-1} .
\]

Taking the limit over \(t \to 1, t < 1 \), we deduce

\[
\frac{f(s)}{s-1} \leq D_- f(1)
\]

showing that for \(0 < t < 1 \), we have \(g_\lambda(t) \leq \lambda \).

Similarly, we may prove that for \(1 < t < \infty, g_\lambda(t) \geq \lambda \). If we use the same result for \(0 < t_1 < t_2 < 1 \), then we may write

\[
\frac{f(t_1)}{t_1 - 1} \leq \frac{f(t_2)}{t_2 - 1} ,
\]
which gives \(g_\Lambda (t_1) \leq g_\Lambda (t_2) \) for \(0 < t_1 < t_2 < 1 \).

In a similar fashion we can prove that for \(1 < t_1 < t_2 < \infty \), \(g_\Lambda (t_1) \leq g_\Lambda (t_2) \), and thus we may conclude that the function \(g_\Lambda \) is monotonic non-decreasing on the whole interval \([0, \infty)\).

If we consider now the function \(f(t) = (t - 1) e^{vt}, t \in [0, \infty) \), we observe that
\[
 f'(t) = (qt - 3) e^{vt}, \quad f''(t) = 8e^{vt} (2t - 1)
\]
which gives \(g_\Lambda \) for each \(t \in [0, \infty) \).

We have
\[
 I_f (Q, P) = I_f (Q, P),
\]
for any \(P, Q \in \mathcal{P} \) if and only if there exists a constant \(c \in \mathbb{R} \) such that
\[
 f_1 (u) = f (u) + c (u - 1),
\]
for any \(u \in [0, \infty) \);

(ii) We have
\[
 I_{f^*} (Q, P) = I_f (Q, P),
\]
for any \(P, Q \in \mathcal{P} \) if and only if there exists a constant \(d \in \mathbb{R} \) such that
\[
 f^* (u) = f (u) + d (c - 1),
\]
for any \(u \in [0, \infty) \).

Theorem 2 (Range of Values Theorem). Let \(f : [0, \infty) \to \mathbb{R} \) be a continuous convex function on \([0, \infty)\).

For any \(P, Q \in \mathcal{P} \), we have the double inequality
\[
 f (1) \leq I_f (Q, P) \leq f (0) + f^* (0). \tag{3.1}
\]

(i) If \(P = Q \), then the equality holds in the first part of (3.1).

If \(f \) is strictly convex at 1, then the equality holds in the first part of (3.1) if and only if \(P = Q \);
If \(Q \perp P \), then the equality holds in the second part of (3.1).
If \(f(0) + f^*(0) < \infty \), then equality holds in the second part of (3.1) if and only if \(Q \perp P \).

Define the function \(\tilde{f} : (0, \infty) \to \mathbb{R} \), \(\tilde{f}(u) = \frac{1}{2} (f(u) + f^*(u)) \). The following result is a refinement of the second inequality in Theorem 2 (see [3, Theorem 3]).

Theorem 3. Let \(f \in C(\mathbb{R}) \) with \(f(0) + f^*(0) < \infty \). Then

\[
(3.2) \quad 0 \leq I_f(Q, P) \leq \tilde{f}(0) V(Q, P)
\]

for any \(Q, P \in \mathcal{P} \).

4. A General Divergence Measure

If \(f : [0, \infty) \to \mathbb{R} \) is a general measurable function, then we may define the \(f \)-divergence in the same way, i.e., if \(P, Q \in \mathcal{P} \), then

\[
I_f(Q, P) = \int_{\mathbb{R}} p(x) f \left(\frac{q(x)}{p(x)} \right) d\mu(x).
\]

For a measurable function \(g : [0, \infty) \to \mathbb{R} \), we may also define the \(\delta \)-divergence by the formula

\[
\delta_g(Q, P) = \int_{\mathbb{R}} [q(x) - p(x)] g \left(\frac{q(x)}{p(x)} \right) d\mu(x).
\]

It is obvious that the \(\delta \)-divergence of a function \(g \) may be seen as the \(f \)-divergence of the function \(f \), where \(f(t) = (t - 1) g(t) \) for \(t \in [0, \infty) \).

