THE BEST BOUNDS IN GAUTSCHI-KERSHAW INEQUALITIES

FENG QI, BAI-NI GUO, AND CHAO-PING CHEN

Abstract. By employing the convolution theorem of Laplace transforms, some asymptotic formulas and integral representations of the gamma, psi and polygamma functions, and other analytic techniques, this note provides an alternative proof of a monotonicity and convexity property by N. Elezović, C. Giordano and J. Pečarić in [4] to establish the best bounds in Gautschi-Kershaw inequalities. Moreover, some (logarithmically) complete monotonicity results on functions related to Gautschi-Kershaw inequalities are remarked.

1. Introduction

Let \(\Gamma \) denote the classical Euler gamma function and \(\psi = \frac{\Gamma'}{\Gamma} \), the logarithmic derivative of \(\Gamma \). The first and second Gautschi-Kershaw inequalities state that

\[
\left(x + \frac{s}{2} \right)^{1-s} < \frac{\Gamma(x+1)}{\Gamma(x+s)} < \left(x - \frac{1}{2} + \sqrt{s + \frac{1}{4}} \right)^{1-s}
\]

and

\[
\exp \left[(1-s)\psi(x + \sqrt{s}) \right] < \frac{\Gamma(x+1)}{\Gamma(x+s)} < \exp \left[(1-s)\psi\left(x + \frac{s + 1}{2} \right) \right].
\]

(2)

For more information on the background and history of these two inequalities, please refer to [3, 4, 11].

Let \(s \) and \(t \) be nonnegative numbers and \(\alpha = \min\{s, t\} \). For \(x \in (-\alpha, \infty) \), define

\[
\Psi_{s,t}(x) = \begin{cases}
\left[\frac{\Gamma(x+t)}{\Gamma(x+s)} \right]^{1/(t-s)}, & s \neq t, \\
\psi(x+s), & s = t,
\end{cases}
\]

(3)

2000 Mathematics Subject Classification. Primary 33B15, 26A48, 26A51; Secondary 26D20.

Key words and phrases. monotonicity; convexity, gamma function; psi function, polygamma function, Gautschi-Kershaw inequality, (logarithmically) completely monotonic function.

The authors were supported in part by the Science Foundation of the Project for Fostering Innovation Talents at Universities of Henan Province, China.

This paper was typeset using \textsc{AMSTeX}.

1
and

\[
z_{s,t}(x) = \begin{cases}
\Psi_{s,t}(x) - x, & s \neq t, \\
e^{\psi(x+t)} - x, & s = t.
\end{cases}
\] (4)

In order to establish the best bounds in Gautschi-Kershaw inequalities above N. Elezović, C. Giordano and J. Pečarić proved in [4] the following monotonicity and convexity property of \(z_{s,t}(x) \).

Theorem 1. The function \(z_{s,t}(x) \) is either convex and decreasing for \(|t - s| < 1 \) or concave and increasing for \(|t - s| > 1 \).

The purpose of this note is to provide an alternative proof of Theorem 1 by using the convolution theorem of Laplace transforms, some asymptotic formulas and integral representations of the gamma, psi and polygamma functions, and other analytic techniques. Moreover, some (logarithmically) completely monotonicity results related to \(\Psi_{s,t}(x) \) and Gautschi-Kershaw inequalities (1) and (2) are remarked.

2. **Lemmas**

Define

\[
g_{a,b}(u) = \begin{cases}
b^u - a^u, & u \neq 0 \\
\ln b - \ln a, & u = 0
\end{cases}
\] (5)

and

\[
q_{s,t}(u) = \begin{cases}
e^{su} - e^{tu} & u \neq 0 \\
1 - e^u & u = 0
\end{cases}
\] (6)

in \(u \in \mathbb{R} \) for \(b > a > 0 \) and \(t > s \geq 0 \).

Remark 1. The positive function \(g_{a,b}(u) \) has been researched in [18] and was applied in [7, 10, 12, 17] to prove the logarithmic convexity or the Schur convexity of the extended mean values. For more detailed information about \(g_{a,b}(u) \), please refer to the expository paper [13] and the references therein.

