MODELLING OF URBAN STORMWATER
DRAINAGE SYSTEMS USING ILSAX

BY

SUNIL THOSAINGE DAYARATNE
B.Eng. (Peradeniya), M.Eng. (Roorkee), M.Eng. (Melbourne)
CPEng., MIEAust., C.Eng., MIE (SL), MAWWA, LMIAH, LMSLAAS

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF THE BUILT ENVIRONMENT
VICTORIA UNIVERSITY OF TECHNOLOGY, AUSTRALIA
AUGUST 2000
To:

Ranjani, Kushan & Maduwanthi
ABSTRACT

Over the last few decades, the world has witnessed rapid urbanisation. One of the many complex problems resulting from increased urbanisation is related to management of stormwater from developed areas. If stormwater is not managed properly, it may lead to flooding of urban areas, and deterioration of water quality in rivers and receiving waters. Urban drainage systems are used to manage urban stormwater.

For design of effective and economic urban drainage systems, it is important to estimate the design flows accurately. Many computer based mathematical models have been developed to study catchment runoff (or flows) in urban environments. These models may be used in different stages of the projects such as screening, planning, design and operation. Each stage may require a different model, although some models can be used for several of these stages.

A customer survey was conducted in May 1997 to study the current practice in Victoria (Australia) on stormwater drainage design and analysis, as part of this thesis. The survey was restricted to city/shire councils and consultants, who are engaged in design and analysis of urban drainage systems. The results of the survey showed that 95% of respondents used the Statistical Rational method. Also, it was revealed that most respondents were reluctant to use stormwater drainage computer models, since there were no adequate guidelines and information available to use them especially for ungauged catchments. According to 5% of the respondents, who used models, ILSAX was the most widely used stormwater drainage computer model in Victoria. The 1987 edition of the Australian Rainfall-Runoff (ARR87) suggests the ILSAX model as one of the computer models that can be used for stormwater drainage design and analysis. Due to these reasons, the ILSAX model was used in this study in an attempt to produce further guidance to users in development and calibration of ILSAX models of urban drainage systems.

In order to use the ILSAX model, it is necessary to estimate the model parameters for catchments under consideration. The model parameters include loss model parameters (i.e.
infiltration and depression storage parameters) and other parameters related to the catchment (such as percent imperviousness, soil cover and conveyance system parameters). Some of these parameters can be estimated from available maps and drawings of the catchment. The ideal method to determine these parameters (which cannot be reliably determined from available maps and drawings) is through calibration of these models using observed rainfall and runoff data. However, only few urban catchments are monitored for rainfall and runoff, and therefore calibration can be done only for these catchments. At present, there are no clear guidelines to estimate the model parameters for ungauged catchments where no rainfall-runoff data are available. In this PhD project, first the ILSAX model was calibrated for some gauged urban catchments. From the results of calibration of these catchments, regression equations were developed to estimate some model parameters for use in gauged and ungauged urban stormwater catchments.

Before calibrating the ILSAX model for gauged catchments, a detailed study was conducted to:

- select the most appropriate modelling option (out of many available in ILSAX) for modelling various urban drainage processes,
- study the sensitivity of model parameters on simulated storm hydrographs, and
- study the effect of catchment subdivision on storm hydrographs.

This detailed study was conducted using two typical urban catchments (i.e. one ‘small’ and one ‘large’) in Melbourne metropolitan area (Victoria) considering four design storms of different average recurrence intervals (ARI). Three storms with ARI of 1, 10 and 100 years, and one with ARI greater than 100 years were considered in the study. The results obtained from this detailed study were subsequently used in model calibration of the study catchments. The results showed that the runoff volume of ‘large’ storm events was more sensitive to the antecedent moisture condition and the soil curve number (which determines soil infiltration) and less sensitive to the pervious and impervious area depression storages. However, for ‘small’ storm events, the runoff volume was sensitive to the impervious area depression storage. The peak discharge was sensitive to pipe roughness, pit choke factor, pit capacity parameters and gutter characteristics for both ‘small’ and ‘large’ storm events.
The results also showed that the storm hydrograph was sensitive to the catchment subdivision.