If \(f \in C([0, \infty)) \) and since \(f(t) = (t - 1) g_\lambda(t) \), \(t \in [0, \infty) \), we have

\[
g_\lambda(t) := \begin{cases}
\frac{f(t)}{t-1} & \text{if } t \in [0, 1) \cup (1, \infty), \\
\lambda & \text{if } t = 1;
\end{cases}
\]

and \(\lambda \in [D_- f(1), D_+ f(1)] \), shows that for any \(f \in C([0, \infty)) \) we have

\[
I_f(Q, P) = \delta g_\lambda(Q, P) \quad \text{for any } P, Q \in \mathcal{P},
\]

i.e., the \(f \)-divergence for any normalised continuous convex function \(f : [0, \infty) \to \mathbb{R} \) may be seen as the \(\delta \)-divergence of the function \(g_\lambda \) defined by (4.1).

In what follows, we point out some fundamental properties of the \(\delta \)-divergence.

Theorem 4. Let \(g : [0, \infty) \to \mathbb{R} \) be a measurable function on \([0, \infty)\) and \(P, Q \in \mathcal{P} \).
If there exists the constants \(m, M \) with

\[
-\infty < m \leq g \left(\frac{q(x)}{p(x)} \right) \leq M < \infty
\]

for \(\mu \)-a.e. \(x \in X \), then we have the inequality

\[
|\delta_g(Q, P)| \leq \frac{1}{2} (M - m) V(Q, P).
\]

Proof. We observe that the following identity holds true

\[
\delta_g(Q, P) = \int_{\mathbb{R}} [q(x) - p(x)] \left[g \left(\frac{q(x)}{p(x)} \right) - \frac{m + M}{2} \right] d\mu(x)
\]
By (4.3), we deduce that
\[\left| g \left[\frac{q(x)}{p(x)} \right] - \frac{m + M}{2} \right| \leq \frac{1}{2} (M - m) \]
for \(\mu \)-a.e. \(x \in X \).

Taking the modulus in (4.5) we deduce
\[|\delta g(Q, P)| \leq \int_X \left| q(x) - p(x) \right| g \left[\frac{q(x)}{p(x)} \right] \left| \frac{m + M}{2} \right| d\mu(x) \]
\[\leq \frac{1}{2} (M - m) \int_X |q(x) - p(x)| d\mu(x) \]
\[= \frac{1}{2} (M - m) V(Q, P) \]
and the inequality (4.4) is proved.

The following corollary is a natural consequence of the above theorem.

Corollary 1. Let \(g : [0, \infty) \to \mathbb{R} \) be a measurable function on \([0, \infty) \). If
\[m := \text{ess inf}_{t \in [0, \infty)} g(t) > -\infty, \quad M := \text{ess sup}_{t \in [0, \infty)} g(t) < \infty, \]
then for any \(P, Q \in \mathcal{P} \), we have the inequality
\[|\delta g(Q, P)| \leq \frac{1}{2} (M - m) V(Q, P). \]

Remark 2. We know that, if \(f : [0, \infty) \to \mathbb{R} \) is a normalised continuous convex function and if
\[\lim_{t \to 0^+} f^*(t) = \lim_{u \to 0^+} \left[uf \left(\frac{1}{u} \right) \right] =: f^*(0), \]
then we have the inequality [Theorem 2.3]
\[I_f(Q, P) \leq \frac{f(0) + f^*(0)}{2} V(Q, P), \]
for any \(P, Q \in \mathcal{P} \). We can prove this inequality by the use of Corollary 1 as follows. We have
\[I_f(Q, P) = \delta g_{\lambda}(Q, P), \]
where
\[g_{\lambda}(t) := \begin{cases} \frac{f(t)}{t - 1} & \text{if } t \in [0, 1) \cup (1, \infty), \\ \lambda & \text{if } t = 1, \end{cases} \]
where \(\lambda \in [D_- f(1), D_+ f(1)] \) and \(g_{\lambda} \in \mathcal{M}^b([0, \infty)) \). We observe that for any \(t \in [0, \infty) \), we have
\[g_{\lambda}(t) = \lim_{t \to 0^+} g_{\lambda}(t) = -f(0) = m > -\infty \]
and
\[g_{\lambda}(t) \leq \lim_{t \to +\infty} g_{\lambda}(t) = \lim_{t \to +\infty} \frac{f(t)}{t - 1} = \lim_{u \to 0^+} \left[\frac{f \left(\frac{1}{u} \right)}{1 - u} \right] \]
\[= \lim_{u \to 0^+} \left[\frac{uf \left(\frac{1}{u} \right)}{1 - u} \right] = f^*(0) = M < \infty. \]

Applying Corollary 1 for \(m = -f(0) \) and \(M = f^*(0) \), we deduce the desired inequality (4.7).
The following result also holds.