Lemma 1. If \(t - s > 1 \), then the positive function \(q_{s,t}(u) \) defined by (6) is logarithmically convex in \((0, \infty)\) and logarithmically concave in \((-\infty, 0)\). If \(0 < t - s < 1 \), the function \(q_{s,t}(u) \) is logarithmically concave in \((0, \infty)\) and logarithmically convex in \((-\infty, 0)\).
Proof. It is clear that \(q_{s,t}(u) > 0 \). A simple computation shows

\[
q_{s,t}(u) = \frac{e^{-s}g_{e^{-s},1}(u)}{g_{e^{-1},1}(u)},
\]

\[
[q_{s,t}(u)]' = \frac{g_{e^{-s},1}(u)}{g_{e^{-1},1}(u)} - \frac{g_{s,t}'}{g_{e^{-1},1}(u)} - s,
\]

\[
[q_{s,t}(u)]'' = \frac{(g_{e^{-s},1}(u))'}{(g_{e^{-1},1}(u))'} - \frac{(g_{s,t}')'}{(g_{e^{-1},1}(u))'}.
\]

Define

\[
G(x,u) = \frac{\partial}{\partial u} \left(\frac{1}{g_{x,1}(u)} \frac{\partial g_{x,1}(u)}{\partial u} \right) = \frac{\partial^2 \ln g_{x,1}(u)}{\partial u^2}
\]

for \(1 > x > 0 \) and \(u \in \mathbb{R} \). By taking partial derivative with respect to \(x \) and changing the order of partial derivatives between \(x \) and \(u \), we obtain

\[
\frac{\partial G(x,u)}{\partial x} = \frac{\partial^3 \ln g_{x,1}(u)}{\partial x \partial u^2} = \frac{\partial^2}{\partial u^2} \left(\frac{\partial \ln g_{x,1}(u)}{\partial x} \right) = \frac{\partial^2}{\partial u^2} \left(\frac{ux^{u-1}}{x^u - 1} \right) = \frac{x^{u-1} [2 - 2x^u + u(1 + x^u) \ln x] \ln x}{(x^u - 1)^3} = \frac{x^{u-1} u(1 + x^u) \ln x \left(2(1 - x^u) + \ln x \right)}{(x^u - 1)^3} = \frac{x^{u-1} u(1 + x^u) \ln x [\Phi(u,x) + \ln x]}{(x^u - 1)^3} = \frac{\partial \Phi(u,x)}{\partial u} = \frac{2(x^{2u} - 2ux^u \ln x - 1)}{u^2(1 + x^u)^2} \triangleq \frac{2h(u,x)}{u^2(1 + x^u)^2},
\]

\[
\frac{\partial h(u,x)}{\partial u} = 2x^u(x^u - u \ln x - 1) \ln x \triangleq 2x^u \ell(u,x) \ln x,
\]

\[
\frac{\partial \ell(u,x)}{\partial u} = (x^u - 1) \ln x.
\]

In the case of \(u \geq 0 \), we have \(\frac{\partial h(u,x)}{\partial u} \geq 0 \) and the function \(\ell(u,x) \) is increasing with \(u \). Since \(\ell(0,x) = 0 \), we have \(\ell(u,x) \geq 0 \), and \(\frac{\partial h(u,x)}{\partial u} < 0 \), then \(h(u,x) \) decreases with \(u \) and \(h(u,x) \leq 0 \). Therefore, the function \(\Phi(u,x) \) decreases with \(u \),
which is equivalent to \(\frac{\partial G(x,u)}{\partial x} \leq 0 \). Hence, the function \(G(x,u) \) is decreasing with \(x \in (0,1) \) for \(u \geq 0 \).

In the case of \(u < 0 \), it is clear that \(\frac{\partial (u,x)}{\partial u} \leq 0 \), \(\ell(u,x) \) decreases, \(\ell(u,x) < 0 \), and \(\frac{\partial h(u,x)}{\partial u} > 0 \), then \(h(u,x) \) increases with \(u \) and \(h(u,x) < 0 \). This means that \(\Phi(u,x) \) decreases with \(u \) and \(\frac{\partial G(x,u)}{\partial x} > 0 \), and then \(G(x,u) \) increases with \(x \in (0,1) \) for \(u < 0 \).

