A NEW PROOF FOR A ROLEWICZ'S TYPE THEOREM: AN EVOLUTION SEMIGROUP APPROACH

C. BUSE AND S.S. DRAGOMIR

ABSTRACT. Let \(\mathbb{R}_+ \) be the set of all non-negative real numbers and \(\mathcal{U} = \{ U(t, s) : t \geq s \geq 0 \} \) be a strongly continuous and exponentially bounded evolution family of bounded linear operators acting on a Banach space \(X \). Let \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a non-decreasing function such that \(\varphi(t) > 0 \) for all \(t > 0 \). We prove that if there exists \(M_\varphi > 0 \) such that

\[
\sup_{s \geq 0} \int_s^\infty \varphi(\|U(t, s)x\|) \, dt = M_\varphi < \infty, \quad \text{for all } x \in X, \|x\| \leq 1,
\]

then \(\mathcal{U} \) is uniformly exponentially stable. For \(\varphi \) continuous, this result is due to S. Rolewicz.

1. INTRODUCTION

Let \(X \) be a real or complex Banach space and \(L(X) \) the Banach algebra of all linear and bounded operators on \(X \). Let \(\mathbf{T} = \{ T(t) : t \geq 0 \} \subset L(X) \) be a strongly continuous semigroup on \(X \) and \(\omega_0(\mathbf{T}) = \lim_{t \to \infty} \frac{\ln(\|T(t)\|)}{t} \) be its growth bound. The Datko-Pazy theorem ([1], [2]) states that \(\omega_0(\mathbf{T}) < 0 \) if and only if for all \(x \in X \) the maps \(t \mapsto \|T(t)x\| \) belongs to \(L^p(\mathbb{R}_+) \) for some \(1 \leq p < \infty \).

A family \(\mathcal{U} = \{ U(t, s) : t \geq s \geq 0 \} \subset L(X) \) is called an evolution family of bounded linear operators on \(X \) if \(U(t, t) = I \) (the identity operator on \(X \)) and

\[
U(t, \tau)U(\tau, s) = U(t, s) \quad \text{for all } t \geq \tau \geq s \geq 0.
\]

Such a family is said to be strongly continuous if for every \(x \in X \), the maps

\[
(t, s) \mapsto U(t, s)x : \{ (t, s) : t \geq s \geq 0 \} \to X
\]

are continuous, and exponentially bounded if there are \(\omega > 0 \) and \(K_\omega > 0 \) such that

\[
\|U(t, s)x\| \leq K_\omega e^{\omega(t-s)} \quad \text{for all } t \geq s \geq 0.
\]

The family \(\mathcal{U} \) is called uniformly exponentially stable if (1.1) holds for some negative \(\omega \). If \(\mathbf{T} = \{ T(t) : t \geq 0 \} \subset L(X) \) is a strongly continuous semigroup on \(X \), then the family \(\{ U(t, s) : t \geq s \geq 0 \} \) given by \(U(t, s) = T(t-s) \) is a strongly continuous and exponentially bounded evolution family on \(X \). Conversely, if \(\mathcal{U} \) is a strongly continuous evolution family on \(X \) and \(U(t, s) = U(t-s, 0) \) then the family \(\mathbf{T} = \{ T(t) : t \geq 0 \} \) given by \(T(t) = U(t, 0) \) is a strongly continuous semigroup on \(X \).

The Datko-Pazy theorem can be obtained from the following result given by S. Rolewicz ([3], [4]).

Let \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a continuous and nondecreasing function such that \(\varphi(0) = 0 \) and \(\varphi(t) > 0 \) for all \(t > 0 \). If \(\mathcal{U} = \{ U(t, s) : t \geq s \geq 0 \} \subset L(X) \) is a strongly continuous evolution family of bounded linear operators acting on \(X \) then

\[
\sup_{s \geq 0} \int_s^\infty \varphi(\|U(t, s)x\|) \, dt = M_\varphi < \infty, \quad \text{for all } x \in X, \|x\| \leq 1,
\]

then \(\mathcal{U} \) is uniformly exponentially stable. For \(\varphi \) continuous, this result is due to S. Rolewicz.

Date: May 14, 2001.

1991 Mathematics Subject Classification. 47A30, 93D05, 35B35, 35B40, 46A30.

Key words and phrases. Evolution family of bounded linear operators, evolution operator semigroup, Rolewicz’s theorem.

Our proof of Theorem 1 is very simple. In fact, we apply a result of Neerven (see below) for the evolution semigroup associated to U such that (1.2) holds, then U is uniformly exponentially stable.

Our proof of Theorem 1 is very simple. In fact, we apply a result of Neerven (see below) for the evolution semigroup associated to U on C_0 (\mathbb{R}_+, X), the space of all continuous, X-valued functions defined on \mathbb{R}_+ such that $f(0) = \lim_{t \to -\infty} f(t) = 0$.

Lemma 1. Let \mathcal{U} be a strongly continuous and exponentially bounded evolution family of operators on X such that (1.2) holds, then \mathcal{U} is uniformly exponentially stable.