Theorem 5. Let \(g : [0, \infty) \to \mathbb{R} \) be a measurable function on \([0, \infty)\) and \(P, Q \in \mathcal{P} \). If there exists a constant \(K \) with \(K > 0 \) such that

\[
|g(t) - g(1)| \leq K|t - 1|^\alpha,
\]

for \(\mu \)-a.e. \(x \in X \), where \(\alpha \in (0, \infty) \) is a given number, then we have the inequality\(^{(4.9)}\)

\[
|\delta_g(Q,P)| \leq K I_{\chi^{\alpha+1}}(Q,P).
\]

Proof. We observe that the following identity holds true

\[
\delta_g(Q,P) = \int_X |q(x) - p(x)| \left(g \left(\frac{q(x)}{p(x)} \right) - g(1) \right) d\mu(x).
\]

Taking the modulus in \((4.10)\) and using the condition \((4.8)\), we have successively

\[
|\delta_g(Q,P)| \leq \int_X |q(x) - p(x)| \left| g \left(\frac{q(x)}{p(x)} \right) - g(1) \right| d\mu(x) \\
\leq K \int_X |p(x)|^{-\alpha} |q(x) - p(x)|^{\alpha+1} d\mu(x) \\
\leq K I_{\chi^{\alpha+1}}(Q,P)
\]

and the inequality \((4.9)\) is obtained. \(\blacksquare \)

The following corollary holds.

Corollary 2. Let \(g : [0, \infty) \to \mathbb{R} \) be a measurable function on \([0, \infty)\) with the property that there exists a constant \(K \) with the property that

\[
|g(t) - g(1)| \leq K|t - 1|^\alpha,
\]

for a.e. \(t \in [0, \infty) \), where \(\alpha > 0 \) is a given number. Then for any \(P, Q \in \mathcal{P} \), we have the inequality

\[
|\delta_g(Q,P)| \leq K I_{\chi^{\alpha+1}}(Q,P).
\]

Remark 3. If the function \(g : [0, \infty) \to \mathbb{R} \) is Hölder continuous with a constant \(H > 0 \) and \(\beta \in (0,1) \), i.e.,

\[
|g(t) - g(s)| \leq H|t - s|^\beta,
\]

for any \(t, s \in [0, \infty) \), then obviously \((4.7)\) holds with \(K = H \) and \(\alpha = \beta \).

If \(g : [0, \infty) \to \mathbb{R} \) is Lipschitzian with the constant \(L > 0 \), i.e.,

\[
|g(t) - g(s)| \leq L|t - s|,
\]

for any \(t, s \in [0, \infty) \), then

\[
|\delta_g(Q,P)| \leq K I_{\chi^2}(Q,P),
\]

for any \(P, Q \in \mathcal{P} \).

Finally, if \(g \) is locally absolutely continuous and the derivative \(g' : [0, \infty) \to \mathbb{R} \) is essentially bounded, i.e., \(\|g'\|_{0,\infty,\infty} := \text{ess} \sup_{t \in [0, \infty)} |g'(t)| < \infty \), then we have the inequality

\[
|\delta_g(Q,P)| \leq \|g'\|_{0,\infty,\infty} I_{\chi^2}(Q,P),
\]

for any \(P, Q \in \mathcal{P} \).

The following result concerning \(f \)-divergences for \(f \) convex functions holds.
Theorem 6. Let $f : [0, \infty] \to \mathbb{R}$ be a continuous convex function on $[0, \infty)$. If $\lambda \in [D_{-} f (1), D_{+} f (1)]$ ($\lambda = f' (1)$ if f is differentiable at $t = 1$), and there exists a constant $K > 0$ and $\alpha > 0$ such that

\begin{equation}
| f (t) - \lambda (t - 1) | \leq K | t - 1 |^{\alpha + 1},
\end{equation}

for any $t \in [0, \infty)$, then we have the inequality

\begin{equation}
0 \leq I_{f} (Q, P) \leq K I_{\kappa}^{\alpha + 1} (Q, P),
\end{equation}

for any $P, Q \in P$.