Combination of (7) and (8) reveals

\[
\ln q_{s,t}(u)^{\prime\prime} = G(e^{s-t}, u) - G(e^{-1}, u),
\]

where \(u \in \mathbb{R} \) and \(t > s \geq 0 \).

When \(t - s > 1 \), it is ready that \(e^{s-t} < e^{-1} < 1 \). If \(u > 0 \), we have \(G(e^{s-t}, u) > G(e^{-1}, u) \), \(\ln q_{s,t}(u)^{\prime\prime} > 0 \), and the function \(q_{s,t}(u) \) is logarithmically convex. If \(u < 0 \), then \(G(e^{s-t}, u) < G(e^{-1}, u) \), \(\ln q_{s,t}(u)^{\prime\prime} > 0 \), and the function \(q_{s,t}(u) \) is logarithmically concave.

When \(0 < t - s < 1 \), it is clear that \(1 > e^{s-t} > e^{-1} \). If \(u > 0 \), it follows that \(G(e^{s-t}, u) < G(e^{-1}, u) \), \(\ln q_{s,t}(u)^{\prime\prime} < 0 \), and the function \(q_{s,t}(u) \) is logarithmically concave. If \(u < 0 \), then \(G(e^{s-t}, u) > G(e^{-1}, u) \), \(\ln q_{s,t}(u)^{\prime\prime} > 0 \), and the function \(q_{s,t}(u) \) is logarithmically convex. The proof is complete.

\[\square\]

Lemma 2 ([11 20 21 and 23 p. 16]). The psi or digamma function \(\psi(x) \) and the polygamma functions \(\psi^{(n)}(x) \) can be expressed for \(x > 0 \) and \(n \in \mathbb{N} \) as

\[
\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} \, dt,
\]

\[
\psi^{(n)}(x) = (-1)^{n+1} \int_0^\infty \frac{t^n}{1 - e^{-t}} e^{-xt} \, dt.
\]

Lemma 3 ([22]). Let \(f_i(t) \) for \(i = 1,2 \) be piecewise continuous in arbitrary finite intervals included in \((0, \infty)\), suppose there exist some constants \(M_i > 0 \) and \(c_i \geq 0 \) such that \(|f_i(t)| \leq M_i e^{c_i t} \) for \(i = 1,2 \). Then

\[
\int_0^\infty \left[\int_0^t f_1(u)f_2(t-u) \, du \right] e^{-st} \, dt = \int_0^\infty f_1(u)e^{-su} \, du \int_0^\infty f_2(v)e^{-sv} \, dv.
\]

Remark 2. Lemma 3 is the convolution theorem of Laplace transforms. It can be looked up in standard textbooks of integral transforms.

Lemma 4 ([11 p. 257 and p. 259] or [20 21]). Let \(a \) and \(b \) be two constants. Then

\[
x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)} = 1 + \frac{(a-b)(a+b-1)}{2x} + O\left(\frac{1}{x^2}\right)
\]
and

\[\psi(x) = \ln x - \frac{1}{2x} + O\left(\frac{1}{x^2}\right) \] \hspace{1cm} (14)

hold as \(x \to \infty \).

3. Proof of Theorem 1

Firstly, let us consider the case of \(t > s \geq 0 \). Direct computing yields

\[z'_s,t(x) = \frac{[z_s,t(x) + x][\psi(x + t) - \psi(x + s)]}{t - s} - 1, \] \hspace{1cm} (15)

\[z''_s,t(x) = \frac{z_s,t(x) + x}{t - s} \left\{ \frac{[\psi(x + t) - \psi(x + s)]^2}{t - s} + [\psi'(x + t) - \psi'(x + s)] \right\}. \] \hspace{1cm} (16)

By using (10) and (11) and simplifying, it follows that

\[z''_s,t(x) = \frac{z_s,t(x) + x}{t - s} \left\{ \frac{1}{t - s} \left[\int_0^\infty \frac{e^{-(x+s)u} - e^{-(x+t)u}}{1 - e^{-u}} \, du \right]^2 \right. \\
- \left. \int_0^\infty \frac{u[e^{-(x+s)u} - e^{-(x+t)u}]}{1 - e^{-u}} \, du \right\} \\
= \frac{z_s,t(x) + x}{t - s} \left\{ \frac{1}{t - s} \left[\int_0^\infty q_s,t(u) e^{-xu} \, du \right]^2 - \int_0^\infty uq_s,t(u) e^{-xu} \, du \right\}, \] \hspace{1cm} (17)

where \(q_s,t(u) \) is defined by (6).

