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REFINEMENTS OF FEJÉR�S INEQUALITY FOR CONVEX
FUNCTIONS

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we establish some new re�nements for the celebrated
Fejér�s and Hermite-Hadamard�s integral inequalities for convex functions.

1. Introduction

One of the most important integral inequalities with various applications for
generalised means, information measures, quadrature rules, etc., is the well known
Hermite-Hadamard inequality [1]

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

2
;

where f : [a; b]! R is a convex function on the interval [a; b] :
In order to re�ne and generalize this classical result for weighted integrals, we

de�ne the following functions on [0; 1]; namely

G (t) =
1

2

�
f

�
ta+ (1� t) a+ b

2

�
+ f

�
tb+ (1� t) a+ b

2

��
;

H (t) =
1

b� a

Z b

a

f

�
tx+ (1� t) a+ b

2

�
dx;

Hg (t) =

Z b

a

f

�
tx+ (1� t) a+ b

2

�
g (x) dx;

I (t) =

Z b

a

1

2

�
f

�
t
x+ a

2
+ (1� t) a+ b

2

�
+ f

�
t
x+ b

2
+ (1� t) a+ b

2

��
g (x) dx;

F (t) =
1

(b� a)2
Z b

a

Z b

a

f (tx+ (1� t) y) dxdy;

K (t) =

Z b

a

Z b

a

1

4

�
f

�
t
x+ a

2
+ (1� t) y + a

2

�
+ f

�
t
x+ a

2
+ (1� t) y + b

2

�
+ f

�
t
x+ b

2
+ (1� t) y + a

2

�
+ f

�
t
x+ b

2
+ (1� t) y + b

2

��
g (x) g (y) dxdy;
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L (t) =
1

2 (b� a)

Z b

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] dx;

Lg (t) =
1

2

Z b

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] g (x) dx;

Sg (t) =
1

4

Z b

a

�
f

�
ta+ (1� t) x+ a

2

�
+ f

�
ta+ (1� t) x+ b

2

�
+f

�
tb+ (1� t) x+ a

2

�
+ f

�
tb+ (1� t) x+ b

2

��
g (x) dx

and

N (t) =

Z b

a

1

2

�
f

�
ta+ (1� t) x+ a

2

�
+ f

�
tb+ (1� t) x+ b

2

��
g (x) dx:

where f : [a; b] ! R is convex, g : [a; b] ! [0;1) is integrable and symmetric to
a+b
2 :

Remark 1. We note that H = Hg = I; F = K and L = Lg = Sg on [0; 1] as
g (x) = 1

b�a (x 2 [a; b]).

For some results which generalize, improve, and extend the famous Hermite-
Hadamard integral inequality see [2] �[20].
In [8], Fejér established the following weighted generalization of (1:1):

Theorem A. Let f; g be de�ned as above. Then

(1.2) f

�
a+ b

2

�Z b

a

g (x) dx �
Z b

a

f (x) g (x) dx � f (a) + f (b)

2

Z b

a

g (x) dx:

In [11], Tseng et al. established the following Fejér-type inequalities.

Theorem B. Let f; g be de�ned as above. Then we have

f

�
a+ b

2

�Z b

a

g (x) dx �
f
�
3a+b
4

�
+ f

�
a+3b
4

�
2

Z b

a

g (x) dx

�
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

� 1

2

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

� Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:(1.3)

In [2], Dragomir improved the �rst part of the Hermite-Hadamard inequality by
considering the functions H;F as follows:

Theorem C. Let f;H be de�ned as above. Then H is convex, increasing on [0; 1] ;
and for all t 2 [0; 1], we have

(1.4) f

�
a+ b

2

�
= H (0) � H (t) � H (1) = 1

b� a

Z b

a

f (x) dx:

Theorem D. Let f; F be de�ned as above. Then
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(1) F is convex on [0; 1], symmetric about 1
2 , F is decreasing on

�
0; 12
�
and

increasing on
�
1
2 ; 1
�
; and for all t 2 [0; 1],

sup
t2[0;1]

F (t) = F (0) = F (1) =
1

b� a

Z b

a

f (x) dx

and

inf
t2[0;1]

F (t) = F

�
1

2

�
=

1

(b� a)2
Z b

a

Z b

a

f

�
x+ y

2

�
dxdy.

(2) We have:

(1.5) f

�
a+ b

2

�
� F

�
1

2

�
; H (t) � F (t) , t 2 [0; 1] .

In [11], Tseng et al. established the following Fejér-type inequality related to the
functions I;N , which is also the weighted generalization of Theorem C.

Theorem E. Let f; g; I;N be de�ned as above. Then I;N are convex, increasing
on [0; 1] ; and for all t 2 [0; 1], we have

f

�
a+ b

2

�Z b

a

g (x) dx = I (0) � I (t) � I (1)

=

Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

= N (0) � N (t) � N (1)

=
f (a) + f (b)

2

Z b

a

g (x) dx:(1.6)

In [7], Dragomir et al. established the following Hermite-Hadamard-type in-
equality related to the functions H;G;L.