The accuracy of rainfall-runoff modelling can be adversely influenced by erroneous input data. Therefore, the selection of accurate input data is crucial for development of reliable and predictive models. In this research project, a number of data analysis techniques were used to select good quality data for model calibration.

For calibration of model parameters, parameter optimisation was preferred to the trial and error visual comparison of observed and modelled output responses, due to subjectivity and time-consuming nature of the latter approach. It was also preferred in this study, since the model parameters obtained from calibration were used in the development of regional equations for use in gauged and ungauged catchments. Therefore, it was necessary to have a standard method which can be repeated, and produced the same result when the method is applied at different times for a catchment. An optimisation procedure was developed in this thesis, to estimate the model parameters of ILSAX. The procedure was designed to produce the ‘best’ set of model parameters that considered several storm events simultaneously. The PEST computer software program was used for the parameter optimisation. According to this procedure, the impervious area parameters can be obtained from frequent ‘small’ storm events, while the pervious area parameters can be obtained from less-frequent ‘large’ storm events.

Twenty two urban catchments in the Melbourne metropolitan area (Victoria) were considered in the model parameter optimisation. Several ‘small’ and ‘large’ storm events were considered for each catchment. However, it was found during the analysis that the selected ‘large’ storm events did not produce any pervious area runoff, and therefore it was not possible to estimate the pervious area parameters for these catchments. The Giralang urban catchment in Canberra (Australia) was then selected to demonstrate the optimisation procedure for estimating both impervious and pervious area parameters, since data on ‘small’ and ‘large’ storm events were available for this catchment. The calibration results were verified using different sets of storm events, which were not used in the calibration, for all catchments. The optimised model parameters obtained for each catchment were able to produce hydrographs similar to the observed hydrographs, during verification. The
impervious area parameters obtained from optimisation agreed well with the information obtained from other sources such as areal photographs, site visits and published literature. Similarly, the pervious area parameters obtained for the Giralang catchment agreed well with the values given in the published literature.

If ILSAX is to be used for ungauged drainage systems for which no storm data are available, then the model parameters have to be estimated by some other means. One method is to estimate them through regional equations, if available. These regional equations generally relate the model parameters to measurable catchment properties. In this study, analyses were conducted to develop such regional equations for use in ungauged residential urban catchments in the Melbourne metropolitan area. The Melbourne metropolitan area was considered as one hydrologically homogeneous group, since the urban development is similar in the area. The equations were developed for the land-use parameters of directly connected impervious area percentage (DCIA) and supplementary area percentage (SA), and the directly connected impervious area depression storage (DSi). Several influential catchment parameters such as catchment area, catchment slope, distance from the Central Business District to the catchment and household density were considered as independent variables in these regional equations.

A regional equation was developed for DCIA as a function of the household density. A similar equation was also developed to determine SA as a function of household density. DCIA was obtained from the model parameter optimisation using rainfall-runoff data (i.e. calibration), while SA and household density were obtained from the available drawings and field visits. These two equations showed a very good correlation with household density and therefore, DCIA and SA can be estimated accurately using these two equations. The city/shire councils generally have information on the household density in already-developed urban areas and therefore, these two equations can be used to estimate DCIA and SA for these areas. For new catchments, these equations can be used to estimate DCIA and SA based on the proposed household density.

The directly connected impervious area depression storage (DSi) is the only ILSAX model loss parameter that was obtained from the calibration, and this is the loss parameter that is more sensitive for ‘small’ storm events of the urban drainage catchments. A regional
equation was attempted for this parameter by relating with the catchment slope, since the catchment slope was found to have some correlation with DSᵢ according to past studies. However, the results in this study did not show a correlation between these two variables. Therefore, based on the results of this study, a range of 0 - 1 mm was recommended for DSᵢ. Because of the recommended range for DSᵢ, the sensitivity of DSᵢ against DCIA was revisited and found that DSᵢ was less sensitive compared to DCIA, in simulating the peak discharge and time to peak discharge for both ‘small’ and ‘large’ storm events. However, there is a little impact for runoff volume and hydrograph shape for ‘small’ storm events. Therefore, defining a range for DSᵢ is justified for modelling purposes and the user can choose a suitable value within this range from engineering judgement.
DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or institution and, to the best of the author’s knowledge and belief, contains no material previously written or published by another person except where due reference is made in the text.

