ON AN INEQUALITY FOR LOGARITHMS AND APPLICATIONS IN INFORMATION THEORY

S.S. Dragomir, N.M. Dragomir and K. Pranesh

Abstract. A new analytic inequality for logarithms which provides a converse to arithmetic mean-geometric mean inequality and its applications in information theory are given.

1 INTRODUCTION

The present paper continues the investigations started in [1], where the main result is

Theorem 1.1. Let $\xi_k \in (0, \infty), p_k > 0, k = 1, \ldots, n$ with $\sum_{k=1}^{n} p_k = 1$ and $b > 1$. Then

$$0 \leq \log_b \left(\sum_{k=1}^{n} p_k \xi_k \right) - \sum_{k=1}^{n} p_k \log_b \xi_k$$

$$\leq \frac{1}{2 \ln b} \sum_{k=1}^{n} p_k \left(\xi_k - \xi_k \right)^2.$$

The equality holds in both inequalities simultaneously if and only if $\xi_1 = \ldots = \xi_n$.

2 A NEW ANALYTIC INEQUALITY FOR LOGARITHMS

We shall start to the following analytic inequality for logarithms which provides a different bound than the inequality of Dragomir-Goh (1.1):

Theorem 2.1. Let $\xi_k \in [1, \infty)$ and $p_k > 0$ with $\sum_{k=1}^{n} p_k = 1$ and $b > 1$. Then we have

$$0 \leq \log_b \left(\sum_{k=1}^{n} p_k \xi_k \right) - \sum_{k=1}^{n} p_k \log_b \xi_k$$

$$\leq \frac{1}{4 \ln b} \sum_{i,j=1}^{n} p_i p_j \left(\xi_i - \xi_j \right)^2.$$

The equality holds in both inequalities simultaneously if and only if $\xi_1 = \ldots = \xi_n$.

Proof. We shall use the well known Jensen’s discrete inequality for convex mappings which states that

$$f \left(\sum_{i=1}^{n} p_i x_i \right) \leq \sum_{i=1}^{n} p_i f (x_i)$$

for all $p_i > 0, \sum_{i=1}^{n} p_i = 1, f$ a convex mapping on a given interval I and $x_i \in I (i = 1, \ldots, n).$

Date. December 14, 1998

1991 Mathematics Subject Classification. Primary 26 D 15, 26 D xx; Secondary 94 X xx.

Key words and phrases. Jensen’s Inequality, Analytic Inequalities, Entropy Mapping, Joint Entropy.
Now, let consider the mapping \(f : [1, \infty) \to \mathbb{R} \), \(f(x) = \frac{x^2}{2} + \ln x \). Then

\[
f'(x) = x + \frac{1}{x} = \frac{x^2 + 1}{x} \quad \text{for all } x \in [1, \infty)
\]

and

\[
f''(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} \quad \text{for all } x \in [1, \infty),
\]

i.e., \(f \) is a strictly convex mapping on \([1, \infty)\).

Applying Jensen’s discrete inequality for convex mappings, we have

\[
\frac{1}{2} \left(\sum_{i=1}^{n} p_i \xi_i \right)^2 + \ln \left(\sum_{i=1}^{n} p_i \xi_i \right) \leq \frac{1}{2} \sum_{i=1}^{n} p_i \xi_i^2 + \sum_{i=1}^{n} p_i \ln \xi_i
\]

which is equivalent to

\[
\ln \left(\sum_{i=1}^{n} p_i \xi_i \right) - \sum_{i=1}^{n} p_i \ln \xi_i \leq \frac{1}{2} \left[\sum_{i=1}^{n} p_i \xi_i^2 - \left(\sum_{i=1}^{n} p_i \xi_i \right)^2 \right].
\]

