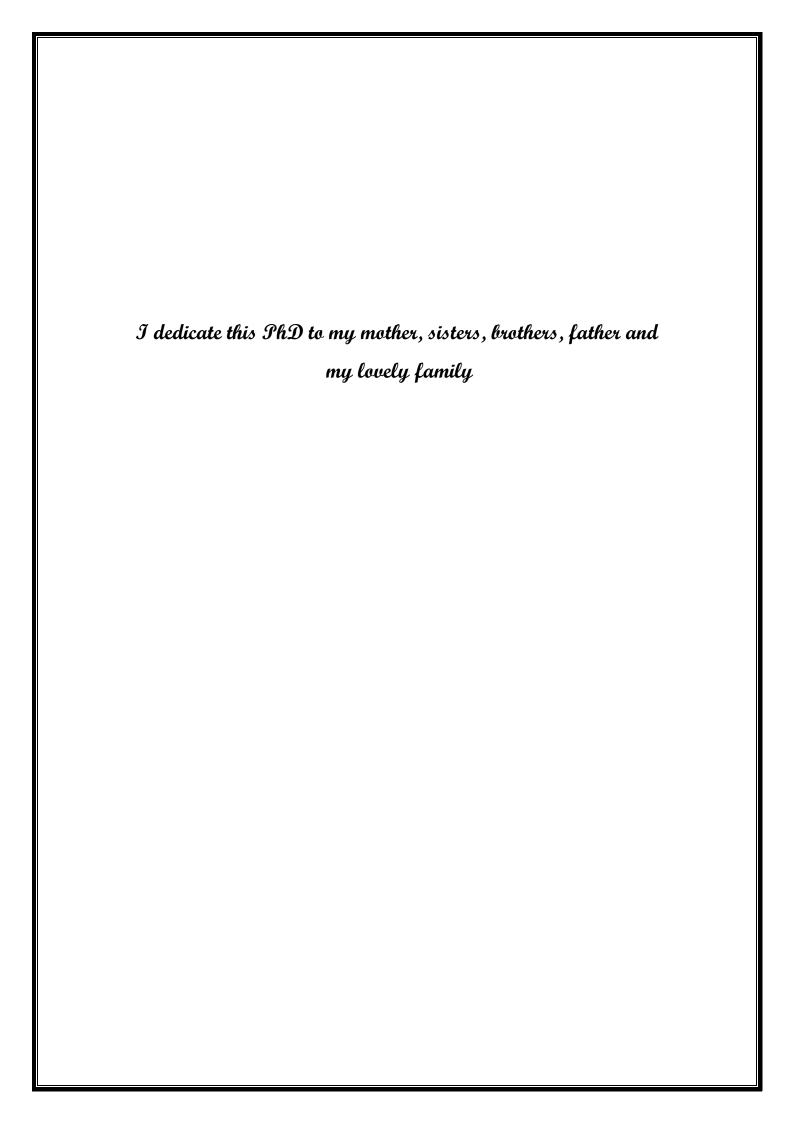
Anti-hypertensive (Angiotensin converting enzyme-inhibitory) peptides released from milk proteins by proteolytic microorganisms and enzymes

A thesis submitted for the degree of DOCTOR OF PHILOSOPHY

by


Fatah BM Ahtesh
B.Eng. (Food Technology); M.Sc. and M.B.A in
(Food and Agribusiness)

College of Health and Biomedicine

Victoria University, Melbourne VIC, Australia

March 2016

ABSTRACT

This study was carried out to examine proteolytic activities of probiotic lactic acid bacteria (LAB) in different media and antihypertensive properties as influenced by, fermentation time, strain type and supplementation with or without an enzyme (Flavourzyme[®]). Lactobacillus casei (Lc210), Bifidobacterium animalis ssp12 (Bb12), Lactobacillus delbrueckii subsp. bulgaricus (Lb11842) and Lactobacillus acidophilus (La2410) were propagated in 12 % reconstituted skim milk (RSM) or 4 % whey protein concentrate (WPC) with or without supplementation (0.14 %) of Flavourzyme[®] for 12 h at 37°C. All the strains were able to grow in both media depending on the type of strains used and the time of fermentation. Moreover, all the strains showed higher proteolytic activity and produced more peptides with anti-hypersensitive properties when grown in RSM media for 12 h, compared with WPC. Combination with Flavourzyme[®] increased LAB growth, proteolytic and anti-hypersensitive activities. From the four strains used, Bb12 and La 2410 outperformed Lc210 and Lb11842. The highest angiotensin converting enzyme inhibitory (ACE-I) and proteolytic activities was shown by Bb12 combination with Flavourzyme®. Flavourzyme® led to increased bioactive peptides with ACE-I activity during fermentation at 37°C for 12 h.

The second phase was to determine the effects of Flavourzyme[®] on ACE-I peptides formed in skim milk and WPC during fermentation by *Lactobacillus helveticus* (Lh) strains, ASCC (881315, 881188, 880474 and 880953), based on proteolytic activity and the production of ACE-I peptides in different media, enzymatic supplementation and fermentation times. RSM (12 %) or WPC (4 %), with or without Flavourzyme[®] (0.14 % w/w), were fermented with *L. helveticus* strains separately at 37°C for 0, 4, 8 and 12 h. Proteolytic, *in vitro* ACE-I activities and growth were significantly affected (*P* < 0.05) by strains, media and enzyme supplementation. RSM supported higher growth, produced higher proteolysis and ACE-I, than WPC without enzyme supplementation. The strains Lh 881315 and Lh 881188 were able to increase ACE-I to 80 % after 8 h fermentation when combined with Flavourzyme[®] in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme[®] was beneficial in increasing ACE-I peptides in both media. The best medium to release more ACE-I peptides was RSM with enzyme supplementation. The Lh 881315 with

Flavourzyme[®] outperformed all strains as indicated by highest proteolytic and ACE-I activities.

In addition to ascertain, the optimal proteolytic combination of microorganisms for the production of potent ACE-I peptides, resulted in further studies to determine the effects of dairy yeast Kluyveromyces marxianus LAF4, combined with probiotics (Lc210, Lb11842, La2410, Lh 881315, Lh 881188, Lh 880474 and Lh 880953), as a source of ACE-I properties. Consequently, this study examined the capacity of yeast strain with LAB to increase the hydrolysis of skim milk protein to obtain a fermented drink with high ACE-inhibition activity and bioactive peptides. Four different Lactobacillus helveticus strains and three selected probiotic LAB strains were combined with Kluyveromyces Marxianus LAF4 (K. marxianus) to ferment 12 % RSM at 37°C for 0, 4, 8 and 12 h and compared to RSM using the same strains without yeast, and using fermented skim milk with yeast as a control. The growth, pH value, proteolytic activity and ACE-I activity was examined at the different time of fermentation. Interestingly, the highest ACE-I activity were with separated strains compared to combination form, K. marxianus alone (60 %) or Lh181315 and Lh 880953 (70 % and 65 %) respectively at 37°C for 12 h (P < 0.005). Additionally, using K. marxianus in combination with LAB strains resulted in decreased milk protein hydrolyses (~30-55 %) at 12 h compared to the control due to alcohol production. The findings of this study have a number of important implications, such as the use of dairy yeast alone to produce a suitable functional dairy product containing ACE-I peptides instead of using a combination of yeast and LAB.

The third phase of this study was the identification of peptides from fermented skim milk protein hydrolysis by combination of Lh ASCC 8801315 and Flavourzyme[®]. This study presents the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI MS/ MS) and Nano-liquid chromatography (Nano-LC/ MS/ MS) as a complement to reversed phase high-performance liquid chromatography (RP-HPLC) separation for the identification of ACE-I peptides from skim milk protein hydrolysate. As a preliminary step, RP-HPLC was used to isolate the different casein fractions from fermented skim milk. ACE-I activity of these fractions F1 (85.40 %) and F6 (90.31 %) with IC₅₀ 0.01 mg mL⁻¹ was performed using proteolytic strains of *L. helveticus* and Flavourzyme[®] using an agitation Bioreactor system. Nano-LC / MS / MS sequenced the peptides contained in the fractions. This procedure allowed the identification of 133

ACE-I peptides from α , β , and k-casein proteins with 99 % confidence from two fractions with most hypotensive effect were FFVAPFPGVFGK, GPVRGPFPIIV, and LHLPLPLL. These findings show the potential use of the *L. helveticus* strain to produce a functional fermented milk drink with a wide range of health benefits.

Based on the results in the third phase, milk casein hydrolysates containing peptides released during milk fermentation by the combination of Lh and Flavourzyme[®], were isolated and used for in vivo animal studies. Milk peptides with ACE-I were extracted from a fermented skim milk with Lh 881315 and Flavourzyme[®]. ACE-I plays an important role in the regulation of hypertension: it catalyses the production of the vasoconstrictor peptide angiotensin-II and inactivates the vasodilator bradykinin. The fermentation processes showed higher proteolytic activity and the peptides released exhibited ACE-I properties. The effect of fermented low fat skim milk drink-based diets on the feed intake, weight and BP were investigated in spontaneously hypertensive rats (SHR). Fourteen-week-old male SHR were fed for ten weeks with either chow (NC), peptides added to chow (FC), or control skim milk powder added to chow (NFC). Food intake and body weights were measured daily and BP was measured weekly by tail-cuff plethysmography. BP decreased significantly (P < 0.05) from 6 to 10 weeks of FC groups (120 / 65 mm Hg) compared with the NC and NFC control groups, where BP increased significantly (220 /150 mmHg) (P < 0.05). The addition of fermented skim milk added to the chow did not change total energy intake in the FC group compared to the NFC group, yet the FC group weighed significantly less than both the NC and NFC groups by the end of the experiment. This implies, that the rats either had a change in metabolic energy or had impaired digestion and absorbance.

In the final phase of this research, the effects of processing and sensory characteristics of a fermented skim milk drink as functional milk product were examined. Using Lh 8801315 combined with Flavourzyme[®], the efficiency of bioreactor increased cell viability and bioactive peptides with ACE-I properties during fermentation. The developed fermented skim milk containing bioactive peptides with improved sensory characteristics showed consumer acceptability. However increased acidity as well as bioactive peptides, led to increased bitterness of the fermented milk. The addition of 15 % sucrose and flavouring provided accepted positive changes in the fermented product.

Certificate

Professor Lily Stojanovska MSc. PhD

Centre for Chronic Disease

College of Health and Biomedicine

Victoria University

Melbourne, Australia

This is to certify that the thesis entitled "ANTI-HYPERTENSIVE (ANGIOTENSIN

CONVERTING ENZYME-INHIBITORY) PEPTIDES RELEASED FROM

PROTEINS BY **PROTEOLYTIC MICRO-ORGANISMS**

ENZYMES" submitted by Fatah Ahtesh in partial fulfilment of the requirement for the

award of the Doctor of Philosophy in Food Technology at Victoria University is a

record of bona fide research work carried out by him under my guidance and

supervision, and the thesis has not previously formed the basis for the award of any

degree, diploma or other similar title.

Professor Lily Stojanovska

Date: 21/03/2016

iv

Declaration

I Fatah Basher Ahtesh declare that the PhD thesis entitled 'Angiotensin converting

enzyme-inhibitory peptides released from milk proteins by proteolytic micro-organisms

and enzymes' is no more than 100,000 words in length including quotes and exclusive

of tables, figures, appendices, bibliography, references and footnotes. This thesis

contains no material that has been submitted previously, in whole or in part, for an

award of any other academic degree or diploma. Except where otherwise indicated, this

thesis is my own work.

Fatah BM. Ahtesh:

Date: / / 2016

Centre for Chronic Disease

College of Health and Biomedicine

Victoria University, Werribee campus

Victoria, Australia

v

Acknowledgements

This research was funded and supported by the Libyan government and Victoria University.

I would like to thank my principal supervisor, Professor Lily Stojanovska, College of Health and Biomedicine, Victoria University, for her guidance and valuable suggestions throughout the course of the study and preparation of the manuscripts. Her continuous diligence and patience over these years are genuinely appreciated.

I would also like to thank my co-supervisors, Associate Professor Michael Mathai and Dr. Vijay Mishra both from the College of Health and Biomedicine, Victoria University, for their contribution and valuable discussions during the studies.

I would also like to thank Dr. Osaana Donkor and Professor Vasso Apostolopoulos, College of Health and Biomedicine, Victoria University for their help, thesis editing and the friendly discussions we have had. In addition, I wish to thank Professor Todor Vasiljevic from the Advanced Food Systems Research Unit, College of Health and Biomedicine, and all the laboratory staff, especially the technical managers Mrs. Stacey Lloyd, and Mr. Joe Pelle for their technical help and patience. I appreciate the great friendship I have made during my research years at Victoria University.

Special thanks go to Anne Luxford, Animal Facilities Operations Supervisor, and Dr. Faten Zaibak (Faye) Manager, Animal Facilities and Biosafety as well as Western Health Sunshine Hospital staff and Monash University animal house facility staff for their help, training and cooperation.

I would like to express my profound gratitude to my great parents and family for their support.

List of Publication

Peer reviewed publications

- **1-** Ahtesh, F., Stojanovska, L., Shah, N., & Mishra, V. K. (2016). Effect of Flavourzyme[®] on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by *Lactobacillus helveticus*. *Journal of food science*, 81(1), 43-57. doi:10.1111/1750-3841.13177.
- **2-** Ahtesh F., Stojanovska L., Mathai M., Apostolopoulos V., & Mishra V. (2016). Proteolytic and angiotensin converting enzyme inhibitory activities of selected probiotic bacteria. *International journal of food science and technology*. doi: 10.1111/ijfs.13054[Ahead of print]
 - **3-** Ahtesh F., Apostolopoulos V., Shah, N. Mishra V., & Stojanovska L. (2016). Effects of *Kluyveromyces marxianus* LAF4 combined with probiotics as source of Angiotensin converting enzyme peptides. *Journal of Food Science*: Manuscript under review. ID JFDS-2015-2094.
- **4-** Ahtesh F., Apostolopoulos V., Stojanovska L., & Mishra, V. K. (2016). Identification of bioactive peptides from fermented skim milk protein hydrolysis by combination of *Lactobacillus helveticus* ASCC 8801315 and Flavourzyme[®]. Submitted to *Journal of food Chemistry*. Manuscript under review.
- **5-** Ahtesh F., Stojanovska L., Mishra V. K & Michael M. (2016). Dietary supplementation with milk-derived angiotensin- converting enzyme peptides decreases food intake, body weight and blood pressure in spontaneously hypertensive rats. Submitted to *Nutrition*, *metabolism and cardiovascular Disease*. Manuscript under review.