Applying Lemma 3 \hspace{1cm} the convolution theorem for Laplace transforms, to the square term in the final line of (17) gives

\[\frac{(t - s)z''_s,t(x)}{z_s,t(x) + x} = \frac{1}{t - s} \left[\int_0^u q_s,t(r) q_s,t(u - r) \, dr \right] e^{-xu} \, du \\
- \int_0^\infty uq_s,t(u) e^{-xu} \, du \\
\triangleq \int_0^\infty p_s,t(u) e^{-xu} \, du, \]

where

\[p_s,t(u) = \frac{1}{t - s} \int_0^u q_s,t(r) q_s,t(u - r) \, dr - uq_s,t(u). \] \hspace{1cm} (18)

Let \(r = \frac{u}{t}(1 + v) \) in (18). Then

\[p_s,t(u) = \frac{u}{2(t - s)} \int_{-1}^1 q_s,t\left(\frac{u(1 + v)}{2}\right) q_s,t\left(\frac{u(1 - v)}{2}\right) \, dv - uq_s,t(u) \\
= \frac{u}{t - s} \int_0^1 q_s,t\left(\frac{u(1 + v)}{2}\right) q_s,t\left(\frac{u(1 - v)}{2}\right) \, dv - uq_s,t(u) \\
\triangleq \frac{u}{t - s} \int_0^1 \phi_{u,s,t}(v) \, dv - uq_s,t(u), \] \hspace{1cm} (19)

where \(\phi_{u,s,t}(v) \) is defined by (6).
Straightforwardly calculating shows
\[
\frac{2}{u \phi_{u,s,t}(v)} \frac{d \phi_{u,s,t}(v)}{dv} = \frac{q_{s,t}'(u(1 + v)/2)}{q_{s,t}(u(1 + v)/2)} - \frac{q_{s,t}'(u(1 - v)/2)}{q_{s,t}(u(1 - v)/2)}.
\]

Lemma 1 tells that the function \(q_{s,t}(u) \) is logarithmically convex in \((0, \infty)\) for \(t - s > 1 \) and logarithmically concave in \((0, \infty)\) for \(0 < t - s < 1 \), therefore, the function \(\frac{q_{s,t}'(u)}{q_{s,t}(u)} \) is increasing in \((0, \infty)\) for \(t - s > 1 \) and decreasing in \((0, \infty)\) for \(0 < t - s < 1 \). For \(t - s > 1 \), we obtain \(\frac{d \phi_{u,s,t}(v)}{dv} \geq 0 \), and \(\phi_{u,s,t}(v) \) is increasing with \(v \), so
\[
\phi_{u,s,t}(v) \leq \phi_{u,s,t}(1) = q_{s,t}(u)q_{s,t}(0) = (t - s)q_{s,t}(u),
\]
this implies \(p_{s,t}(u) \leq 0 \), \(z_{s,t}''(x) \leq 0 \), and the function \(z_{s,t}(x) \) is concave; For \(0 < t - s < 1 \), by a similar argument, it is deduced that the function \(z_{s,t}(x) \) is convex.

