AN INEQUALITY FOR LOGARITHMS AND ITS APPLICATION IN CODING THEORY

N.M. DRAGOMIR AND S.S. DRAGOMIR

Abstract. In this paper we prove a new analytic inequality for logarithms and apply it for the Noiseless Coding Theorem.

1 Introduction

The following analytic inequality for logarithms is well known in the literature (see for example [1, Lemma 1.2.2, p. 22]):

Lemma 1.1. Let \(P = (p_1, ..., p_n) \) be a probability distribution, that is, \(0 \leq p_i \leq 1 \) and \(\sum_{i=1}^{n} p_i = 1 \). Let \(Q = (q_1, ..., q_n) \) have the property that \(0 \leq q_i \leq 1 \) and \(\sum_{i=1}^{n} q_i \leq 1 \) (note the inequality here). Then

\[
\sum_{i=1}^{n} p_i \log_b \left(\frac{1}{p_i} \right) \leq \sum_{i=1}^{n} p_i \log_b \left(\frac{1}{q_i} \right)
\]

where \(b > 1 \), \(0 \cdot \log_b (1/0) = 0 \) and \(p \cdot \log_b (1/0) = +\infty \). Furthermore, equality holds if and only if \(q_i = p_i \) for all \(i \in \{1, ..., n\} \).

Note that the proof of this fact uses the elementary inequality for logarithms (see [1, p. 22])

\[
\ln x \leq x - 1 \quad \text{for all } x > 0.
\]

Also, we would like to remark that the inequality (1.1) was used to obtain many important results from the foundations of Information Theory such as: the range of the entropy mapping, the Noiseless Coding Theorem, etc. For some recent results which provide similar inequalities see the papers [2-6].

The main aim of this paper is to point out a counterpart inequality for (1.1) and to use it in connection with the *Noiseless Coding Theorem*.

2 The Results

We shall start with the following inequality.

Date. November, 1998
1991 Mathematics Subject Classification. Primary 26D15; Secondary 94Xxx
Key words and phrases. Analytic Inequalities, Noiseless Coding Theorem
Lemma 2.1. Let p_i, q_i be strictly positive real numbers for $i = 1, \ldots, n$. Then we have the double inequality:

\begin{equation}
\frac{1}{\ln r} \sum_{i=1}^{n} (p_i - q_i) \leq \sum_{i=1}^{n} \left(\log_r \frac{1}{q_i} - \log_r \frac{1}{p_i} \right) p_i \leq \frac{1}{\ln r} \sum_{i=1}^{n} \left(\frac{p_i}{q_i} - 1 \right) p_i \tag{2.1}
\end{equation}

where $r > 1, r \in \mathbb{R}$. The equality holds in both inequalities iff $p_i = q_i$ for all i.

Proof. The mapping $f(x) = \log_r x$ is a concave mapping on $(0, \infty)$ and thus satisfies the double inequality

\begin{equation}
f'(y)(x - y) \geq f(x) - f(y) \geq f'(x)(x - y)
\end{equation}

for all $x, y > 0$, and as

\begin{equation}
f'(x) = \frac{1}{\ln r} \cdot \frac{1}{x}
\end{equation}

we get

\begin{equation}
\frac{1}{\ln r} \cdot \frac{x - y}{y} \geq \log_r x - \log_r y \geq \frac{1}{\ln r} \cdot \frac{x - y}{x} \quad \text{for all } x, y > 0.
\end{equation}

Let us choose $x = \frac{1}{q_i}, y = \frac{1}{p_i}$ in (2.2) to get

\begin{equation}
\frac{1}{\ln r} \cdot \frac{(p_i - q_i)}{q_i} \geq \log_r \frac{1}{q_i} - \log_r \frac{1}{p_i} \geq \frac{1}{\ln r} \cdot \frac{(p_i - q_i)}{p_i}
\end{equation}

for all $i \in \{1, \ldots, n\}$.

Now, if we multiply this inequality by $p_i > 0$ ($i = 1, \ldots, n$) we get:

\begin{equation}
\frac{1}{\ln r} \left[p_i \left(\frac{p_i}{q_i} - 1 \right) \right] \geq p_i \log_r \frac{1}{q_i} - p_i \log_r \frac{1}{p_i} \geq \frac{1}{\ln r} \cdot (p_i - q_i)
\end{equation}

for all $i \in \{1, \ldots, n\}$.

Now, summing over i from 1 to n, we obtain the desired inequality (2.1).

