MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

FENG QI AND BAI-NI GUO

Abstract. Let \(f \) be a positive function such that \(\frac{x[f(x + 1)/f(x)]}{f} \) is increasing on \([1, \infty)\), then the sequence \(\left\{ \sqrt[n]{\prod_{i=1}^{n} f(i)/f(n + 1)} \right\}_{n=1}^{\infty} \) is decreasing. If \(f \) is a logarithmically concave and positive function defined on \([1, \infty)\), then the sequence \(\left\{ \sqrt[n]{\prod_{i=1}^{n} f(i)/\sqrt[n]{f(n)}} \right\}_{n=1}^{\infty} \) is increasing.

As consequences of these monotonicities, the lower and upper bounds for the ratio \(\sqrt[n]{\prod_{i=k+1}^{n+k} f(i)/\sqrt[n]{f(n+k+1)} f(i)} \) of the geometric mean sequence \(\left\{ \sqrt[n+k]{\prod_{i=k+1}^{n+k} f(i)} \right\}_{n=1}^{\infty} \) are obtained, where \(k \) is a nonnegative integer and \(m \) a natural number. Some applications are given.

1. Introduction

It is known that, for \(n \in \mathbb{N} \), the following double inequality were given in [6]:

\[
\frac{n}{n+1} < \frac{\sqrt[n]{n!}}{\sqrt[n+1]{(n+1)!}} < 1,
\]

which can be rearranged as

\[
\frac{\sqrt[n]{\Gamma(1+r)}}{\sqrt[n+1]{\Gamma(2+r)}} < \frac{\sqrt[n]{\Gamma(2+r)}}{\sqrt[n+1]{\Gamma(1+r)}} \tag{2}
\]

and

\[
\frac{\sqrt[n]{\Gamma(1+r)}}{r} > \frac{\sqrt[n]{\Gamma(2+r)}}{r+1} \tag{3}
\]

2000 Mathematics Subject Classification. Primary 26D15; Secondary 26A48.

Key words and phrases. monotonicity, inequality, geometric mean, ratio, positive sequence, logarithmically concave, mathematical induction.

The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), China.

This paper was typeset using \(\LaTeX \).
In [1], the left inequality in (1) was refined by
\[
\frac{n}{n + 1} < \left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^r}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^r} \right)^{1/r} < \frac{\sqrt[n]{n!}}{n^+\sqrt{(n + 1)!}} \tag{4}
\]
for all positive real numbers \(r \). Both bounds are the best possible.

Using analytic method and Stirling’s formula, in [10, 14, 16, 17], for \(n, m \in \mathbb{N} \) and \(k \) being a nonnegative integer, the author and others proved the following inequalities:
\[
\frac{n + k + 1}{n + m + k + 1} < \left(\prod_{i=k+1}^{n+k} i \right)^{1/n} / \left(\prod_{i=k+1}^{n+m+k} i \right)^{1/(n+m)} \leq \sqrt[\sqrt{n+k+1}]{n + m + k + \alpha}, \tag{5}
\]
the equality in (5) is valid for \(n = 1 \) and \(m = 1 \), which extend and refine those in (1).

There is a rich literature on refinements, extensions, and generalizations of the inequalities in (4), for examples, [2, 8, 9, 13, 19] and references therein. Note that the inequalities in (4) are direct consequences of a conjecture which states that the function \(\left(\frac{\frac{1}{n} \sum_{i=1}^{n} i^r}{\frac{1}{n+1} \sum_{i=1}^{n+1} i^r} \right)^{1/r} \) is decreasing with \(r \). Please refer to [18].

In [11], using the ideas and method in [3, 5, 15] and the mathematical induction, the following inequalities were obtained.

Theorem A. Let \(k \) be a nonnegative integer, \(n \) and \(m \) positive integers, and \(\alpha \in [0, 1] \) a constant. Then
\[
\frac{n + k + 1}{n + m + k + 1} + \frac{\alpha}{n + m + k + 1} \leq \left(\prod_{i=k+1}^{n+k} (i + \alpha) \right)^{1/n} / \left(\prod_{i=k+1}^{n+m+k} (i + \alpha) \right)^{1/(n+m)} \leq \sqrt[\sqrt{n+k+1}]{n + m + k + \alpha}. \tag{6}
\]

If \(n = 1 \) and \(m = 1 \), then the equality in the right hand side inequality of (6) holds.