Oral Presentation

- **1-** Fatah Ahtesh., Lily Stojanovska., Vijay Mishra., & Michael Mathai (2015). Antihypertensive peptides activity of fermented skim milk by combination of *Lactobacillus helveticus* and Flavourzyme[®] as beneficially affect blood pressure of spontaneously hypertension rats. Post Graduate Research Student Conference (14th August 2015). Victoria University Australia.
 - **2-** Fatah Ahtesh (2015). New Fermented Milk Drink lowers High Blood Pressure. 3 Minute Thesis presentation (3MT) Victoria University College of Health and Biomedicine Science Postgraduate Research Conference July 2015, Victoria University, Footscray, Australia

Poster Presentations

- 1- Ahtesh FB, Shah N & Mishra V (2012). Screening of probiotic proteolytic bacteria and proteases based on their proteolytic and angiotensin converting enzyme inhibitory activity. Poster presentation at the 45 Annual AIFST Convention, Adelaide, SA 15th 17th July 2012
- **2-** Fatah BM. Ahtesh, Lily Stojanovska, Vijay K. Mishra & Michael L. Mathai. (2015). Peptide Extract of Fermented Skim Milk formed by Combination of *Lactobacillus Helveticus* and Flavourzyme[®] reduce Blood Pressure of Spontaneously Hypertensive Rats. Poster presentation at AIFST Food Science summer school RMIT, 28-30 January 2015

Table of contents

Chapter 1 Introduction	1
Chapter 2 Literature review	6
2.1 Background	7
2.2 Milk proteins	9
2.2.1 Milk products	10
2.2.2 Fermentation process, definition of fermented milks and yoghurt	10
2.2.3 Probiotics	12
2.3 Functional food products	15
2.3.1 Health and nutritional benefits of fermented milk products	15
2.3.2 Lactic acid bacteria (LAB)	20
2.4 Lactic acid bacteria and blood pressure	20
2.4.1 Regulation of blood pressure	20
2.4.2 Production of bioactive peptides	22
2.4.3 Dairy products as source of bioactive peptides	27
	30
2.4.4 Physiological role of casein-based bioactive peptides	30
2.4.5 Physiological role of whey protein-based bioactive peptides	32
2.4.6 Bioactive components of milk and their physiological effects	34
2.5 Antihypertensive peptides.	35
2.5.1 Casein derived tri-peptides	37
2.5.2 The mechanisms of peptide activity with antihypertensive properties	43
2.5.3 Angiotensin converting enzyme inhibitory peptides	44
2.6 Sensory evaluation of food products	48
2.6.1 Sensory attributes	48
2 6 2 Hedonic scale	50

2.6.3 The other sensory experiments	52
Chapter 3 Proteolytic and angiotensin converting enzyme inhibitory activi	ties of
elected probiotic bacteria	53
3.1 Introduction	54
3.2 Material and Methods	55
3.2.1 Substrates and chemicals	55
3.2.2 Experimental design, media preparation and fermentation	56
3.2.3 Bacterial Counts	57
3.2.4 Preparation of crude water-soluble peptide extract	58
3.2.5 Determination of proteolytic activity	58
3.2.6 Determination of ACE inhibitor activity	58
3.2.7 RP-HPLC analysis of water-soluble peptides extract	59
3.2.8 Statistical analysis	59
3.3 Results and Discussion	60
3.3.1 Preferential growth of selected LAB strains in RSM media Flavourzyme® compared to WPC	
3.3.2 Proteolytic activity is higher in RSM media supplemented with Flavour	
3.3.3 ACE-inhibition is influenced by strain type, media, fermentation tin Flavourzyme [®]	
3.3.4 RP-HPLC analysis of water-soluble peptides extract suggested that selected strains with Flavourzyme® is most optimal	
3.4 Conclusions	71
Chapter 4 Effect of Flavourzyme® on Angiotensin Converting Enzyme Inhi	bitory
Peptides Formed in Skim Milk and Whey Protein Concentrate of	_
Fermentation by Lactobacillus helveticus	72
4.1 Introduction	73
4.2 Material and Methods	75

4.2.1 Experimental design and bacteria propagation	75
4.2.2 Media preparation	75
4.2.3 Measurement of bacterial growth	76
4.2.4 Determination of proteolytic activity	76
4.2.5 Determination of ACE-Inhibitory activity	76
4.2.6 RP-HPLC analysis of water-soluble peptides extract	76
4.2.7 Statistical analysis	76
4.3 Results and Discussion	77
4.3.1 Preferential growth of <i>L. helveticus</i> in RSM media with Flavou compared to WPC	
4.3.2 Proteolytic activity is higher in RSM media with Flavourzyme®	80
4.3.3 ACE-Inhibitory activity is influenced by strain type, media and Flavou combination	
4.3.4 RP-HPLC analysis of water-soluble peptide extracts	85
4.3.5 Correlation between proteolytic activity, ACE-Inhibition and bacterial	growth
4.4 Conclusions	
Chapter 5 Effects of Kluyveromyces marxianus LAF4, combined with protessing and account of anxiotancing conventing anything anything anything	
strains as a source of angiotensin converting-enzyme peptides	
5.1 Introduction	
5.2 Material and Methods	
5.2.1 Experimental design and culture propagation	94
5.2.2 Media Preparation	95
5.2.3 Measurement of bacterial and yeast growth	95
5.2.4 Determination of proteolytic activity	95
5.2.5 Determination of ACE inhibitor activity	95
5.2.6 Preparation of water-soluble peptides extract	95
5.3 Statistical analysis	95

5.4 Results and Discussion	96
5.4.1 Enumeration of organisms	96
Preferential growth of selected LAB strains in RSM media without of Kluyveromyces marxianus LAF4	
5.4.3 ACE-inhibition activity of fermented skim milk	100
5.4.4 RP-HPLC analysis of water-soluble peptide extracts	104
5.5 Conclusion	107
Chapter 6 Identification and purification of peptides from skim hydrolyses by combination of <i>L. helveticus</i> 8801315 and Flavourzyme	-
6.1 Introduction	109
6.2 Material and Methods	110
6.2.1 Substrates and Chemicals	110
6.2.2 Propagation of cultures and preparation of fermented RSM	110
6.2.2.1 Bioreactor assay of Low fat skim milk to increase the ACE-I	% activity 111
6.2.3 Determination of degree of hydrolysis (DH)	111
6.2.4 Determination of ACE inhibitor activity	112
6.2.5 Micro-fluidic Lab-on-a- chip electrophoresis (Loa C)	112
6.2.6 Isolation and identification of peptides	113
6.2.6.1 Isolation of ACE-inhibitory peptides by RP-HPLC	113
6.2.6.2 Identification of ACE-I peptides	114
6.2.6.2.1 Nano-LC/MS/MS analysis	114
6.2.6.2.2 Matrix Assisted Laser Desorption Ionisation (MA	
6.3 Statistical analyses	115
6.4 Results and Discussion	116
6.4.1 Degree of hydrolysis	116
6.4.2 Loa C electrophoresis	117
6.4.3 Purification and identification of selected peptide fractions	119

6.5 Conclusion	123
Chapter 7 Dietary supplementation with milk-derived angiotensin	_
enzyme peptides decreases food intake, body weight and blood p spontaneously hypertensive rats	
7.1 Introduction	
7.2 Material and Methods	
7.2.1 Substrates and chemicals	
7.2.2 Determination of ACE inhibitor activity	
7.2.3 Animal diets and fermented skim milk preparation	
7.2.4 Energy content measurements by bomb calorimeter	
7.2.5 Animal care and experiments	142
7.2.6 Experimental design spontaneously hypertensive rats (SHR)	142
7.2.7 Measurement of blood pressure	143
7.2.8 Tissue collection	144
7.3 Statistical analyses	145
7.4 Results and Discussion	145
7.4.1 Feed intake, body weight, organ weights and energy contents	145
7.4.2 Antihypertensive effects of dietary peptides in SHR	150
7.4.3 Heart rate	154
7.5 Conclusion	155
Chapter 8 Effects of processing and sensory characteristics of a fermo	ented skim
milk drink as a functional milk product	156
8.1 Introduction	157
8.2 Material and Methods	159
8.2.1 Materials and Chemicals	159
8.2.2 Ethics procedure	159
8.2.3 Bacteria storage, culture conditions and propagation	159
8.2.4 Preparation of Fermented skim milk drink	159

8.2.5 Bioreactor assay of low fat skim milk to increase the ACE-I% activity	160
8.2.6 Measurement of bacterial growth	160
8.2.7 Determination of proteolytic activity	160
8.2.8 Determination of ACE-Inhibitory activity	160
8.2.9 Chemical Measurements	160
8.2.10 Sensory analyses of the fermented skim milk drink	161
8.2.11 Statistical analysis	162
8.3 Results and Discussion	162
8.3.1 Efficiency of mechanical agitation on ACE-I peptides activity, prote	olytic
activities, growth and pH	162
8.3.2 Chemical measurements	166
8.3.3 Sensory analyses	167
8.4 Conclusion	170
Chapter 9 Overall Conclusions and Future Research Directions	171
9.1 Overall Conclusions	172
9.2 Future Research Direction	173
Chapter 10 References	174
Appendixes	

List of Figures

FIGURE 2.1 GLOBAL FUNCTIONAL FOOD MARKET (THOMAS, 2014)
FIGURE 2.2 TARGETS TO INHIBIT THE RENNIN-ANGIOTENSIN SYSTEM: INHIBITING, (HONG
ET AL., 2008)
FIGURE 2.3 OUTLINE OF IDENTIFICATION AND CHARACTERIZATION OF BIOACTIVE
PEPTIDES DERIVED FROM MILK PROTEINS (SCHLIMME & MEISEL, 1995)
FIGURE 2.4 FORMATION OF BIOACTIVE PEPTIDES FROM MILK PROTEINS
FIGURE 2.5 BIOACTIVE PEPTIDES AND THEIR POSSIBLE TARGET SITES IN THE HUMAN BODY,
PEPTIDE SEQUENCES ARE SHOWN IN SINGLE LETTER CODE (EBNER ET AL., 2015) 30
FIGURE 2.6 REGULATION OF BLOOD PRESSURE BY ANGIOTENSIN AND BRADYKININ,
(Nagpal et al., 2011)
FIGURE 2.7 MOLECULAR RECOGNITION OF SUBSTRATES BY TESTIS-SPECIFIC ANGIOTENSIN-
CONVERTING ENZYME (ACE) (A) THE SITES OF CLEAVAGE BY ACE IN THE
SUBSTRATES ANGIOTENSIN I AND BRADYKININ ARE SHOWN. ACE IS A DI-PEPTIDYL
CARBOXY-PEPTIDASE AND CATALYSES THE CLEAVAGE OF THE BOND BETWEEN
Substrate residues that occupy the S1 and S10 sites (Brew, 2003)
FIGURE 2.8 AN EXAMPLE OF NINE POINT HEDONIC SCALE; LIKE EXTREMELY, 9; DISLIKE
EXTREMELY, 1
Figure 3.1 Growth (log 10 cfu ml ⁻¹) and pH of ($\stackrel{\longleftarrow}{}$) L. casei (Lc210), ($\stackrel{\longleftarrow}{}$)
Bifidobacterium animalis ssp 12 (Bb 12), (\Longrightarrow) L . delbrueckii subsp. bulgaricus
(LB11842), (\star) <i>L. acidophilus</i> (La 2410) at 37°C for 12 hours (Error bars
REPRESENT STANDARD ERROR OF THE MEAN) IN RSM (A), RSM WITH
FLAVOURZYME [®] (B), WPC (C) AND WPC WITH FLAVOURZYME [®] (D)
FIGURE 3.2 % ACE-INHIBITORY ACTIVITIES (BARS) AND PROTEOLYTIC ACTIVITY (LINE)
of 12% RSM (A) and 4% WPC (C) fermented by selected LAB.L. casei (
)(Lc210), Bifidobacterium animalis SSP12(==)(BB12), L. Delbrueckii Subsp.
Bulgaricus (\Longrightarrow)(Lb11842), L. acidophilus(\Longrightarrow)(La2410) , Flavourzyme $^{\tiny{(\!@}}$ as
CONTROL AND COMBINATION OF LAB WITH FLAVOURZYME $^{\circledR}$ ($>>>$)(F+) (B AND D)
AT 37°C UP TO 12 H
FIGURE 3.3 RP-HPLC PEPTIDES PROFILE OF WATER SOLUBLE EXTRACTS OBTAINED FROM
FERMENTED SKIM MILK WITH L. CASEL (L.C.2.10). BIFIDORACTERIUM ANIMALIS SSP1.2

(BB12), L. DELBRUECKII SUBSP. BULGARICUS (LB11842), L. ACIDOPHILUS (LA2410)
AT 37°C FOR 12 HOURS, COMBINED WITH FLAVOURZYME® IN WPC (A) COMPARED
TO A COMBINATION WITH FLAVOURZYME $^{\circledR}$ IN RSM (B)
Figure 4.1 Growth (Line) of L . Helveticus strains and PH (Bars) in (A) RSM,
(B) RSM with Flavourzyme $^{\text{@}}$, (C) WPC and (D) WPC with Flavourzyme $^{\text{@}}$
FERMENTED AT 37°C FOR 12 H, (→ ■ 881315), (■ 881188), (→
\blacksquare 880474) and (\longrightarrow 880953). The vertical lines depict standard
DEVIATION AND LINES ABOVE SIGNIFY DIFFERENCES AT (*) P < 0.05 AND (**) P <
0.0180
Figure 4.2 Proteolytic activity (Line) and ACE-I $\%$ (BARS) of L . Helveticus
STRAINS (→ 881315), (→ 881474), (→ 222
880953) and (\mathbb{R} Flavourzyme \mathbb{R}) as control at 37°C for 12 H in (A) RSM,
(B) RSM with Flavourzyme $^{ ext{ iny R}}$, (C) WPC and (D) WPC with Flavourzyme $^{ ext{ iny R}}$.
THE VERTICAL LINES DEPICT STANDARD DEVIATION AND LINES ABOVE SIGNIFY
DIFFERENCES AT (*) $P < 0.05$ AND (**) $P < 0.01$.
FIGURE 4.3 RP-HPLC PEPTIDE PROFILE OF WATER SOLUBLE EXTRACTS OBTAINED FROM
SKIM MILK FERMENTED BY L . HELVETICUS STRAINS $881315(A)$, 881315 WITH
Flavourzyme $^{\text{\tiny (B)}}$ (B), 881188 (C) and 881188 with Flavourzyme $^{\text{\tiny (B)}}$ (D) after 12
H FERMENTATION AT 37 °C
Figure 5.1 The growth (\log_{10} CFU mL^{-1}) (Line) and PH (dotted line)
CHARACTERISTICS. (A) COMBINATION OF KLUYVEROMYCES MARXIANUS WITH EACH
of L. acidophilus (\longrightarrow), L. delbrueckii subsp. bulgaricus (\longrightarrow) or L. Casei
(——), AND KLUYVEROMYCES MARXIANUS (——) AS CONTROL. (B) COMBINATION OF
Kluyveromyces marxianus with L. Helveticus strains Lh 881315(\longrightarrow), Lh
881188(————————————————————————————————
RSM at 37 $^{\circ}$ C for 12 H, (Error bars represent standard deviation of the
MEANS)
Figure 5.2 The growth (\log_{10} CFU mL^{-1}) (line), and PH (dotted line)
CHARACTERISTICS OF (A) L . ACIDOPHILUS (\longrightarrow) L . DELBRUECKII SUBSP.
BULGARICUS (——), OR L. CASEI (——) AND (B) L. HELVETICUS STRAINS LH
881315(→), LH 881188(→), LH 880474(→) AND H 880953(→),
Separately in 12 % RSM at 37°C for 12 h. (Error bars represent standard
DEVIATION OF THE MEANS)99

