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Abstract 

 

Numerous reports of genetic associations with performance-related phenotypes have been 

published over the past three decades but there has been limited progress in discovering and 

characterising the genetic contribution to elite/world-class performance, mainly due to few 

coordinated research efforts involving major funding initiatives/consortia and the use 

primarily of the candidate gene analysis approach. It is timely that exercise genomics 

research has moved into an era utilising well-phenotyped, large cohorts and genome-wide 

technologies: approaches that have begun to elucidate the genetic basis of other complex 

traits/diseases. This review summarizes the most recent and significant findings from sports 

genetics and explores future trends and possibilities. 

 

Key words: Sports Genetics, Polymorphisms, Candidate Gene Approach, Genome-

Wide Association Study  
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Introduction 

 

Despite numerous attempts in recent years to discover genetic variants associated with elite 

athletic performance and more specifically elite/world-class athletic status, there has been 

limited progress due to few coordinated research efforts involving major funding 

initiatives/consortia and the reliance on candidate gene analyses, involving a small number of 

single nucleotide polymorphisms (SNPs) and structural variants (e.g., the commonly studied 

insertion/deletion polymorphisms). Nevertheless, over 200 SNPs associated with physical-

performance traits, and over 20 SNPs associated with elite athletic status, have been reported 

in the literature and have been summarized on a yearly basis in the “The human gene map for 

performance and health-related fitness phenotypes” until 2009 [1]. Due to the massive 

increase in related papers, the authors changed the format now summarizing only the key 

findings of each year in “Advances in Exercise, Fitness, and Performance Genomics” [2-5] 

series. However, most reported associations are reported in studies with small sample sizes, 

without robust replication, and therefore most likely type 1 errors. It is widely acknowledged 

that there will be many genes involved in physical performance phenotypes and hence it is 

timely that genetic research has moved to the genomics era, i.e., the simultaneous testing of 

multiple genes is now possible. New approaches involving large well-funded consortia and 

utilising well-phenotyped large cohorts and genome-wide technologies will be necessary for 

meaningful progress to be made. This review summarizes most recent and significant 

findings from sports genetics and explores future trends and possibilities. 

 

Study Designs, Strategies and Methodologies 

  

Twin and family studies 

Similar to other areas of research, family or twin studies were initially the main focus 

investigating the genetic basis of human performance. The first studies in the 1970s assessed 

indirectly the genetic basis of human performance using twin models and comparing the 

intra-pair variation between monozygotic (MZ) and dizygotic (DZ) twins; a concept referred 

to as the heritability estimate (h
2
), which reflects the population variance in a trait attributable 

to genetic factors (assuming a simple additive model of heredity) and calculated by dividing 

the difference of the variance between DZ and MZ twins by the variance of DZ twins. When 

this approach was applied to maximal oxygen consumption (
2OV max) using 25 pairs of 
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twins (15 MZ and 10 DZ preadolescent boys), high heritability estimates were reported (e.g., 

h
2
 = 93.4%).[6] In other words, genetics could explain as much as 93.4% of the phenotypic 

variation in 
2OV max. Similarly, high heritability estimates were reported in 15 MZ and 16 

DZ twins of both genders (h
2 

= 96.5%)[7] for the variation in skeletal muscle fibre 

composition. Genetic influences on other performance-related attributes such as body 

composition and motor activities (e.g., walking, running, throwing, balancing) as well as 

training-induced improvements in 
2OV max were also reported using similar methods.[8-12] 

A more contemporary view based on results from the HERITAGE Family Study is that 

genetic factors can explain ~50% of 
2OV max when adjusted for age, body mass and body 

composition as covariates.[13] Notably, in a study of 4488 adult British female twins, the 

heritability of athlete status was estimated at 66%.[14] Given these exceptionally high 

heritability estimates, this concept has received considerable criticism with arguments that the 

high heritability estimates are due to low twin numbers and the near identical social 

environment of the studied twins.[15,16] Recent studies also report high heritability estimates 

for neuromuscular performance and body composition.[17-19]  

 

