NOTE ON A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE POLYGAMMA FUNCTIONS

FENG QI, SENLIN GUO, AND BAI-NI GUO

Abstract. In this article, some monotonicity of the function \(x^\alpha \psi^{(i)}(x + \beta) \) and the complete monotonicity of the functions \(\frac{1}{k!} \psi^{(i)}(x + \beta) - \psi^{(i+1)}(x + \beta) \) and \(\alpha \psi^{(i)}(x + \beta) - x \psi^{(i+1)}(x + \beta) \) in \((0, \infty)\) for \(i \in \mathbb{N}, \alpha > 0 \) and \(\beta \geq 0 \) are investigated, where \(\psi^{(i)}(x) \) is the well known polygamma functions. Moreover, lower and upper bounds for infinite series whose coefficients involves the Bernoulli numbers are established.

1. Introduction

Recall \([7, 11, 14]\) that a function \(f \) is called completely monotonic on an interval \(I \) if \(f \) has derivatives of all orders on \(I \) and \(0 \leq (-1)^k f^{(k)}(x) < \infty \) for all \(k \geq 0 \) on \(I \). The well known Bernstein’s Theorem \([14, \text{p. 161}]\) states that \(f \in \mathcal{C}([0, \infty]) \) if and only if \(f(x) = \int_0^\infty e^{-xs} d\mu(s) \), where \(\mu \) is a nonnegative measure on \([0, \infty)\) such that the integral converges for all \(x > 0 \). The class of completely monotonic functions on \(I \) is denoted by \(\mathcal{C}[I] \). For more information on \(\mathcal{C}[I] \), please refer to \([5, 6, 7, 8, 9, 10, 11, 14]\) and the references therein.

By using the convolution theorem of Laplace transforms, the increasingly monotonicity of \(x^\alpha \psi^{(i)}(x + 1) \) is presented \([9, 10]\): The function \(x^\alpha \psi^{(i)}(x + 1) \) is strictly increasing in \((0, \infty)\) if and only if \(\alpha \geq i \), where \(\psi(x) \), the logarithmic derivative of the classical Euler’s gamma function \(\Gamma(x) \), is called psi function and \(\psi^{(i)}(x) \) for \(i \in \mathbb{N} \) are called polygamma functions. In \([3]\), in order to show the subadditive property of the function \(\psi^{(i)}(a + e^t) \), it proved that the function \(x\psi^{(i)}(x + a) \) is strictly increasing on \([0, \infty)\) for \(a \geq 1 \). In \([2]\), it was also showed, using the convolution theorem of Laplace transforms, that the function \(x^\alpha \psi^{(k)}(x) \) for \(k \geq 1 \) is strictly decreasing in \((0, \infty)\) if and only if \(k \leq 2k \) and is strictly increasing in \([0, \infty)\) if and only if \(e \geq k + 1 \). In \([4]\), the monotonicity of the more general function \(x^\alpha \psi^{(i)}(x + \beta) \) was studied without using the convolution theorem of Laplace transforms and, except the above results, the following conclusions are obtained:

For \(i \in \mathbb{N}, \alpha > 0 \) and \(\beta \geq 0 \),

1. the function \(x^\alpha \psi^{(i)}(x + \beta) \) is strictly increasing in \((0, \infty)\) if \((\alpha, \beta) \in \{ \alpha \geq i, 1 \leq \beta < 1 \} \cup \{ \alpha \geq i, \beta \geq \frac{\alpha - i + 1}{2} \} \cup \{ \alpha \geq i + 1, \beta \leq \frac{\alpha - i + 1}{2} \} \) and only if \(\alpha \geq i \);

2. \(\frac{1}{2} \psi^{(i)}(x) - |\psi^{(i+1)}(x)| \in \mathcal{C}([0, \infty]) \) if and only if \(\alpha \geq i + 1 \);

3. \(|\psi^{(i+1)}(x)| - \frac{1}{2} \psi^{(i)}(x) \in \mathcal{C}([0, \infty]) \) if and only if \(0 < \alpha \leq i \);

2000 Mathematics Subject Classification. Primary 33B15, 26A48; Secondary 26A51.

Key words and phrases. monotonicity, completely monotonic function, polygamma function, bounds, infinite series, Bernoulli numbers.

This paper was typeset using \textsc{amssymb-lstex}.
Theorem 1. The function \(x^\alpha |\psi^{(i)}(x + \beta) | \) in \((0, \infty)\) is strictly increasing if and only if \(\alpha \geq i + 1 \) and strictly decreasing if and only if \(0 \leq \alpha \leq i \).