But

\[
\sum_{i,j=1}^{n} p_i p_j (\xi_i - \xi_j)^2 = \sum_{i,j=1}^{n} p_i p_j \left[\xi_i^2 + \xi_j^2 - 2 \xi_i \xi_j \right]
\]

\[
= 2 \left[\sum_{i=1}^{n} p_i \sum_{i=1}^{n} p_i \xi_i^2 - \left(\sum_{i=1}^{n} p_i \xi_i \right)^2 \right] = 2 \left[\sum_{i=1}^{n} p_i \xi_i^2 - \left(\sum_{i=1}^{n} p_i \xi_i \right)^2 \right]
\]

and then the above inequality becomes

\[
\ln \left(\sum_{i=1}^{n} p_i \xi_i \right) - \sum_{i=1}^{n} p_i \ln \xi_i \leq \frac{1}{4} \sum_{i,j=1}^{n} p_i p_j (\xi_i - \xi_j)^2.
\]

Now, as \(\log_b x = \frac{\ln x}{\ln b} \), the inequality (2.4) is equivalent to the desired inequality (2.1).

The case of equality follows by the strict convexity of \(f \) and we omit the details. □

Remark 2.1. Define

\[
B_1 := \frac{1}{2 \ln b} \sum_{i,j=1}^{n} p_i p_j \frac{\xi_i - \xi_j}{\xi_i \xi_j}^2 \quad \text{(as in Theorem 1.1)}
\]

and

\[
B_2 := \frac{1}{4 \ln b} \sum_{i,j=1}^{n} p_i p_j (\xi_i - \xi_j)^2 \quad \text{(as in Theorem 2.1)}
\]

and compute the difference

\[
B_1 - B_2 = \frac{1}{2 \ln b} \sum_{i,j=1}^{n} p_i p_j \frac{\xi_i - \xi_j}{\xi_i \xi_j}^2 \left[\frac{1}{\xi_i \xi_j} - 2 \right]
\]

\[
= \frac{1}{4 \ln b} \sum_{i,j=1}^{n} p_i p_j \frac{\xi_i - \xi_j}{\xi_i \xi_j} \left(2 - \xi_i \xi_j \right).
\]

Consequently, if \(\xi_i, \xi_j \in [1, \infty) \) so that \(\xi_i \xi_j \leq 2 \) for all \(i, j \in \{1, \ldots, n\} \), then the bound \(B_2 \) provided by Theorem 2.1 is better than the bound \(B_1 \) provided by Theorem 1.1. If \(\xi_i, \xi_j \in [1, \infty) \) so that \(\xi_i \xi_j \geq 2 \) for all \(i, j \in \{1, \ldots, n\} \), then Theorem 1.1 provides a better result than Theorem 2.1.
We give now some applications of the above results for arithmetic mean-geometric mean inequality.

Recall that for \(q \geq 0 \) with \(Q_n := \sum_{i=1}^{n} q_i \), the arithmetic mean of \(x \) with the weights \(q, i \in \{1, \ldots, n\} \) is

\[
A_n \left(\bar{q}, \bar{x} \right) := \frac{1}{Q_n} \sum_{i=1}^{n} q_i x_i
\]

and the geometric mean of \(x \) with the weights \(q, i \in \{1, \ldots, n\} \), is

\[
G_n \left(\bar{q}, \bar{x} \right) := \left(\prod_{i=1}^{n} x_i^{q_i} \right)^{\frac{1}{Q_n}}.
\]

It is well known that the following inequality so called arithmetic mean-geometric mean inequality, holds

\[
(2.5) \quad A_n \left(\bar{q}, \bar{x} \right) \geq G_n \left(\bar{q}, \bar{x} \right)
\]

with equality if and only if \(x_1 = \ldots = x_n \).

Now, using Theorem 1.1, we can state the following proposition containing a counterpart of the arithmetic mean-geometric mean inequality (2.5):

Proposition 2.2. With the above assumptions for \(\bar{q} \) and \(\bar{x} \), we have

\[
(2.6) \quad 1 \leq \frac{A_n \left(\bar{q}, \bar{x} \right)}{G_n \left(\bar{q}, \bar{x} \right)} \leq \exp_b \left[\frac{1}{2Q_n^2} \ln b \sum_{i,j=1}^{n} \frac{q_i q_j}{x_i x_j} (x_i - x_j)^2 \right]
\]

where \(\exp_b (x) = b^x \) (\(b > 1 \)). The equality holds in both inequalities simultaneously if and only if \(x_1 = \ldots = x_n \).