Despite the suggestion of significant heritable components for a range of performance-related 

traits, family-based studies do not offer insight into the specific genetic variation underlying 

these heritable components. The limitations and criticisms of the early indirect methods 

required the focus to be shifted to the continuously developing molecular-based laboratory 

methods to test directly the interaction between genetic and environmental factors, not only in 

family or twin studies but also in populations of interest for complex traits; for example, elite 

athletic status, where inter-individual phenotypic variations are caused by a heterogeneous, 

polygenic model with multiple gene variants involved and interacting with environmental 

factors.[1,20,21] 

 

 Genome-Wide Association studies: hypothesis-free approach 

A number of different methodological approaches within the field of genetic epidemiology 

have been utilized to unravel the genetic basis of elite human performance. Due to the 

development of more advanced gene discovery techniques, genetic studies are no longer 

restricted to family/twin studies but expanded to include the assessment of genetic variants 

(i.e., mostly SNPs) within a population of interest. Population-based case-control studies are 

extensively being used at present, and can be further differentiated into hypothesis-free 
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(sometimes referred to as a “fishing trip”, i.e., no assumptions made about the genomic 

location of associated variants) and the more commonly used hypothesis-driven approaches, 

where the search for association may be restricted to particular genes of interest. 

 

Advances in molecular technologies enabled researchers to apply genome-wide association 

(GWAS) approaches to the field. GWAS examine the ‘association of genetic variation with 

outcomes or phenotypes of interest by analysing 100,000 to several millions of SNPs across 

the entire genome without any previous hypotheses about potential mechanisms’. GWAS has 

been successful in identifying novel genetic variants for age-related macular degeneration,[22] 

Type 2 Diabetes Mellitus (T2DM),[23] the interleukin 23 (IL-23) pathway in Crohn's 

disease,[24] and obesity-related traits.[25] This promising approach is not without important 

limitations. For example, human height is a highly heritable quantitative trait (up to 90% of 

population variance)[26-30] as well as stable and easy to measure, although one of the largest 

studies to date (n = 183,727) identified at least 180 loci associated with adult height, but 

together these explained only 10% of the variation in height. This is in large part due to the 

small effect size of most of these genetic variants. Furthermore, genetic variants associated 

with most complex diseases do not show predictive utility.[31] Thus, much of the heritability 

of complex traits remains missing,[32] and numerous explanations have been proposed to 

account for this missing heritability. There have been suggestions that common variants do 

explain up to 45% of the variance in height,[33] but the small effect size of these variants 

may render these variants undetectable by common study designs.[32] Despite several 

limitations, these studies confirm that GWAS is able to detect many loci that implicate 

biologically related genes and pathways.[34] The occurrence of rare variants which are not 

captured by GWAS may partly explain this limited success in determining the genomics of 

adult height. Following GWAS, additional approaches, such as fine mapping and sequencing, 

may be used to find common SNPs with larger effect sizes than GWAS tagging SNPs or 

identify rarer variants across GWAS loci. The hypothesis-free GWAS design is the most 

popular of the current widespread approaches as it allows to 1) detect smaller gene effects by 

narrowing down the genomic target region precisely with new chips; 2) maximize the amount 

of variation captured per SNP with the fixed set of markers; and 3) reduce genotyping costs, 

which make this approach attractive.[35] Other factors relating to the sample population 

(family history of traits, ethnically homogeneous populations, sample size of at least several 

thousands) and differences in statistical approaches (e.g., the conservative Bonferroni 

correction for multiple testing vs. the non-conservative false discovery rate correction or the 
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application of permutation testing approaches) need to be carefully considered to ensure 

successful application of the GWAS approach.[36] GWAS of elite human athletic 

performance are ongoing,[37-40] but no published papers to date.  

