A Note on Short Intervals Containing Primes

Mehdi Hassani
Narges Sariolgalam

Department of Mathematics
Institute for Advanced Studies in Basic Sciences
Zanjan, Iran
mhassani@iasbs.ac.ir
s-ghalam@iasbs.ac.ir

Abstract

In 1999, P. Dusart showed that for \(x \geq 3275 \), there exists at least a prime number in the interval \((x, x(1 + \frac{1}{2\ln^2 x})) \) and in 2003, O. Ramaré and Y. Saouter showed that for \(x \geq 10726905041 \) there exists at least a prime number in the interval \((x(1 - \Delta^{-1}), x] \), in which \(\Delta = 28314000 \). In this note, we show that for \(x \geq 1.17 \times 10^{1634} \), we can yield Ramaré-Saouter's result from Dusart's result.

2000 Mathematics Subject Classification: 11A41.

Keywords: Primes.

As usual, suppose \(\mathbb{P} \) be the set of all prime numbers. In 1999, P. Dusart [1] showed that for every \(x \geq 3275 \), we have

\[\mathbb{P} \cap \left(x, x(1 + \frac{1}{2\ln^2 x}) \right) \neq \phi. \]

In 2003, O. Ramaré and Y. Saouter [2] showed that for \(x \geq 10726905041 \), we have

\[\mathbb{P} \cap (x(1 - \Delta^{-1}), x] \neq \phi, \]

in which \(\Delta = 28314000 \). If \(L_D(x) \) denotes the length of Dusart’s interval, \((x, x(1 + \frac{1}{2\ln^2 x})) \), and \(L_{RS}(x) \) denotes the length of Ramaré-Saouter’s interval, \((x(1 - \Delta^{-1}), x] \), then clearly we have:

\[L_D(x) = \frac{x}{2\ln^2 x} = O\left(\frac{x}{\ln^2 x} \right), \]

and

\[L_{RS}(x) = \frac{x}{\Delta} = O(x). \]
Also, we observe that
\[\lim_{x \to \infty} \frac{L_D(x)}{L_{RS}(x)} = 0, \]
and this suggest that for sufficiently large values of x’s, Dusart’s interval become shorter than Ramaré-Saouter’s interval. In this research report, we show that for \(x \geq 1.17 \times 10^{1634} \), we can yield Ramaré-Saouter’s interval from Dusart’s interval.

Let \(d(x) = x(1 + \frac{1}{2 \ln^2 x}) \). For \(x > 0 \), \(d'(x) > 0 \); so, \(d^{-1}(x) \), the inverse of the function \(d(x) \), is well-defined. According to Dusart, for \(x \geq 3275 \), \(\mathbb{P} \cap (x, d(x)) \neq \phi \), and so for such x’s that \(d^{-1}(x) \geq 3275 \), we have
\[\mathbb{P} \cap (d^{-1}(x), x] \neq \phi. \]
Therefore, \(\mathbb{P} \cap (d^{-1}(x), x] \neq \phi \) holds for \(x \geq d(3275) \) or for \(x \geq 3300 \). Now, we search such x’s that \(x(1-\Delta^{-1}) \leq d^{-1}(x) \) or \(d(x(1-\Delta^{-1})) \leq x \) and this is equivalent to
\[x(1-\Delta^{-1}) \left(1 + \frac{1}{2 \ln^2 (x(1-\Delta^{-1}))} \right) \leq x, \]
and since \(x > 0 \), we yield that for \(x \geq e^{\sqrt{\frac{\pi-1}{1-\frac{1}{2}}} \approx 1.167417545 \times 10^{1634} \), Dusart’s interval yields Ramaré-Saouter’s interval. This prove our claim at above.

We end this short note with a question about Dusart’s interval:

Question. For every \(x \in \mathbb{R} \), let
\[n(x) := \# \mathbb{P} \cap \left(x, x(1 + \frac{1}{2 \ln^2 x}) \right). \]
Is there some elementary function \(f(x) \) such that \(n(x) \sim f(x) \), when \(x \to \infty \)? More generally study of \(n(x) \) is a nice subject.

Note. All computations in this note done by Maple software.

Acknowledgment. We would like to express our gratitude to G.A. Pirayesh for his nice computational comments.

References