Figure 5.3 The absorbance of proteolytic activity at 320nm (lines) and ACE-I
% (bars) of 12 % RSM fermented by a combination of (A) $KLUYVEROMYCES$
MARXIANUS ($\blacksquare\blacksquare\blacksquare$) WITH LAB STRAINS; L. ACIDOPHILUS ($\blacksquare\blacksquare\blacksquare\blacksquare$), L.
DELBRUECKII SUBSP. BULGARICUS (ESSE (B) AND
Combination of Kluyveromyces marxianus (*****) with, L. helveticus
STRAINS; LH 881315 (■■●), LH 881188 (■■●), LH 880474 (■■●) AND
LH 880953 (■ → AT 37°C FOR 12 H FERMENTATION. (ERROR BARS REPRESENT
STANDARD DEVIATION OF THE MEANS)
Figure 5.4 The absorbance of proteolytic activity at 320 nm (lines) and ACE-I
% (bars) of 12 % RSM fermented by (A) LAB strains; L. acidophilus (\blacksquare
→), L. Delbrueckii subsp. bulgaricus (), L. Casei () At 37°C
FOR 12 H FERMENTATION. (B) LAB STRAINS; L. HELVETICUS STRAINS; LH 881315 (
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
), at 37°C for 12 h fermentation. (Error bars represent standard
deviation of the means). The water-soluble peptide extract profiling 103
FIGURE 5.5 RP-HPLC PEPTIDE PROFILE OF WATER SOLUBLE EXTRACTS OBTAINED FROM
FERMENTED SKIM MILK WITH COMBINATION OF LAB STRAINS AND KLUYVEROMYCES
Marxianus; (A) untreated RSM as control, (B) fermented skim milk by K .
MARXIANUS ONLY, (C) K. MARXIANUS AND LACTOBACILLUS CASEI, (D) K.
MARXIANUS AND LACTOBACILLUS DELBRUECKII SUBSP. BULGARICUS AND (E) K.
marxianus with Lactobacillus acidophilus during 12 h fermentation at 37°
C
Figure 5.6 RP-HPLC peptides profile of water soluble extracts obtained from
FERMENTED SKIM MILK MADE WITH COMBINATION OF L . HELVETICUS STRAINS AND
KLUYVEROMYCES MARXIANUS; (A) UNTREATED RSM AS CONTROL (B), FERMENTED
SKIM MILK BY K. MARXIANUS YEAST ONLY, (C) K. MARXIANUS YEAST AND, LH
880953, (D) <i>K. Marxianus</i> Yeast and Lh 881315 , (E) <i>K. Marxianus</i> . Yeast and
LH 880474, AND (F) <i>K. MARXIANUS</i> YEAST WITH LH 881188, DURING 12 H
FERMENTATION AT 37°C. 106
Figure 6.1 Degree of hydrolyses (DH %) in Fermented skim milk generated
With a combination of L . Helveticus 881315 Strain and Flavourzyme $^{\circledR}$ (\square),
<i>L. helveticus</i> 881315 alone (Δ), and Flavourzyme [®] alone (\Diamond) at 37°C for 0,
1, 2,4 ,8 and 12 h fermentation. Values are mean \pm SD of three
DETERMINATIONS FOR DH VALUES. ERROR BARS SHOW STANDARD ERROR 117

FIGURE 6.2 LAB-ON-A-CHIP CAPILLARY ELECTROPHORESIS AND ELUTION PROFILES WITH
MOLECULAR WEIGHTS, (A) MIGRATION PATTERN FOR PROTEINS MWS OF THE
LADDER, (B) MIGRATION PATTERN FOR UNTREATED SKIM MILK PROTEINS AS
CONTROL, AND (C) MIGRATION PATTERN FOR FERMENTED SKIM MILK PROTEIN
hydrolyses by combination of L . Helveticus 881315 and Flavourzyme $^{\circledast}$ at
37°C FOR 12 H
FIGURE 6.3 RP-HPLC PURIFICATION OF SIX PEPTIDE FRACTIONS FROM SKIM MILI
FERMENTED BY COMBINATION OF L . HELVETICUS 881315 and Flavourzyme $^{\circledR}$ 121
Figure 6.4 Peptide purified of Mono-isotopic mass of neutral peptide, Mi
(CALC):8854.4902, IONS SCORE :38, EXPECT :0.32 FROM FRACTION 6, (B
MOLECULAR WEIGHT OBTAINED WITH MALDI-TOF-MS .THE FIRST EIGHT AMING
ACIDS OF THE N-TERMINAL WAS IDENTIFIED AS TPVVVPPF. FOLLOWING SEQUENCE
INTERPRETATION AND MOLECULAR WEIGHT DETERMINATION, THE PEPTIDE WAS
IDENTIFIED AS B-CN ($F10$ -42) USING 14 MOST INTENSE PEAKS
FIGURE 6.5 IDENTIFICATION OF MOLECULAR MASS AND AMINO ACID SEQUENCE OF THE
FRACTION A-F1 AND B-F2. MS/MS SPECTRA OF PURIFIED PEPTIDES WERE Q-TOF
MS/MS with an ESI source 120
Figure 7.1 The body weight (A) and Cumulative feed consumption/g (B) of SHF
ORALLY ADMINISTERED WITH CONTROL 1 (NFC), CONTROL 2 (NC) AND FERMENTEI
SKIM MILK CONTAINING PEPTIDES (FC) DURING 10 WEEKS PERIOD FEEDING .ALI
DATA WERE EXPRESSED AS MEAN ±SEM (N-9)
Figure 7.2 Decrease in Systolic (A), diastolic (B), mean arterial blood
PRESSURE (C) AND HEART RATE (D) OF SHR BLOOD PRESSURE LOWERING EFFECT
AFTER ORAL ADMINISTRATION OF FERMENTED SKIM MILK CONTAINING PEPTIDES
(FC), COMPARING WITH SKIM MILK POWDER AS CONTROL 1 (NFC), AND DIETS RATE
Chow as control 2 (NC). Data points are the mean \pm SEM. ** indicate
SIGNIFICANT DIFFERENCES BETWEEN GROUP TREATMENTS ($P < 0.05$). No
SIGNIFICANT DIFFERENCES WERE FOUND IN FIRST 5 WEEKS ADMINISTRATION FOR ALI
THE GROUPS. 154
FIGURE 8.1 COMPARISON WAS BETWEEN BIO-REACTOR FERMENTATION SYSTEM AND THE
TRADITIONAL FERMENTATION (WITHOUT AGITATION) OF 12 % RSM BY
COMBINATION OF L . HELVETICUS 8801315 AND FLAVOURZYME [®] AT 37°C
FIGURE 8.2 EFFECT OF BIO-REACTOR FERMENTATION SYSTEM (LINE) ON PH VALUE AND
Bactria growth of 12 % RSM by combination of L . Helveticus 8801315 ani

FLAVOURZYME® AT 37°C, COMPARED WITH TRADITIONAL FERMENTATION (WITHOUT
AGITATION),(DOTTED LINE)
Figure 8.3 The proteolytic activity of $\it L.$ Helveticus 8801314 combined with
Flavourzyme® at 37°C using Bio-reactor system compared with
TRADITIONAL FERMENTATION WITHOUT AGITATION
FIGURE 8.4 A GRAPHIC REPRESENTATION OF THE MEAN OF SENSORY EVALUATION BY
QUANTITATIVE DESCRIPTIVE ANALYSIS (QDA) OF UNFERMENTED SKIM MILK
(UN.F.SM) AS CONTROL, COMMERCIAL PRODUCT YAKULT AS CONTROL 2 AND
FERMENTED LOW FAT SKIM MILK DRINK CONTAINING 95.5 % PEPTIDES, FSMP (A)
FERMENTED LOW FAT SKIM MILK DRINK CONTAINING PEPTIDES AND 5 $\%$ SUCROSE
FSMPC (B), AND FERMENTED LOW FAT SKIM MILK DRINK CONTAINING PEPTIDES
AND 15 % SUCROSE WITH 5 % FLAVOR, FSMPCF (C)

List of tables

TABLE 2.1 THE GENERA OF BACTERIA AND YEASTS THAT ARE COMMONLY USED AS
PROBIOTICS (PENNER, FEDORAK, & MADSEN, 2005)
TABLE 2.2 TYPES OF FERMENTED MILK PRODUCTS (COMMISSION, 2012; SWEDISH, 2007;
Virginie, Amilien, Hanne, & Vittersø, 2005)
TABLE 2.3 BIOACTIVE PEPTIDES RELEASED FROM MILK PROTEINS BY VARIOUS
MICROORGANISMS AND MICROBIAL ENZYMES
TABLE 2.4 CONCENTRATION AND BIOLOGICAL FUNCTIONS OF MILK PROTEINS
TABLE 2.5 BIOACTIVE PEPTIDES DERIVED FROM WHEY PROTEINS
TABLE 2.6 BIOACTIVE PEPTIDES RELEASED FROM BOVINE MILK PROTEINS
TABLE 2.7 MILK-PROTEIN RELEASED PEPTIDES DISPLAYING HYPERTENSIVE EFFECTS IN
SHR
TABLE 2.8 EXPERIMENTAL STUDIES ON THE EFFECTS OF TRI-PEPTIDES ILE- PRO- PRO AND
VAL- PRO- PRO (VPP) ON BLOOD PRESSURE
Table 3.1 Experimental design and the coding used in the study to analyse
AND MEASURE THE PH, GROWTH, PROTEOLYTIC ACTIVITY AND % OF ACE-
Inhibitory activities during $(0,4,8\mathrm{and}12\mathrm{H})$ fermentation of probiotic
STRAINS IN 12 % RSM OR 4 % WPC AND WITH OR WITHOUT COMBINATION OF
Flavourzyme [®]
TABLE 4.1 EXPERIMENTAL DESIGN TO ANALYSE AND MEASURE THE PH, GROWTH,
PROTEOLYTIC ACTIVITY AND $\%$ OF ACE-INHIBITORY ACTIVITIES DURING $(0,4,8)$ AND
12 н) fermentation of L . Helveticus strains in 12 % RSM or 4 % WPC and
WITH OR WITHOUT COMBINATION OF FLAVOURZYME [®]
TABLE 4.2 PEARSON COEFFICIENT CORRELATIONS (R), PROTEOLYTIC ACTIVITY (OPA),
ACE-INHIBITORY ACTIVITY (ACE) AND BACTERIAL GROWTH (CFU) FOR STRAIN, $\it L$.
Helveticus 881315, L. Helveticus 881188, L. Helveticus 880474 and L.
HELVETICUS 880953 GROWN IN 12 % RSM AT 37°C FOR 12 H WITH OR WITHOUT
Flavourzyme [®] combination
TABLE 4.3 PEARSON COEFFICIENT CORRELATIONS (R), PROTEOLYTIC ACTIVITY (OPA),
ACE-INHIBITORY ACTIVITY (ACE) AND BACTERIAL GROWTH (CFU) OF, L .
HELVETICUS 881315, L. HELVETICUS 881188, L. HELVETICUS 880474 AND L .
HELVETICUS 880953 GROWN IN 4 % WPC AT 37°C FOR 12 H WITH OR WITHOUT
FLAVOURZYME® COMBINATION

TABLE 5.1 THE EXPERIMENTAL DESIGN AND CODES USED IN THE STUDY TO ANALYSE AND
MEASURE THE PH, GROWTH, PROTEOLYTIC ACTIVITY AND % OF ACE-INHIBITORY
ACTIVITIES DURING $(0,4$, 8 and 12 H $)$ fermentation of probiotic strains in 12
% RSM with or without <i>Kluyveromyces marxianus LAF4</i>
Table 6.1 The percentage ACE-inhibitory activity and IC_{50} mg mL $^{-1}$ (means \pm
SE) OF FERMENTED SKIM MILK PEPTIDES FRACTIONS
Table 6.2 Protein families of peptides identified in fraction 1
Table 6.3 Protein families of peptides identified in fraction 6
Table 6.4 Identification of peptides are produced from Fermented 12 % RSM by
Combination of L . Helveticus 8801315 and Flavourzyme $^{\circledR}$ and contained in
THE RP-HPLC FORM FRACTION 6, USING MALDI-MS/MS ANALYSIS 127
Table 6.5 Identification of peptides are produced from Fermented 12 % RSM by
Combination of L . Helveticus 8801315 and Flavourzyme $ eals$ and contained in
THE RP-HPLC FORM FRACTION 1, USING MALDI-MS/MS ANALYSIS
Table 7.1The table shows the type and frequency of experimental design
MEASUREMENT 143
TABLE 7.2 NUTRITIONAL RATS REQUIREMENTS OF PREPARED CONTROLS AND FERMENTED
SKIM MILK CONTAIN PEPTIDES AND SUPPLEMENTED DIETS
TABLE 7.3 NUTRIENT COMPOSITION OF DIET PELLETS PREPARED. 143
Table 7.4 Tissue weights of rats after 10 weeks treatments at 24 weeks of age.
TABLE 7.5 COMPARISON OF FOOD INTAKE, BODY WEIGHT AND TOTAL ENERGY INTAKE OF
DIET GROUPS AT THE END OF EXPERIMENTS
Table 8.1 Nutrition ingredients of the developed low fat fermented skim milk
drink by combination of L . Helveticus 8801315 and Flavourzyme $^{\circledR}$
COMPARED WITH SKIM MILK POWDER, RECONSTITUTED SKIM MILK AND YAKULT AS
COMMERCIAL PRODUCT CONTAINING PROBIOTIC STRAINS. 167

AASI = Ambulatory arterial stiffness index

ACE = angiotensin-I converting enzyme

ANOVA = analysis of variance

APAF=Australian proteome analysis facility

Bb = Bifidobacterium

BSA = bovine serum albumin

BP = blood pressure

CE = Capillary electrophoresis

cfu = colony forming unit

CN = casein

°C = degree Celsius

CEP = cell-envelope protease

CVD = cardiovascular diseases

CID =Collision Induced Dissociation

DBP = Diastolic blood pressure

ECD = electrochemical detector

FAA= Free Amino Acids

FAO = Food and Agricultural Organization of the United Nations

FC = Fermented RSM containing peptides

FID = Flame ionization detector

g = gram

h = hour

HCl = hydrochloric acid

 H_2SO_4 = sulphuric acid

HS = Head space

HDL = high-density lipoprotein

 IC_{50} = half maximal inhibitory concentration

Ig = immunoglobulin

 κ - CN = kappa-casein

kJ = kilojoules

Km= Kluyveromyces marxianus

L = litre

La = Lactobacillus acidophilus

LAB = lactic acid bacteria

Lb = *Lactobacillus delbrueckii* ssp. *bulgaricus*

Lh= *lactobacillus helveticus*

Loa C = lab-on-a-chip

M = Molar

M17 agar = agar for enumeration of *Streptococcus thermophilus*

MAP=Mean arterial blood pressure

min = minute

mL = millilitre

mm = millimetre

mM = millimolar

MRS = de Man Rogosa and Sharpe

mV = millivolts

MW = molecular weight

MPP = micro particulated protein

MRS = de Man Rogosa Sharpe

nA = nano-amps

NC = Normal rat feed chow control

NFC= Non-fermented RSM control

ng = nano-gram

nm = nano-meter

NNLP = nalidixic acid, neomycin sulphate, lithium chloride and paramomycin sulphate

OPA = o-phthaldialdehyde

Pa = Pascal

pH = hydrogen ion concentration

RAS =renin-angiotensin system

RCA = reinforced clostridia agar

RP-HPLC = reversed-phase high performance liquid chromatography

rpm = revolution per minute

RSM = reconstituted skim milk

s = second

SBP = Systolic blood pressure

SHR = spontaneously hypertensive rats

sp. = species

ssp. = subspecies

St = Streptococcus thermophilus

TCA = trichloroacetic acid

TFA = trifluoroacetic acid

TG = triglyceride

UV = ultraviolet

v/v = volume/volume

V = volts

VPR=volume pressure recording sensor

WHO = World Health Organization

WKS = weeks

WPC = whey protein concentrate

w/v = weight/volume

w/w = weight per weight

 α - glu = α -glucosidase

 α -La = alpha-lactalbumin

 β -Lg = beta-lactoglobulin

 $\mu = micro$

 $\mu L = microlitre$

 $\mu g = microgram$

 μ m = micrometre

IITCS=Tail Cuff Blood Pressure Systems

_			Chapter 1
	Chapter 1	Introduction	
			1

Developing and growing agricultural products, food industrialisation, and mechanisation have led to dramatic changes in lifestyle, particularly dietary pattern, which in turn have produced increased occurrence in chronic diseases such as cardiovascular, stroke, diabetes, hypertension and cancer. Indeed, obesity, hypertension and cardiovascular diseases have increased at an alarming rate worldwide in the last two decades, nearly 2.5-fold in Australia compared to the USA (Cameron et al., 2003; Roberfroid, 1999, 2000; World Health Organisation, 2002, 2003). Consequently, in recent years, people seeking healthier lifestyle prefer diets with low or fat free foods; this has led to the development of functional foods (Roberfroid, 1999a; Food and Agriculture Organization of the United Nations, & World Health Organization, 2002; Cameron et al., 2003; World Health Organization, 2003).