 

Candidate gene analysis: hypothesis-driven approach 

The most extensively used candidate gene association study approach requires a prior 

hypothesis that particular genes of interest contain variants that may be associated with a trait 

or disease. Typically, variants in a gene or genes of interest are genotyped in cases and 

controls, or to investigate these associations with a quantitative trait. This approach is 

effective in detecting genetic variants with small or modest influence on common disease or 

complex traits. Functional SNPs with tag SNPs (by use of linkage disequilibrium) which 

would cover the entire candidate gene have been used in many candidate gene association 

studies.[35] However, in this approach, candidate genes ought to be selected if there is good 

evidence that 1) the proposed candidate gene is biologically relevant to main 

phenotype/complex trait of interest (e.g., physical performance/aerobic capacity, adiposity); 

2) the variants of the candidate gene influences the overall function of the gene (e.g., 

variation in physiological angiotensin converting enzyme (ACE) activity levels are linked to 

polymorphisms in the ACE gene -see section on ‘Genes and polymorphisms with reasonable 

replication’); and 3) the polymorphisms of the selected candidate gene are frequent enough in 

the population to allow meaningful statistical analysis (e.g., typical allele frequencies for the I 

and D allele of the ACE I/D polymorphism in a European population are ~43% and 57% 

respectively). When these criteria are not fulfilled and candidate genes are selected based 

primarily on the interest of the research group, this approach generates conflicting results 

with low statistical power and difficulty to be replicated in other populations, and thus low 

validity.[41] In addition, the candidate gene approach has largely been implemented in 

studies with small subject numbers and often without robust replication, and perhaps partly 

attributable to publication bias. 

 

Major study cohorts 

 

The genotyping of athletes of the highest performance caliber such as world record holders, 

world champions and Olympians is desirable and may circumvent the need for very large 

athlete cohorts in order to discover performance-associated polymorphisms. The number of 

large genetic cohorts of world-class athletes from a variety of countries and sports with 
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extensive physical performance phenotypes is limited. The following are the most significant 

elite athlete cohorts based on current publication outcomes: 

 

Genathlete Study: In the Genathlete study, a classical case-control study, endurance athletes 

with high 
2OV max were compared to control participants with a low to average 

2OV max.[42-44] Data were analysed using the candidate gene approach, which allowed the 

distribution of particular genetic variants with respect to the phenotype 
2OV max in both 

groups to be assessed. As this type of assessment requires large subject numbers, this study 

was designed as a multi-centre study. To exclude influences due to regionally different 

distribution of genetic variants, particular attention was paid to a comparable distribution of 

the regional origin of participants. Currently, this cohort involves more than 600 participants 

(~300 athletes and ~300 controls) and therefore constitutes one of the largest matched case-

control studies in this field.[43,44] 

 

Elite Russian athlete cohort: One of the largest studies of elite athletes involves elite Russian 

athletes from mixed athletic disciplines.[45-47] In the most recent study, 998 male and 425 

female Russian athletes of regional or national competitive standard were recruited from 24 

different sports.[47] Athletes were stratified into 5 groups according to event duration (very 

long-, long- and middle-endurance), mixed ‘anaerobic/aerobic’ activity group and power 

group (predominantly anaerobic energy production). 

 

Elite east African athlete cohorts: The phenomenal success of athletes from Ethiopia and 

Kenya in endurance running events is well recognized. Middle- and long-distance runners 

from Ethiopia and Kenya hold over 90% of both all-time world-records and current top-10 

positions in world event rankings.[48] Moreover, these successful athletes come from 

localized ethnic subgroups within their respective countries.[49,50] In order to investigate the 

east African running phenomenon, a first study[50-52] involved 76 endurance runners from 

the Ethiopian junior- and senior-level national athletics teams (12 female, 64 male), 315 

controls from the general Ethiopian population (34 female, 281 male), 93 controls from the 

Arsi region of Ethiopia (13 female, 80 male), and 38 sprint and power event athletes from the 

Ethiopian national athletics team (20 female, 18 male). A similar approach was conducted in 

a study[53] with 291 elite Kenyan endurance athletes (232 male) and 85 control subjects (40 
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male). 70 of the athletes (59 male) had competed internationally representing Kenya and 

achieved remarkable success.  