The statement on equality holds by the strict concavity of the mapping $\log_r(\cdot)$. We shall omit the details.

Corollary 2.2. Let $P = (p_1, \ldots, p_n)$ be a probability distribution, that is, $p_i \in [0, 1]$ and $\sum_{i=1}^{n} p_i = 1$. Let $Q = (q_1, \ldots, q_n)$ have the property that $q_i \in [0, 1]$ and $\sum_{i=1}^{n} q_i \leq 1$ (note the inequality here). Then we have:

\begin{equation}
0 \leq \frac{1}{\ln r} \left(1 - \sum_{i=1}^{n} q_i \right)
\end{equation}

\begin{equation}
\leq \sum_{i=1}^{n} p_i \log_r \frac{1}{q_i} - \sum_{i=1}^{n} p_i \log_r \frac{1}{p_i} \leq \frac{1}{\ln r} \left(\sum_{i=1}^{n} \frac{p_i^2}{q_i} - 1 \right)
\end{equation}

where $r > 1, r \in \mathbb{R}$. The Equality holds iff $p_i = q_i$ ($i = 1, \ldots, n$).
The proof is obvious by Lemma 2.1 taking into account that \(\sum_{i=1}^{n} p_i = 1 \) and \(1 \geq \sum_{i=1}^{n} q_i \).

Remark 2.1. Note that the above corollary is a worthwhile improvement of Lemma 1.2.2 from the book [1] which plays there a very important role in obtaining the basically inequalities for entropy, conditional entropy, mutual information, etc.

Now, consider an encoding scheme \((c_1, \ldots, c_n)\) for a probability distribution \((p_1, \ldots, p_n)\). Recall that the average codeword length of an encoding scheme \((c_1, \ldots, c_n)\) for \((p_1, \ldots, p_n)\) is

\[
\text{AveLen}(c_1, \ldots, c_n) = \sum_{i=1}^{n} p_i \text{len}(c_i).
\]

We denote the length \(\text{len}(c_i)\) by \(l_i\).

Recall also that the \(r\)-ary entropy of a probability distribution (or of a source) is given by:

\[
H_r(p_1, \ldots, p_n) = \sum_{i=1}^{n} p_i \log_r \frac{1}{p_i}.
\]

The following theorem is well known in the literature (see for example [1, Theorem 2.3.1, p. 62]):

Theorem 2.3. Let \(C = (c_1, \ldots, c_n)\) be an instantaneous (decipherable) encoding scheme for \(P = (p_1, \ldots, p_n)\). Then we have the inequality:

\[
(2.6) \quad H_r(p_1, \ldots, p_n) \leq \text{AveLen}(c_1, \ldots, c_n),
\]

with equality if and only if \(l_i = \log_r \left(\frac{1}{p_i} \right)\) for all \(i = 1, \ldots, n\).

We shall give now the following sharpening of (2.6) which has important consequences in connection with Noiseless Coding Theorem as follows.

Theorem 2.4. Let \(C\) and \(P\) be as in the above theorem. Then we have the inequality:

\[
(2.7) \quad 0 \leq \frac{1}{\ln r} \left(1 - \sum_{i=1}^{n} \frac{1}{r_i} \right) \leq \text{AveLen}(c_1, \ldots, c_n) - H_r(p_1, \ldots, p_n) \leq \frac{1}{\ln r} \sum_{i=1}^{n} p_i \left(p_i r_i - 1 \right).
\]

The Equality holds iff \(l_i = \log_r \left(\frac{1}{p_i} \right)\).

Proof. Define \(q_i := \frac{1}{r_i} (i = 1, \ldots, n)\). Then \(q_i \in [0, 1]\) and \(\sum_{i=1}^{n} q_i = \sum_{i=1}^{n} \frac{1}{r_i} \leq 1\) by Kraft’s theorem (see for example [1, Theorem 2.1.2, p. 44]) and by a simple computation (as in [1, p. 62]) we have:

\[
\sum_{i=1}^{n} p_i \log_r \frac{1}{q_i} = \sum_{i=1}^{n} p_i \log_r \left(r_i \right) = \sum_{i=1}^{n} p_i l_i = \text{AveLen}(c_1, \ldots, c_n).
\]

Also
Thus inequality (2.5) yields (2.7).

The following theorem also holds.