By (15) and Lemma 4, we have
\[
\lim_{x \to \infty} z_{s,t}'(x) = \lim_{x \to \infty} \left[\frac{\Gamma(x + t)}{\Gamma(x + s)} \right]^{1/(t - s)} \frac{\psi(x + t) - \psi(x + s)}{t - s} - 1
\]
\[
= \lim_{x \to \infty} \left[\frac{\Gamma(x + t)}{\Gamma(x + s)} \right]^{1/(t - s)} \frac{\lim_{x \to \infty} \{x\psi(x + t) - \psi(x + s)\}}{t - s} - 1
\]
\[
= \left\{ \lim_{x \to \infty} \left[1 + \frac{(t - s)(s + t - 1)}{2x} + O \left(\frac{1}{x^2} \right) \right] \right\}^{1/(t - s)}
\]
\[
\times \frac{1}{t - s} \lim_{x \to \infty} \left\{ x \ln \frac{x + t}{x + s} + \frac{(t - s)x}{2(x + t)(x + s)}
\]
\[
+ x \left[O \left(\frac{1}{(x + t)^2} \right) + O \left(\frac{1}{(x + s)^2} \right) \right] \right\} - 1
\]
\[
= \frac{1}{t - s} \lim_{x \to \infty} \left(x \ln \frac{x + t}{x + s} - 1 \right)
\]
\[
= 0.
\]
For \(t - s > 1 \), \(z_{s,t}''(x) \leq 0 \) implies \(z_{s,t}'(x) \) is decreasing, thus \(z_{s,t}'(x) > 0 \) and \(z_{s,t}(x) \) is increasing. For \(0 < t - s < 1 \), \(z_{s,t}''(x) \geq 0 \) implies \(z_{s,t}'(x) \) is increasing, thus \(z_{s,t}'(x) < 0 \) and \(z_{s,t}(x) \) is decreasing.

Secondly, let us further consider the cases of \(s > t \geq 0 \). For \(s - t > 1 \), the function \(z_{s,t}(x) = z_{t,s}(x) \) is concave and increasing; For \(0 < s - t < 1 \), the function \(z_{s,t}(x) = z_{t,s}(x) \) is convex and decreasing.
Summing up, the function $z_{s,t}(x)$ is convex and decreasing for $|t - s| < 1$ and concave and increasing for $|t - s| > 1$. The proof is complete.

4. SOME REMARKS

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and

$$(-1)^n f^{(n)}(x) \geq 0$$

for $x \in I$ and $n \geq 0$.

A positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$(-1)^k [\ln f(x)]^{(k)} \geq 0$$

for $k \in \mathbb{N}$ on I.

The notion “logarithmically completely monotonic function” was introduced by F. Qi, B.-N. Guo and Ch.-P. Chen in [14, 15, 16]. The following very useful, important and key proposition was proved in [2, 14, 15, 16], which tells us that the class of logarithmically completely monotonic functions is a subclass of completely monotonic functions and then it is meaningful to study it.

Proposition 1 ([2, 14, 15, 16]). A logarithmically completely monotonic function is also completely monotonic.

Since $z_{s,t}''(x) = \Psi_{s,t}''(x)$, then from Theorem 1 the following is immediately obtained.

Proposition 2. The function $\Psi_{s,t}(x)$ is either convex for $|t - s| < 1$ or concave for $|t - s| > 1$.

Remark 3. In the article [11], using some monotonicity results and inequalities of the generalized weighted mean values with two parameters in [5, 8, 9, 19], it was verified that the functions $[\Gamma(s)/\Gamma(r)]^{1/(s-r)}$, $[\Gamma(s)/\Gamma(r)]^{1/(s-r)}$ and $[\gamma(s,x)/\gamma(r,x)]^{1/(s-r)}$ are increasing in $r > 0$, $s > 0$ and $x > 0$, where $\Gamma(s)$, $\Gamma(s,x)$ and $\gamma(s,x)$ denote the gamma and incomplete gamma functions with usual notation. From this, some monotonicity results of functions involving the gamma or incomplete gamma functions and inequalities relating to Gautschi-Kershaw inequalities are deduced or extended.
Proposition 3. The function $\frac{1}{\Psi_{s,t}(x)}$ is logarithmically completely monotonic.