Theorem F. Let f;H;G;L be de�ned as above. Then G is convex, increasing on
[0; 1] ; L is convex on [0; 1] ; and for all t 2 [0; 1], we have

H (t) � G (t) � L (t) � 1� t
b� a

Z b

a

f (x) dx+ t � f (a) + f (b)
2

� f (a) + f (b)

2
:(1.7)

In [12] �[13], Tseng et al. established the following theorem related to Fejér-type
inequalities concerning the functions G;Hg; Lg; I; Sg and which provides a weighted
generalizations of the inequality (1:7) :

Theorem G ([12]). Let f; g;G;Hg; Lg be de�ned as above. Then Lg is convex,
increasing on [0; 1] ; and for all t 2 [0; 1], we have

Hg (t) � G (t)
Z b

a

g (x) dx � Lg (t)

� (1� t)
Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:(1.8)
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Theorem H ([13]). Let f; g;G; I; Sg be de�ned as above. Then Sg is convex,
increasing on [0; 1] ; and for all t 2 [0; 1], we have

I (t) � G (t)
Z b

a

g (x) dx � Sg (t)

� (1� t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:(1.9)

Finally, we notice that in [5], Dragomir established the following Hermite-Hadamard-
type inequalities related to the functions H;F;L:

Theorem I. Let F;H;L be de�ned as above. Then we have the inequality

(1.10) 0 � F (t)�H (t) � L (1� t)� F (t)
for all t 2 [0; 1] :

In this paper, we establish some Fejér-type and Hermite-Hadamard-type in-
equalities related to the functions H;F;L;Hg; Lg; I; Sg;K de�ned above. As an
important consequence we also obtain the weighted generalizations of Theorems D
and I.

2. Main Results

The following lemma plays a key role in proving the new results:

Lemma 2 (see [9]). Let f : [a; b] ! R be a convex function and let a � A � C �
D � B � b with A+B = C +D: Then

f (C) + f (D) � f (A) + f (B) :

We can state now the following result:

Theorem 3. Let f; g; I;K be de�ned as above. Then:

(1) K is convex on [0; 1] and symmetric about 12 :
(2) K is decreasing on

�
0; 12
�
and increasing on

�
1
2 ; 1
�
;

sup
t2[0;1]

K (t) = K (0) = K (1)(2.1)

=

Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx �

Z b

a

g (x) dx

and

inf
t2[0;1]

K (t) = K

�
1

2

�
=

Z b

a

Z b

a

1

4

�
f

�
x+ y + 2a

4

�
+ 2f

�
x+ y + a+ b

4

�
+ f

�
x+ y + 2b

4

��
g (x) g (y) dxdy:(2.2)
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(3) We have

(2.3) I (t)

Z b

a

g (x) dx � K (t)

and

(2.4) f

�
a+ b

2

� Z b

a

g (x) dx

!2
� K

�
1

2

�
for all t 2 [0; 1] :

Proof. (1) It is easily observed from the convexity of f that K is convex on [0; 1] :
By changing the variable, we have that

K (t) = K (1� t) ; t 2 [0; 1] ;

from which we get that K is symmetric about 12 :

(2) Let t1 < t2 in
�
0; 12
�
: Using the symmetry of K, we have

(2.5) K (t1) =
1

2
[K (t1) +K (1� t1)] ;

(2.6) K (t2) =
1

2
[K (t2) +K (1� t2)]

and, by Lemma 2, we have

(2.7)
1

2
[K (t2) +K (1� t2)] �

1

2
[K (t1) +K (1� t1)] :

From (2:5)� (2:7), we obtain that K is decreasing on
�
0; 12
�
: Since K is symmetric

about 12 and K is decreasing on
�
0; 12
�
, we get that K is increasing on

�
1
2 ; 1
�
: Using

the symmetry and monotonicity of K; we derive (2:1) and (2:2) :

(3) Using substitution rules for integration and the hypothesis of g, we have the
following identity

(2.8) K (t) =

Z b

a

Z b

a

1

4

�
f

�
t
x+ a

2
+ (1� t) y + a

2

�
+ f

�
t
x+ a

2
+ (1� t) a+ 2b� y

2

�
+ f

�
t
x+ b

2
+ (1� t) y + a

2

�
+ f

�
t
x+ b

2
+ (1� t) a+ 2b� y

2

��
g (x) g (y) dydx

for all t 2 [0; 1] :
By Lemma 2, the following inequalities hold for all t 2 [0; 1] ; x 2 [a; b] and

y 2 [a; b] : The inequality

(2.9)
1

2
f

�
t
x+ a

2
+ (1� t) a+ b

2

�
� 1

4

�
f

�
t
x+ a

2
+ (1� t) y + a

2

�
+ f

�
t
x+ a

2
+ (1� t) a+ 2b� y

2

��
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holds when

A = t
x+ a

2
+ (1� t) y + a

2
;