Proof. We have

\begin{equation}
I_{f} (Q, P) = \int_{X} [q (x) - p (x)] g_{\lambda} \left[\frac{p (x)}{q (x)} \right] d\mu (x) = \delta_{g_{\lambda}} (Q, P),
\end{equation}

where

\begin{equation}
g_{\lambda} (t) := \begin{cases}
\frac{f (t)}{t - 1} & \text{if } t \in [0, 1) \cup (1, \infty), \\
\lambda & \text{if } t = 1,
\end{cases}
\end{equation}

and $\lambda \in [D_{-} f (1), D_{+} f (1)]$.

Applying Corollary 2 for g_{λ}, we deduce the desired result.

5. The Positivity of δ–Divergence for $g \in \mathcal{M}^{\#} ([0, \infty))$

The following result holds.

Theorem 7. If $g \in \mathcal{M}^{\#} ([0, \infty))$, then $\delta_{g} (Q, P) \geq 0$ for any $P, Q \in P$.

Proof. We use the identity

\begin{equation}
\delta_{g} (Q, P) = \int_{X} [q (x) - p (x)] g \left[\frac{q (x)}{p (x)} \right] d\mu (x)
\end{equation}

= \int_{X} p (x) \left[\frac{q (x)}{p (x)} - 1 \right] g \left[\frac{q (x)}{p (x)} \right] d\mu (x)
\end{equation}

= \frac{1}{2} \int_{X} \int_{X} p (x) p (y) \left[\frac{q (x)}{p (x)} - \frac{q (y)}{p (y)} \right] g \left[\frac{q (x)}{p (x)} \right] - g \left[\frac{q (y)}{p (y)} \right] d\mu (x) d\mu (y).
\end{equation}

Since $g \in \mathcal{M}^{\#} ([0, \infty))$, then for any $t, s \in [0, \infty)$, we have

\begin{equation}
(t - s) (g (t) - g (s)) \geq 0
\end{equation}

giving that

\begin{equation}
\left[\frac{q (x)}{p (x)} - \frac{q (y)}{p (y)} \right] \left[g \left[\frac{q (x)}{p (x)} \right] - g \left[\frac{q (y)}{p (y)} \right] \right] \geq 0
\end{equation}

for any $x, y \in X$.

Using the representation (5.1), we deduce the desired result.

The following corollary is a natural consequence of the above result.

Corollary 3. If $f \in \mathcal{D}_{0} ([0, \infty))$, then $I_{f} (Q, P) \geq 0$ for any $P, Q \in P$.

Proof: If \(f \in D_0 ([0, \infty)) \), then there exists a \(g \in \mathcal{M}^+ ([0, \infty)) \) such that \(f(t) = (t-1) g(t) \) for any \(t \in [0, \infty) \). Then

\[
I_f (Q, P) = \int_X p(x) f \left[\frac{q(x)}{p(x)} \right] d\mu(x)
\]

\[
= \int_X p(x) \left[\frac{q(x)}{p(x)} - 1 \right] g \left[\frac{q(x)}{p(x)} \right] d\mu(x)
\]

\[
= \delta_g (Q, P) \geq 0,
\]

and the proof is completed. \(\blacksquare \)

In fact, the following improvement of Theorem 7 holds.

Theorem 8. If \(g \in \mathcal{M}^+ ([0, \infty)) \), then

\[
\delta_g (Q, P) \geq |\delta_{|g|} (Q, P)| \geq 0,
\]

for any \(P, Q \in \mathcal{P} \).

Proof. Since \(g \) is monotonic nondecreasing, we have

\[
\left[\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right] \left[g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right]
\]

\[
\geq \left(\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right) \left(g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right) d\mu(x) d\mu(y)
\]

for any \(x, y \in X \).