Sunil Thosainge Dayaratne
31 August 2000
ACKNOWLEDGMENTS

First and foremost I would like to express my appreciation and my sincere gratitude to my supervisor Associate Professor, Dr. Chris Perera without whose constant support and help this thesis could not have been completed. His inspiration, enthusiasm and encouragement have made this research successful. I am grateful to him for always been available for discussion (especially given his extra ordinarily busy schedule) and for always managing to re-frame periods of frustration in positive light. I would also like to thank Chris for providing me with so many opportunities to broaden my Engineering experience, and for creating a flexible and enthusiastic research environment.

I am thankful to Dr Andrews Takyi (Canada) for his contribution to this research in early stages as the co-supervisor.

I am indebted to School of the Built Environment, Victoria University of Technology (VU) for awarding me the ARC Urban Stormwater Postgraduate Research Scholarship for my studies, and for use of their facilities. I also pay my sincere thanks to all the fellow postgraduate students, technical staff and administrative staff of VU, especially the research office staffs for their friendliness and willingness to help.

I would also like to thank the all city/shire council staff involved in this project for providing necessary information.

I am deeply conscious of the importance in my family, without whose emotional support I would not have tackled this research. I would memorise respectfully my late parents who gave me a priceless education and a respect for learning. Special thanks also due to my ever loving wife Ranjani, who has been a constant source of encouragement and who has provided me with the sense of well being necessary to complete this project and also boldly took up the challenge of grass widowhoodship for last few years. Last but not least; I thank my two beautiful children Kushan and Maduwanthi those who missed their dad a lot and their tolerance during this research project.
4.2.2.1 User-defined times of entry ... 88
4.2.2.2 ILLUDAS-SA method ... 88
4.2.2.3 ARR87 Method ... 89
4.2.3 Options for Pipe and Channel Routing ... 93
4.2.3.1 Time-shift method ... 93
4.2.3.2 Implicit hydrological method ... 93
4.2.4 Modelling of Pit Inlets .. 94
4.2.4.1 On-grade pits ... 96
4.2.4.2 Sag pits .. 97
4.2.4.3 Choke factor .. 97
4.3 ILSAX MODEL PARAMETERS AND THEIR ESTIMATION 98
4.3.1 Pervious and Impervious Area Depression Storage 100
4.3.2 Infiltration Parameters ... 100
4.3.3 Other Parameters ... 101
4.4 DRAINS MODEL ... 102

CHAPTER 5 ... 104
DATA COLLECTION AND ANALYSIS ... 104
5.1 INTRODUCTION .. 104
5.2 STUDY CATCHMENTS .. 106
5.3 DATA REQUIREMENTS FOR ILSAX MODELLING 109
5.4 DATA COLLECTION AND PRELIMINARY ANALYSIS OF
MELBOURNE METROPOLITAN CATCHMENTS .. 110
5.4.1 Rainfall/Runoff Data Collection ... 110
5.4.2 Rainfall/Runoff Data Analysis .. 111
5.4.3 Catchment and Drainage System Data Collection 113
5.5 DATA OF GIRALANG CATCHMENT ... 113
5.6 SUMMARY .. 114