(2) For \(\beta \geq \frac{1}{2} \), the function \(x^\alpha |\psi^{(i)}(x + \beta) | \) is strictly increasing in \([0, \infty)\) if and only if \(\alpha \geq i \).

Let \(\delta : (0, \infty) \to (0, \frac{1}{2}) \) be defined by
\[
\delta(t) = \frac{e^t(t - 1) + 1}{(e^t - 1)^2} \tag{1}
\]
for \(t \in (0, \infty) \) and \(\delta^{-1} : (0, \frac{1}{2}) \to (0, \infty) \) stand for the inverse function of \(\delta \). If \(0 < \beta < \frac{1}{2} \) and
\[
\alpha \geq i + 1 - \left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)} - 1} + \beta - 1 \right] \delta^{-1}(\beta), \tag{2}
\]
then the function \(x^\alpha |\psi^{(i)}(x + \beta) | \) is strictly increasing in \((0, \infty)\).

Remark 1. It is noted that
\[
0 < \left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)} - 1} + \beta - 1 \right] \delta^{-1}(\beta) < 1
\]
for \(\beta \in (0, 1) \), since \(\lim_{\beta \to 0^+} \beta \delta^{-1}(\beta) = 0 \).

Theorem 2. Let \(i \in \mathbb{N} \), \(\alpha \geq 0 \) and \(\beta \geq 0 \).

(1) \(\alpha |\psi^{(i)}(x) | - x|\psi^{(i+1)}(x) | \in \mathcal{C}([0, \infty]) \) if and only if \(\alpha \geq i + 1 \).

(2) \(x|\psi^{(i+1)}(x) | - \alpha |\psi^{(i)}(x) | \in \mathcal{C}([0, \infty]) \) if and only if \(0 \leq \alpha \leq i \).

(3) If \(\beta \geq \frac{1}{2} \), then \(\alpha |\psi^{(i)}(x + \beta) | - x|\psi^{(i+1)}(x + \beta) | \in \mathcal{C}([0, \infty]) \) if and only if \(\alpha \geq i \).

(4) If \(0 < \beta < \frac{1}{2} \) and inequality (2) holds true, then \(\alpha |\psi^{(i)}(x + \beta) | - x|\psi^{(i+1)}(x + \beta) | \in \mathcal{C}([0, \infty]) \).

Theorem 3. Let \(i \in \mathbb{N} \), \(\alpha \geq 0 \) and \(\beta \geq 0 \).

(1) \(\alpha |\psi^{(i)}(x) | - |\psi^{(i+1)}(x) | \in \mathcal{C}([0, \infty]) \) if and only if \(\alpha \geq i + 1 \).

(2) \(|\psi^{(i+1)}(x) | - \alpha |\psi^{(i)}(x) | \in \mathcal{C}([0, \infty]) \) if and only if \(0 \leq \alpha \leq i \).

(3) If \(\beta \geq \frac{1}{2} \), then \(\frac{1}{2} |\psi^{(i)}(x + \beta) | - |\psi^{(i+1)}(x + \beta) | \in \mathcal{C}([0, \infty]) \) if and only if \(\alpha \geq i \).

(4) If \(0 < \beta < \frac{1}{2} \) and inequality (2) holds true, then \(\frac{1}{2} |\psi^{(i)}(x + \beta) | - |\psi^{(i+1)}(x + \beta) | \in \mathcal{C}([0, \infty]) \).
Theorem 4. Let \(0 < \beta < \frac{1}{2} \) and \(\delta^{-1} \) be the inverse function of \(\delta \) defined by (1). Then the following inequalities holds for \(t \in (0, \infty) \):

\[
\frac{1}{2} > \sum_{k=1}^{\infty} B_{2k} \frac{t^{2k-1}}{(2k-1)!} > 0, \\
\frac{t}{2} > \sum_{k=0}^{\infty} B_{2k+2} \frac{t^{2k+2}}{(2k+2)!} > \max \left\{ 0, \frac{t}{2} - 1 \right\}, \\
\sum_{k=0}^{\infty} B_{2k+2} \frac{t^{2k+2}}{(2k+2)!} > \left(\frac{1}{2} - \beta \right) t + \left[\frac{e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)} - 1} - \beta + 1 \right] \delta^{-1}(\beta) - 1,
\]

where \(B_k \) stands for the Bernoulli numbers defined by

\[
x e^x - 1 = \sum_{k=0}^{\infty} \frac{B_k x^k}{k!}.
\]

2. Lemmas

In order to prove our main results, the following lemmas are necessary.