 

Elite Jamaican and USA sprint cohorts: These cohorts are comprised of elite Jamaican and 

African-American athletes representing the highest level of sprinting performance and 

geographically matched controls. In the Jamaican cohort, 116 athletes (male = 60, female = 

56) and 311 control subjects (throughout the whole island; male = 156, female = 155) were 

recruited.[54] 71 and 35 athletes had participated in 100-200 m and 400 m sprint events, 

respectively; and 10 athletes were involved in the jump and throw events. These athletes can 

be further classified into national (n = 28) and international athletes (n = 88) who were 

competitive at the national level in Jamaica and the Caribbean or at major international 

competitions for Jamaica. Among the 88 international athletes, 46 had won medals at major 

international events or held world records in sprinting. In the African-American cohort, 

samples from 114 elite sprint athletes (male = 62, female = 52) and 191 controls (throughout 

the United States; male = 72, female = 119) were collected.[54] Among these athletes, 48, 42 

and 24 athletes participated 100-200 m, 400 m, and jump and throw events, respectively. 

Athletes can be subdivided into 28 national and 86 international athletes; 35 of these athletes 

had won medals at international games and/or broken sprint world records.   

 

Elite Australian athlete cohort: Australia has provided valuable genetic information on elite 

sprinters and endurance performers. The cohort comprises of 429 elite athletes from 14 

different sports and 436 unrelated controls. A subgroup of 107 and 194 subjects were 

classified as elite sprinters and endurance runners respectively.[55] This cohort was studied 

to postulate, for the first time, the ACTN3 gene as a strong candidate to influence elite athletic 

performance (to be discussed in ‘Genes and polymorphisms with reasonable replication’ 

section). 

 

Elite Japanese athlete cohort: Japanese athletes are successful in international competitions 

such as Olympics, especially in endurance-oriented events such as Marathon and swimming 

events. This cohort is comprised of 717 elite Japanese athletes and 814 controls. Athletes are 

either national (participants in national competitions) or international athletes (participants in 

Olympic Games, World and Asian Championships), including several medallists at these 

international games and world record holders. This Japanese athlete cohort comprises 381 

track & field athletes, 166 swimmers, and 170 Olympians from various sports. This cohort 
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was initially established in order to identify both nuclear and mitochondrial DNA 

polymorphisms/haplogroups associated with elite Japanese athlete status and performance-

related traits.[56-61]  

 

Elite European and Asian swim cohort: Two elite swim cohorts, comprising Caucasian and 

East Asian swimmers, respectively have been established. The Caucasian cohort comprised 

of 200 elite Caucasian swimmers from European, Commonwealth, American and Russian 

sub-cohorts. Swimmers were categorized as short and middle distance (≤ 400 m, n = 130) or 

long distance swimmers (> 400 m, n = 70). Caucasian swimmers were all highly competitive 

and of world-class status having represented their countries in international competitions. 

Caucasian controls were drawn from a previous published report.[62] Elite Japanese (n = 

158) and Taiwanese (n = 168) swimmers were recruited and classified as short distance (< 

200 m, n = 166) and middle distance (200 – 400 m, n = 160), and none of these Asian 

swimmers competed at a distance greater than 400 m. East Asian swimmers were world-class 

having also competed in international competitions such as the Olympics, World 

Championships and Asian Games, or were competitive in national competitions. Controls 

were pooled from general Japanese (n = 649) and Taiwanese (n = 603) populations, 

respectively and were healthy adults of both sexes and not professionally connected with 

athletics/sport. Two candidate genes (Angiotensin Converting Enzyme & α-Actinin-3; see 

next section) have been studied to date in this cohort.[63] 

 

Spanish cohort: Extensive researches have been conducted in Spanish male athletes, with the 

most representative cohort comprising endurance world-class athletes (n = 100, including 50 

Olympic-class endurance runners and 50 professional cyclists (most of whom are Tour de 

France finishers, including stage winners)[64,65]) and world-class rowers (n = 54, 

lightweight category, most of whom are medallists in world championships).[66] This cohort 

also includes the majority of all-time best Spanish judo male athletes (n = 108),[67] elite 

swimmers (n = 88)[68] and track & field elite power athletes (n = 53).[69] 

 

Elite Israeli cohort: This cohort is comprised of 74 endurance-, and 81 sprint-/power- male 

athletes, who are current and former track and field athletes, as well as 240 matched controls. 