CHAPTER 6 ... 115
INVESTIGATION OF ILSAX MODELLING OPTIONS AND
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.1</td>
<td>115</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>116</td>
</tr>
<tr>
<td>6</td>
<td>6.3</td>
<td>118</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>6.5</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>6.5.1</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>6.5.2</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>6.5.2.1</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>6.5.2.2</td>
<td>128</td>
</tr>
<tr>
<td>6</td>
<td>6.5.3</td>
<td>130</td>
</tr>
<tr>
<td>6</td>
<td>6.6</td>
<td>132</td>
</tr>
<tr>
<td>6</td>
<td>6.6.1</td>
<td>133</td>
</tr>
<tr>
<td>6</td>
<td>6.6.2</td>
<td>136</td>
</tr>
<tr>
<td>6</td>
<td>6.6.3</td>
<td>139</td>
</tr>
<tr>
<td>6</td>
<td>6.6.4</td>
<td>142</td>
</tr>
<tr>
<td>6</td>
<td>6.7</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7.1</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>7.2</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>7.2.1</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>7.2.2</td>
<td>152</td>
</tr>
<tr>
<td>7</td>
<td>7.2.3</td>
<td>153</td>
</tr>
<tr>
<td>7</td>
<td>7.2.3.1</td>
<td>153</td>
</tr>
<tr>
<td>7</td>
<td>7.2.3.2</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>7.2.3.3</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>7.2.4</td>
<td>158</td>
</tr>
</tbody>
</table>
7.3 ADDITIONAL CONSIDERATIONS PRIOR TO MODEL CALIBRATION USING HYDROGRAPH MODELLING.. 159

7.3.1 ILSAX Modelling Options..163

7.3.2 Pit Inlet Capacity...163

7.3.3 Property Time..164

7.3.4 Consideration of DCIA as a Parameter ..166

7.3.5 Estimation of N_p..168

7.3.6 Computational Time Step...168

7.3.7 Catchment Subdivision ..168

7.4 REVIEW OF MODEL CALIBRATION USING HYDROGRAPH MODELLING... 170

7.4.1 Objective Functions Used in Optimisation..172

7.4.2 Comparison of Different Objective Functions...177

7.4.3 PEST Computer Software ..178

7.5 CALIBRATION OF STUDY CATCHMENTS USING HYDROGRAPH MODELLING... 179

7.5.1 Adopted Calibration Procedure...180

7.5.2 Preparation of Data Files..183

7.5.3 Calibration of Study Catchments in Melbourne Metropolitan Area185

7.5.3.1 Calibration of Catchment BA2 ... 186

7.5.3.2 Calibration of Catchment BA2A .. 187

7.5.3.3 Calibration of Catchment BA3 ... 187

7.5.3.4 Calibration of Catchment BA3A .. 187

7.5.3.5 Calibration of Catchment BA3B .. 189

7.5.3.6 Calibration of Catchment BO1A .. 189

7.5.3.7 Calibration of Catchment BO2A .. 189

7.5.3.8 Calibration of Catchment BR1 ... 189

7.5.3.9 Calibration of Catchment BR1A .. 190

7.5.3.10 Calibration of Catchment BR2 .. 190

7.5.3.11 Calibration of Catchment BR2A .. 190

7.5.3.12 Calibration of Catchment BR3 .. 190

7.5.3.13 Calibration of Catchment H2 ... 191

7.5.3.14 Calibration of Catchment H2A .. 191
7.5.3.15 Calibration of Catchment K1 .. 191
7.5.3.16 Calibration of Catchment K1A .. 191
7.5.3.17 Calibration of Catchment K1B .. 192
7.5.3.18 Calibration of Catchment K2 .. 192
7.5.3.19 Calibration of Catchment K2A .. 192
7.5.3.20 Calibration of Catchment K3 .. 192
7.5.3.21 Calibration of Catchment K3A .. 193
7.5.3.22 Calibration of Catchment K3B .. 193
7.5.3.23 Results of Calibration ... 193
7.5.3.24 Comparison of calibration results with other source of information 194
7.5.4 Calibration of Giralang Catchment .. 196