Functional foods are defined as foods 'that can beneficially affect one or more target functions in the body, beyond the adequate nutritional effect, in a way relevant to improved state of health and well-being and/or reduce the risk of disease' (Contor, 2001). Milk products, particularly fermented milk containing probiotics are most popular in this category of foods (Stanton et al., 2005). Probiotics are defined as 'live microorganisms which, when consumed in adequate amounts, confer a health benefit on the host' (World Health Organisation, 2002). The benefits of utilising these organisms include maintenance of gut health, reduced allerginicity, increased bio-accessibility of lipids and proteins in foods, and lowering of blood pressure due to polyamines and bioactive peptides (Marteau et al., 1990; Santos, San Mauro, & Diaz, 2006; Tuohy et al., 2003). These bioactive peptides have the ability to reduce the risk of colorectal cancer, stimulate the immune response and reduce the risk of cancer, non-insulin dependent diabetes, obesity, cardiovascular disease and hypertension (Shah, 2007; Tuohy et al., 2003; Williams & Jackson, 2002). However, the health conscious consumer now requires additional health benefits from these products, which have opened new areas for research (Shah, 2007). Among these, peptides with bloodpressure- lowering effects have received considerable significance in being associated with the role of diet in prevention and treatment of disease (López-Fandiño, Otte, & van Camp, 2006). Blood pressure regulation is partially dependent on the renninangiotensin system (Silva & Malcata, 2005), in which the angiotensin-I converting enzyme (ACE) regulates the peripheral blood pressure and its inhibition can exert an anti-hypertensive effect (Gobbetti, Minervini, & Rizzello, 2004). Bioactive peptides are

defined as specific protein fragments that have positive impact on body functions or conditions and may ultimately influence health (Kitts & Weiler, 2003). Upon oral administration, bioactive peptides may affect the major body systems, namely, the cardiovascular, digestive, immune and nervous systems, depending on their amino acid sequence (Erdmann, Cheung, & Schröder, 2008; FitzGerald et al., 2011; Yamamoto et al., 2010). These peptides are released through enzymatic breakdown of dairy proteins by digestive enzymes in the gastrointestinal tract (GIT) or extracellular proteinases formed by lactobacilli during their growth in milk (Seppo et al., 2003; van der Burg-Koorevaar & Schalk, 2010). The tri-peptides, Valyl-Prolyl-Proline (Val-Pro-Pro), and Isoleucyl-Prolyl-Proline (Ile-Pro- Pro) have been identified as antihypertensive agents, which inhibit the action of ACE (van der Burg-Koorevaar & Schalk, 2010). Most of the probiotic microorganisms are sensitive to food acidity and oxygen availability. Shortshelf-life fermented dairy products like yoghurt, are the most common functional foods on the market (Hekmat, Soltani, & Reid, 2009; Ozer et al., 2007; Stanton et al., 2003). During the fermentation process, probiotics produce a range of secondary metabolites, some of which have been associated with health promoting properties of which the notable ones are the B vitamins and bioactive peptides. The physiologically active peptides are produced from many food proteins during gastro-intestinal digestion and fermentation of food by lactic acid bacteria (LAB). The production of ACE-I peptides in situ in dairy products is the most appealing approach of generating these peptides. One of the most effective way to raise the number of these peptides is to ferment or coferment with highly proteolytic strains of LAB (Gobbetti et al., 2004), the challenge to this approach, however, lies in the selection of the appropriate strains or a combination of strains (Gobbetti et al., 2004; Meisel, 1998). ACE-inhibitory peptides produced in fermented milks using strains of proteolytic LAB (Nakamura et al., 1995a, 1995b; Seppo et al., 2002, 2003; Donkor et al., 2007) as well as the proteolytic system of LAB, have been well studied (Savijoki, Ingmer, & Varmanen, 2006; Van Beresteijn & Alting, 2002; Yamamoto, Akino, & Takano, 1994). Most of the ACE-inhibitory peptides have been created from α_{s1} -, α_{s2} and β - casein and β -lactoglobulin fractions of dairy products and only a few among the large number of peptides have been identified as antihypertensive under in vitro conditions and have proven to be clinically effective in animal and human studies (Korhonen and Pihlanto, 2006).

Therefore, controlled animal studies are needed to demonstrate the long-term physiological effects delivered by consuming such peptides. However, the market for probiotic-containing products shows a substantial increase in popularity recently, while scientific approaches to establishing the functional benefits of probiotic foods is still a challenge. Evidence from *in vitro* studies suggests beneficial effects; however, considerable progress has not yet been made in both effects on host health and mechanisms of action and whether viable microorganisms are necessary for health benefits, which require further clarification. Incorporation into other food commodities such as milk whey protein or yoghurt is promising and should be investigated (Hernández-Ledesma et al., 2014; Rijkers et al., 2011).

In the aforementioned study, low-fat fermented skim milk drink was formulated using a strain of Lh combined with Flavourzyme[®] and the influence of these on the physicochemical and physiological properties were studied. Selection of probiotics and suitable media (RSM or WPC) were based on growth, proteolytic and ACE-I activity, along with the best combination with Flavourzyme[®]. β -casein, lacto globulin fractions of RSM or WPC are only a few among the large numbers of peptides identified as antihypertensive, which have proven to be clinically effective in animal and human studies (Korhonen and Pihlanto, 2006).

The specific aims of this project were:

- 1. To select suitable strains of *Lactobacillus casei* (Lc210), *Bifidobacterium animalis ssp12* (Bb12), *Lactobacillus delbrueckii subsp. bulgaricus* (Lb11842), *Lactobacillus acidophilus* (La2410), Lh strains, ASCC (881315, 881188, 880474 and 880953), *Kluyveromyces marxianus* (LAF4), and Flavourzyme[®] based on their proteolytic and ACE-inhibitory activities;
- 2. To select suitable media (RSM or WPC) based on bacterial growth;
- **3**. To evaluate the extent of proteolysis and release of bioactive peptides by a combination of selected probiotic organisms during fermented low-fat skim milk drink production;
- **4**. To identify and purify potential ACE-I peptides produced by the selected organisms during fermentation;
- **5**. To develop a dairy product containing ACE-I peptides (with the best combination of probiotic bacteria and proteases), and perform organoleptic/sensory evaluation of fermented dairy drink;

6. To study the *in-vivo* antihypertensive effect of low-fat fermented skim milk drink on spontaneous hypertensive rats (SHR).

A review of the relevant literature forms Chapter 2. Chapter 3 focuses on the effects of media and probiotic strains in combination with or without Flavourzyme® on the production of bioactive peptides with ACE-I activity. The viability of (Lc210), (Bb12), (Lb11842), (La2410) and their proteolytic and ACE-I activities were assessed in RSM or WPC for different fermentation times (0, 4, 8 and 12 h) at 37°C. Chapter 4 examines ACE-I activity of peptides hydrolysed by Lh (881315, 881188, 880474 and 880953). Fermentations were terminated at different times (4, 8, and 12 h) at 37°C in RSM or WPC, and viability, proteolytic activity, bioactive peptides, and ACE-I activity were investigated. Chapter 5, on the other hand, investigates the influence of using *Kluyveromyces marxianus* LAF4 combined with probiotic strains to produce peptides with ACE-I properties. In Chapter 6 however, further investigation to produce bioactive peptides with ACE-I activity was carried out using a different enzyme namely, Flavourzyme®, in combination with Lh strains. The ACE-I activity of peptide fractions from fermented skim milk were also assessed. The *in vivo* testing of fermented skim milk containing peptides on SHR rats is discussed in Chapter 7.

Chapter 8 evaluates sensory characteristics of set-type fermented skim milk drink containing peptides with 95 % ACE-I activity. The overall conclusions and future directions of this project are summarised in Chapter 9, and finally, all relevant references are compiled in Chapter 10.

	Chapter 2
Chapter 2 Literature review	
- · · I	
	6

2.1 Background

Nutrition concepts today are moving away from prevention to the promotion of health and wellness, in keeping with consumer awareness of the link between diet and health. This trend has now created a demand for functional foods, or 'foods that contain some health-promoting component(s) beyond traditional nutrients' (Shah, 2001). The market for functional foods is large in the US, it was valued at US\$21 billion (B) in 2006, with a 5 % annual growth forecast till 2011 (Parker, 2007) and increased to 25 % in 2014 (Leatherhead Food Research in 2014). According to the report by Leatherhead Food Research in 2014 (Figure 2.1), the global market for functional foods was worth an estimated united states dollar (USD)\$ 43.27 B (Thomas, 2014). This represents an increase in value terms of 26.7 % compared with 2009 (Thomas, 2014). The market suffered during the global economic downturn, owing to consumers switching to cheaper groceries, whilst changes in regulations are also thought to have hindered growth (Thomas, 2014). In the European Union (EU) more pressure is being placed upon manufacturers of functional foods to provide robust scientific evidence backing up the health claims made by their products (Thomas, 2014). Other significant sectors in health promotion include digestive health and heart health-foods, worth USD \$16 B and USD \$13.75 B respectively in 2013 (Thomas, 2014). Leatherhead Food Research 2014 commented: 'The functional foods market has experienced fairly strong growth in certain parts of the world' (Thomas, 2014). For instance, more US consumers appear to be turning towards functional foods and drinks in order to address perceived nutritional shortfalls, away from dietary supplements. However, future growth is likely to be dependent upon the global economic situation (Thomas, 2014).

Foods can be modified to become 'functional' by enzymatic hydrolysis during gastrointestinal. This effectively releases bioactive peptides (specific protein fragments) from an inactive state in the protein molecule (Kitts & Weiler, 2003). The role of bioactive peptides in promoting wellness is acknowledged and attention is focused on its sources from milk proteins (FitzGerald & Meisel, 2003). Milk-derived bioactive peptides are regarded as highly prominent ingredients for health-promoting functional foods due to their physiological and physiochemical versatility (FitzGerald & Meisel, 2003). Depending on the amino acid sequence, these bioactive peptides may initiate a

number of different activities *in vivo*, e.g. antithrombotic and antihypertensive, immunomodulatory, antimicrobial and anti-oxidative (FitzGerald & Meisel, 2003).

To attain antihypertensive function *in vivo*, the ACE-I peptides have to be absorbed from the intestine in an active form, and reach the targeted organ. One of the challenges in oral ingestion is the stability of the ACE-I peptides (Fitgerald & Meisel, 2003). For these peptides to be effective, they need to pass from the intestine to the serum where they may be susceptible to brush border and intracellular peptidase activities, as well as be resistant to degradation by serum peptidases (Fitgerald & Meisel, 2003). In other words, they need to survive the degradation by gastrointestinal proteinases and peptidases, before being absorbed into the system (Fitgerald & Meisel, 2003).

Studies have shown that small peptides, such as di- and tri-peptides, are easily absorbed in the intestine (Hara et al., 1984). Most of the documented ACE-I peptides are short peptides with a proline residue at the carboxyl terminal end. Proline containing peptides are known to be resistant to degradation by digestive enzymes (Maxime, Marcotte, & Arcand, 2006). The literature reviewed thus indicates that further studies are required to better understand the blood-pressure-reducing mechanisms of milk peptides. Controlled animal studies are needed to demonstrate the long-term physiological effects delivered by consuming such peptides.

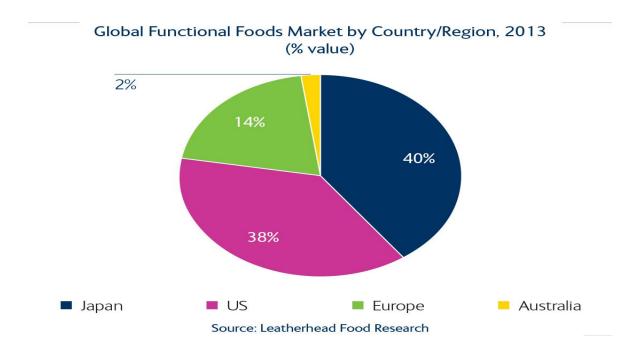


Figure 2.1 Global functional food market (Thomas, 2014).

2.2 Milk proteins

Milk is mainly an aqueous solution of lactose, inorganic and organic salts, and dispersed colloidal particles of milk proteins and larger emulsified lipid globules. Proteins and peptides, for example, metal-binding proteins, immunoglobulins, growth factors, enzymes, antibacterial agents and oligosaccharides present in milk, deliver important physiological and protective functions (FitzGerald & Meisel, 2003; Singh & Thompson, 2014). Dairy products play an important role in human nutrition. The average composition of main components of bovine milk is: 87.1 % water, 4.6 % lactose, 3.3 % milk proteins and 4 % milk fat (Walstra et al., 2005). Milk proteins are generally classified into two types namely caseins and whey proteins based on their solubility at pH 4.6 (Fox, 2003; Huppertz et al., 2006). Caseins are insoluble and consequently coagulated, with whey proteins (WPs) remaining soluble. Out of the total milk protein content, which is about 31 g/L, caseins present about 80 % and the remaining 20 % are the whey proteins.

There are four types of caseins (α s1-, α s2-, β - and κ - casein) present in milk as large colloidal complexes or micelles composed of thousands of molecules with molecular mass ~108 Da. On the other hand, WPs most probably exist as monomers or as small quaternary structures. In comparison to caseins, which are extremely heat-stable and not coagulated when heated at 100°C for 24 h or at 140°C for up to 20 – 25 min (FitzGerald & Meisel, 2003), WPs are very heat sensitive. However, caseins are phosphorylated and the degree of phosphorylation varies among the individual caseins imparting to them molecular charges and thereby hydration, solubility, heat stability and metal binding, especially in this instance, Ca ions. As a result, high levels of calcium phosphate are available in milk in a soluble form. Additionally, under natural conditions and in a stable colloidal suspension of surrounding water-based liquid, the casein micelles are not aggregating as a result of an inter-micellar steric and electrostatic repulsion provided by the protruding polyelectrolyte region of κ -casein from the micellar surface. While whey proteins are not phosphorylated, they are richer in sulphur content (1.7 %) compared to caseins with ~ 0.8 % sulphur (FitzGerald & Meisel, 2003).

WPs are predominantly a mixture of β -lactoglobulin (β -Lg), α - lactalbumin (α -La), bovine serum albumin (BSA), immunoglobulins (Ig), protease peptones and other minor

proteins including lacto peroxidase, lysosome and lacto ferrin (Fitzsimons, Mulvihill, & Morris, 2007; Verheul & Roefs, 1998). There are different types of WP powders available on the market as concentrates, isolates and hydrolysates. The annual worldwide production of WP products is about 600,000 metric tons (Damodaran, Parkin, & Fennema, 2008). Whey protein concentration (WPC) contains up to $\sim 85 \%$ proteins, low levels of fat and cholesterol and typically a higher amount of bioactive compounds and lactose. However, the fat and lactose content present in WPC may exert detrimental effects on some functional properties and the overall protein quality. In comparison, whey protein isolate (WPI) contains more than 90 % of proteins with lower levels of fat, lactose and bioactive compounds (Morr & Ha, 1993). Therefore, they are relatively high quality protein powders with enhanced functionality (Morr & Ha, 1993). Whey protein hydrolysates are partially hydrolysed, pre-digested products enabling easy absorbance in the gut (FitzGerald & Meisel, 2003; Huppertz et al., 2005). The production of bioactive peptides in fermented milk has been widely studied, and the effectiveness of bioactive peptide depends on its amino acid sequence (FitzGerald & Murray, 2006; Pihlanto, Virtanen & Korhonen, 2010; Amigo & Recio, 2012; Chaves-López et al., 2012 and 2014; López-Expósito et al., 2013; Hernández-Ledesma et al., 2014; Singh & Thompson, 2014).