Also, using Theorem 2.1, we have another converse inequality for (2.5).

Proposition 2.3. Let \(\bar{q} \) be as above and \(\bar{x} \in \mathbb{R}^n \), so that \(x_i \geq 1, i = 1, \ldots, n \). Then we have the inequality:

\[
(2.7) \quad 1 \leq \frac{A_n \left(\bar{q}, \bar{x} \right)}{G_n \left(\bar{q}, \bar{x} \right)} \leq \exp_b \left[\frac{1}{4Q_n^2} \ln b \sum_{i,j=1}^{n} \frac{q_i q_j}{x_i x_j} (x_i - x_j)^2 \right]
\]

where \(b > 1 \). The equality holds in both inequalities simultaneously if and only if \(x_1 = \ldots = x_n \).

Remark 2.2. As in the previous remark, if \(1 \leq x_i x_j \leq 2 \) then the bound (2.7) is better than (2.6). If \(x_i x_j \geq 2 \), then (2.6) is better than (2.7).

3 Applications For The Entropy Mapping

Let us consider now, the \(b \)-entropy mapping of the discrete random variable \(X \) with \(n \) possible outcomes and having the probability distribution \(p = (p_i) \), \(i = \{1, \ldots, n\} \):

\[
H_b (X) = \sum_{i=1}^{n} p_i \log_b \left(\frac{1}{p_i} \right).
\]

We know (see [1]) that the following counterpart inequality holds:

\[
(3.1) \quad 0 \leq \log_b n - H_b (X) \leq \frac{1}{2 \ln b} \sum_{i,j=1}^{n} (p_i - p_j)^2
\]

with equality if and only if \(p_i = \frac{1}{n} \) for all \(i \in \{1, \ldots, n\} \).

The following similar result also holds:
Theorem 3.1. Let X be as above. Then we have

$$0 \leq \log_b n - H_b(X) \leq \frac{1}{4 \ln b} \sum_{i,j=1}^{n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2. \tag{3.2}$$

The equality holds if and only if $p_i = \frac{1}{n}$ for all $i \in \{1, \ldots, n\}$.

Proof. As $p_i \in (0, 1]$, then $\xi = \frac{1}{p_i} \in [1, \infty)$ and we can apply Theorem 2.1 to get

$$0 \leq \log_b n - H_b(X) \leq \frac{1}{4 \ln b} \sum_{i,j=1}^{n} p_i p_j \left(\frac{1}{p_i} - \frac{1}{p_j} \right)^2 \leq \frac{1}{4 \ln b} \sum_{i,j=1}^{n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2.\tag{3.3}$$

The equality holds iff $\xi_i = \xi_j$ for all $i, j \in \{1, \ldots, n\}$ which is equivalent to $p_i = p_j$ for all $i, j \in \{1, \ldots, n\}$, i.e., $p_i = \frac{1}{n}$ for all $i \in \{1, \ldots, n\}$. \hspace{1cm} []

The following corollary is important in applications as it provides a sufficient condition for the probability p so that $\log_b n - H_b(X)$ is small enough.

Corollary 3.2. Let X be as above and $\varepsilon > 0$. If the probabilities $p_i, i = 1, \ldots, n$, satisfy the conditions:

$$\frac{1}{2} \left[2 + k - \sqrt{k(k+4)} \right] \leq \frac{p_i}{p_j} \leq \frac{1}{2} \left[2 + k + \sqrt{k(k+4)} \right] \tag{3.4}$$

for all $1 \leq i < j \leq n$, where

$$k = \frac{4\varepsilon \ln b}{n(n-1)} \quad (n \geq 2),$$

then we have the estimation

$$0 \leq \log_b n - H_b(X) \leq \varepsilon.$$

Proof. Let observe that

$$\frac{1}{4 \ln b} \sum_{i,j=1}^{n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2 = \frac{1}{2 \ln b} \sum_{1 \leq i < j \leq n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2. \tag{3.3}$$

Suppose that

$$\frac{(p_i - p_j)^2}{p_i p_j} \leq k, \quad \text{for } 1 \leq i < j \leq n.$$

Then

$$p_i^2 - (2 + k) p_i p_j + p_j^2 \leq 0 \quad \text{for } 1 \leq i < j \leq n.$$