Lemma 1 ([1, 12, 13]). The polygamma functions \(\psi^{(k)}(x) \) are expressed for \(x > 0 \) and \(k \in \mathbb{N} \) as

\[
\psi^{(k)}(x) = (-1)^{k+1} \int_0^\infty \frac{t^k e^{-xt}}{1 - e^{-t}} \, dt.
\]

For \(x > 0 \) and \(r > 0 \),

\[
\frac{1}{x^r} = \frac{1}{\Gamma(r)} \int_0^\infty t^{r-1} e^{-xt} \, dt.
\]

For \(i \in \mathbb{N} \) and \(x > 0 \),

\[
\psi^{(i-1)}(x+1) = \psi^{(i-1)}(x) + \frac{(-1)^{i-1}(i-1)!}{x^i}.
\]

Lemma 2 ([5, 6]). Let \(f(x) \) be defined in an infinite interval \(I \). If \(\lim_{x \to \infty} f(x) = 0 \) and \(f(x) - f(x + \varepsilon) \geq 0 \) for any given \(\varepsilon > 0 \), then \(f(x) \geq 0 \) in \(I \).

3. Proofs of Theorems

Proof of Theorem 1. Direct calculation and rearrangement yields

\[
\frac{g'_{i, \alpha, \beta}(x)}{x^{\alpha-1}} = \alpha |\psi^{(i)}(x + \beta)| - x |\psi^{(i+1)}(x + \beta)| \\
= (-1)^{i+1} \left[\alpha \psi^{(i)}(x + \beta) + x \psi^{(i+1)}(x + \beta) \right]
\]

and

\[
\lim_{x \to \infty} \frac{g'_{i, \alpha, \beta}(x)}{x^{\alpha-1}} = 0.
\]

Straightforwardly computing in virtue of formulas (9), (8) and (7) gives
\[
\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} - \frac{g'_{i,\alpha,\beta}(x+1)}{(x+1)^{\alpha-1}} = (-1)^i \{ \alpha \psi^{(i)}(x + \beta) - \psi^{(i)}(x + \beta + 1) \} \\
+ x \{ \psi^{(i+1)}(x + \beta) - \psi^{(i+1)}(x + \beta + 1) \} - \psi^{(i+1)}(x + \beta + 1) \}
\]
\[
= \frac{d\alpha}{(x + \beta)^{i+1}} - \frac{(i+1)!x}{(x + \beta)^{i+2}} + (-1)^{i+2} \psi^{(i+1)}(x + \beta)
\]
\[
= (-1)^{i+2} \psi^{(i+1)}(x + \beta) + \frac{d\alpha - i - 1}{(x + \beta)^{i+1}} + \frac{(i+1)(\beta + 1)}{(x + \beta)^{i+2}}
\]
\[
= \int_0^\infty \left[\frac{t}{1-e^{-t}} + (\beta - 1)t + \alpha - i - 1 \right] t e^{-(x+\beta)t} \, dt
\]
\[
= \int_0^\infty h_{i,\alpha,\beta}(t) t e^{-(x+\beta)t} \, dt.
\]

If \(\beta = 0 \), the function \(h'_{i,\alpha,0}(t) = \frac{\eta^i}{(t-1)^{i+1}} < 0 \) and \(h_{i,\alpha,0}(t) \) is decreasing in \((0, \infty)\) with \(\lim_{t \to 0^+} h_{i,\alpha,0}(t) = \alpha - i \) and \(\lim_{t \to \infty} h_{i,\alpha,0}(t) = \alpha - i - 1 \). For \(\alpha \geq i + 1 \), the functions \(h_{i,\alpha,0}(t) \) and \(g_{i,\alpha,0}(s) - g_{i,\alpha,0}(x+1) \) are positive in \((0, \infty)\). Combining this with (11) and considering Lemma 2, it is obtained that the functions \(g_{i,\alpha,0}(x) \) and \(g_{i,\alpha,0}(x) \) are positive in \((0, \infty)\), which means that the function \(g_{i,\alpha,0}(x) \) is strictly increasing in \((0, \infty)\) for \(\alpha \geq i + 1 \). Similarly, for \(\alpha \leq i \), the function \(g_{i,\alpha,0}(x) \) is strictly decreasing in \((0, \infty)\).

