

Approximation of the Product p1p2 · · · pn

This is the Published version of the following publication

Hassani, Mehdi (2005) Approximation of the Product $p_1p_2 \cdots p_n$. Research report collection, 8 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18070/

APPROXIMATION OF THE PRODUCT $p_1p_2 \cdots p_n$

MEHDI HASSANI

ABSTRACT. In this research report, we find some lower and upper bounds for the product $p_1 p_2 \cdots p_n$.

1. Introduction and Approximation of the Product $p_1p_2\cdots p_n$

As usual, let p_n be the n^{th} prime. The Mondl's inequality (see [1] and [8]) asserts that for every $n \ge 9$, we have $\sum_{i=1}^{n} p_i < \frac{n}{2}p_n$. In [2], one has get the following refinement of this inequality:

(1.1)
$$\sum_{i=1}^{n} p_i < \frac{n}{2} p_n - 0.01659 n^2 \qquad (n \ge 9).$$

Considering the AGM Inequality (see [7]) and (1.1), for every $n \ge 9$, we obtain:

(1.2)
$$p_1 p_2 \cdots p_n < \left(\frac{p_n}{2} - 0.01659n\right)^n \qquad (n \ge 9).$$

Note that (1.2) holds also for $5 \leq n \leq 8$. This yields an upper bound for the product $p_1p_2\cdots p_n$. About lower bound, one can get a trivial one for that product, using Euclid's proof of infinity of primes; Letting $E_n = p_1p_2\cdots p_n - 1$, for every $n \geq 2$, it is clear that $p_n < E_n$. So, if $p_n < E_n < p_{n+1}$, then E_n should has a prime factor among p_1, p_2, \cdots, p_n , which isn't possible. Thus, $E_n \geq p_{n+1}$, and therefore, for every $n \geq 2$, we have:

$$p_1p_2\cdots p_n > p_{n+1}.$$

In 1957 in [5], Bonse used elementary methods to show that:

$$p_1 p_2 \cdots p_n > p_{n+1}^2 \qquad (n \ge 4),$$

and

$$p_1 p_2 \cdots p_n > p_{n+1}^3 \qquad (n \ge 5).$$

In 1960 Pósa [4] proved that for every k > 1, there exists an n_k , such that for all $n \ge n_k$, we have:

$$p_1p_2\cdots p_n > p_{n+1}^k.$$

In 1988, J. Sandór found some inequalities of similar type; For example he showed that for every $n \ge 24$, we have:

$$p_1 p_2 \cdots p_n > p_{n+5}^2 + p_{\left[\frac{n}{2}\right]}^2$$

In 2000, Panaitopol [3] showed that in Pósa's result, we can get $n_k = 2k$. More precisely, he proved that for every $n \ge 2$, we have:

$$p_1 p_2 \cdots p_n > p_{n+1}^{n-\pi(n)},$$

¹⁹⁹¹ Mathematics Subject Classification. 11A41. Key words and phrases. Primes, Inequality.

in which $\pi(x) =$ the number of primes $\leq x$. In this note, we refine Panaitopol's result by proving

(1.3)
$$p_1 p_2 \cdots p_n > p_{n+1}^{(1-\frac{1}{\log n})(n-\pi(n))} \qquad (n \ge 101)$$

During proofs, we will need some known results, which we review them briefly; we have the following bound [1]:

(1.4)
$$\pi(x) \ge \frac{x}{\log x} \left(1 + \frac{1}{\log x} \right) \qquad (x \ge 599).$$

For every $n \ge 53$, we have [3]:

(1.5)
$$\log p_{n+1} < \log n + \log \log n + \frac{\log \log n - 0.4}{\log n}.$$

Also, for every $n \ge 3$, we have [6]:

(1.6)
$$\theta(p_n) > n\left(\log n + \log\log n - 1 + \frac{\log\log n - 2.1454}{\log n}\right),$$

in which $\theta(x) = \sum_{p \leq x} \log p$. Specially, $\theta(p_n) = \log(p_1 p_2 \cdots p_n)$ and this will act as a key for approximating $p_1 p_2 \cdots p_n$. Finally, just for insisting, we note that base of all logarithms are *e*. To prove (1.3), considering (1.4), (1.5) and (1.6), it is enough to prove that:

$$\begin{pmatrix} 1 - \frac{1 - \frac{1}{\log n}}{\log n} - \frac{1 - \frac{1}{\log n}}{\log^2 n} \end{pmatrix} \left(\log n + \log \log n + \frac{\log \log n - 0.4}{\log n} \right)$$
$$< \log n + \log \log n - 1 + \frac{\log \log n - 2.1454}{\log n} \qquad (n \ge 599),$$

which putting $x = \log n$, is equivalent with:

$$\frac{1.7454x^3 + 1.4x^2 - 0.4}{x^3 + x^2 - x - 1} < \log x \qquad x \ge \log 599,$$

and trivially, this holds true; because for $x \ge \log 599$ we have $\frac{1.7454x^3 + 1.4x^2 - 0.4}{x^3 + x^2 - x - 1} < 1.7454$, and $1.85 < \log x$. Therefore, we yield (1.3) for all $n \ge 599$. For $101 \le n \le 598$, we get it by a computer.

References

- Pierre DUSART, Autour de la fonction qui compte le nombre de nombres premiers, PhD. Thesis, 1998.
- [2] M. Hassani, A Refinement of Mandl's Inequality, RGMIA Research Report Collection.
- [3] Laurenţiu Panaitopol, AN INEQUALITY INVOLVING PRIME NUMBERS, Univ. Beograd. Publ. Elektrotehn. Fak, Ser. Mat. 11 (2000), 33-35.
- [4] L. Pósa, Über eine Eigenschaft der Primzahlen (Hungarian), Mat. Lapok, 11(1960), 124-129.
- [5] H. Rademacher and O. Toeplitz, The enjoyment of mathematics, Princeton Univ. Press, 1957.
- [6] G. Robin, Estimation de la fonction de Tschebyshev θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$, nombre des diviseurs premier de n, Acta. Arith, 43(1983), 367-389.
- [7] J. Rooin, Some New Proofs for the AGM Inequality, Mathematical Inequalities & Applications, Vol. 7, No. 4, (2004)517-521.
- [8] J. Barkley Rosser & L. Schoenfeld, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$, Math. Of Computation, Vol. 29, Number 129 (January 1975) pp. 243-269.
- [9] J. Sandór, Über die Folge der Primzahlen, Mathematica (Cluj), 30(53)(1988), 67-74.

 $\mathbf{2}$

Institute for Advanced, Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran. E-mail address: mhassani@iasbs.ac.ir