Athletes were carefully selected and included only if their main events were the 10,000 m run 

or the marathon (endurance group); and only if their main events were the 100-200 m dash 

and long-jump (sprint/power group). According to their personal best, athletes were further 
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divided into 2 subgroups: the elite-level (those who had represented Israel in track and field 

world championships or in the Olympic Games), and the national-level.  

 

Chinese cohort: He et al. have recently conducted research in a Chinese cohort (of Han 

origin) made up of the best endurance runners (from 5,000m to marathon) of this country 

(current total n=241, 118 male).[70,71] An important novelty of research on this Chinese 

cohort is results’ replication in a different (Caucasian) group of athletes and especially 

analysis of the functionality of the SNPs been found to be associated with elite endurance 

status (using dual-luciferase reporter assay). [70] 

 

Genes and polymorphisms with reasonable replication 

 

Angiotensin Converting Enzyme (ACE) and the Renin-Angiotensin-Aldosterone-System 

(RAAS). One of the most widely-studied candidate genes for athletic performance is the 

Angiotensin Converting Enzyme (ACE) gene. ACE is a peptidase known to regulate blood 

pressure by catalyzing the conversion of Angiotensin I to the vasoconstrictor Angiotensin II 

and also degrading the vasodilator bradykinin.[72] Inter-individual variation in physiological 

ACE activity levels has been linked to polymorphisms in the ACE gene. Notably, ACE 

Insertion-Deletion (I/D) (rs4340), in which ‘I’ refers to the presence (insertion) and ‘D’ to the 

absence (deletion) of a 287 bp sequence in an Alu sequence of intron 16 in the ACE gene at 

chromosome location 17q23, can account for up to 47% of ACE activity variance in subjects 

(i.e., Caucasians and Asians, not Africans) with an additive effect across the II, ID, and DD 

genotypes.[72] Regarding physical performance, ACE I/D genotypes have been associated 

with a wide range of phenotypes. ACE II subjects show significantly higher muscle efficiency 

gains from training than DD individuals,[73] as well as greater improvements in running 

economy, or ability to sustain sub-maximal pace with lower oxygen consumption.[74] 

Additionally, the I-allele associates with muscular endurance gains from training,[75] which 

may relate to higher type 1 (slow-twitch) muscle fibre preponderance in ACE II subjects.[76] 

In terms of overall sporting ability, the I-allele has been associated with superior performance 

in British mountaineers,[75] South-African triathletes,[77] British distance runners,[78] and 

Australian rowers.[79] In contrast, the D-allele has been associated with success in power-

oriented sports such as short-distance swimming[63,80] and sprinting.[78] Notably, a recent 

study[63] reported that ACE D-allele was associated with short and middle distance swimmer 

status in Caucasian swimmers, whereas ACE I-allele was found to be overrepresented in East 
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Asian short distance swimmers. Although this finding might be explained by different risk 

alleles being responsible for the associations in swimmers of different ethnicities, it requires 

to be further confirmed in future studies. Other inconsistencies in the literature regarding 

ACE findings also exist. For instance, the D-allele has been found to be both positively[81] 

and negatively[82] associated with 
2OV max. A study of 230 elite Jamaican and American 

sprinters found no association of either allele with sprint athlete status.[54] A cohort of 192 

athletes of mixed Caucasian nationalities and endurance sporting disciplines did not exhibit I-

allele frequencies that were significantly different from geographically-matched controls, nor 

did I-allele frequency associate with 
2OV max in these athletes.[43] Several other studies 

involving Caucasian populations also found no association between the I-allele and elite 

physical performance,[45,62,83] and an opposite finding (i.e. D-allele associated with 

endurance performance) in Israeli[84] and Korean[85] cohorts. Despite many inconsistencies 

in replication, the ACE gene remains to be a candidate possibly influencing elite 

performance.  