In [12], Theorem A was generalized to the following

Theorem B. For all nonnegative integers \(k \) and natural numbers \(n \) and \(m \), we have
\[
\frac{a(n + k + 1) + b}{a(n + m + k + 1) + b} < \left(\prod_{i=k+1}^{n+k} (ai + b) \right)^{\frac{1}{n}} \leq \sqrt[\sqrt{n+k+1}]{a(n + m + k + b)} \tag{7}
\]
where \(a \) is a positive constant, and \(b \) is a nonnegative constant. The equality in (7) is valid for \(n = 1 \) and \(m = 1 \).
In [4], the following monotonicity results for the gamma function were established: The function \(\Gamma(1 + \frac{1}{x})^x \) decreases with \(x > 0 \) and \(x[\Gamma(1 + \frac{1}{x})]^x \) increases with \(x > 0 \), which recover the inequalities in (1) which refer to integer values of \(r \). These are equivalent to the function \(\Gamma(1 + x)^\frac{1}{x} \) being increasing and \(\frac{\Gamma(1+x)^\frac{1}{x}}{x} \) being decreasing on \((0, \infty)\), respectively. In addition, it was proved that the function \(x^{1-\gamma}[\Gamma(1 + \frac{1}{x})^x] \) decreases for \(0 < x < 1 \), where \(\gamma = 0.57721566 \cdots \) denotes the Euler’s constant, which is equivalent to \(\frac{\Gamma(1+x)^\frac{1}{x}}{x} \) being increasing on \((1, \infty)\).

In [14], the following monotonicity result was obtained: The function

\[
\frac{[\Gamma(x+y+1)/\Gamma(y+1)]^{1/x}}{x+y+1}
\]

is decreasing in \(x \geq 1 \) for fixed \(y \geq 0 \). Then, for positive real numbers \(x \) and \(y \), we have

\[
\frac{x+y+1}{x+y+2} \leq \frac{[\Gamma(x+y+1)/\Gamma(y+1)]^{1/x}}{[\Gamma(x+y+2)/\Gamma(y+1)]^{1/(x+1)}}.
\]

Inequality (9) extends and generalizes inequality (5), since \(\Gamma(n+1) = n! \).

Definition 1 ([7, p. 7]). A positive function \(f : I \to \mathbb{R} \), \(I \) an interval in \(\mathbb{R} \), is said to be logarithmically convex (log-convex, multiplicatively convex) if \(\ln f \) is convex, or equivalently if for all \(x, y \in I \) and all \(\alpha \in [0, 1] \),

\[
f(\alpha x + (1-\alpha)y) \leq f^\alpha(x)f^{1-\alpha}(y).
\]

It is said to be logarithmically concave (log-concave) if the inequality in (10) is reversed.

Remark 1. By \(f = \exp \ln f \), it follows that a logarithmically convex function is convex (but not conversely). This directly follows from (10), of course, since by the arithmetic-geometric inequality we have

\[
f^\alpha(x)f^{1-\alpha}(y) \leq f(x) + (1-\alpha)f(y).
\]

J. Pečarić told the author that a concave positive function is a logarithmically concave one affirmatively.

In this article, we will further generalize the inequalities in (7) and obtain the following
Theorem 1. Let \(f \) be an increasing, logarithmically convex and positive function defined on \([1, \infty)\). Then the sequence
\[
\left\{ \frac{\sqrt[\sum_{i=1}^{n} f(i)}}{f(n+1)} \right\}_{n=1}^{\infty}
\]
is decreasing. As a consequence, we have the following
\[
\frac{\sqrt[\sum_{i=k+1}^{n+k} f(i)}}{\sqrt[\sum_{i=k+1}^{n+m+k} f(i)}} \geq \frac{f(n+k+1)}{f(n+m+k+1)},
\]
where \(m \) is a natural number and \(k \) a nonnegative integer.