C = D = t
x+ a

2
+ (1� t) a+ b

2
and

B = t
x+ a

2
+ (1� t) a+ 2b� y

2

in Lemma 2: The inequality

(2.10)
1

2
f

�
t
x+ b

2
+ (1� t) a+ b

2

�
� 1

4

�
f

�
t
x+ b

2
+ (1� t) y + a

2

�
+ f

�
t
x+ b

2
+ (1� t) a+ 2b� y

2

��
holds when

A = t
x+ b

2
+ (1� t) y + a

2
;

C = D = t
x+ b

2
+ (1� t) a+ b

2
and

B = t
x+ b

2
+ (1� t) a+ 2b� y

2
in Lemma 2:
Multiplying the inequalities (2:9) and (2:10) by g (x) g (y), integrating them over

x on [a; b] ; over y on [a; b] and using identities (2:8), we derive the inequality (2:3) :
From the inequality (2:3) and the monotonicity of I, we have

f

�
a+ b

2

� Z b

a

g (x) dx

!2
= I (0)

Z b

a

g (x) dx

� I
�
1

2

�Z b

a

g (x) dx � K
�
1

2

�
from which we derive the inequality (2:4) :
This completes the proof. �

Remark 4. Let g (x) = 1
b�a (x 2 [a; b]) in Theorem 3. Then I (t) = H (t) ; K (t) =

F (t) (t 2 [0; 1]) and Theorem 3 reduces to Theorem D.

Remark 5. From Theorem E and Theorem 3, we obtain the following Fejér-type
inequality

f

�
a+ b

2

� Z b

a

g (x) dx

!2
� I (t)

Z b

a

g (x) dx � K (t)

�
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx �

Z b

a

g (x) dx:

Theorem 6. Let f; g; I;K; Sg be de�ned as above. Then we have the inequality

(2.11) 0 � K (t)� I (t)
Z b

a

g (x) dx � Sg (1� t)
Z b

a

g (x) dx�K (t) ;

for all t 2 [0; 1] :
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Proof. Using substitution rules for integration and the hypothesis of g, we have the
following identity

K (t) =

Z b

a

Z b

a

1

4

�
f

�
t
x+ a

2
+ (1� t) y + a

2

�
+ f

�
t
x+ a

2
+ (1� t) a+ 2b� y

2

�
+ f

�
t
x+ b

2
+ (1� t) y + a

2

�
+ f

�
t
x+ b

2
+ (1� t) a+ 2b� y

2

��
g (x) g (y) dydx

=

Z b

a

Z a+b
2

a

1

2

�
f

�
t
x+ a

2
+ (1� t) y

�
+ f

�
t
x+ a

2
+ (1� t) (a+ b� y)

�
+ f

�
t
x+ b

2
+ (1� t) y

�
+ f

�
t
x+ b

2
+ (1� t) (a+ b� y)

��
g (x) g (2y � a) dydx

=
1

2

Z b

a

Z 3a+b
4

a

�
f

�
t
x+ a

2
+ (1� t) y

�
+ f

�
t
x+ a

2
+ (1� t)

�
3a+ b

2
� y
��

+ f

�
t
x+ a

2
+ (1� t) (a+ b� y)

�
+ f

�
t
x+ a

2
+ (1� t)

�
b� a
2

+ y

��
+ f

�
t
x+ b

2
+ (1� t) y

�
+ f

�
t
x+ b

2
+ (1� t)

�
3a+ b

2
� y
��

+ f

�
t
x+ b

2
+ (1� t) (a+ b� y)

�
+f

�
t
x+ b

2
+ (1� t)

�
b� a
2

+ y

���
g (x) g (2y � a) dydx(2.12)

for all t 2 [0; 1] :
By Lemma 2, the following inequalities hold for all t 2 [0; 1] ; x 2 [a; b] and

y 2
�
a; 3a+b4

�
: The inequality

(2.13) f

�
t
x+ a

2
+ (1� t) y

�
+ f

�
t
x+ a

2
+ (1� t)

�
3a+ b

2
� y
��

� f
�
t
x+ a

2
+ (1� t) a

�
+ f

�
t
x+ a

2
+ (1� t) a+ b

2

�
holds when

A = t
x+ a

2
+ (1� t) a; C = t

x+ a

2
+ (1� t) y;

D = t
x+ a

2
+ (1� t)

�
3a+ b

2
� y
�

and B = t
x+ a

2
+ (1� t) a+ b

2
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in Lemma 2: The inequality

(2.14) f

�
t
x+ a

2
+ (1� t)