7.6 VERIFICATION OF CALIBRATION RESULTS OBTAINED FROM HYDROGRAPH MODELLING ... 204
7.6.1 Verification of Catchment BA2 .. 205
7.6.2 Verification of Catchment BA2A ... 205
7.6.3 Verification of Catchment BA3 .. 205
7.6.4 Verification of Catchment BA3A ... 208
7.6.5 Verification of Catchment BA3B ... 208
7.6.6 Verification of Catchment BO1A ... 208
7.6.7 Verification of Catchment BO2A ... 208
7.6.8 Verification of Catchment BR1 .. 208
7.6.9 Verification of Catchment BR1A ... 209
7.6.10 Verification of Catchment BR2 .. 209
7.6.11 Verification of Catchment BR2A .. 209
7.6.12 Verification of Catchment BR3 .. 209
7.6.13 Verification of Catchment H2 .. 210
7.6.14 Verification of Catchment H2A ... 210
7.6.15 Verification of Catchment K1 .. 210
7.6.16 Verification of Catchment K1A ... 210
7.6.17 Verification of Catchment K1B ... 211
7.6.18 Verification of Catchment K2 .. 211
7.6.19 Verification of Catchment K2A ... 211
7.6.20 Verification of Catchment K3 .. 211
7.6.21 Verification of Catchment K3A ... 212
7.6.22 Verification of Catchment K3B ... 212
7.6.23 Verification of Catchment GI .. 212
7.6.24 Results of Verification .. 212
7.7 SUMMARY .. 213

CHAPTER 8 .. 216
DEVELOPMENT OF REGIONAL RELATIONSHIPS FOR
ESTIMATING IMPERVIOUS AREA PARAMETERS 216
8.1 INTRODUCTION .. 216
8.2 REVIEW OF REGIONALISATION TECHNIQUES USED IN URBAN
CATCHMENT MODELLING .. 216
8.3 CATCHMENT SELECTION FOR REGIONALISATION 221
8.4 SELECTED MODEL PARAMETERS AND OTHER CANDIDATE VARIABLES FOR REGIONALISATION ... 222
 8.4.1 Estimation of Candidates Variables for Regionalisation 223
8.5 SELECTED CATCHMENT PROPERTIES FOR REGIONALISATION 227
 8.5.1 Estimation of Catchment Properties ... 228
8.6 IDENTIFICATION OF HOMOGENEOUS REGIONS ... 229
8.7 DEVELOPMENT OF REGIONAL EQUATIONS .. 229
 8.7.1 Split Sample Procedure .. 234
 8.7.2 Regionalisation of DCIA .. 235
 8.7.2.1 Identification of influential catchment characteristics 235
 8.7.2.2 Development of regression equation for DCIA 238
 8.7.3 Regional Equation for Supplementary Area Percentage (SA) 241
 8.7.4 Regionalisation of DSi ... 243
 8.7.4.1 Identification of influential catchment characteristics 243
 8.7.4.2 Regionalisation equation for DSi .. 244
 8.7.5 Further Sensitivity Studies of DSi and DCIA .. 246
 8.7.6 Limitation of Regional Equations ... 250
8.8 SUMMARY .. 253
CHAPTER 9

SUMMARY OF METHODOLOGY, CONCLUSIONS AND RECOMMENDATIONS

9.1 SUMMARY OF METHODOLOGY

9.2 CONCLUSIONS

9.2.1 Literature Review

9.2.2 Customer Survey

9.2.3 Data Collection and Analysis

9.2.4 Selection of Appropriate Modelling Options

9.2.5 Sensitivity Analysis

9.2.6 Catchment Subdivision

9.2.7 Model Calibration

9.2.8 Parameter Regionalisation

9.2.9 Other Issues

9.2.9.1 Catchment data

9.2.9.2 Subcatchment slope

9.2.9.3 Computational time step

9.2.9.4 Property time

9.2.10 Transferability of Results to Other Models

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH

9.3.1 Equivalent Pit Capacity

9.3.2 Choke Factor

9.3.3 Property Time

9.3.4 Determination of AMC

9.3.5 Curve Numbers

9.3.6 Effect of Scaling Factors

9.3.7 Modelling Concepts and Parameter Settings

REFERENCES

APPENDICES

A) Customer Survey Questionnaire
B) Catchment Plans
C) Runoff Depth Versus Rainfall Depth Plots
D) Events Selected for Calibration and Verification
E) Calibration Plots
F) Verification Plots
LIST OF FIGURES