Corollary 1. Let \(\{a_i\}_{i=1}^{\infty} \) be an increasing, logarithmically convex, and positive sequence, then the sequence
\[
\left\{ \frac{\sqrt[n]{a_n!}}{a_{n+1}} \right\}_{n=1}^{\infty}
\]
is decreasing. As a consequence, we have the following
\[
\frac{\sqrt[n]{a_n!}}{\sqrt[n+m]{a_{n+m}!}} \geq \frac{a_{n+1}}{a_{n+m+1}},
\]
where \(m \) is a natural number and \(a_n! \) is the sequence factorial defined by \(\prod_{i=1}^{n} a_i \).

Theorem 2. Let \(f \) be a logarithmically concave and positive function defined on \([1, \infty)\). Then the sequence
\[
\left\{ \frac{\sqrt[\sum_{i=1}^{n} f(i)}}{\sqrt{f(n)}} \right\}_{n=1}^{\infty}
\]
is increasing. As a consequence, we have the following
\[
\sqrt[\sum_{i=k+1}^{n+k} f(i)]{\sqrt[\sum_{i=k+1}^{n+m+k} f(i)}} \leq \sqrt{\frac{f(n+k)}{f(n+m+k)}},
\]
where \(m \) is a natural number and \(k \) a nonnegative integer. The equality in (16) is valid for \(n = 1 \) and \(m = 1 \).

Corollary 2. Let \(\{a_i\}_{i=1}^{\infty} \) be a logarithmically concave and positive sequence. Then the sequence
\[
\left\{ \frac{\sqrt[n]{a_n!}}{\sqrt[n+m]{a_{n+m}!}} \right\}_{n=1}^{\infty}
\]
is increasing. Therefore, we have
\[
\frac{\sqrt[n]{a_n!}}{\sqrt[n+m]{a_{n+m}!}} \leq \sqrt[\sum_{i=1}^{n} a_i]{\sqrt[\sum_{i=1}^{n+m} a_i]},
\]
where \(m \) is a natural number and \(a_n! \) is the sequence factorial defined by \(\prod_{i=1}^{n} a_i \).

The equality in (18) is valid for \(n = 1 \) and \(m = 1 \).

At last, in Section 3, some applications of Theorem 1 and Theorem 2 are given and an open problem is proposed.

Remark 2. It is well known that the left hand side term in (12) or (16) is a ratio of two geometric means of sequence \(\{f(i)\}_{i=1}^{\infty} \).

2. PROOFS OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1. The monotonicity of the sequence (11) and inequality (12) are equivalent to the following

\[
\left(\prod_{i=1}^{n} \frac{f(i)}{f(n+1)} \right)^{1/n} \geq \left(\prod_{i=1}^{n} \frac{f(i)}{f(n+2)} \right)^{1/(n+1)},
\]

\[
\iff \frac{1}{n} \sum_{i=1}^{n} \ln \left(\frac{f(i)}{f(n+1)} \right) \geq \frac{1}{n+1} \sum_{i=1}^{n+1} \ln \left(\frac{f(i)}{f(n+2)} \right),
\]

\[
\iff \frac{n}{n+1} \sum_{i=1}^{n+1} \ln \left(\frac{f(i)}{f(n+2)} \right) \leq \sum_{i=1}^{n} \ln \left(\frac{f(i)}{f(n+1)} \right). \tag{19}
\]

Since \(\ln x \) is concave on \((0, \infty)\), by definition of concaveness, it follows that, for \(1 \leq i \leq n \),

\[
\frac{i}{n+1} \ln \left(\frac{f(i+1)}{f(n+2)} \right) + \frac{n-i+1}{n+1} \ln \left(\frac{f(i)}{f(n+2)} \right) \leq \ln \left(\frac{i f(i+1) + (n-i+1) f(i)}{(n+1) f(n+2)} \right) \tag{20}
\]

Since \(f \) is logarithmically convex, we have \(f(n)f(n+2) \geq \lfloor f(n+1) \rfloor^2 \). Hence, for all \(1 \leq i \leq n \), from the function \(f \) being increasing, we have

\[
f(n)f(n+2) - \lfloor f(n+1) \rfloor^2 \geq \frac{1}{n} f(n) \lfloor f(n+1) - f(n+2) \rfloor
\]

\[
\iff \frac{(n+1)f(n+2)}{f(n+1)} - 1 \geq \frac{n f(n+1)}{f(n)}
\]

\[
\iff \frac{(n+1)f(n+2)}{f(n+1)} - (n+1) \geq \frac{n f(n+1)}{f(n)} - n \tag{21}
\]

\[
\iff \frac{(n+1)f(n+2)}{f(n+1)} - (n+1) \geq \frac{i f(i+1)}{f(i)} - i
\]
\[
\iff (i + 1) + (n - i + 1)f(i) \leq \frac{(n + 1)f(n + 2)}{f(n + 1)}
\iff \frac{i f(i + 1) + (n - i + 1)f(i)}{(n + 1)f(n + 2)} \leq \frac{f(i)}{f(n + 1)}.
\]