Denoting $t = \frac{p_i}{p_j}$, the above inequality is equivalent to $t^2 - (2 + k) t + 1 \leq 0$, i.e., $t \in [t_1, t_2]$, where

$$t_1 = \frac{2 + k - \sqrt{k(k+4)}}{2} \quad \text{and} \quad t_2 = \frac{2 + k + \sqrt{k(k+4)}}{2}.$$

If we choose $k = \frac{4\varepsilon \ln b}{n(n-1)}$, then by (3.2) we have

$$0 \leq \log_b n - H_b(X) \leq \frac{1}{4 \ln b} \sum_{i,j=1}^{n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2 \leq \frac{1}{2 \ln b} \sum_{1 \leq i < j \leq n} \left(\frac{p_i - p_j}{p_i p_j} \right)^2 \leq \frac{1}{2 \ln b} \sum_{1 \leq i < j \leq n} k = \frac{n(n-1)}{4 \ln b} \cdot \frac{4\varepsilon \ln b}{n(n-1)} = \varepsilon,$$

and the corollary is proved. \hspace{1cm} []
Now, consider the bounds
\[M_1 := \frac{1}{2 \ln b} \sum_{i,j=1}^{n} (p_i - p_j)^2 \quad \text{(given by (3.1))} \]
and
\[M_2 := \frac{1}{4 \ln b} \sum_{i,j=1}^{n} \frac{(p_i - p_j)^2}{p_i p_j} \quad \text{(given by (3.2)).} \]

We give an example for which \(M_1 \) is less than \(M_2 \) and another example for which \(M_2 \) is less than \(M_1 \) which will suggest that we can use both of them to estimate the above difference \(\log_b n - H_b(X) \).

Consider the probability distribution:
\[p_1 = 0.3475, \quad p_2 = 0.2398, \quad p_3 = 0.1654 \]
\[p_4 = 0.1142, \quad p_5 = 0.0788, \quad p_6 = 0.0544. \]

In this case
\[\tilde{M}_1 = 6.5119, \quad \tilde{M}_2 = 12.1166, \]
where
\[\tilde{M}_1 := \frac{1}{2} \sum_{i,j=1}^{n} (p_i - p_j)^2, \quad \tilde{M}_2 := \frac{1}{4} \sum_{i,j=1}^{n} \frac{(p_i - p_j)^2}{p_i p_j} \quad \text{and} \quad n = 6. \]

Consider the probability distribution
\[p_1 = 0.2468, \quad p_2 = 0.2072, \quad p_3 = 0.1740 \]
\[p_4 = 0.1461, \quad p_5 = 0.1227, \quad p_6 = 0.1031. \]

In this case,
\[\tilde{M}_1 = 5.2095, \quad \tilde{M}_2 = 2.3706. \]

4 Bounds for Joint Entropy

Consider the joint entropy of two random variables \(X \) and \(Y \) [3, p. 25]:
\[H_b(X, Y) := \sum_{x,y} p(x, y) \log_b \frac{1}{p(x, y)} \]
where the joint probability \(p(x, y) = P\{X = x, Y = y\} \).

In paper [2], S.S. Dragomir and C. J. Goh have proved the following result using Theorem 1.1:

Theorem 4.1. With the above assumptions, we have that
\[0 \leq \log_b (r, s) - H_b(X, Y) \leq \frac{1}{2 \ln b} \sum_{x,y} \sum_{u,v} (p(x, y) - p(u, v))^2 \]
where the range of \(X \) contains \(r \) elements and the range of \(Y \) contains \(s \) elements. Equality holds in both inequalities simultaneously if and only if \(p(x, y) = p(u, v) \) for all \((x, y), (u, v)\).

The following corollary is useful in practice:

Corollary 4.2. With the above assumptions and if
\[\max_{(x,y),(u,v)} |p(x, y) - p(u, v)| \leq \sqrt{\frac{2\varepsilon \ln b}{rs}}, \quad \varepsilon > 0 \]
then we have the estimation
\[0 \leq \log_b (r, s) - H_b(X, Y) \leq \varepsilon. \]
Now, using the second converse inequality embodied in Theorem 2.1, we are able to prove another upper bound for the difference \(\log_b (rs) - H_b (X, Y) \).