Theorem 2.5. Let \(P = (p_1, ..., p_n) \) be a given probability distribution and \(r \in \mathbb{N}, r \geq 2 \). If \(\epsilon > 0 \) is given and there exists natural numbers \(l_1, ..., l_n \) such that

\[
\log_r \left(\frac{1}{p_i} \right) \leq l_i \leq \log_r \left(\frac{1 + \epsilon \ln r}{p_i} \right) \quad \text{for all } i \in \{1, ..., n\},
\]

then there exists an instantaneous \(r \)-ary code \(C = (c_1, ..., c_n) \) with codeword length \(\text{len}(c_i) = l_i \) such that:

\[
H_r (p_1, ..., p_n) \leq \text{AveLen} (c_1, ..., c_n) \leq H_r (p_1, ..., p_n) + \epsilon.
\]

Proof. First of all, let us observe that (2.8) is equivalent to

\[
\frac{1}{r_i} \leq p_i \leq \frac{1 + \epsilon \ln r}{p_i}, \quad \text{for all } i \in \{1, ..., n\}.
\]

Now, as \(\frac{1}{r_i} \leq p_i \), we deduce that

\[
\sum_{i=1}^{n} \frac{1}{r_i} \leq \sum_{i=1}^{n} p_i = 1
\]

and by Kraft’s theorem, there exists an instantaneous \(r \)-ary code \(C = (c_1, ..., c_n) \) so that \(\text{len}(c_i) = l_i \). Obviously, by the Theorem 2.3, the first inequality in (2.9) holds.

We prove the second inequality.

By Theorem 2.4 we have the estimate

\[
\text{AveLen} (c_1, ..., c_n) - H_r (p_1, ..., p_n)
\]

\[
= \frac{1}{\ln r} \sum_{i=1}^{n} p_i \left(r_i - 1 \right)\]

\[
\leq \frac{1}{\ln r} \sum_{i=1}^{n} p_i \left| p_i r_i - 1 \right| \leq \max_{i=1, ..., n} \left\{ \left| p_i r_i - 1 \right| \right\} \frac{1}{\ln r} \sum_{i=1}^{n} p_i
\]

\[
= \frac{1}{\ln r} \max_{i=1, ..., n} \left\{ \left| p_i r_i - 1 \right| \right\}.
\]

Now, we observe that (2.10) implies

\[
\frac{1 - \epsilon \ln r}{p_i} \leq \frac{1}{p_i} \leq \frac{1 + \epsilon \ln r}{p_i}, \quad i \in \{1, ..., n\},
\]

i.e.,

\[
1 - \epsilon \ln r \leq p_i r_i \leq 1 + \epsilon \ln r, \quad i \in \{1, ..., n\},
\]

\[
\frac{1}{r_i} \leq p_i \leq \frac{1 + \epsilon \ln r}{p_i},
\]

\[
\sum_{i=1}^{n} \frac{1}{r_i} \leq \sum_{i=1}^{n} p_i = 1.
\]

and by Kraft’s theorem, there exists an instantaneous \(r \)-ary code \(C = (c_1, ..., c_n) \) so that \(\text{len}(c_i) = l_i \). Obviously, by the Theorem 2.3, the first inequality in (2.9) holds.

We prove the second inequality.

By Theorem 2.4 we have the estimate

\[
\text{AveLen} (c_1, ..., c_n) - H_r (p_1, ..., p_n)
\]

\[
= \frac{1}{\ln r} \sum_{i=1}^{n} p_i \left(r_i - 1 \right)\]

\[
\leq \frac{1}{\ln r} \sum_{i=1}^{n} p_i \left| p_i r_i - 1 \right| \leq \max_{i=1, ..., n} \left\{ \left| p_i r_i - 1 \right| \right\} \frac{1}{\ln r} \sum_{i=1}^{n} p_i
\]

\[
= \frac{1}{\ln r} \max_{i=1, ..., n} \left\{ \left| p_i r_i - 1 \right| \right\}.
\]

Now, we observe that (2.10) implies

\[
\frac{1 - \epsilon \ln r}{p_i} \leq \frac{1}{p_i} \leq \frac{1 + \epsilon \ln r}{p_i}, \quad i \in \{1, ..., n\},
\]

i.e.,

\[
1 - \epsilon \ln r \leq p_i r_i \leq 1 + \epsilon \ln r, \quad i \in \{1, ..., n\},
\]
which is equivalent to
\[|p_i r^l_i - 1| \leq \varepsilon \ln r \quad \text{for all } i \in \{1, \ldots, n\} \]
and then, by (2.11), we deduce the second part of (2.9).