Figure 2.1: Urban Drainage System... 13
Figure 3.1: Number of Questionnaires Sent and Responses Received............ 64
Figure 3.2: Number of Users of Urban Catchment Models............................ 65
Figure 3.3: Different Methods Used by Respondents to Estimate Model Parameters of Computer Models ... 69
Figure 3.4: Results of Surveys on Methods Used in Practice......................... 75
Figure 4.1: ILSAX Representation of a Catchment... 81
Figure 4.2: Basic ILSAX Modelling Element.. 81
Figure 4.3: Infiltration Curves for Soil Types Used in ILSAX......................... 83
Figure 4.4: Construction of Hydrograph by the Time-Area Method 86
Figure 4.5: Gutter Flow Characteristics.. 90
Figure 4.6: Bypass Flow and Overflow in a Pipe Reach................................. 95
Figure 4.7: ILSAX Model Representation and Its Parameters.......................... 99
Figure 5.1: Locations of Study Catchments... 105
Figure 5.2: Time Series Plots of Measured Flow Depth and Velocity 112
Figure 5.3: Rainfall Hyetograph and Runoff Hydrograph Plots for a Storm Event... 112
Figure 6.1: IFD Curve for Altona Meadows and Therry Street Catchments........ 120
Figure 6.2: Hyetographs and Base Run Hydrographs for Four Design Storms...... 122
Figure 6.3: Effect of Loss Subtraction Methods on Runoff Volume.................. 124
Figure 6.4: Effect of Time of Entry Methods for Overland Flow Routing on Peak Discharge ... 126
Figure 6.5: Effect of Pipe Routing Methods on Peak Discharge....................... 129
Figure 6.6: Effect of Pit Inlet Capacity on Peak Discharge.............................. 131
Figure 6.7: SC for Total Runoff Volume... 141
Figure 6.8: SC For Peak Discharge of Pipe Flow... 143
Figure 6.9: Effect of Catchment Subdivision on Peak Discharge..................... 146
Figure 6.10: Flow Path for Different Subdivisions.. 147
Figure 7.1: Rainfall-Runoff Depth Relationship from Different Catchment Surfaces... 154
Figure 7.2: Sample RR Plot Used for Data Checking (Catchment BA2A).......... 156
Figure 7.3: RR Plot for Catchment BA2A after Removing Erroneous Data..... 156
Figure 7.4: Hydrographs with Different Property Times for Catchment BA2A 165
Figure 7.5: Hydrographs for Different Values of DCIA .. 167
Figure 7.6: The Process Diagram for Optimisation Algorithm 182
Figure 7.7: Flow Chart Representing the Data Files for Pest-Calibration 185
Figure 7.8: Hyetograph and Hydrographs for Calibration Events of Catchment BA2A .. 188
Figure 7.9: Optimised DCIA for Study Catchments ... 194
Figure 7.10: Optimised DS, for Study Catchments ... 195
Figure 7.11: DCIA from Calibration and RR Plots for Study Catchments 198
Figure 7.12: DS, from Calibration and RR Plots for Study Catchments 198
Figure 7.13: Runoff Depth Versus Rainfall Depth Plot of Catchment GI 199
Figure 7.14: Calibration Plots for ‘Small’ Storm Events of Giralang Catchment 201
Figure 7.15: Calibration Plots for ‘Large’ Storm Events of Giralang Catchment 203
Figure 7.16: Verification Plots of Catchment BA2A ... 206
Figure 7.17: Verification Plots for Giralang Catchment ... 207
Figure 8.1: Subcatchments and ‘Remaining’ Catchment in a Major Catchment 224
Figure 8.2: DCIA on Council Basis ... 233
Figure 8.3: SA on Council Basis .. 233
Figure 8.4: DS, on Council Basis ... 234
Figure 8.5: DCIA Versus Total Area for Study Catchments ... 236
Figure 8.6: DCIA Versus Household Density for Study Catchments 237
Figure 8.7: DCIA Versus Distance from Melbourne CBD for Study Catchments 237
Figure 8.8: DCIA Versus Household Density for Calibration Catchments 239
Figure 8.9: Verification of Regional Equation of DCIA Versus Household Density 239
Figure 8.10: DCIA Versus Household Density for Study Catchments 240
Figure 8.11: SA Versus Household Density for Calibration Catchments 241
Figure 8.12: Verification of Regional Equation of SA Versus Household Density 242
Figure 8.13: SA Versus hhd for Study Catchments ... 243
Figure 8.14: DS, Versus Average Catchment Slopes for Study Catchments 245
Figure 8.15: DS, Versus DCIA for Study Catchments ... 246
Figure 8.16: Sensitivity of DS, and DCIA for Altona Meadows Catchment for 1 Year ARI Storm Event ... 248
Figure 8.17: Sensitivity of DS, and DCIA for Therry Street Catchment for 1 Year ARI Storm Event ... 249
Figure 8.18: Sensitivity of DS\textsubscript{i} and DCIA for Altona Meadows Catchment for 100 Year
ARI Storm Event.. 251