Proof of Lemma 1. Let $x \in X$ and $N(x)$ be a positive integer such that $M_{\varphi}(x) < N(x)$ and let $s \geq 0, t \geq s + N$. For each $\tau \in [t - N, t]$, we have

$$e^{-\omega N} 1_{[t-N,t]}(u) \|u(t,s)\| \leq e^{-\omega(t-\tau)} 1_{[t-N,t]}(u) \|u(t,\tau)\| \leq K_\omega \|u(u,s)\|,$$

for all $u \geq s$. Here K_ω and ω are as in (1.1) and $\omega > 0$.

If we choose $x = 0$ in (1.3), then we get $\varphi(0) = 0$, and thus from (1.4) we obtain

$$N(x) \varphi \left(\frac{\|u(t,s)\|}{K_\omega e^{-\omega N}} \right) = \int_s^\infty \varphi \left(\frac{1_{[t-N,t]}(u) \|u(t,s)\|}{K_\omega e^{-\omega N}} \right) du \leq \int_s^\infty \varphi \left(\|u(u,s)\| \right) du \leq M_{\varphi}(x).$$

We assume that $\varphi(1) = 1$ (if not, we replace φ by some multiple of itself). Moreover, we may assume that φ is a strictly increasing map. Indeed if $\varphi(1) = 1$ and $a := \int_0^1 \varphi(t) dt$, then the function given by

$$\varphi(t) = \begin{cases} \int_0^t \varphi(u) du, & \text{if } 0 \leq t \leq 1 \\ \frac{at}{at + 1 - a}, & \text{if } t > 1 \end{cases}$$
is strictly increasing and $\bar{\varphi} \leq \varphi$. Now φ can be replaced by some multiple of $\bar{\varphi}$. From (1.5) it follows that if $t \geq s + N(x)$ and $x \in X$, then
\[\|U(t, s)\| \leq K_{\omega} e^{\omega N(x)}, \]
for all $x \in X$.

Using this inequality and the exponential boundedness of the evolution family, we have that
\[(1.6) \sup_{t \geq 0, x} \|U(t, s)x\| \leq K_{\omega} e^{\omega N(x)}, \]
for each $x \in X$.

The conclusion of Lemma 1 follows from (1.6) and the Uniform Boundedness Theorem.

Let $\mathcal{U} = \{U(t, s) : t \geq s \geq 0\}$ be a strongly continuous and exponentially bounded evolution family of bounded linear operators on X. We consider the strongly continuous evolution semigroup associated to \mathcal{U} on $C_{00}(\mathbb{R}_+, X)$. This semigroup is defined by
\[(1.7) \Phi(t) := \begin{cases} U(s, s-t)f(s-t), & \text{if } s \geq t \\ 0, & \text{if } 0 \leq s \leq t \end{cases}, \]
for all $f \in C_{00}(\mathbb{R}_+, X)$. It is known that $\Phi = \{\Phi(t) : t \geq 0\}$ is a strongly continuous semigroup and in addition $\omega_0(\Phi) < 0$ if and only if \mathcal{U} is uniformly exponentially stable ([10], [11], [12]).

Proof of Theorem 1. Let φ be as in Theorem 1. We assume that $\varphi(1) = 1$. Then
\[\Phi(t) := \int_0^t \varphi(u) \, du \leq \varphi(t) \]
for all $t \in [0, 1]$.

Without loss of generality we may assume that
\[\sup_{t \geq 0} \|\Phi(t)\| \leq 1, \]
where Φ is the semigroup defined in (1.7). Then for all $f \in C_{00}(\mathbb{R}_+, X)$ with $\|f\|_{C_{00}} \leq 1$, one has
\[\Phi \left(\|\Phi(t)f\|_{C_{00}(\mathbb{R}_+, X)} \right) dt = \int_0^\infty \Phi \left(\sup_{s \geq t} \|U(s, s-t)f(s-t)\| \right) dt = \int_0^\infty \Phi \left(\sup_{\xi \geq 0} \|U(t + \xi, \xi)f(\xi)\| \right) dt \]
\[= \int_0^\infty \left(\int_0^\infty \left[\sup_{\xi \geq 0} \|U(t + \xi, \xi)f(\xi)\| \right] (u) \varphi(u) \, du \right) dt \]
\[= \sup_{\xi \geq 0} \int_0^\infty \int_0^\infty \varphi \left(\|U(t + \xi, \xi)f(\xi)\| \right) dt \leq \sup_{\xi \geq 0} \int_0^\infty \varphi \left(\|U(t + \xi, \xi)f(\xi)\| \right) dt \]
\[= \sup_{\xi \geq 0} \int_0^\infty \varphi \left(\|U(\tau, \xi)f(\xi)\| \right) d\tau \leq M_{\varphi} < \infty, \]
where $1_{[0,h]}$ denotes the characteristic function of the interval $[0, h]$, $h > 0$.
Now, from [7, Theorem 3.2.2], it follows that \(\omega_0(\mathcal{I}) < 0 \), hence \(\mathcal{U} \) is uniformly exponentially stable.

References

Department of Mathematics, West University of Timișoara, Bd. V. Parvan 4, 1900 Timișoara, România.
E-mail address: buse@hilbert.math.uvt.ro

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC 8001,, Victoria, Australia.
E-mail address: sever@matilda.vu.edu.au