If \(\beta > 0 \), then the function \(h'_{i,\alpha,\beta}(t) = \frac{\eta^i(t-1)^{i+2}}{(t-1)^{i+1}} \leq \frac{\lambda_1(t)}{(t-1)^{i+1}} \) and \(\lambda_1(t) = 1 + (t - 1)e^t > 0 \) in \((0, \infty)\), and the function \(\lambda_1(t) \) is increasing with \(\lambda_1(0) = 0 \), thus \(\lambda_1(t) > 0 \) and \(\lambda'(t) > 0 \). Hence, the functions \(\lambda(t) \) and \(h'_{i,\alpha,\beta}(t) \) are strictly increasing in \((0, \infty)\) with \(\lim_{t \to 0^+} h'_{i,\alpha,\beta}(t) = \beta - \frac{1}{2} \) and \(\lim_{t \to \infty} h'_{i,\alpha,\beta}(t) = \beta \). Thus, if \(\beta \geq \frac{1}{2} \), the function \(h'_{i,\alpha,\beta}(t) \) is positive and the function \(h_{i,\alpha,\beta}(t) \) is strictly decreasing in \((0, \infty)\) with \(\lim_{t \to 0^+} h_{i,\alpha,\beta}(t) = \alpha - i \) and \(\lim_{t \to \infty} h_{i,\alpha,\beta}(t) = \alpha - i \). Accordingly, for \(\alpha \geq i \) and \(\beta \geq \frac{1}{2} \), the function \(h_{i,\alpha,\beta}(t) \) is decreasing in \((0, \infty)\). Therefore, for \(\alpha > i \) and \(\beta > \frac{1}{2} \), by the same argument as above, it is deduced that the function \(g_{i,\alpha,\beta}(x) \) is strictly decreasing in \((0, \infty)\).

If \(0 < \beta < \frac{1}{2} \), since the function \(h'_{i,\alpha,\beta}(t) \) is strictly increasing in \((0, \infty)\) with \(\lim_{t \to 0^+} h'_{i,\alpha,\beta}(t) = \beta - \frac{1}{2} < 0 \) and \(\lim_{t \to \infty} h'_{i,\alpha,\beta}(t) = \beta > 0 \), then the function \(h_{i,\alpha,\beta}(t) \) attains its unique minimum at some point \(t_0 \in (0, \infty) \). It is easy to see that the function \(\delta(t) \) defined by (1) satisfies \(\delta(t_0) = \beta \) for \(0 < \beta < \frac{1}{2} \), equals \(-[\lambda(t + 1)] \) and is positive and strictly decreasing with \(\lim_{t \to 0^+} \delta(t) = \frac{1}{2} \) and \(\lim_{t \to \infty} \delta(t) = 0 \). Therefore, the unique minimum of \(h_{i,\alpha,\beta}(t) \) equals
\[
\frac{\delta^{-1}(\beta)e^{\delta^{-1}(\beta)}}{e^{\delta^{-1}(\beta)} - 1} + (\beta - 1)\delta^{-1}(\beta) + \alpha - i - 1,
\]
where \(\delta^{-1} \) is the inverse function of \(\delta \) defined by (1) and is strictly decreasing in \((0, \frac{1}{2})\) with \(\lim_{t \to 0^+} \delta^{-1}(s) = \infty \) and \(\lim_{t \to \frac{1}{2}^-} \delta^{-1}(s) = 0 \). As a result, while inequality (2) holds for \(0 < \beta < \frac{1}{2} \), the function \(h_{i,\alpha,\beta}(t) \) is positive in \((0, \infty)\). Consequently, if \(0 < \beta < \frac{1}{2} \) and inequality (2) is valid, then the function \(g_{i,\alpha,\beta}(x) \) is strictly increasing in \((0, \infty)\). The sufficiency is proved.
Now we are in a position to prove the necessity. In [8], it was proved that $$\psi(x) - \ln x + \frac{a}{2} \in C[[0, \infty)]$$ if and only if $$\alpha \geq 1$$ and $$\ln x - \frac{a}{2} - \psi(x) \in C[[0, \infty)]$$ if and only if $$\alpha \leq \frac{1}{2}$$. From this it is deduced that inequality
\[
\frac{(k - 1)!}{x^k} + \frac{k!}{2x^{k+1}} < (-1)^{k+1}\psi^{(k)}(x) = \left|\psi^{(k)}(x)\right| < \frac{(k - 1)!}{x^k} + \frac{k!}{x^{k+1}}
\] holds in $$(0, \infty)$$ for $$k \in \mathbb{N}$$.