Multiplying (5.3) by \(p(x) p(y) \geq 0 \) and integrating on \(X^2 \), we deduce

\[
\int_X \left| \left| \int_X p(x) p(y) \left(\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right) \left(g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right) d\mu(x) d\mu(y) \right| \right|^2.
\]

Using the representation (5.4) and the same identity for \(|g| \), we deduce the desired inequality (5.2). \(\blacksquare \)

Before we point out other possible refinements for the positivity inequality \(\delta_g (Q, P) \geq 0 \), where \(g \in \mathcal{M}^+ ([0, \infty)) \), we need the following divergence measure as well:

\[
\tilde{\delta}_h (Q, P) := \int_X |g(x) - p(x)| h \left[\frac{q(x)}{p(x)} \right] d\mu(x)
\]

which will be called the absolute \(\delta - divergence \) generated by the function \(h : [0, \infty) \to \mathbb{R} \) that is assumed to be measurable on \([0, \infty)\).

The following result holds.

Theorem 9. If \(g \in \mathcal{M}^+ ([0, \infty)) \), then

\[
\delta_g (Q, P) \geq \max \left\{ \left| \delta_g (Q, P) - V (Q, P) I_g (Q, P) \right|, \left| \tilde{\delta}_{|g|} (Q, P) - V (Q, P) I_{|g|} (Q, P) \right| \right\} \geq 0,
\]

for any \(P, Q \in \mathcal{P} \).
Proof. Since g is monotonic, we have

$$\int X p(x) p(y) \left(\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right) \left(g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right) d\mu(x) d\mu(y)$$

for any $x, y \in X$.

If we multiply (5.5) by $p(x) p(y) \geq 0$ and integrate, we deduce

$$\int X p(x) p(y) \left(\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right) \left(g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right) d\mu(x) d\mu(y)$$

for any $x, y \in X$.

Now, observe that

$$\int X p(x) p(y) \left(\frac{q(x)}{p(x)} - \frac{q(y)}{p(y)} \right) \left(g \left[\frac{q(x)}{p(x)} \right] - g \left[\frac{q(y)}{p(y)} \right] \right) d\mu(x) d\mu(y)$$

and a similar identity holds for the quantity in the second branch of (5.6).

Finally, using the representation (5.1), we deduce the desired inequality (5.4).

6. The Positivity of δ-Divergence for $g \in \mathcal{L}c_1 ([0, \infty))$

The following result extending the positivity of δ-divergence for monotonic functions, holds.

Theorem 10. If $g \in \mathcal{L}c_1 ([0, \infty))$, then $\delta_g (Q, P) \geq 0$ for any $P, Q \in \mathcal{P}$.

Proof. We use the identity

\begin{align}
\delta_g(Q, P) &= \int_X [q(x) - p(x)] g \left(\frac{q(x)}{p(x)} \right) d\mu(x) \\
&= \int_X p(x) \left(\frac{q(x)}{p(x)} - 1 \right) g \left(\frac{q(x)}{p(x)} \right) d\mu(x) \\
&= \int_X p(x) \left(\frac{q(x)}{p(x)} - 1 \right) \left[g \left(\frac{q(x)}{p(x)} \right) - g(1) \right] d\mu(x).
\end{align}

Since \(g \in \mathcal{L}^1_0([0, \infty)) \), then for any \(t \in [0, \infty) \) we have

\[(t - 1) [g(t) - g(1)] \geq 0\]

giving that

\[\left(\frac{q(x)}{p(x)} - 1 \right) \left[g \left(\frac{q(x)}{p(x)} \right) - g(1) \right] \geq 0\]

for any \(x \in X \).

Using the representation (6.1), we deduce the desired result.

\[\square\]

Corollary 4. If \(f \in \mathcal{O}_0([0, \infty)) \), then \(I_f(Q, P) \geq 0 \) for any \(P, Q \in \mathcal{P} \).

Proof. If \(f \in \mathcal{O}_0([0, \infty)) \), then there exists a \(g \in \mathcal{L}^1_0([0, \infty)) \) such that \(f(t) = (t - 1) g(t) \) for any \(t \in [0, \infty) \). Then

\[I_f(Q, P) = \int_X p(x) f \left(\frac{q(x)}{p(x)} \right) d\mu(x)\]

\[= \int_X p(x) \left(\frac{q(x)}{p(x)} - 1 \right) g \left(\frac{q(x)}{p(x)} \right) d\mu(x)\]

\[= \delta_g(Q, P) \geq 0,\]

and the proof is completed.