Combining the last line above with (20) yields
\[
\frac{i}{n + 1} \ln \frac{f(i + 1)}{f(n + 2)} + \frac{n - i + 1}{n + 1} \ln \frac{f(i)}{f(n + 2)} \leq \ln \frac{f(i)}{f(n + 1)}.
\tag{22}
\]

Summing up on both sides of (22) from 1 to \(n\) and simplifying reveals inequality (19). The proof is complete. \(\square\)

Proof of Theorem 2. The monotonicity of the sequence (15) and inequality (16) are equivalent to the following
\[
\sqrt[n]{\prod_{i=1}^{n} f(i)} \leq \frac{n}{n + 1} \sqrt[n+1]{\prod_{i=1}^{n+1} f(i)}
\iff \frac{1}{n} \sum_{i=1}^{n} \ln f(i) - \frac{1}{n + 1} \sum_{i=1}^{n+1} \ln f(i) \leq \frac{1}{2} [\ln f(n) - \ln f(n + 1)]
\iff (1 + \frac{1}{n}) \sum_{i=1}^{n} \ln f(i) - \frac{n + 1}{n + 1} \sum_{i=1}^{n+1} \ln f(i) \leq \frac{n + 1}{2} [\ln f(n) - \ln f(n + 1)]
\iff \frac{n + 1}{2} \ln f(n) - \frac{n - 1}{2} \ln f(n + 1) \geq \frac{1}{n} \sum_{i=1}^{n} \ln f(i).
\tag{23}
\]

For \(n = 1\), the equality in (23) holds.

Suppose inequality (23) is valid for some \(n > 1\). Since, by the inductive hypothesis
\[
\frac{1}{n + 1} \sum_{i=1}^{n+1} \ln f(i) = \frac{n}{n + 1} \left[\frac{1}{n} \sum_{i=1}^{n} \ln f(i) + \frac{\ln f(n + 1)}{n + 1} \right] \leq \frac{n + 1}{n + 1} \left[\frac{n + 1}{2} \ln f(n) - \frac{n - 1}{2} \ln f(n + 1) \right] + \frac{\ln f(n + 1)}{n + 1}
= \frac{n}{2} \ln f(n) - \frac{n - 2}{2} f(n + 1),
\]

by induction, it is sufficient to prove
\[
\frac{n}{2} \ln f(n) - \frac{n - 2}{2} \ln f(n + 1) \leq \frac{n + 2}{2} \ln f(n + 1) - \frac{n}{2} \ln f(n + 2)
\iff n \ln f(n) \leq 2n \ln f(n + 1) - n \ln f(n + 2)
\iff \ln[f(n)f(n + 2)] \leq \ln f^2(n + 1)
\[\iff f(n)f(n + 2) \leq f^2(n + 1),\]

this follows from the logarithmic concaveness of the function \(f\). The proof is complete. \(\Box\)

Remark 3. If the function \(f\) in Theorem 1 is differentiable, then we can give the following proof of Theorem 1 by Cauchy’s mean value theorem and mathematical induction.

Proof of Theorem 1 under condition such that \(f\) being differentiable. The monotonicity of the sequence \((11)\) and inequality \((12)\) are equivalent to

\[
\iff \frac{1}{n} \sum_{i=1}^{n} \ln f(i) - \frac{1}{n+1} \sum_{i=1}^{n+1} \ln f(i) \geq \ln f(n+1) - \ln f(n+2) \\
\iff \frac{1}{n} \sum_{i=1}^{n} \ln f(i) - \ln f(n+1) \geq (n+1) \left[\ln f(n+1) - \ln f(n+2) \right] \\
\iff (n+2) \ln f(n+1) - (n+1) \ln f(n+2) \leq \frac{1}{n} \sum_{i=1}^{n} \ln f(i). \quad (24)
\]

For \(n = 1\), inequality \((24)\) can be rewritten as \(f(1)[f(3)]^2 \geq [f(2)]^3\). Since \(f\) is logarithmically convex and increasing, we have \(f(1)f(3) \geq [f(2)]^2\) and \(f(3) \geq f(2)\), respectively. Therefore, inequality \((24)\) holds for \(n = 1\).