 

α-Actinin-3 (ACTN3). Αlpha-actinin-3 is an actin-binding protein and a key component of the 

sarcomeric Z-line in skeletal muscle. Expression of ACTN3 (at 11q13.1) is limited to type II 

(i.e. fast, mostly glycolytic) muscle fibres which can generate more force at high velocity. 

Homozygosity for the common nonsense polymorphism R577X (rs1815739) in the α-

Actinin-3 (ACTN3) gene results in deficiency of actinin-3 in a large proportion of the global 

population.[86] Yang et al.[87] examined R577X genotype frequencies in three African 

populations (Kenya, Nigeria and Ethiopia) in comparison with non-African populations 

(Europe, Asia, Australia). Extremely low 577XX genotype frequencies were observed in 

Kenyan and Nigerian athletes versus controls (1% vs. 1% and 0% vs. 0% respectively) as 

well as much lower than in any other non-African populations, i.e., frequency of the 577XX 

genotype of: 18% in Australian Caucasians, 10% in Aboriginal Australians, 18% in Spanish 

Caucasians, and 25% in Japanese). These results also implied that the ACTN3 deficiency was 

not a major influence on performance in African athletes. This polymorphism does not appear 

to result in pathology, although it could alter muscle function.[88-92] Furthermore, a strong 

association has been reported between the ACTN3 R577X polymorphism and elite athletic 

performance in Caucasian populations.[55,93-98] 
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The 577XX genotype was found at a lower frequency in elite Australian sprint/power athletes 

relative to controls,[55] and this finding replicated in Finnish,[96] Greek,[97] Israelis,[99] 

and Russian athletes.[94] Particularly, in a study of 429 elite white athletes from 14 different 

sporting disciplines and 436 controls, the sprint athlete group showed a higher frequency of 

the 577RR genotype (50%) and a lower frequency of the 577RX genotype (45%), compared 

with controls (30% and 52%, respectively), while the elite endurance athletes displayed a 

higher frequency of the 577XX genotype (24%) than controls (18%);[55]  however, the 

sample sizes in the truly elite subgroups are very small therefore, any conclusions drawn 

from them are prone to high risk of type I error and should be treated with caution. 

Interestingly, MacArthur et al.[100] developed an exciting Actn3 knockout (KO) mouse 

model in order to investigate the mechanisms underlying ACTN3 deficiency. These authors 

found the KO mice had similar muscle fibre proportions as the wild type but reduced muscle 

mass that appeared to be accounted for by the reduced fibre diameter of the fast-twitch 

muscle observed in KO mice.[100] In addition to alterations in muscle fibre size, increased 

activity of muscle aerobic enzymes, longer muscle contracting time and shorter recovery 

period from fatigue were attributed to the characteristics of the Actn3 KO mouse. Thus, the 

phenotypes of the Actn3 KO mouse mimic the gene association studies performed in humans 

and provide a plausible explanation for the reduced sprint/power capacity and improved 

endurance performance in humans with the ACTN3 577XX genotype. 

 

Implications of current genetic findings in association with elite athlete status 

 

World-class athletic performance is a complex multi-factorial phenotype, and it is 

acknowledged that to become an elite athlete, a synergy of physiological, behavioural and 

other environmental factors is required. It is commonly perceived that genetic endowment is 

one of the arbiters of elite athletic performance; a belief perhaps augmented by the striking 

geographical variation in athletic success.[49,50,101] As reviewed above, a number of genes 

have been found to associate with elite performance. These studies have employed primarily 

the candidate gene approach to identify those genes which are associated with elite 

performance, or associated with variation in performance-related traits. As such, a number of 

genes have been found to associate with elite performance, although generally with small 

effect sizes and heavily prone to type I statistic error. The number of candidate genetic 

variants that can potentially explain elite athletic status will be much higher than that 

examined by numerous biotechnology companies such as Sports X factor (e.g., 7 genes: 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22MacArthur%20DG%22%5BAuthor%5D
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www.sportsxfactor.com). While genetic testing will likely become a part of talent ID 

programmes in the future, current genetic testing is of zero predictive capacity. Whether new 

approaches such as GWAS will significantly improve prediction outcomes for athletes is 

unknown. 

