Research Repository

Towards Breast Cancer Survivability Prediction Models in Thai Hospital Information Systems

Thongkam, Jaree (2009) Towards Breast Cancer Survivability Prediction Models in Thai Hospital Information Systems. PhD thesis, Victoria University.

[img] Text
Jaree Thongkam.pdf

Download (5MB)


Finding suitable ways to develop models for predicting unknown data classes is a challenging task in data mining and machine learning. The improvement of the quality of data sets and combining AdaBoost with a weak learner is an important contribution to the development of these prediction models. The objectives of this thesis are to build accurate, stable and effective breast cancer survivability prediction models using breast cancer data obtained from the Srinagarind Hospital in Thailand. To achieve these objectives, five approaches were proposed including: 1) £-means and RELIEF to improve accuracy and stability of prediction models generated from AdaBoost algorithms; 2) C-Support Vector Classification Filtering (CSVCF) to identify and eliminate outliers; 3) a combination of C-SVCF and oversampling approaches to handle both outliers and imbalanced data problems; 4) a hybrid AdaBoost and Random Forests to build stronger prediction models; and 5) C4.5 to form breast cancer survivability decision trees and rules. To illustrate capability, performance and effectiveness of these approaches, extensive experimental studies have been conducted using W E K A version 3.5.6, AdaBoost M A T L A B Toolbox, L I B S V M and C4.5 program.

Item Type: Thesis (PhD thesis)
Uncontrolled Keywords: data mining, outliers, data space, filtering, over-sampling, Thailand, health information systems
Subjects: FOR Classification > 1117 Public Health and Health Services
Faculty/School/Research Centre/Department > School of Engineering and Science
Depositing User: VU Library
Date Deposited: 07 Sep 2015 07:20
Last Modified: 07 Sep 2015 07:20
ePrint Statistics: View download statistics for this item

Repository staff only

View Item View Item

Search Google Scholar