If $$g_{i, \alpha, 0}(x)$$ is strictly decreasing in $$(0, \infty)$$, then
\[
0 \geq \lim_{x \to \infty} x^{i+1-\alpha}g_{i, \alpha, 0}(x)
\]
Applying (13) into (14) leads to
\[
0 \geq \lim_{x \to \infty} x^{i+1-\alpha}g_{i, \alpha, 0}(x) = \alpha x^i \left|\psi^{(i)}(x)\right| - x^{i+1} \left|\psi^{(i+1)}(x)\right| < 0
\]
and, applying (9) into (15) and using (13),
\[
0 \leq \lim_{x \to 0^+} x^{i+2-\alpha}g_{i, \alpha, 0}(x)
\]
which means $$\alpha \leq i$$.

If $$g_{i, \alpha, 0}(x)$$ is strictly increasing in $$(0, \infty)$$, then
\[
x^{i+2-\alpha}g_{i, \alpha, 0}(x) = \alpha x^i \left|\psi^{(i)}(x)\right| - x^{i+2} \left|\psi^{(i+1)}(x)\right| > 0
\]
and, applying (9) into (15) and using (13),
\[
0 \leq \lim_{x \to 0^+} x^{i+2-\alpha}g_{i, \alpha, 0}(x)
\]
which means $$\alpha \geq i + 1$$.

If the function $$g_{i, \alpha, \beta}(x)$$ is strictly increasing in $$(0, \infty)$$ for $$\beta > 0$$, then
\[
x^{i+1-\alpha}g_{i, \alpha, \beta}(x) = \alpha x^i \left|\psi^{(i)}(x + \beta)\right| - x^{i+1} \left|\psi^{(i+1)}(x + \beta)\right| > 0
\]
Applying (13) in (16) and taking limit leads to
\[
0 \leq \lim_{x \to \infty} x^{i+1-\alpha}g_{i, \alpha, \beta}(x)
\]
which means $$\alpha \geq i$$. The proof of Theorem 1 is complete. \qed
Proof of Theorem 2. If \(h_{i,\alpha,\beta}(t) \geq 0 \) in \((0, \infty)\), then
\[
\pm \int_0^\infty h_{i,\alpha,\beta}(t) t e^{-(x+\beta)t} \, dt \in \mathbb{C}([-\beta, \infty]),
\]
which is equivalent to
\[
\pm \left[\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} - \frac{g'_{i,\alpha,\beta}(x+1)}{(x+1)\alpha-1} \right] \in \mathbb{C}([0, \infty]) \text{ by (12)},
\]
and then, by definition,
\[
(-1)^j \left[\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} - \frac{g'_{i,\alpha,\beta}(x+1)}{(x+1)\alpha-1} \right]^{(j)}
= (-1)^j \left[\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} \right]^{(j)} - (-1)^j \left[\frac{g'_{i,\alpha,\beta}(x+1)}{(x+1)\alpha-1} \right]^{(j)} \geq 0
\]
in \((0, \infty)\) for \(j \geq 0 \). Further, formulas (7) and (10) imply
\[
\lim_{x \to -\infty} \left[\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} \right]^{(j)} = \lim_{x \to -\infty} (-1)^j \left[\frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} \right] = 0. \tag{17}
\]
By (17) and Lemma 2, it is concluded that
\[
\pm \frac{g'_{i,\alpha,\beta}(x)}{x^{\alpha-1}} = \pm [\alpha|\psi(i)(x+\beta)| - x|\psi(i+1)(x+\beta)|] \in \mathbb{C}([0, \infty])
\]
if \(h_{i,\alpha,\beta}(t) \geq 0 \) in \((0, \infty)\). The proof of Theorem 1 tells us that the function \(h_{i,\alpha,\beta}(t) \) is positive in \((0, \infty)\) if either \(\beta = 0 \) and \(\alpha \geq i+1 \), or \(\beta \geq \frac{1}{2} \) and \(\alpha \geq i \), or \(0 < \beta < \frac{1}{2} \) and inequality (2) validating, and that \(h_{i,\alpha,\beta}(t) \) is negative in \((0, \infty)\) if \(\beta = 0 \) and \(\alpha \leq i \). As a result, the function \(\alpha|\psi(i)(x+\beta)\| - x|\psi(i+1)(x+\beta)| \) is completely monotonic in \((0, \infty)\) for either \(\beta = 0 \) and \(\alpha \geq i+1 \), or \(\beta \geq \frac{1}{2} \) and \(\alpha \geq i \), or \(0 < \beta < \frac{1}{2} \) and inequality (2) being true, and \(x|\psi(i+1)(x+\beta)| - \alpha|\psi(i)(x+\beta)| \in \mathbb{C}([0, \infty]) \) for \(\beta = 0 \) and \(\alpha \leq i \).