 

The Future 

 

Most of the knowledge in sports genetics (including most of the information presented in this 

review) has been generated primarily using classical/“old fashioned” genetic methods such as 

candidate gene analysis and almost exclusively applied to cohorts with small sample sizes 

(usually n ≤ 300) and rather unsophisticated multifactorial phenotypes (e.g., aerobic capacity, 

athlete status). The data generated therefore from these studies and reviewed here need to be 

examined in light of the view held by most “hard core” geneticists that a study of any 

complex phenotype in humans is futile unless a cohort size of between 20,000-100,000 is 

used and therefore possessing sufficient statistical power for meaningful analysis and 

interpretation. If one accepts this view (not currently held by the authors of this review) then 

all studies reviewed here should be ignored. While somewhat extreme, an intermediate view 

(currently held by the authors of this review) is that, perhaps beside the ACTN3 R577X and 

possibly ACE I/D, the vast majority of the candidate genes for sporting performance 

discovered to date, are not the key candidates seriously implicated in the phenotypes of 

interest. Priority should therefore be given to recruiting sufficiently large study cohorts with 

adequately measured phenotypes to increase statistical power. Some of the elite athlete 

cohorts described in this review may suffice and collectively, these cohorts could be used for 

replication purposes. 

 

As stated previously, it is accepted that there will be many genes involved in sporting 

performance and hence it is timely that genetic research has moved to the genomics era. New 

approaches and technologies will no doubt be increasingly applied to searching the whole 

human genome instead of studying single genes or indeed SNPs as the cost of using such 

whole-genome methods becomes more affordable. Particularly, the cost of large-scale 

sequencing has dramatically dropped, from the first complete human genome costing $3 

billion to sequence in 2000 to $1,000 per genome as promised by the company Ion Torrent (a 

division of Life Technologies) using its new Ion Proton sequencer in 2012.[102]  At present, 

no matter the success or failure of the GWAS approach, this approach is certainly providing, 
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and will continue to provide, the insight into genetic architecture and the molecular basis 

underlying human diseases and complex traits. The first genome-wide association study in 

age-related macular degeneration (AMD) revealed an intronic and common variant 

significantly related to AMD by comparing 96 cases to 50 controls and consequently a 

functional polymorphism in Complement Factor H (CFH) gene was identified by 

resequencing,[22] suggesting that it is not unreasonable to expect and detect variants with 

large effects in a small study;  however, large cohorts (i.e., ranging from several thousands to 

20,000-100,000) will be routinely studied by GWAS and will provide good resources for all 

scientific fields including genomics of the world-class athlete.[103] This development will 

require a move away from the traditional way of researching in exercise science/medicine 

(i.e., predominantly single-laboratory studies) to large well-funded collaborations/consortia 

with leading industry partners and therefore substantial statistical/technological power and 

knowhow. Only with such resources can the most strongly-acting genes be identified with 

confidence, enabling gene x gene interactions being revealed and gene x environment 

interactions being studied more accurately. One first example in the area of sports 

performance has recently been successfully piloted.[104] The overall purpose was to identify 

new SNPs that confer susceptibility to sprint and endurance performance by use of world-

class athletes as subjects. GWAS was initially performed using Illumina
®
 HumanOmni1-

Quad BeadChip (> 1,000,000 SNPs/sample) or HumanOmniExpress BeadChip (> 700,000 

SNPs/sample) in 95 sprinters and 102 controls from Jamaica. After removing individuals and 

markers failing quality control, remaining SNPs were taken forward for association analysis. 

Genotype frequencies were compared for 88 Jamaican sprinters and 87 Jamaican controls 

using logistic regression (corrected for population stratification), assuming an additive model. 

Seventeen SNPs crossed a predetermined significance threshold of 5x10
-5

.[40] Further 

validation of these signals in independent cohorts is underway, and the replicated SNPs will 

be taken forward for fine-mapping and functional studies to uncover the underlying 

biological mechanisms. Further analyses using other cohorts such as the ones described in 

this review will also provide opportunity for verifying these GWAS findings across different 

ethnicities. 
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