Theorem 4.3. With the above assumptions, we have

\[
0 \leq \log_b (rs) - H_b (X, Y) \leq \frac{1}{4 \ln b} \sum_{x,y} \sum_{u,v} \frac{(p(x,y) - p(u,v))^2}{p(x,y) p(u,v)}
\]

where the range of \(X \) and \(Y \) are as above. Equality holds in both inequalities simultaneously iff \(p(x,y) = p(u,v) \) for all \((x,y) \) and \((u,v) \).

Proof. Using Theorem 2.1, we have for \(p_i = p(x,y) \) and \(\xi_i = \frac{1}{p(x,y)} \),

\[
0 \leq \log_b \left(\sum_{x,y} p(x,y) \cdot \frac{1}{p(x,y)} \right) - \sum_{x,y} p(x,y) \log_b \left(\frac{1}{p(x,y)} \right)
\]

\[
\leq \frac{1}{4 \ln b} \sum_{x,y} \sum_{u,v} p(x,y) p(u,v) \left(\frac{1}{p(x,y)} - \frac{1}{p(u,v)} \right)^2
\]

\[
= \frac{1}{4 \ln b} \sum_{x,y} \sum_{u,v} \frac{(p(x,y) - p(u,v))^2}{p(x,y) p(u,v)}
\]

which is clearly equivalent to the desired result. The case of equality is obvious by Theorem 2.1. \(\blacksquare \)

The following corollary is important in practical applications:

Corollary 4.4. Let \(X \) and \(Y \) be as above and \(\varepsilon > 0 \). Denote \(P = \max p(x,y) \) and \(p = \min p(x,y) \). If

\[
\frac{P}{p} \leq 1 + k + \sqrt{k(k + 2)}
\]

where

\[
k := \frac{2 \varepsilon \ln b}{(rs)^2},
\]

then we have the bound

\[
0 \leq \log_b (rs) - H_b (X, Y) \leq \varepsilon.
\]

Proof. At the beginning, let us consider the inequality

\[
\frac{(a - b)^2}{2ab} \leq k, \quad \text{for } a, b > 0 \text{ and } k \geq 0.
\]

This inequality is clearly equivalent to

\[
a^2 - 2 (1 + k) ab + b^2 \leq 0
\]
or, denoting \(t := \frac{a}{b} \), to

\[
t^2 - 2 (1 + k) t + 1 \leq 0,
\]
i.e.,

\[
1 + k - \sqrt{k(k + 2)} \leq t \leq 1 + k + \sqrt{k(k + 2)}.
\]

Now, let suppose that

\[
1 + k - \sqrt{k(k + 2)} \leq \frac{p(x,y)}{p(u,v)} \leq 1 + k + \sqrt{k(k + 2)}
\]
for all \((x, y)\) and \((u, v)\) and \(k := \frac{2\ln b}{1 - b}\). Then by (4.2), we have

\[
0 \leq \log_b (rs) - H_b(X, Y) \leq \frac{1}{4 \ln b} \sum_{x,y} \sum_{u,v} \frac{(p(x, y) - p(u, v))^2}{p(x, y) p(u, v)}
\]

\[
\leq \frac{1}{2 \ln b} (rs)^2 k = \frac{(rs)^2}{2 \ln b} \frac{2 \ln b}{(rs)^2} = \varepsilon.
\]

Now, let observe that the inequality (4.4) is equivalent to:

\[
1 + k - \sqrt{k(k + 2)} \leq \frac{p}{P} \leq \frac{P}{p} \leq 1 + k + \sqrt{k(k + 2)}.
\]

But \(\frac{P}{p} \geq 1 + k - \sqrt{k(k + 2)}\) is equivalent to

\[
\frac{P}{p} \leq \frac{1}{1 + k - \sqrt{k(k + 2)}} = k + 1 + \sqrt{k(k + 2)}
\]

and the corollary is proved.

Acknowledgment. The authors are grateful to the referee for his valuable suggestions.

References