2.2.1 Milk products

There has been an increase in production of milk-based products, such as skim milk powder, yoghurt, fermented milk products and fermented WP products in the world (Hansen, 2002; Khan et al., 2013). Fermented milk products have been part of the diet in many countries such as Europe and the Middle East (Hansen, 2002; Khan et al., 2013), made by milk fermentation using yoghurt culture and/or Lactic acid bacteria (LAB). In yoghurt, lactose is converted into lactic acid by LAB, which gives a pleasant acidic flavour and the sweetness caused by the reduction of lactose (McKinley, 2005; Shah, 2007; Aslim et al., 2006).

2.2.2 Fermentation process, definition of fermented milks and yoghurt

The fermentation industry today is very much in a state of flux, with rapid changes in product spectrum, location and scale of processes occurring (McNeil & Harvey, 2008). This has been brought about by macroeconomic forces compelling the relocation of

large scale bioprocesses outside high labour cost regions, and the significant advances in the construction of advanced fermentation expression systems for making novel proteins and antibodies (McNeil & Harvey, 2008). Thus, fermentation skills and knowledge are now essential to driving forward systematic research into drug interactions, function of membrane proteins in health and disease, and are powering an unparalleled expansion in capability to combat serious diseases in the human population, including degenerative illnesses and cancers.

The new dairy fermentation-derived medicines, including biopharmaceuticals, hold out the prospect of improved specificity of treatment and decreased side effects (McNeil & Harvey, 2008). It is truly a revolutionary period in clinical medicine as these new agents manufactured by fermentation routes enter the market (McNeil & Harvey, 2008). The new fermentation dairy products and therapeutic proteins are more complex and costly than previous products, but in essence, the need to focus upon the fermentation step is now clearer than ever. Basically, 'quality' of these products (the potency, efficacy, stability and immunogenicity) is determined by the upstream or fermentation stage. One of the fermentation processes is bioreactor. This process, in some form or another, has been in use for thousands of years, although up until the 1900s its use was limited to the production of potable alcohol (McNeil & Harvey, 2008). Since the 1940s onwards, that fermentation as it is known today, began to appear with the need to produce antibiotics during World War 2 (McNeil & Harvey, 2008). At this point, the need for process development to improve yields drove research. As it would not be practical to carry out this research on production scale equipment, small-scale bioreactors have become word (McNeil & Harvey, 2008). Bioreactors at this volume can be used for a number of purposes: monitoring and controlling pH by acid/base addition or CO₂/base addition, temperature regulation, sterile sampling capability and mixing such that the culture remains in suspension. All this should be achieved without damage to the organisms. Recently, the bioreactor processes have been developed for dairy fermentation products such as yoghurt (McNeil & Harvey, 2008).

Yoghurt is a coagulated milk product obtained by specific LAB fermentation, through the action of *Lactobacillus delbrueckii* ssp. *bulgaricus* and *Streptococcus thermophilus* as starter cultures in cow's milk. The microorganisms in the final product must be viable and abundant. On the other hand, yoghurt containing *Bifidobacterium* ssp. or

Lactobacillus acidophilus would be classified as 'fermented milk' (McKinley, 2005; Shah, 2007).

In some countries like the UK, Canada and the USA, the addition of other LAB to starter culture used to make yogurt is acceptable (Gilliland, 1991). All fermented milk products have something in common: they are all milk based, with an acidic pH resulting from the fermentation, contain a significant number of selected microorganisms that help preserve the milk and reduce the risk factors for diseases (Lahtinen et al., 2011). Fermentation processes lead to changes in the structure of milk proteins, resulting in the production of some amino acids and peptides from milk proteins (Gaudichon et al., 1994). One of the important processes prior to milk fermentation is heat treatment.

There are several benefits of using such a high level of heat treatment (pasteurisation), including:

- 1. Destruction of all pathogenic and most spoilage bacteria,
- 2. Inactivation of most enzymes, which may cause undesirable effects to the finished product,
- **3**. Expulsion of toxic compounds and a decrease in the oxidation-reduction potential of the medium suitable for the growth of starter cultures by removal of oxygen,
- **4**. Conversion of calcium into a soluble form leading to a decrease in time for milk coagulation.

2.2.3 Probiotics

The scientific understanding in the field of probiotic bacteria and the processes of bacterial fermentation are improving. The genera of bacteria and yeasts that are commonly used as probiotics are listed in (Table 2.1) (Amrane & Prigent, 1998b; Ramesh & Chandan, 2013). Many different types of fermented milk belong to or originate from a large diversity of microorganisms. The classification of probiotics includes different kinds of microorganisms (Lahtinen et al., 2011) listed below:

Some Yeast: Saccharomyces kefir is part of the core of kefir, commonly fermented milk consumed in Eastern Europe. Some of Kluyveromyces (Kluyveromyces marxianus) is a species of yeast in the genus Kluyveromyces marxianus (K. marxianus) used

commercially to produce the lactase enzyme similar to that used by other fungi such as those in the genus (Aspergillus) in a Sudanese traditional fermented milk product (Rob). Rob is made from fermentation of cow, sheep and goat's milk. The bulk is made from cow's milk while a smaller proportion is prepared from either goat's or sheep's milk or a mixture of these two milks (Abdelgadir et al., 1998). Milk surplus is collected in a container, inoculated with a starter from the previous day and left to ferment overnight. The fermentation process usually starts in the evening when the animals return from grazing and the sour product is churned in the morning when the herd leaves for grazing. Freshly produced Rob has a pleasant taste with a pH of about 4.5. Other applications of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus are as starter cultures for sourdough bread making (Plessas et al., 2008). The use of mixed cultures led to higher total titratable acidities and lactic acid concentrations compared to traditionally made breads. Highest acidity (3.41 g lactic acid/kg of bread) and highest resistance to mould spoilage were observed when bread was made using 50% sourdough containing 1% K. marxianus and 4% L. delbrueckii ssp. bulgaricus (Plessas et al., 2008). The use of these cultures also improved the aroma of sourdough breads, as shown by sensory evaluations and as revealed by GC-MS analysis (Plessas et al., 2008).

➤ Specific strain of *Saccharomyces cerevisiae* (*S. cerevisiae*) is involved in basically three groups of indigenous fermented products: non-alcoholic starchy foods, alcoholic beverages and fermented milk. These products are, to a great extent, made by spontaneous fermentation and consequently *S. cerevisiae* often coexists with other microorganisms, even though a microbiological succession usually takes place both between and within species. The function of *S. cerevisiae* is related to formation of alcohols and other aroma compounds, but stimulation of e.g. LAB, improvement of nutritional value, probiotic effects, and inhibition of undesired microorganisms and production of tissue-degrading enzymes may also be observed (Jespersen, 2003).

Molds such as *Aspergillus* are proteases used in some cheese processes. Among proteases, aspartate proteases find application in industry for cheese making, as digestive aids, beer clarifiers, food protein modifiers, and de-bittering protein hydrolysate preparations (Rao et al., 1998). The cheese industry has a great demand for acid proteases (aspartate proteases). Aspartate proteases assist in clotting milk apart from playing a key role in flavor and texture development (Vioque et al. 2000).

Each genus is divided into numerous species. *Lactobacillus* is classified into 120 different species from *acetotolerans* to *zymae*, through more commonly encountered species like *acidophilus*, *casei*, *delbrueckii*, *helveticus*, *plantarum*, *reuteri*, and *rhamnosus*. A species can be again separated into sub species e.g., (*lactobacillus delbrueckii ssp. bulgaricus*).

Probiotics are a diverse community and can grow in different conditions. The optimal growth temperature (10°C; 2-30°C) for psychotropic cultures, medium temperature (25°C; 5-60°C) for mesophiles culture used mainly for cheese, and high temperature (40°C; 30-65°C) for thermophilic cultures, commonly used for fermented milks (Lahtinen et al., 2011).

During the fermentation process, LAB produces lactic acid and lowers the pH. The acidity is a self-limiting system that controls fermentation, as LAB is sensitive to high acidic pH. Therefore, the kinetics of exposure to acid may change the internal metabolism, and a longer exposure to acidic conditions will decrease the internal buffering capacity of LAB (Lahtinen et al., 2011).

Different cultures are used for different fermented milks, and different countries exhibit diversity by producing different milk varieties. For example, Kumis is made from mare's milk and some specific kefir grains in Russia. Dahi, a sweet yoghurt in India, is made from buffalo milk and is sometimes fermented in bamboo tubes with a mixture of LAB. In India, Lassi is made from milk blended with sugar, allowing some non-lactose-dependent bacteria to grow (Lahtinen et al., 2011).

Table 2.1 The genera of bacteria and yeasts that are commonly used as probiotics

Bifidobacterium	Lactobacillus	Fungi	Others
B. infantis	L. salivarius	Saccharomyces	
B. bifidum	L. johnsonii	boulardii	Propionibacteriu
B. acolescentis	L. helveticus	Saccharomyces	freudenreichii
B. thermophilum	L. farciminis	cerevisiae	Enterococcus
B. animalis	L. acidophilus		faecium
B. longum	L. rhamnosus		Lactococcus
B. breve	(GG)		lactis
B. lactis	L. gasseri		Bacillus cereus
	L. casei		Bacillus clausii
	L. paracasei		Bacillus
			oligonitrophilis
			Clostridium
			butyricum

(Penner, Fedorak, & Madsen, 2005)

2.3 Functional food products

2.3.1 Health and nutritional benefits of fermented milk products

Fermented milk products are known as cultured milk products that have been fermented with LAB such as *Lactobacillus* and *Streptococcus lactis*. Fermentation of milk increases the shelf-life of the product, in addition to improving the taste and digestibility. A variety of different strains of *Lactobacilli* have been used for a wide range of cultured dairy products with different flavours (Table 2.2). The efficacy of some probiotics against diarrhoea has been reported (Sampo & Lahtinen, 2011), and modern science is exploring different physiological targets of probiotics and follows on with the comparison with vitamins. There are various strains with different benefits involving different mechanisms that modulate multiple functions or pathways (Lahtinen et al., 2011). Studies reported for LAB strains in fermented milk products were responsible for health benefits for consumers (Shah, 2007; López-Expósito, Amigo, & Recio, 2012; Hernández-Ledesma et al., 2014). Health benefits of regular consumption

of milk products containing probiotics have been reported and they include: the development of intestinal microbial balance, improving symptoms of lactose intolerance, reduction of risk of colon cancer, protection against breast cancer, strengthening the immune system, lowering blood pressure and blood cholesterol levels, reduction in some forms of food allergies, and inhibiting the growth of pathogenic bacteria (Kawase et al., 2000; Alhaj et al., 2007; Fitzgerald et al., 2011; Marinik et al., 2013; Guo et al., 2015).

 Table 2.2 Types of fermented milk products.

Dairy	Commercial	Milk fat	Typical shelf	Fermentation bacteria	Description
Products	names	concentration	life at 4°C	types	
Yogurt	yoghurt	0.5–4%	35–40 days	Lactobacillus	Thermophilic fermented milk
				bulgaricus and	cultured with Lactobacillus
				Streptococcus	bulgaricus and Streptococcus
				thermophilus	thermophilus. Lactose-intolerant
					individuals may tolerate yoghurt
					better than other dairy products
					due to the conversion of lactose to
					the sugars glucose and galactose,
					and due to the fermentation of
					lactose to lactic acid carried out by
					the bacteria present in the yoghurt.
Kumis	kumiss,	4%	10–14 days	Lactobacilli and yeasts	A carbonated fermented milk
	koumiss,				beverage traditionally made from
	kymy				horse milk.
	kymys,chigee				
Kefir	kephir,	0-4%	10–14 days	Kefir grains, a mixture	A fermented beverage, originally
	kewra, talai,			of bacteria and yeasts	from the Caucasus region, made
	mudu kekiya,				with kefir grains; can be made

	milkkefir,				with any sugary liquid, such as
	búlgaros				milk from mammals, soy milk, or
					fruit juices.
Acidophilus	acidophilus	0.5-2 %	2 weeks	Lactobacillus	Thermophilic fermented milk,
milk	cultured milk			acidophilus	often low fat (2 %, 1.5 %) or non-
					fat (0.5 %), cultured with
					Lactobacillus acidophilus
Cheese	Cheese	1-75 %	varies	a variety of bacteria	Any number of solid fermented
				and/or mold	milk products.
Crème	creme fraiche	30-40 %	10 days	naturally occurring	Mesophilic fermented cream,
				lactic acid bacteria in	originally from France; higher-fat
fraîche				cream	variant of sour cream
Cultured		1–2 %	10 days	Lactococcus lactis(L.	Mesophilic fermented pasteurized
buttermilk				lactis),	milk
				L. lactis subsp. cremoris,	
				L. lactis subsp. lactis	
				biovar diacetylactis and	
				Leuconostoc	
				mesenteroides subsp.	
				cremoris	
Cultured	sour cream	14-18 %	4 weeks	L. lactis subsp. lactis	Mesophilic fermented pasteurized
sour cream					cream with an acidity of at least

					0.5 %. Rennet extract may be
					added to make a thicker product.
					Lower fat variant of crème fraîche
Filmjölk	fil	0.1-4.5 %	10-14 days	L. lactis. and	Mesophilic fermented milk,
				Leuconostoc	originally from Scandinavia
Viili	filbunke	0.1-3.5 %	14 days	L. lactis subsp.	Mesophilic fermented milk that
				cremoris,	may or may not contain fungus on
				L. lactis subsp. lactis	the surface; originally from
				biovar diacetylactis,	Sweden; a Finnish specialty
				Leuconostoc	
				mesenteroides subsp.	
				cremoris and	
				Geotrichum candidum	

(Commission, 2012; Swedish, 2007; Virginie, Amilien, Hanne, & Vittersø, 2005)

2.3.2 Lactic acid bacteria (LAB)

Milk is a favourable media for bacterial growth (Martín et al., 2003; Galat et al., 2015; Li & Shah, 2015). This explains why raw milk is difficult to store, since the environment is rich in microbes that can contaminate milk and cause it to spoil (Lahtinen et al., 2011). Amongst those bacteria, some are detrimental to human health, called pathogens, or if humans became adapted to them, they are called cultures. Among these cultures, the LAB constitutes a group of gram-positive bacteria united by certain morphological, metabolic, and physiological characteristics (Lahtinen et al., 2011). LAB were used to refer to milk souring organisms which form the basis of the present classification of LAB (Lahtinen et al., 2011). LAB have traditionally been associated with food and animal feed fermentations, are generally considered beneficial microorganisms and some strains are considered as health-promoting (probiotic) bacteria (Lahtinen et al., 2011). LAB can use lactose as a source of energy and tolerate oxygen to survive transfers from pots to tanks (Lahtinen et al., 2011).

2.4 Lactic acid bacteria and blood pressure

2.4.1 Regulation of blood pressure

Increased blood pressure is one of the leading risk factors for cardiovascular disease. Hypertension is related to increased systolic blood pressure (SBP) and diastolic blood pressure (DBP): Up to 30 % of the world's adult population were hypertensive in 2000 (Kearney et al., 2005). Hypertension usually exists with other risk factors, including hypercholesterolemia, metabolic syndrome, and insulin resistance. Altogether, these conditions increase cardiovascular morbidity and mortality. Hypertension is an important public health challenge (Lahtinen et al., 2011). Long-term regulation of blood pressure is closely related to kidney function and body fluid volume homeostasis, while the short-term control of blood pressure has been attributed to the sympathetic nervous system (Wyss, 2001).