Proof. Taking logarithm of $\Psi_{s,t}(x)$ reveals

$$\ln \Psi_{s,t}(x) = \frac{\ln \Gamma(x + t) - \ln \Gamma(x + s)}{t - s} = \frac{1}{t - s} \int_s^t \psi(x + u) \, du$$

(23)

and

$$[\ln \Psi_{s,t}(x)]^{(k)} = \frac{1}{t - s} \int_s^t \psi^{(k)}(x + u) \, du = \int_0^1 \psi^{(k)}(x + (1 - u)s + ut) \, du$$

(24)

for $k \in \mathbb{N}$. It is clear that $(-1)^k [\ln \Psi_{s,t}(x)]^{(k)} \leq 0$, so, the reciprocal of $\Psi_{s,t}(x)$ is logarithmically completely monotonic. \qed

Let s and t be nonnegative numbers and $\alpha = \min\{s, t\}$. For $x \in (\alpha, \infty)$, define

$$\mu_{s,t}(x) = \exp \left[\psi \left(x + \frac{s + t}{2} \right) \right] \Psi_{s,t}(x)$$

(25)

and

$$Z_{s,t}(x) = \begin{cases} \exp \left[\psi \left(x + \frac{s + t}{2} \right) \right] - \Psi_{s,t}(x), & s \neq t, \\ 0, & s = t. \end{cases}$$

(26)

The function $Z_{s,t}(x)$ can be rewritten as

$$Z_{s,t}(x) = \Psi_{s,t}(x) [\mu_{s,t}(x) - 1].$$

(27)

Using the terminology “logarithmically completely monotonic function” defined as above, Theorem 5 on page 250 in [4] can be restated as follows.

Proposition 4 ([4, Theorem 5]). The function $\mu_{s,t}(x)$ is logarithmically completely monotonic. Consequently,

$$\exp \left[\psi \left(x + \frac{s + t}{2} \right) \right] > \left[\frac{\Gamma(x + t)}{\Gamma(x + s)} \right]^{1/(t-s)}.$$

(28)

Proof. The function $\nu(x)$ in [4, Theorem 5] can be rewritten as

$$\nu(x) = \ln \left\{ \exp \left[\psi \left(x + \frac{s + t}{2} \right) \right] \right\} - \ln \Psi_{s,t}(x) = \ln \mu_{s,t}(x).$$

(29)

Since $\nu(x)$ is completely monotonic, then by definition of completely monotonic function we have

$$(-1)^k [\nu(x)]^{(k)} = (-1)^k [\ln \mu_{s,t}(x)]^{(k)} \geq 0$$

(30)
for all nonnegative integer k. The case of $k = 0$ means the inequality (28), the right
hand side of inequality (21) in [4, p. 247] with $\beta = \frac{s+t}{2}$; the case of $k \geq 1$ shows
by definition of logarithmically completely monotonic function that the function
$\ln \mu_{s,t}(x)$ is logarithmically completely monotonic. □

There are two open problems in [4]. The first one states that the function $Z_{s,t}(x)$
is convex and decreasing. Although an affirmative or positive answer is not founded
at present, but there are several hints and clues to strongly support us to pose the
following more profound conjecture.

Open Problem 1. The function $Z_{s,t}(x)$ is completely monotonic.

In [4], as a corollary of Theorem 1, the following inequality was proved:

$$\Psi_{s,t}(x) \leq \frac{t - s}{\psi(x + t) - \psi(x + s)}$$

holds for $|t - s| < 1$ and with reversed sign if $|t - s| > 1$.

Let s and t be nonnegative numbers and $\alpha = \min\{s, t\}$. Inequality (31) remains
to define

$$P_{s,t}(x) = \Psi_{s,t}(x) \frac{\psi(x + t) - \psi(x + s)}{t - s}$$

and

$$Q_{s,t}(x) = \frac{t - s}{\psi(x + t) - \psi(x + s)} - \Psi_{s,t}(x)$$

for $x \in (-\alpha, \infty)$ and to pose the following

Open Problem 2. The functions $P_{s,t}(x)$ and $Q_{s,t}(x)$ are completely monotonic.

References

[1] M. Abramowitz and I. A. Stegun (Eds), *Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables*, National Bureau of Standards, Applied Mathematics

(F. Qi) **Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China**

E-mail address: qifeng@hpu.edu.cn, fengqi618@member.ams.org

(B.-N. Guo) **College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China**

E-mail address: guobaini@hpu.edu.cn

(Ch.-P. Chen) **College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China**

E-mail address: chenchaoping@hpu.edu.cn, chenchaoping@sohu.com