Suppose inequality \((24)\) is valid for some \(n > 1\). Then, by inductive hypothesis, we have

\[
\frac{1}{n+1} \sum_{i=1}^{n+1} \ln f(i) = \frac{n}{n+1} \left[\frac{1}{n} \sum_{i=1}^{n} \ln f(i) \right] + \frac{f(n+1)}{n+1} \\
\geq \frac{n}{n+1} \left[(n+2) \ln f(n+1) - (n+1) \ln f(n+2) \right] + \frac{f(n+1)}{n+1} \\
= (n+1) \ln f(n+1) - n \ln f(n+2).
\]

hence, by induction, it is sufficient to prove the following

\[(n+1) \ln f(n+1) - n \ln f(n+2) \geq (n+3) \ln f(n+2) - (n+2) \ln f(n+3),\]

which can be rearranged as

\[(n+1)[\ln f(n+1) - \ln f(n+2)] \geq (n+2)[\ln f(n+2) - \ln f(n+3)],\]
further, since \(f \) is increasing,

\[
\frac{\ln f(n+2) - \ln f(n+1)}{\ln f(n+3) - \ln f(n+2)} \leq \frac{n+2}{n+1}.
\]

(25)

Using Cauchy’s mean values applied to \(g(x) = \ln f(n+1+x) \) and \(h(x) = \ln f(n+2+x) \) for \(x \in [0,1] \) in inequality (25), it follows that there exists a point \(\xi \in (0,1) \) such that

\[
\frac{f'(n+1+\xi)}{f(n+1+\xi)} \cdot \frac{f(n+2+\xi)}{f'(n+2+\xi)} \leq \frac{n+2}{n+1}.
\]

Since the positive function \(f \) is logarithmically convex and differentiable, then

\[
[\ln f(x)]' = \frac{f'(x)}{f(x)}
\]

is increasing. Thus

\[
\frac{f'(n+1+\xi)}{f(n+1+\xi)} \leq \frac{f'(n+2+\xi)}{f(n+2+\xi)},
\]

and then

\[
\frac{f'(n+1+\xi)}{f(n+1+\xi)} \cdot \frac{f(n+2+\xi)}{f'(n+2+\xi)} \leq 1 < \frac{n+2}{n+1}.
\]

Inequality (25) follows. The proof is complete. \(\square \)

3. Applications

3.1. The affine function \(f(x) = ax + b \) for \(x > -\frac{b}{a} \), where \(a > 0 \) and \(b \in \mathbb{R} \) are constants, is positive and logarithmically concave. From Theorem 2 applied to this affine function, the right hand side inequality in (7) follows.

3.2. From procedure of the proof of Theorem 1 and noticing inequality (21), we can establish the following more general results.

Theorem 3. Let \(f \) be a positive function such that \(x \left[\frac{f(x+1)}{f(x)} - 1 \right] \) is increasing on \([1, \infty)\), then the sequence (11) decreases and inequality (12) holds.

Corollary 3. Let \(\{a_i\}_{i=1}^{\infty} \) be a positive sequence such that \(\left\{ i \left[\frac{a_{i+1}}{a_i} - 1 \right] \right\}_{i=1}^{\infty} \) is increasing, then the sequence (13) decreases and inequality (14) holds.