One of the key systems related to kidneys and body fluid volume is the reninangiotensin system (RAS). The RAS consists of a cascade of enzymes and receptors, beginning from renin secreted by kidney juxtaglomerular cells and leading ultimately to the formation of angiotensin-II (Ang-II) and its binding to angiotensin-II type I receptors (AT1) (Figure 2.2) (Hong et al., 2008; Lemarié & Schiffrin, 2010). This leads

to arteriolar constriction, increase of blood pressure, salt and water retention via increased production of aldosterone (Lemarié & Schiffrin, 2010). The important aspects of the RAS in cardiovascular disease have been demonstrated by the clinical benefits of angiotensin-converting enzyme (ACE) inhibitors and AT1 receptor blockers (Pripp & Ardö, 2007; Lemarié & Schiffrin, 2010). In molecular modelling, components of the RAS (especially ACE-I) have been used as potential targets of food derived antihypertensive compounds (Pripp & Ardö, 2007; Pripp et al., 2004). Blood vessels contribute to blood pressure regulation by controlling vascular resistance. Due to aging and increased blood pressure, arteries stiffen and gradually lose their ability to adjust to blood pressure changes (Ghiadoni et al., 2009). Although functional food products produced with LAB should not be considered as medications, they may be suitable for people with high blood pressure before pharmacological therapy is required and thereafter combined with medications.

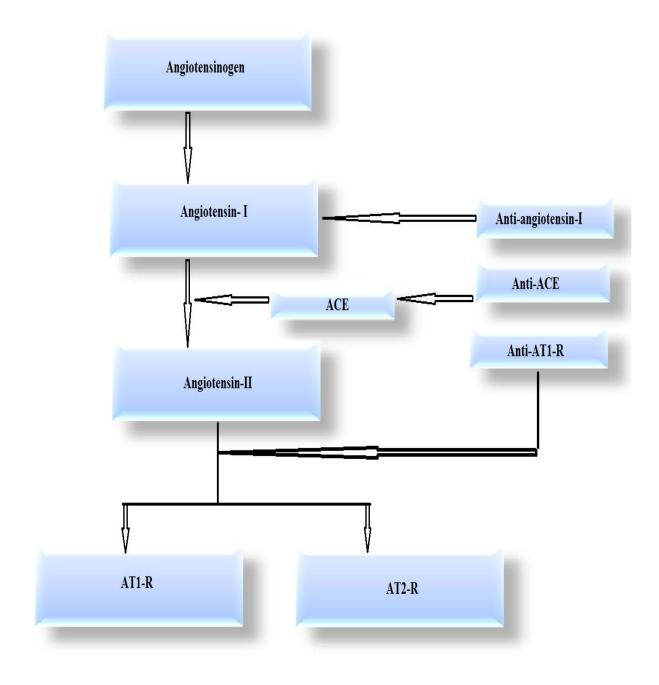
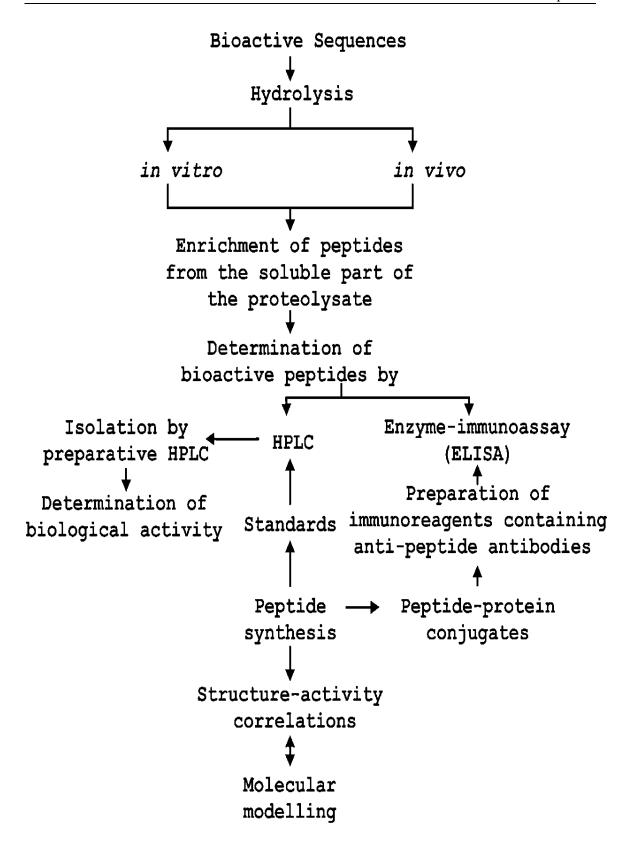


Figure 2.2 Targets to inhibit the renin-angiotensin system: (Hong et al., 2008)

2.4.2 Production of bioactive peptides


Peptides may be liberated from their parent proteins by enzymatic hydrolysis during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or hydrolysis by enzymes (Phelan et al., 2009). There are a number of methods, by which bioactive peptides with biological activity can be produced (Phelan et al., 2009). The

most common methods are heat, alkali, or acidic conditions that hydrolyse proteins, enzymatic hydrolysis of milk proteins and microbial activity of fermented milk products (Maruyama & Suzuki, 1982). Biologically active peptides are released by limited hydrolyses of well-known proteins. The most common method to produce bioactive peptides is through enzymatic digestion. For example, ACE-inhibitory peptides are most commonly produced by trypsin (Maruyama & Suzuki, 1982). However, other enzymes and various enzyme combinations of proteinases including alkalase, pepsin, pancreatin and enzymes from bacterial and fungal sources, have been used to produce bioactive peptides. Microbial enzymes have also been successfully used to produce ACEinhibitory peptides from milk protein (Maeno et al., 1996). After hydrolysis of milk proteins, the peptides in hydrolysates are fractionated and enriched by means of various methods. Chemical measurements and analytical techniques are the critical components of the molecular understanding of the biological process where many bioactive peptides are involved. There are some methods, which have already been proven to be applicable for the identification and characterization of bioactive peptides derived from milk proteins. These methods are outlined in (Figure 2.3) (Schlimme & Meisel, 1995; Christensen et al., 1999).

LAB as *lactobacillus helveticus* is traditionally used in milk processing to produce cheese (Lahtinen et al., 2011). The release of amino acids by action of peptidases is an essential part of the LAB proteolytic system (Pederson et al., 1999). Tri-peptides, isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro) have been generated from sour milk fermented with *L. helveticus CP790* and *Saccharomyces cerevisiae* (Nakamura et al., 1995). Several studies have reported that more than ten peptides have been defined as part of *L. helveticus* proteolytic system; (PepE, PepO, PepT, PepX, PepI, PepQ, PepR, PepD, PepV, PepC, PepN) (Christensen et al., 1999, Savijoki and Palva, 2000; Kenny et al., 2003; Stressler et al., 2013). Another study identified seven oligo endo peptidases and eight di- and tri–peptidases in *L. helveticus* strain CNRZ32 (Broadbent et al., 2011). The endo-peptidase PepO2 plays an important role to decrease the bitterness in cheese (Fernandez et al., 1994; Shao et al., 1997; Christensen et al., 2003; Chen et al., 2003; Kilpi et al., 2007). PepO2 specifically targets bonds containing amino acid proline (Dudley et al., 1996). A study on six amino peptidase activities in fermented milk using LAB described the mechanism of

regulation as dependant on a specific strain (Jensen and Ardö, 2010). *L. helveticus* peptidases also have higher proteolytic activity (Valence et al., 1998; Valence et al., 2000). It has been suggested that enzymes play an important role in hydrolysis of milk protein through the process of milk fermentation (Ueno et al., 2004). The whey fraction of yoghurt fermented with *L. helveticus* CPN4 has been found to contain dipeptide Tyr-Pro, which has shown significant antihypertensive effect in spontaneously hypertensive rats (SHR) (Yamamoto, Maeno, & Takano, 1999). Furthermore, proteolytic enzyme of LAB such as cell wall associated with serine protease, may be isolated, purified and used to produce bioactive peptides from casein (Minervini et al., 2003).

There are few studies which note the use of WPs as a source of bioactive peptides in fermentation with LAB (Yamamoto, Maeno, & Takano, 1999; Chatterton et al., 2006; Pihlanto et al., 2010; Tellez et al., 2011). *L. helveticus* strains (Lh) used to ferment WPs are able to hydrolyse α-lactalbumin to release bioactive peptides (Castro et al., 1996, Chatterton et al., 2006). Hydrolysates of WPs that release peptides with ACE-I activity have been investigated in several studies (Bayoumi & Griffiths, 2012; Illanés, 2011; Madureira et al., 2010; Pescuma et al., 2008; Pihlanto-Leppälä, 2000; Pihlanto et al., 2010; Saito, 2008; Wang et al., 2012; Welderufael, Gibson, & Jauregi, 2012). Table 2.3 shows a summary of various microorganisms and microbial enzyme strains that have been reported to produce bioactive peptides from milk proteins.

Figure 2.3 Outline of identification and characterisation of bioactive peptides derived from milk proteins (Schlimme & Meisel, 1995).

Table 2.3 Bioactive peptides released from milk proteins by various microorganisms and microbial enzymes.

Microorganisms	Precursor	Peptide	Bioactivity	References
	protein	sequence		
L. helveticus	β- CN *	Ile-Pro-Pro,	ACE# inhibition,	Nakamura
S. cerevisiae	κ-CN	Val-Pro-Pro	antihypertensive	etal. (1995)
				Takano
				(1998)
L. helveticus	Skim milk	Ile-Pro-Pro,	ACE inhibition,	Pan et al.
JCM1004 cellfree	hydrolysat	Val-Pro-Pro	antihypertensive	(2005)
extract	e			
Lactobacillus GG	β - CN,	Tyr-Pro-		
Enzymes + pepsin and	αs1- CN	Phe-Pro,	ACE inhibition	Rokka et al.
trypsin		Ala-Val-		(1997)
		Pro-Tyr-		
		Pro-Gln-		
		Arg,		
		Thr-Met-		
		Pro-Leu-		
		Trp		
L. helveticus CP790	β- CN	Lys-Val-	ACE inhibition	Maeno et
proteinase		Leu-Pro-		al. (1996)
		Val-Pro-Gln		
L. helveticus CPN4	Whey	Tyr-Pro	ACE inhibition	Yamamoto
	proteins			et al. (1999)
L. delbrueckii ssp.	β-cn, κ-	Many	ACE inhibition	
bulgaricus	CN	fragments		
SS1, Lactococcus				Gobbetti et
lactic ssp.				al. (2000)
cremoris FT4				
L. delbrueckii ssp.	β- CN	Ser-Lys-	ACE inhibition	Ashar and

bulgaricus		Val-Tyr-		Chand
		Pro-Phe-		(2004)
		Pro-Gly-		
		Pro-Ile		
S. thermophilus $+ L c$.	β- CN	Ser-Lys-		Ashar and
lactic		Val-Tyr-Pro	ACE inhibition	Chand
ssp. lactic biovar.				(2004)
diacetylactis				
Lactococcus lactic	αs1-CN,	Many	ACE inhibition	Minervini
	αs2- CN,	fragments		et al. (2003)
	κ- CN			
L. helveticus NCC	β- CN	Tyr-Pro-	Opioid	Meisel and
2765		Phe-Pro-		Frister
		Glu-Pro-Ile-		(1989)
		Pro-Asn		
Commercial products		Thr-Thr-	ACE inhibition,	
+	αs1- CN	Met-Pro-	immunomodulation	Maruyama
digestion		Leu-Trp		et al. (1987)

CN * = casein; ACE[#] = Angiotensin-I converting enzyme

2.4.3 Dairy products as source of bioactive peptides

Dairy proteins possess physicochemical and biological properties of importance to human health. Specifically, dairy products contain nutrients that are needed for growth and development and are a rich source of proteins, lipids, minerals, vitamins and lactose. Studies during the last 15 years have shown that caseins and WPs are essential sources of bioactive peptides. Bioactive peptides have been defined as specific protein fragments, which have a positive effect on body functions and may ultimately influence health (Kitts & Weiler, 2003). Peptides generally contain two to 20 amino acid residues per molecule. Research has shown that peptides have immune-modulating, anti-hypertensive, antimicrobial and anti-oxidative activities. Specific peptides may have one or two different biological activities, and due to their physiological importance, milk-borne bioactive peptides are regarded as food

ingredients with health-promoting properties (Korhonen, 2004; Korhonen & Pihlanto, 2007). Therefore, milk derived peptides are potential candidates to be incorporated into food products and used to improve cardiovascular, skeletal and digestive functions or have an immune defence effect (Lahtinen et al., 2011). Therefore, it can be assumed that the number of bioactive peptides increases during the production of fermented milk products compared to raw milk and that the composition of the peptide fraction changes due to the proteolytic action of the employed microorganisms (Hayes et al., 2007). Some studies investigated bioactive peptides in traditional fermented milk products and identified angiotensin-converting enzyme inhibitory (ACE-I) peptide or antimicrobial peptides in fermented food products (Figure 2.4 and 2.5) (Gómez-Ruiz et al., 2002; Losito et al., 2006; Ebner et al., 2015). The major part of bioactive milk protein-derived peptides is ACE-inhibitors, influencing blood pressure by inhibiting the conversion of angiotensin-I to the vasoconstrictive angiotensin-II and the degradation of the vasodilator bradykinin to its inactive fragments (Hayes et al., 2007). The processes involved in the formation of bioactive peptides from milk proteins are shown in (Figure 2.4).

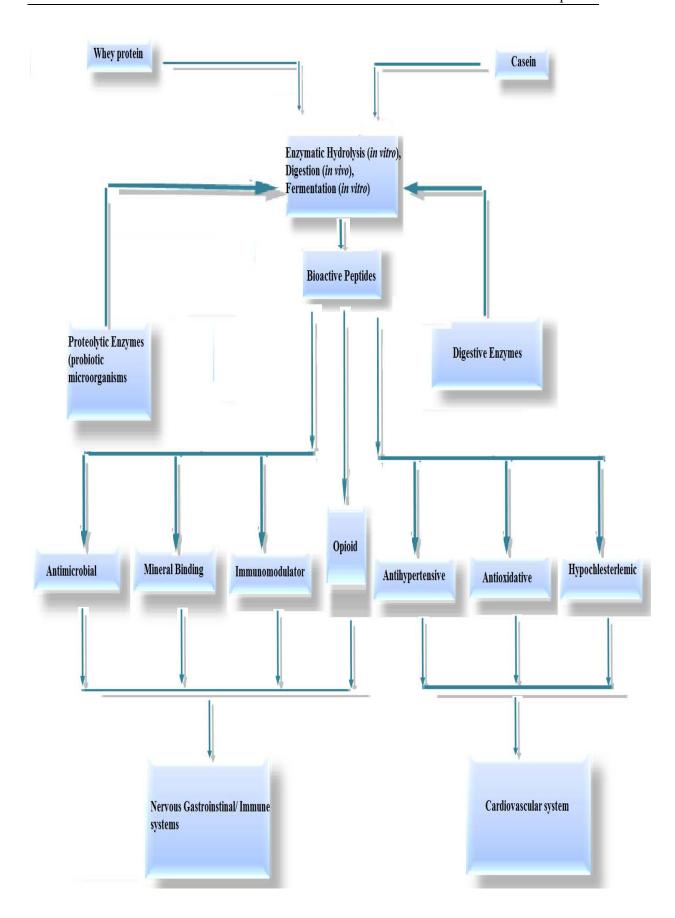
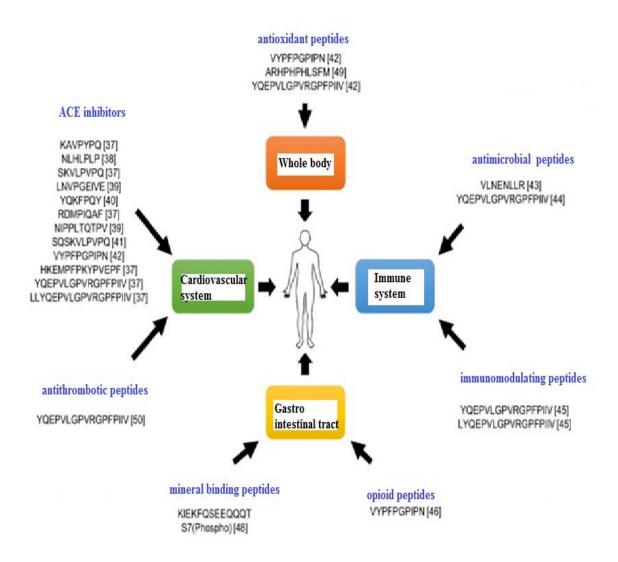



Figure 2.4 Formation of bioactive peptides from milk proteins.