Remark 2.2. Since for \(\varepsilon \in (0, 1) \), we have for all \(r > 0 \),
\[\log_r \left(\frac{1 + \varepsilon \ln r}{p_i} \right) - \log_r \left(\frac{1}{p_i} \right) = \log_r (1 + \varepsilon \ln r) < \log_r r = 1, \]
(because \(1 + \varepsilon \ln r < r \) for all \(r \) for a given \(\varepsilon \in (0, 1) \)) we are not sure always we can find a natural number \(l_i \) so that inequality (2.8) holds.

Before giving some sufficient conditions for the probability \(P = (p_1, \ldots, p_n) \) so that we can find natural numbers \(l_i \) satisfying the inequalities (2.8), let us recall the Noiseless Coding Theorem.

We shall use the notation
\[\text{MinAveLen}_r (p_1, \ldots, p_n) \]
to denote the minimum average codeword length among all \(r \)-ary instantaneous encoding scheme for the probability distribution \(P = (p_1, \ldots, p_n) \).

The following Noiseless Coding Theorem is well known in the literature (see for example [1, Theorem 2.3.2, p. 64]):

Theorem 2.6. For any probability distribution \(P = (p_1, \ldots, p_n) \) we have
\[H_r (p_1, \ldots, p_n) \leq \text{MinAveLen}_r (p_1, \ldots, p_n) < H_r (p_1, \ldots, p_n) + 1. \]

The following question arises naturally:

Question: Is it possible to replace the constant 1 on (2.12) by a smaller constant \(\varepsilon \in (0, 1) \) under some conditions on the probability distribution \(P = (p_1, \ldots, p_n) \)?

We are able to give the following (partial) answer to this question.

Theorem 2.7. Let \(r \) be a given natural number and \(\varepsilon \in (0, 1) \). If a probability distribution \(P = (p_1, \ldots, p_n) \) satisfies the condition that every closed interval
\[I_i = \left[\log_r \left(\frac{1}{p_i} \right), \log_r \left(\frac{1 + \varepsilon \ln r}{p_i} \right) \right], \quad i \in \{1, \ldots, n\} \]
contains at least one natural number \(l_i \), then for that probability distribution \(P \) we have
\[H_r (p_1, \ldots, p_n) \leq \text{MinAveLen}_r (p_1, \ldots, p_n) \leq H_r (p_1, \ldots, p_n) + \varepsilon. \]

Proof. Under the hypotheses
\[\sum_{i=1}^{n} \frac{1}{r^{l_i}} \leq \sum_{i=1}^{n} p_i = 1 \]
and by Kraft’s theorem, there exists an instantaneous code \(C = (c_1, \ldots, c_n) \) so that \(\text{len}(c_i) = l_i \). For that code we have the condition (2.8) and then, by Theorem 2.5, we have the inequality (2.9). Taking the infimum in that inequality over all \(r - ary \) instantaneous codes, we get (2.13).
The following theorem could be useful for applications.

Theorem 2.8. Let \(a_i \ (i = 1, ..., n) \) be \(n \) natural numbers. If \(p_i \ (i = 1, ..., n) \) are such that

\[
\frac{1}{r^{a_i}} \leq p_i \leq \frac{1 + \varepsilon \ln r}{r^{a_i}} \quad \text{for } i = 1, ..., n;
\]

and \(\sum_{i=1}^{n} p_i = 1 \), then there exists an instantaneous code \(C = (c_1, ..., c_n) \) with \(\text{len} (c_i) = a_i \) so that (2.9) holds for the probability distribution \(P = (p_1, ..., p_n) \). Furthermore, for that distribution, we have the inequality (2.13).

Proof. The condition (2.14) is equivalent to

\[
\frac{1}{p_i} \leq r^{a_i} \quad \text{and} \quad \frac{1 + \varepsilon \ln r}{p_i} \geq r^{a_i}, \quad i = 1, ..., n;
\]

which implies

\[
\log_r \left(\frac{1}{p_i} \right) \leq a_i \leq \log_r \left(\frac{1 + \varepsilon \ln r}{p_i} \right), \quad i = 1, ..., n;
\]

and then \(a_i \in I_i, \ i = 1, ..., n \).

Applying the above results, we get the desired conclusion. \(\square \)

References

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address: \{nico, sever\}@matilda.vut.edu.au