Figure 8.19: Sensitivity of DS\textsubscript{i} and DCIA for Therry Street Catchment for 1 Year
ARI Storm Event.. 252
Table 2.1: Modelling Methods Used in Different Models .. 29
Table 2.2: Six Different Objective Functions Used in Kidd’s (1978a) Study 44
Table 2.3: Parameters of selected loss models ... 46
Table 2.5: Summary of Percentage Errors for Non-Calibrated Studies .. 58
Table 3.1: Source of Information Estimating Runoff Coefficient .. 67
Table 3.2: Return Periods Used by the Respondents for Design and Analysis 70
Table 3.3: Recommended Return Period ... 71
Table 4.1: Different Development Stages of the ILSAX Model .. 79
Table 4.2: Selection of Antecedent Moisture Condition ... 84
Table 4.3: GUT Factor for Typical Gutter Section in Victoria ... 102
Table 5.1: Characteristics of Study Catchments ... 107
Table 6.1: Base Run Model Parameter Values ... 117
Table 6.2: Selected Storm Events .. 121
Table 6.3: Effect of Different Loss Subtraction Methods ... 124
Table 6.4: Values for Different Time of Entry Methods .. 126
Table 6.5: Values for Different Pipe Routing Methods .. 128
Table 6.6: Results of Two Methods for Pit Inlet Capacity Restrictions .. 130
Table 6.7: Selected Parameter Values for the Sensitivity Analysis ... 138
Table 6.8: Peak Discharges for Three Subdivisions .. 146
Table 7.1: Directly Connected Impervious Area Parameters from RR Plots 157
Table 7.2: DCIA from RR Plots and Areal Photographs .. 158
Table 7.3: Summary of Statistics of Storm Events Selected for Modelling of Catchment BA2A .. 161
Table 7.4: Hydrograph Attributes for Fine and Medium Catchment Subdivision of Catchment H2 (Event C4) .. 169
Table 7.5: Catchment Subdivision used Calibration and Verification of Study Catchments .. 170
Table 7.6: DCIA and DS, Values from Different Methods for Study Catchments 197
Table 7.7: Calibration Values of Giralang Catchment for ‘Small’ Storm Events 200
Table 7.8: Calibration Values of Giralang Catchment for ‘Large’ Storm Events 202
Table 7.9: Parameters from Calibration using Hydrograph Modelling and RR Plots 204
Table 8.1: DCIA and DS, Values from Different Methods for Study Catchments............ 226
Table 8.2: Selected Parameter Values for Regionalisation... 227
Table 8.3: Properties of Selected Residential Catchments for Regionalisation......... 231
Table 8.4: Catchment Selection for Split Sampling Procedure 235
Table 8.5: Hydrograph Attributes for 1-year ARI Storm Event................................. 247
Table 8.6: Hydrograph Attributes for 100-year ARI Storm Event............................. 250
Table 8.7: Limitation of Variables for Regional Equations....................................... 253