Figure 2.5 Bioactive peptides and their possible target sites in the human body. Peptide sequences are shown in single letter code (Ebner et al., 2015).

2.4.4 Physiological role of casein-based bioactive peptides

The predominant protein component in milk is casein, consisting of 80 % total milk protein (Table 2.4). Milk casein hydrolyses leads to the production of peptides, which have bioactive properties. There are four different types of caseins, namely $\alpha s1$, $\alpha s2$, β and κ -casein (Maubois & Léonil, 1989). A peptide derived from casein that has similar characteristics and pharmacological effect to morphine is known as casomorphin (Meisel & Schlimme, 1990). Similarly, other peptides released from caseins have been found to show immunomodulatory properties. Casein phosphor-peptides (CPPs) have been produced by gastrointestinal trypsin from $\alpha s1$ -, $\alpha s2$ - and β -caseins, and these

peptides have been shown to improve zinc and calcium absorbance (Hansen, Sandstrom, & Lonnerdal, 1996; Nagpal et al., 2011). In fact, peptides (Val-Pro-Pro or Ile-Pro-Pro) found in calpis sour milk and administered orally to spontaneous hypertensive rats show antihypertensive effects (Nakamura et al., 1995). Fermented milk containing peptides decreased systolic blood pressure post-administration. The antihypertensive effect of fermented milk containing two peptides Ile-Pro-Pro and Val-Pro-Pro was tested in hypertensive patients. As a result, systolic blood pressure decreased significantly at four and eight weeks after the beginning of ingestion (Nakamura et al., 1995). The physiological properties of casein-based bioactive peptides have been used in animal modelling systems however, they remain to be proven in humans.

Table 2.4 Concentration and biological functions of milk proteins.

Protein	Concentration (g/l)	Function
	Cow	
Total caseins	26.0	Ion carrier (Ca, PO ₄ , Fe, Zn, Cu)
		Precursors of bioactive peptides
		α-Casein
α-Casein	13.0	
β-Casein	9.3	
_k -Casein	3.3	
Total whey protein	6.3	
β-Lactoglobulin	3.2	
		β-Lactoglobulin 3'2 Retinol carrier,
		binding fatty acids, possible antioxidant
α –Lacto-albumin	1.2	Lactose- synthesis in mammary gland, Ca
		carrier, immunomodulation, anti-
		carcinogenic
Lacto-peroxidase	0.03	Antimicrobial

Lacto ferrin	0.1	Antimicrobial, anti-oxidative,
		immunomodulation, iron absorbance, anti-
		carcinogenic
Serum albumin	0.4	
Immunoglobulins	0.7	Immune protection
(A, M, and G)		
Glycomacro	1.2	Antiviral, bifidogenic
peptide		
Proteose-peptone	1.2	Not characterised
Miscellaneous	0.8	
Lysozyme	0.0004	Antimicrobial, synergistic effect with
		immunoglobulins and lacto-ferrin

(Yamauchi, 1992; Korhonen et al., 1998; Walstra & Jenness, 1984)

2.4.5 Physiological role of whey protein-based bioactive peptides

About 20 % of milk proteins are WPs, and these are not coagulated by acid (Brew, Castellino, Vanaman, & Hill, 1970). As a result, these proteins remain in solution as milk whey. Alfa-lactoalbumin (α-LA) is one of the main proteins in milk whey; Beta-Lactoglobulin consists of half the total protein in milk whey (Table 2.5). It contains 123 amino acids with a molecular weight of 14,175 K Da (Brew, Castellino, Vanaman, & Hill, 1970). Functional ingredients derived from milk including whey have a proven beneficial effect on human health (Park, 2009). WPs' bioactive peptides and their physiological effects have been less studied compared to bioactive peptides from caseins (Park, 2009). WPs and their derivatives provide important nutrients; immune system modulation; and bioactivities, including the inhibition of ACE activity, anticarcinogenic activity, anti-microbial activity and hypocholesterolemic effects (Park, 2009). The enzymatic hydrolysis of WPs can offer a practical way to reduce its antigenic-protein fractions (Heyman, 1999). Enzymes from different origins may have variations in their hydrolytic capacity to break down WPs, and thereby may influence the physicochemical characteristics of the hydrolysates and their biological activities (FitzGerald & Meisel 2000; Bertrand - Harb et al. 2002). In addition, the hydrolysis of WPs can yield a variety of new peptides, which may provide many physiological benefits for humans (Otte et al., 1997). WPs hydrolysates have been extensively prepared and used to nutritionally support human patients who have various physiological insufficiencies and abnormalities (Halken & Host, 1997). Therefore, they have potential use as health enhancing nutraceuticals for specific supplemental formulae for several chronic diseases. The various lacto-peroxidase, immunoglobulins, as well as the lacto ferrin, are known to protect the new born calf (Table 2.5) (McIntosh et al., 1995; McLeod A, 1996).

Table 2.5 Bioactive peptides derived from whey proteins.

Precursor	Frag	Peptide sequence	Name	Function
protein	ment			
α-Lactoalbumin	50-53	Tyr-Gly-Leu-Phe	α-Lactorphin	Opioid agonist
				ACE inhibition
α-Lactoglobulin	102-	Tyr-Leu-Leu-Phe	β-Lactorphin	Non-opioid
	105	Ala-Leu-Pro-Met His-		stimulatory
	142-	Ile-Arg		effect on ileum
	148	His-Ile-Arg-Leu		
	146-			ACE inhibition
	149			
			β-	Ileum
			Lactotensin	contraction
Bovine serum	399-	Tyr-Gly-Phe-Gln-Asp-	Serorphin	Opioid
albumin	404	Ala		
	208-	Ala-Leu-Lys-Ala-Trp-		
	216	Ser-Val-Ala-Arg		

Lacto ferrin	17-42	Lys-Cys-Arg-Arg-Trp-	Albutensin A	Ileum
		Glu-Trp-Arg-Met-Lys-		contraction
		Lys-Leu-Gly-Ala-Pro-		ACE inhibition
		Ser-Ile-Pro-Ser-Ile-		
		Thr-Cys-Val-Arg-Arg-	Lacto ferrin	Antimicrobial
		Ala-Phe		

(Korhonen et al., 1998; Food Funct, 2011)

2.4.6 Bioactive components of milk and their physiological effects

The important attribute in metabolism of LAB is fermentation of carbohydrate with phosphorylation. LAB strains have the ability to ferment different types of carbohydrates. The major product of fermented milk is lactic acid. LAB can adapt to diverse conditions and change their metabolic activities and could lead to significantly different end products (Salminen, 1998; Salminen & von Wright, 2004). Lactose is used to produce lacto-oligosaccharides and lactulose which are used as probiotic bacteria growth promoters by enzymatic processes (Shah, 2000). Bioactive compounds of milk protein fractions have been extensively studied (Table 2.6), including other compounds which have physiological significance such as calcium. Calcium plays a role in blood pressure regulation. The possible protective role of calcium in avoidance of colon cancer has been researched at the Dutch Dairy Research Institute (Lapre, 1991; Medicine, 1997). Milk products play a role by providing calcium phosphate which binds to bile salts to prevent their toxic effect (Lapre, 1991; Medicine, 1997).

Fatty acids play a role as bioactive compounds in milk. For example, the role of conjugated linoleic acid in inhibition of cancer has been examined (Pariza, 1999). Fermented milk products such as kumis, yoghurt and kefir have a number of health benefits associated with their physiological effects. Recently, researchers have shown the beneficial physiological role of fermented milk products by probiotic organisms such as *Lactobacillus*, *Bifidobacteria* and *acidophilus* (Donkor et al., 2007; Lim, Lee, Park, Yoon, & Paik, 2011). The consumption of probiotic bacteria via fermented milk products has also been described to have a beneficial effect on the consumer by

restoring the balance in the intestinal micro-flora, which may have been lost due to antibiotic use or other conditions (McKinley, 2005; Donkor et al., 2007).

Table 2.6 Bioactive peptides released from bovine milk proteins.

Bioactive peptide	Protein precursor	Bioactivity
Casoxins	_k -Casein	Opioid antagonists
Casoplatelins	_k -Casein, transferrin	Antithrombotic
Casomorphins	α-, β-Casein	Opioid agonists
Casokinins	α-, β -Casein	Antihypertensive
a-Lactorphin	α -Lactoalbumin	Opioid agonist
β-Lactorphin	β -Lactoglobulin	Opioid agonist
Lacto ferroxins	Lacto ferrin	Opioid antagonists
Immuno peptides	α-, β -Casein	Immuno stimulants
Caseinophospho peptides	α-, β -Casein	Mineral carriers

(Meisel & Schlimme, 1990)

2.5 Antihypertensive peptides

The intervention and epidemiological studies mentioned above reported the consumption of low-fat dairy products is inversely related to the risk of hypertension (Lapre, 1991; Appel et al., 1997; Medicine, 1997; Toledo et al., 2009). Hypertension is

considered to be one of the risk factors for coronary heart diseases such as myocardial infarction and stroke (Eisele et al., 2013). According to the World Health Organisation (WHO), nearly one billion people around the world suffer from hypertension (Abu-Taraboush, Al-Dagal, & Al-Royli, 1998). Hypertension can be controlled by different types of drugs; the most commonly used are synthetic angiotensin converting enzyme (ACE) inhibitory drugs such as captopril and enalapril (Chaves-López et al., 2011; Griffiths & Tellez, 2013). However, these drugs have side effects; such as hypotension, increased potassium levels, reduced renal function, cough, angioedema, skin rashes, and fatal abnormalities (Nakamura et al., 1995; Sesoko S, 1985). There are strong possibilities of substituting synthetic ACE-I drugs with ACE-I peptides to control hypertension without the associated side effects (Mavromoustakos, 2004). These results have generated further studies on fermented milk with antihypertensive properties which have been related to milk proteins. Most of the clinical trial studies suggest that increased intake of protein is associated with lower blood pressure and attenuated blood pressure over time (Burke et al., 2001). Milk is rich in potassium and calcium and increased intake has been shown to lower blood pressure (Van Mierlo et al., 2006). In fact, the observed antihypertensive effect can often be attributed to specific peptides encrypted in the parent milk protein. The effects of antihypertensive peptides in regulating blood pressure have been studied by using spontaneous hypertensive rats (SHR) (Leclerc et al., 2002; Ono et al, 1997; Wakai et al, 2012; Wang et al., 2012).

In the regulation of blood pressure, ACE plays an important role. ACE-I peptides can be produced through either (a) hydrolysis by digestive enzymes, (b) hydrolysis by proteolytic microorganisms or (c) hydrolysis by proteolytic enzymes. A common way of producing ACE-I peptides in the gastrointestinal tract is by hydrolysis of digestive enzymes, namely trypsin and pepsin (Tauzin, Miclo, & Gaillard, 2002). ACE-I peptides can also be produced from milk proteins; through the hydrolysis of proteolytic microorganisms during fermentation of milk. The proteolytic system of LAB, such as *Lactococcus lactic*, *Lactobacillus helveticus* and *Lactobacillus delbrueckii* var. *bulgaricus*, have been well studied and characterised (Griffiths & Tellez, 2013). *Lactobacillus helveticus* strains have demonstrated high proteolytic capability by producing antihypertensive peptides through enzymes of cell-envelope proteinase (CEP) (Ono et al., 1997;Hébert et al., 1999;Wakai & Yamamoto, 2012; Wakai et al., 2013;

Boutrou et al., 2013). Other than using live microorganisms, proteolytic enzymes isolated from LAB have been successfully employed to release ACE-I peptides from food proteins (Boutrou et al., 2013; Griffiths & Tellez, 2013). Apart from LAB, Mizuno et al., (2004) suggested that *oryzae* protease might be a suitable enzyme to generate potent ACE-I peptides with an antihypertensive property. Other recent researchers have combined LAB and proteolytic enzymes (Flavourzyme[®]) to accelerate the production of bioactive peptides in milk and produced 32.8 mg/g bioactive peptides compared to 5.8 mg/g bioactive peptides from LAB fermentation alone (Eisele et al., 2013). ACE inhibition leads to a decrease in the level of vasoconstricting peptide, angiotensin-II, and a corresponding increase in the level of vasodilatory peptide, bradykinin, yielding an overall reduction in blood pressure (Griffiths & Tellez, 2013; Eisele et al., 2013). Clearly, reference peptides derived from caseins, tri-peptides Il-Pro-Pro and Val-Pro-Pro, are the most extensively studied. The hydrolysis of isoelectric casein with pepsin generates peptides corresponding to α_{s1} -case in f(90-94) (Arg-Tyr-Leu-Gly-Arg), α_{s1} casein f (143-149) (Ala- Tyr- Phe- Tyr- Pro- Glu- Leu), and α_{s1} -casein f (89-95) (Tyr-Gln- Lys- Phe- Pro- Gln- Tyr), showing to exert antihypertensive effect after oral administration to SHR (del Mar Contreras et al., 2009). These peptides inhibited ACE, the pivotal enzyme in blood pressure regulation by IC₅₀ value of $(0.7, 6.6, \text{ and } 20.1 \,\mu\text{M})$ respectively (del Mar Contreras et al., 2009).

2.5.1 Casein derived tri-peptides

The effect of fermented milk containing peptides such as tri-peptides (II-Pro-Pro and Val-Pro-Pro,) on blood pressure has been investigated, both in short and long term experimental studies. Different models of SHR and double transgenic rats harbouring human renin and angiotensinogen genes have been used (Lahtinen et al., 2011). The antihypertensive effect was first demonstrated by casein hydrolysate generated by purified proteinase from *L. helveticus* CP790, which are presented in (Table 2.7) (Yamamoto et al., 1994). Additionally, many *in-vitro* and *in-vivo* studies have been achieved to obtain more insight into the mechanisms of bioavailability of casein-derived tri-peptides. A single dose oral administration of casein hydrolysate or *L. helveticus* CP790 fermented milk led to decreased SBP of SHR by 21 or 35 mm Hg after 8 h of administration (Nakamura et al., 1995). Thereafter, ACE-I activity was found to be produced in sour milk during fermentation with *L. helveticus* and *S. cerevisiae*

(Nakamura et al., 1995). The fermented milk decreased SBP of SHR by 22 mm Hg after 6 h of oral administration (Nakamura et al., 1995). Tri-peptide, leucine-proline-proline (Leu-Pro-Pro) has been shown to inhibit ACE (Lehtinen et al., 2010). The amino acid sequences corresponding to Ile-Pro-Pro, Val-Pro-Pro and Leu- Pro- Pro were found in the primary structure of bovine β -casein (74-76 Ile-Pro-Pro.84-86 Val-Pro-Pro, 161-163 Leu-Pro- Pro) and k-casein (108-110 Ile- Pro- Pro) (Farrell et al., 2004). Long term studies have been mostly performed using young animals with normal blood pressure (Table 2.8). The development of hypertension has decreased significantly in rats receiving either pure Ile- Pro- Pro and Val- Pro- Pro in water or milk products fermented with *L. helveticus* (and / or *S. cerevisiae*) (Roy et al., 1999; Lehtinen et al., 2010; Domingues et al., 2010) (Tables 2.7 and 2.8).