The following improvement of Theorem 10 holds.

Theorem 11. If \(g \in \mathcal{L}^1_0([0, \infty)) \), then

\[\delta_g(Q, P) \geq |\delta_{|g|}(Q, P)| \geq 0\]

for any \(P, Q \in \mathcal{P} \).

Proof. Since \(g \in \mathcal{L}^1_0([0, \infty)) \), we obviously have

\begin{align}
\left(\frac{q(x)}{p(x)} - 1 \right) \left[g \left(\frac{q(x)}{p(x)} \right) - g(1) \right] \\
= \left| \left(\frac{q(x)}{p(x)} - 1 \right) \left(g \left(\frac{q(x)}{p(x)} \right) - g(1) \right) \right| \\
\geq \left| \left(\frac{q(x)}{p(x)} - 1 \right) \left(g \left(\frac{q(x)}{p(x)} \right) \right) - |g(1)| \right|.
\end{align}
Multiplying (6.3) by \(p(x) \geq 0\) and integrating on \(X\), we have
\[
\int_X p(x) \left[\frac{q(x)}{p(x)} - 1 \right] \left[g \left(\frac{q(x)}{p(x)} \right) - g(1) \right] d\mu(x) = \int_X p(x) \left[\frac{q(x)}{p(x)} - 1 \right] \left(\left| g \left(\frac{q(x)}{p(x)} \right) \right| - \left| g(1) \right| \right) d\mu(x) \geq \left| \int_X p(x) \left(\frac{q(x)}{p(x)} - 1 \right) \left| g \left(\frac{q(x)}{p(x)} \right) \right| d\mu(x) \right| = |\delta|_{\|\|}(Q, P)|,
\]
and the inequality (6.2) is proved. \(\blacksquare\)

7. Bounds in Terms of the \(\chi^2\)-Divergence

The following result may be stated.

Theorem 12. Let \(g : [0, \infty] \to \mathbb{R}\) be a differentiable function such that there exists the constants \(\gamma, \Gamma \in \mathbb{R}\) with
\[
\gamma \leq g'(t) \leq \Gamma \quad \text{for any } t \in (0, \infty).
\]
Then we have the inequality
\[
\gamma D_{\chi^2}(Q, P) \leq \delta_g(Q, P) \leq \Gamma D_{\chi^2}(Q, P),
\]
for any \(P, Q \in \mathcal{P}\).

Proof. Consider the auxiliary function \(h_\gamma : [0, \infty] \to \mathbb{R}, h_\gamma(t) := g(t) - \gamma (t - 1)\). Obviously, \(h_\gamma\) is differentiable on \((0, \infty)\) and since, by (7.1),
\[
h'_\gamma(t) = g'(t) - \gamma \geq 0
\]
it follows that \(h_\gamma\) is monotonic nondecreasing on \([0, \infty)\).

Applying Theorem 7, we deduce
\[
\delta_{h_\gamma}(Q, P) \geq 0 \quad \text{for any } P, Q \in \mathcal{P}
\]
and since
\[
\delta_{h_\gamma}(Q, P) = \delta_{g-\gamma(\cdot-1)}(Q, P)
\]
\[
= \int_X \left[q(x) - p(x) \right] \left[g \left(\frac{q(x)}{p(x)} \right) - \gamma \left(\frac{q(x)}{p(x)} - 1 \right) \right] d\mu(x)
\]
\[
= \delta_g(Q, P) - \gamma D_{\chi^2}(Q, P),
\]
then the first inequality in (7.2) is proved.

The second inequality may be proven in a similar manner by using the auxiliary function \(h_\Gamma : [0, \infty] \to \mathbb{R}, h_\Gamma(t) := \Gamma(t - 1) - g(t)\). \(\blacksquare\)

The following corollary is a natural application of the above theorem.