3.3. The left hand side inequality in (7) follows from Corollary 3.
3.4. Applying Theorem 3 or Corollary 3 to \(f(x) = \Gamma(x+1) \) or \(a_i = i! \) respectively yields

\[
\frac{\prod_{i=2}^{n}(i + k)}{\prod_{i=2}^{n+m}(i + k)} \geq \frac{\prod_{i=k+1}^{n+k}(i!)}{\prod_{i=k+1}^{n+m+k}(i!)} \geq \frac{(n + k + 1)!}{(n + m + k + 1)!} = \prod_{i=1}^{m}(n + k + 1 + i). \tag{26}
\]

Similarly, we have

\[
\frac{\sqrt[n]{\prod_{i=k+1}^{n+k}(i!!)}}{\sqrt[n+m]{\prod_{i=k+1}^{n+m+k}(i!!)}} \geq \frac{(n + k + 1)!!}{(n + m + k + 1)!!}, \tag{27}
\]

\[
\frac{\sqrt[n+m]{\prod_{i=k+1}^{n+m+k}(2i!!)}}{\sqrt[n+m]{\prod_{i=k+1}^{n+m+k}(2i!!)}} \geq \frac{[2(n + k + 1)]!!}{[2(n + m + k + 1)]!!}, \tag{28}
\]

\[
\frac{\sqrt[n+m]{\prod_{i=k+1}^{n+m+k}((2i - 1)!!)}}{\sqrt[n+m]{\prod_{i=k+1}^{n+m+k}((2i - 1)!!)}} \geq \frac{[2(n + k) + 1]!!}{[2(n + m + k) + 1]!!}. \tag{29}
\]

Where \(n \) and \(m \) are natural numbers and \(k \) a nonnegative integer.

3.5. In Corollary 1, considering the sequence \(\{\ln a_i\}_{i=1}^{\infty} \) is increasing, convex, and positive, we obtain the following

Corollary 4. Let \(\{a_i\}_{i=1}^{\infty} \) be an increasing convex positive sequence and \(A_n = \frac{1}{n} \sum_{i=1}^{n} a_i \) an arithmetic mean. Then the sequence \(A_n - a_{n+1} \) decreases. This gives a lower bound for difference of two arithmetic means:

\[
A_n - A_{n+m} \geq a_{n+1} - a_{n+m+1}, \tag{30}
\]

where \(m \) is a natural number.

3.6. In Corollary 2, considering the sequence \(\{\ln a_i\}_{i=1}^{\infty} \) is concave and positive, we have

Corollary 5. Let \(\{a_i\}_{i=1}^{\infty} \) be a concave positive sequence and \(A_n = \frac{1}{n} \sum_{i=1}^{n} a_i \) an arithmetic mean. Then the sequence \(A_n - a_{n+1/2} \) increases. This implies an upper bound for difference of two arithmetic means:

\[
A_n - A_{n+m} \leq \frac{a_n - a_{n+m}}{2}, \tag{31}
\]

where \(m \) is a natural number.
3.7. For real numbers $b \geq 1$ and $c \geq 0$ such that $b^2 > 2c$, the function $x^2 + bx + c$ is logarithmically concave and satisfies conditions of Theorem 3, then we have

$$\frac{(n+k+1)^2 + b(n+k+1) + c}{(n+m+k+1)^2 + b(n+m+k+1) + c} \leq \frac{\sqrt[n+m+k+1]{\prod_{i=k+1}^{n+m+k} (i^2 + bi + c)}}{\sqrt[n+m+k+1]{\prod_{i=k+1}^{n+m+k} (i^2 + bi + c)}} \leq \sqrt{\frac{(n+k)^2 + b(n+k) + c}{(n+m+k)^2 + b(n+m+k) + c}},$$

(32)

where m is a natural number and k a nonnegative integer.

4. Open Problem

In the final, we pose the following open problem.

Open Problem. For any positive real number z, define $z! = z(z-1)\cdots\{z\}$, where $\{z\} = z - [z - 1]$, and $[z]$ denotes Gauss function whose value is the largest integer not more than z. Let $x > 0$ and $y \geq 0$ be real numbers, then

$$\frac{x + 1}{x + y + 1} \leq \frac{\sqrt{x!}}{\sqrt{x+y}!} \leq \sqrt{\frac{x}{x+y}}.$$

(33)

References

(Qi and Guo) Department of Applied Mathematics and Informatics, Jiaozuo Institute of Technology, #142, Mid-Jiefang Road, Jiaozuo City, Henan 454000, China

E-mail address, Qi: qifeng@jzit.edu.cn

URL, Qi: http://rgmia.vu.edu.au/qi.html

E-mail address, Guo: guobaini@jzit.edu.cn