�
b� a
2

+ y

��
+ f

�
t
x+ a

2
+ (1� t) (a+ b� y)

�
� f

�
t
x+ a

2
+ (1� t) a+ b

2

�
+ f

�
t
x+ a

2
+ (1� t) b

�
holds when

A = t
x+ a

2
+ (1� t) a+ b

2
; C = t

x+ a

2
+ (1� t)

�
b� a
2

+ y

�
;

D = t
x+ a

2
+ (1� t) (a+ b� y) and B = t

x+ a

2
+ (1� t) b

in Lemma 2: The inequality

(2.15) f

�
t
x+ b

2
+ (1� t) y

�
+ f

�
t
x+ b

2
+ (1� t)

�
3a+ b

2
� y
��

� f
�
t
x+ b

2
+ (1� t) a

�
+ f

�
t
x+ b

2
+ (1� t) a+ b

2

�
holds when

A = t
x+ b

2
+ (1� t) a; C = t

x+ b

2
+ (1� t) y;

D = t
x+ b

2
+ (1� t)

�
3a+ b

2
� y
�

and B = t
x+ b

2
+ (1� t) a+ b

2

in Lemma 2: The inequality

(2.16) f

�
t
x+ b

2
+ (1� t)

�
b� a
2

+ y

��
+ f

�
t
x+ b

2
+ (1� t) (a+ b� y)

�
� f

�
t
x+ b

2
+ (1� t) a+ b

2

�
+ f

�
t
x+ b

2
+ (1� t) b

�
holds when

A = t
x+ b

2
+ (1� t) a+ b

2
; C = t

x+ b

2
+ (1� t)

�
b� a
2

+ y

�
;

D = t
x+ b

2
+ (1� t) (a+ b� y) and B = t

x+ b

2
+ (1� t) b

in Lemma 2:
Multiplying the inequalities (2:13) and (2:16) by g (x) g (2y � a), integrating

them over x on [a; b] ; over y on
�
a; 3a+b4

�
and using identity (2:12), we have the

inequality

(2.17) 2K (t) � [I (t) + Sg (1� t)]
Z b

a

g (x) dx;

for all t 2 [0; 1] : Using (2:3) and (2:17), we derive (2:11) : This completes the
proof. �
Remark 7. Let g (x) = 1

b�a (x 2 [a; b]) in Theorem 6. Then K (t) = F (t) ; I (t) =
H (t) ; Sg (1� t) = L (1� t) (t 2 [0; 1]) and Theorem 6 reduces to Theorem I.

The following two Fejér-type inequalities are natural consequences of Theorems
3, 6, E, G, H and we omit their proofs.
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Theorem 8. Let f; g;G; I;K;Lg; Sg be de�ned as above. Then, for all t 2 [0; 1] ;
we have

f

�
a+ b

2

� Z b

a

g (x) dx

!2
� I (t)

Z b

a

g (x) dx � K (t)

� 1

2
[I (t) + Sg (1� t)]

Z b

a

g (x) dx

� 1

2

"
G (t)

Z b

a

g (x) dx+ Sg (1� t)
#Z b

a

g (x) dx

� 1

2
[Lg (t) + Sg (1� t)]

Z b

a

g (x) dx

� 1

2

 
(1� t)

Z b

a

f (x) g (x) dx

+ t

Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+
f (a) + f (b)

2

Z b

a

g (x) dx

!Z b

a

g (x) dx

� f (a) + f (b)

2

 Z b

a

g (x) dx

!2
(2.18)

and

f

�
a+ b

2

� Z b

a

g (x) dx

!2
� I (t)

Z b

a

g (x) dx � K (t)

� 1

2
[I (t) + Sg (1� t)]

Z b

a

g (x) dx

� 1

2

"
G (t)

Z b

a

g (x) dx+ Sg (1� t)
#Z b

a

g (x) dx

� 1

2
[Sg (t) + Sg (1� t)]

Z b

a

g (x) dx

� 1

2

 Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+
f (a) + f (b)

2

Z b

a

g (x) dx

!Z b

a

g (x) dx

� f (a) + f (b)

2

 Z b

a

g (x) dx

!2
:(2.19)

Let g (x) = 1
b�a (x 2 [a; b]) : Then we have the following Hermite-Hadamard-type

inequality which is a natural consequence of Theorem 8.
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Corollary 9. Let f; g;G;H; F; L be de�ned as above. Then, for all t 2 [0; 1] ; we
have

f

�
a+ b

2

�
� H (t) � F (t) � 1

2
[H (t) + L (1� t)]

� 1

2
[G (t) + L (1� t)] � 1

2
[L (t) + L (1� t)]

� 1

2

"
1

b� a

Z b

a

f (x) dx+
f (a) + f (b)

2

#
� f (a) + f (b)

2
:(2.20)
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