Corollary 5. Let \(f : [0, \infty] \to \mathbb{R}\) be a differentiable convex function on \((0, \infty)\) with \(f(1) = 0\). If there exist the constants \(\gamma, \Gamma \in \mathbb{R}\) with the property that:
\[
\gamma (t - 1)^2 + f(t) \leq f'(t)(t - 1) \leq f(t) + \Gamma (t - 1)^2
\]
for any \(t \in (0, \infty)\), then we have the inequality:
\[
\gamma D_{\chi^2}(Q, P) \leq I_f(Q, P) \leq \Gamma D_{\chi^2}(Q, P)
\]
for any \(P, Q \in \mathcal{P}\).
Proof. We know that for any \(P, Q \in \mathcal{P} \), we have (see for example (4.2)):

\[I_f (Q, P) = \delta_{g_f'(1)} (Q, P), \]

where

\[g_f'(1) = \begin{cases}
\frac{f(t)}{t} & \text{if } t \in [0,1) \cup (1,\infty), \\
 f'(1) & \text{if } t = 1.
\end{cases} \]

We observe that, by the hypothesis of the corollary, \(g_f'(1) \) is differentiable on \((0,\infty)\) and

\[g_f'(1)'(t) = \frac{f'(t)(t-1) - f(t)}{(t-1)^2} \]

for any \(t \in (0,1) \cup (1,\infty) \).

Using (7.3), we deduce that

\[\gamma \leq g_f'(1)'(t) \leq \Gamma \]

for \(t \in (0,\infty) \), and applying Theorem 12 above, for \(g = g_f'(1) \), we deduce the desired inequality (7.4).

8. Bounds in Terms of the J–Divergence

We recall that the Jeffreys divergence (or J–divergence for short) is defined as

\[J(Q, P) := \int_X [q(x) - p(x)] \ln \left[\frac{q(x)}{p(x)} \right] d\mu(x), \]

where \(P, Q \in \mathcal{P} \).

The following result holds.

Theorem 13. Let \(g : [0,\infty] \to \mathbb{R} \) be a differentiable function such that there exists the constants \(\phi, \Phi \in \mathbb{R} \) with

\[\phi \leq tg'(t) \leq \Phi \quad \text{for any } t \in (0,\infty). \]

Then we have the inequality

\[\phi J(Q, P) \leq \delta_g(Q, P) \leq \Phi J(Q, P), \]

for any \(P, Q \in \mathcal{P} \).

Proof. Consider the auxiliary function \(h_\phi : [0,\infty] \to \mathbb{R}, h_\phi(t) := g(t) - \phi \ln t. \) Obviously, \(h_\phi \) is differentiable on \((0,\infty)\) and, by (8.2),

\[h_\phi'(t) = g'(t) - \frac{\phi}{t} = \frac{1}{t} [tg'(t) - \phi] \geq 0, \]

for any \(t \in (0,\infty) \), showing that the function is monotonic nondecreasing on \((0,\infty)\).

Applying Theorem 7, we deduce

\[\delta_{h_\phi}(Q, P) \geq 0 \quad \text{for any } P, Q \in \mathcal{P} \]

and since

\[\delta_{h_\phi}(Q, P) = \delta_{g - \phi \ln(\cdot)}(Q, P) \]

\[= \int_X \left[q(x) - p(x) \right] \left[g \left[\frac{q(x)}{p(x)} \right] - \phi \ln \left[\frac{q(x)}{p(x)} \right] \right] d\mu(x) \]

\[= \delta_g(Q, P) - \phi J(Q, P), \]
then the first inequality in (8.3) is proved.

The second inequality may be proven in a similar manner by using the auxiliary function \(h_\Phi : [0, \infty) \to \mathbb{R} \), \(h_\Phi (t) := \Phi \ln t - g(t) \).

The following corollary is a natural application of the above theorem.

Corollary 6. Let \(f : [0, \infty] \to \mathbb{R} \) be a differentiable convex function on \((0, \infty)\) with \(f(1) = 0 \). If there exist the constants \(\phi, \Phi \in \mathbb{R} \) with the property that:

\[
\phi (t - 1)^2 + tf(t) \leq t(t - 1)f'(t) \leq tf(t) + \Phi(t - 1)^2
\]

for any \(t \in (0, \infty) \), then we have the inequality:

\[
\phi J(Q, P) \leq I_f(Q, P) \leq \Phi J(Q, P)
\]

for any \(P, Q \in \mathcal{P} \).

The proof is similar to the one in Corollary 5 and we omit the details.

References