The proofs of necessities are the same as those in Theorem 1. The proof of Theorem 2 is complete. \(\square\)

Proof of Theorem 3. This follows from Theorem 2 and the following facts that
\[
\pm \left[\frac{\alpha}{x}|\psi(i)(x+\beta)| - |\psi(i+1)(x+\beta)| \right] = \pm \frac{1}{x} \left[\alpha|\psi(i)(x+\beta)| - x|\psi(i+1)(x+\beta)| \right],
\]
\(\frac{1}{2} \in \mathbb{C}([0, \infty]) \), and that the product of two completely monotonic functions is also completely monotonic on the union of their domains. \(\square\)

Proof of Theorem 4. Let \(B_k(x) \) be the Bernoulli polynomials defined \([1, 12, 13]\) by
\[
\frac{te^{xt}}{e^t - 1} = \sum_{k=0}^\infty B_k(x) \frac{t^k}{k!} \tag{18}
\]
It is well known that the Bernoulli numbers \(B_k \) and \(B_k(x) \) are connected by \(B_k(1) = (-1)^k B_k(0) = (-1)^k B_k \) and \(B_{2k+1}(0) = B_{2k+1} = 0 \) for \(k \geq 1 \), and that the first few Bernoulli numbers and polynomials are
\[
B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30},
\]
\[
B_0(x) = 1, \quad B_1(x) = x - \frac{1}{2}, \quad B_2(x) = x^2 - x + \frac{1}{6}, \quad B_3(x) = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x.
\]
Using these notations, the functions \(h_{i,\alpha,\beta}(t) \) and \(h'_{i,\alpha,\beta}(t) \) can be rewritten as
\[
h_{i,\alpha,\beta}(t) = \frac{te^t}{e^t - 1} + (\beta - 1)t + \alpha - i - 1
\]
and...
\[
\begin{align*}
\alpha - i + \left(\beta - \frac{1}{2} \right) t + \sum_{k=2}^{\infty} B_k (1 + \frac{t}{k}) \\
= \alpha - i + \left(\beta - \frac{1}{2} \right) t + \sum_{k=2}^{\infty} (-1)^k B_k \frac{t^k}{k!} \\
= \alpha - i + \left(\beta - \frac{1}{2} \right) t + \sum_{k=1}^{\infty} (-1)^{k+1} B_{k+1} \frac{t^{k+1}}{(k+1)!} \\
= \alpha - i + \left(\beta - \frac{1}{2} \right) t + \sum_{k=0}^{\infty} B_{2k+2} \frac{t^{2k+2}}{(2k+2)!} \\
\end{align*}
\]

\[
h'_{i,\alpha,\beta}(t) = \beta - \frac{1}{2} + \sum_{k=1}^{\infty} B_{2k+1} \frac{t^{2k+1}}{(2k+1)!}.
\]

The proof of Theorem 1 states that

(1) \(h'_{i,0,0}(t) < 0\) in \((0, \infty)\);

(2) if \(\alpha \geq i + 1\), then \(h_{i,\alpha,0}(t) > 0\) in \((0, \infty)\);

(3) if \(0 < \alpha \leq i\), then \(h_{i,\alpha,0}(t) < 0\) in \((0, \infty)\);

(4) if \(\beta \geq \frac{1}{2}\), then \(h'_{i,\alpha,\beta}(t) > 0\) in \((0, \infty)\);

(5) if \(\alpha \geq i\) and \(\beta \geq \frac{1}{2}\), then \(h_{i,\alpha,\beta}(t) > 0\) in \((0, \infty)\);

(6) if \(0 < \beta < \frac{1}{2}\) and inequality (2) holds true, then \(h_{i,\alpha,\beta}(t) > 0\) in \((0, \infty)\).

From these and standard argument, Theorem 4 is proved. \(\square\)

References

(F. Qi) Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

E-mail address: qifeng@hpu.edu.cn, fengqi618@member.ams.org, qifeng618@hotmail.com, qifeng618@msn.com, 316020821@qq.com

URL: http://rgmia.vu.edu.au/qi.html

(S. Guo) Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada

E-mail address: sguo@hotmail.com, umguos@cc.umanitoba.ca

(B.-N. Guo) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China

E-mail address: guobaini@hpu.edu.cn