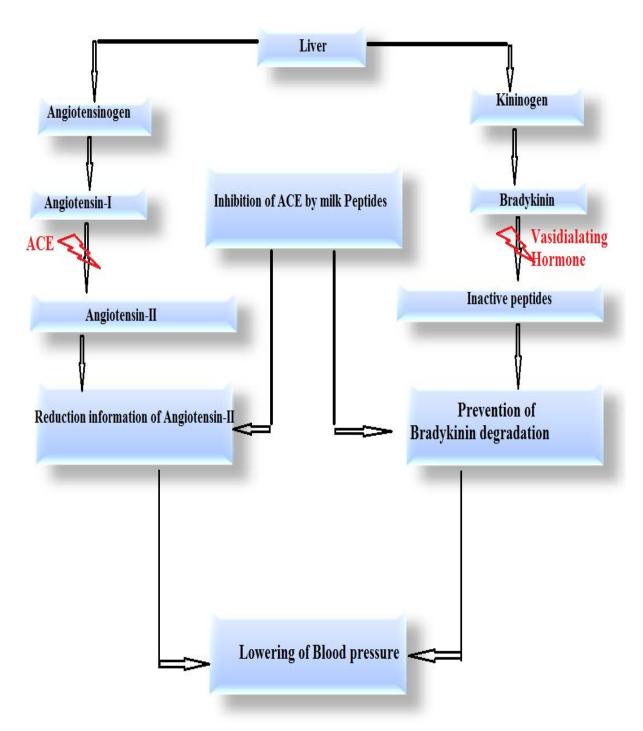
Table 2.7 Milk-protein released peptides displaying hypertensive effects in SHR.

Milk protein	Peptide	Maximum decrease in	Reference
	fraction	systolic BP (mm Hg)	
αs ₁ -Casein	f(1-9)	-9.3	Saito et al. (2000)
	f(23-24)	-34.0	Karaki et al. (1990)
	f(90-94)	-25.0	del Mar Contreras et
	f(104-	-13.0	al.(2009)
	109)	-20	Maeno et al. (1996)
	f(143-	-32.1	del Mar Contreras et
	149)	-14.0	al.(2009)
	f(146-		Yamamoto et al. (1999)
	147)		Karaki et al. (1990)
	f(194-		
	199)		
αs_2 -Casein	f(89-95)	-15.0	del Mar Contreras et
	f(189-	-5.0	al.(2009)
	192)	-3.0	Maeno et al. (1996)
	f(190-	-9.0	Maeno et al. (1996)

-	197)		Maeno et al. (1996)
	f(198-		
	202)		
β-Casein	f(59-61)	-21.0	Abubakar et al. (1998)
	f(59-64)	-22.0	Abubakar et al. (1998)
	f(60-68)	-7.0	Saito et al. (2000)
	f(74-76)	-28.3	Nakamura et al. (1995a)
	f(80-90)	-8.0	Abubakar et al. (1998)
	f(84-86)	-32.1	Nakamura et al. (1995a)
	f(140-	-2.0	Maeno et al. (1996)
	143)	-32.2	Maeno et al. (1996)
	f(169-	-31.5	Maeno et al. (1996)
	174)	-10.0	Karaki et al. (1990)
	f(169-		
	175)		
	f(177-		
	183)		
α-Lactalbumin	f(50-53)	-23.0	Mullally et al. (1996);
			Nurminen et al. (2000)
β-Lactoglobulin	f(58-61)	-20.0	Hernández-Ledesma et
	f(78-80)	-31.0	al.(2007)
	f(103-	-20.0	Abubakar et al. (1998)
	105)		Hernández-Ledesma et al.
			(2007)
Bovine serum	f(221-	-27.0	Abubakar et al. (1998)
albumin	222)		
β_2 -microglobulin	f(18-20)	-26.0	Abubakar et al., (1998)

Table 2.8 Experimental studies on the effects of tri-peptides Ile- Pro- Pro (IPP) and Val- Pro- Pro (VPP) on blood pressure.

Reference	Duration	Study Characteristics	Dose	Systolic Blood Pressure
Acute Experiments				
Yamamoto et al,.1994		Casein hydrolysate	15 mg / kg peptides	-22 mm Hg after 6 h
		L. helveticus CP790 fermented	15 mg / kg peptides	-35 mm Hg after 8 h
		milk		
Nakamura et al,.1995		L. helveticus and S. Cerevisae	0.3 mg / kg IPP, 0.6 mg / kg VPP	-22 mm Hg after 6 h
		fermented milk		
Long Term Experiments				
Nakamura et al,.1996	16 wk	Diet containing 2.5 % lyophilized	Not specified	-19 mm Hg vs. control
		sour milk		diet
Sipola et al,.2001	12wk	IPP and VPP in water	2.5-3.5 mg/ kg/d IPP+VPP	-12 mm Hg vs. control
		L. helveticus fermented milk	2.5-3.5 mg/ kg/d IPP+VPP	-17 mm Hg vs. control
Sipola et al,.2002	14wk	L. helveticus fermented milk	0.4~mg/~kg/~d IPP.0.6 mg / kg/ d	-21 mm Hg vs. control
			VPP	
		L. helveticus and S. Cerevisae	0.2 mg/kg/ d IPP, 0.3 mg/ kg/ d VPP	-10 mm Hg vs. control
		fermented milk		
Jauhiainen et al,.2005	9wk	IPP and VPP in water	2.0 mg/kg/d IPP +VPP	-8 mm Hg vs. control
		IPP ,VPP and minerals in water	1.7 mg/ kg /d IPP+VPP	-13 mm Hg vs. control
		L. helveticus fermented milk	1.5 mg/ kg/ d IPP +VPP	-17 mm Hg vs. control
	8wk	L. helveticus fermented milk	3.0-4.4 mg/ kg/ d IPP + VPP	-14 mm Hg vs. control


Jakala et al,.2009		Milk product produced by L .	2.9-4.0 mg/ kg/ d IPP + VPP	-12 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease		
		Milk product produced by L .	2.8-4.0 mg/ kg/ d IPP + VPP	-7 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease and containing		
		plant sterols		
Jakala et al,.2009	8wk	L. helveticus fermented milk	5.9-6.6 mg/ kg/ d IPP + VPP	-11 mm Hg vs. control
	(GK)	Milk product produced by L .	4.6-5.1 mg/ kg/ d IPP + VPP	-12 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease		
		Milk product produced by L .	4.8-5.3 mg/ kg/ d IPP + VPP	-10 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease and containing		
		plant sterols		
Jakala et al,.2010	8wk	Tri-peptide powder in water (L .	3.1-4.3 mg/kg/d IPP + VPP	-14 mm Hg vs. control
		helveticus fermentation)		
		Tri-peptide powder in water (L .	3.2-4.4 mg/ kg/ d IPP + VPP	-14 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease)		
Jauhiainen et al.2010	3wk	IPP and VPP in water	10.9 mg/ kg/ d IPP + VPP	-3 mm Hg vs. control
	(dTGR)	L. helveticus fermented milk	5.4 mg/ kg/ d IPP + VPP	-19 mm Hg vs. control

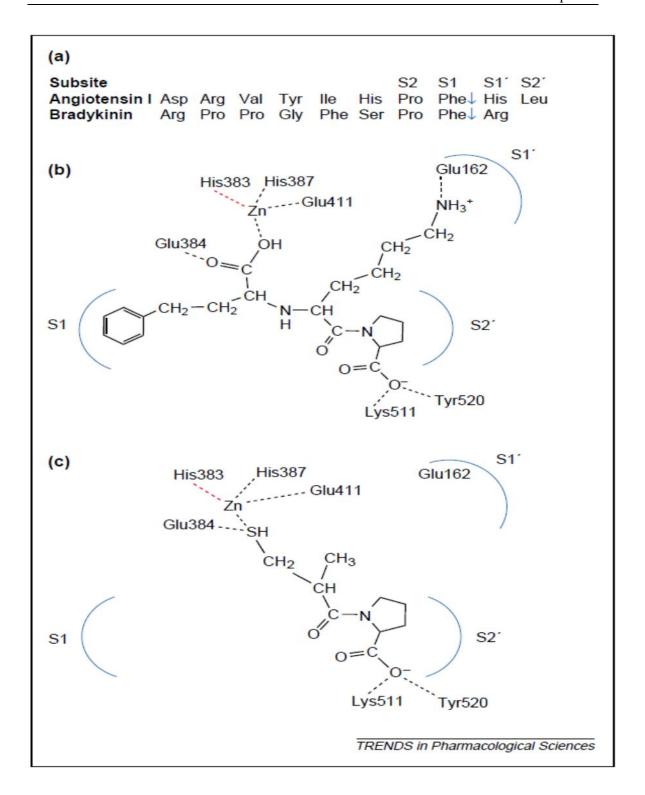
Chapter 2	Cha	pter	2
-----------	-----	------	---

Ehlers et al,.2011	6wk	Milk product produced by L .	3.7-4.4 mg/ kg/ d IPP + VPP	-16 mm Hg vs. control
		helveticus and proline-specific		
		endo-protease and containing		
		plant sterols		

2.5.2 The mechanisms of peptide activity with antihypertensive properties

High blood pressure is regulated by renin-angiotensin and bradykinin (Meisel, 1998; Nagpal et al., 2011) (Figure 2.6). In vitro, several peptides of different lengths have been shown to inhibit ACE at micromolar concentrations (Lehtinen et al., 2010). Inhibition of ACE activity reduces angiotensin -II production and lowers blood pressure in hypertensive patients. The Bradykinin system involves ACE preventing degradation of the vasodilator, thus helping to control blood pressure. The two regulators of blood pressure; angiotensin and bradykinin are shown in (Figure 2.6). A study reported that hydrophobic tryptophan, phenyl alanine, proline and tyrosine were found to be most effective in lowering blood pressure (Meisel, 1998). ACE inhibitory peptides such as tri-peptides, Ile-pro-pro and Val-pro-pro from bovine casein were isolated from fermented milk by Saccharomyces cerevisiae and L. helveticus (Nakamura et al., 1995). Contreras et al. (2009) reported that tri-peptides released from fermented milk were found to reduce blood pressure. Similarly, Jauhiainen et al. (2010) observed that milk products containing bioactive tri-peptides had an antihypertensive effect in double transgenic rats. Several studies using SHR to determine hypertensive effect of fermented milk derived ACE-inhibitors have achieved promising results (Yamamoto et al.,1994; Yasunori Nakamura et al., 1995; Jauhiainen et al., 2010; Ehlers et al., 2011). Table 2.8 summarises the reduction in systolic BP reached in SHR using bioactive peptides hydrolysed from milk proteins. In clinical studies, different methods to evaluate endothelial function have been used. Ambulatory arterial stiffness index (AASI) can be calculated from 24-hour blood pressure recordings, and this has been shown to be an independent predictor of cardiovascular mortality (Dolan et al., 2006). Interestingly, a significant improvement in AASI was observed following a 10-week treatment with L. helveticus fermented milk (Jauhiainen et al., 2007).

Figure 2.6 Regulation of blood pressure by angiotensin and bradykinin (Nagpal et al., 2011).


2.5.3 Angiotensin converting enzyme inhibitory peptides

Angiotensin-I converting enzyme (ACE-I) has been related to the renin-angiotensin system, which regulates peripheral blood pressure. Some peptides display antihypertensive activity. ACE-I activities were isolated from enzymatic hydrolysate of

bovine casein and their amino acid sequences are as follow: Phe-Phe-Val-Ala-Pro-Phe-Pro-Glu-Val-Phe-Gly-Lys (CEI12), Phe-Phe-Val-Ala-Pro (CEI5), and Ala-Val-Pro-Tyr-Pro-Gln-Arg (CEIβ7) (Maruyama, et al., 1985). CEI5 is a penta-peptide derived from the hydrolysate of CEI12 with proline-specific endo-peptidase, and CEI β7 is a heptapeptide derived from β-casein. These inhibitors potentiate bradykinin in the contraction of the uterus and the ileum of rats. The ileum was more sensitive to these inhibitors than the uterus (Maruyama, et al., 1985). ACE hydrolyses inactive angiotensin-I into the octa-peptide angiotensin-II (vasoconstrictor), which leads to increased blood pressure. ACE-I is also able to hydrolyse bradykinin (vasodilator) which is hypotensive. Peptides able to exhibit ACE-I activity are used as an antihypertensive drug (FitzGerald & Meisel, 2003; Tauzin et al., 2002). The main mechanical feature controlling this inhibitory reaction is the C-terminal tri-peptide sequence. It is proposed that these peptides may interact with subsides S₁, S₁' and S₂' at the active site of ACE (Brew, 2003) (Figure 2.7). It appears that ACE prefers substrates and inhibitors containing hydrophobic amino acid residues in the three C-terminal positions (Cheung et al., 1980). Generally, aliphatic, basic and aromatic residues are preferred in the penultimate positions while aromatic; proline and aliphatic residues are preferred in the ultimate positions. The positive charge of the β-amino group of Lys at the C-terminus has also been shown to contribute to the ACE-I potential of several peptides (Vermeirssen et al., 2003). Furthermore, structural studies [Nuclear magnetic resonance (NMR), molecular modelling], docking studies, design of mimetics and biological evaluation of angiotensin AT(1) receptor blockers have aided in new anti-hypertensive peptide inhibitors (Panagiotopoulos et al., 1996; Mavromoustakos et al., 2001; Hiroyuki et al., 2013).

ACE-inhibitory and antihypertensive peptides originating from milk usually contain up to ten amino acids (Yamamoto et al., 1993). The majority of milk-protein-derived ACE-inhibitors have moderate inhibitory potencies, usually within an IC₅₀ range of 100-500 μ m/L, (Hayes et al., 2007). Thus, strain selection is one of the main factors that influence the release of ACE-inhibitors in dairy fermentations (Korhonen & Pihlanto, 2003; Takano, 2002). However, peptides with ACE-inhibitory activity may also be formed by *in vitro* hydrolysis of milk proteins using microbial and digestive enzymes (Otte et al., 2007; Paola Ortiz-Chaoa, 2009). It has been reported that fermented milk produced by mixing several types of microbes might contain a wider variety of functional substances

than milk cultured with a single strain (Kuwabara et al., 1995). Inclusion of probiotics to yoghurt has been shown to enhance *in vitro* ACE-inhibitory activity due to improved proteolytic hydrolyses (Donkor et al., 2007). The pH at the end of fermentation influences the ACE-inhibitory activity of fermented milk, which varies with the strain of LAB used (Nielsen et al., 2009). Additionally, LAB possesses a 'transport system' for amino acids, and di- tri- and oligo-peptides. As a result of this system, residual levels of peptides with bioactivity increases in fermented milks. The proteolytic systems of LAB species such as *L. casei*, *L. helveticus*, *L. delbrueckii* ssp. *bulgaricus*, *S. thermophilus*, *L. acidophilus* have been used to produce functional milk products containing antihypertensive peptides with ACE-inhibitory properties.

Figure 2.7 Molecular recognition of substrates by testis-specific angiotensin-converting enzyme (ACE) (a) the sites of cleavage by ACE in the substrates angiotensin I and bradykinin are shown. ACE is a di-peptidyl carboxy-peptidase and catalyses the cleavage of the bond between substrate residues that occupy the S1 and S10 sites (Brew, 2003).

2.6 Sensory evaluation of food products

Sensory evaluation is defined as a scientific judgment of food quality using senses, such as smell, taste, touch and sight. These sensory attributes have been developed by existing techniques. The developed procedures promote economic interest and establish the worth or acceptance of a product. Sensory evaluation is divided into two categories, namely: objective and subjective testing. Objective testing employs the use of laboratory instruments with no involvement of the senses, whereas subjective testing involves panellists. Both tests are essential in sensory evaluation (Meilgaard et al., 2006).

After food production and before reaching the marketplaces, new food products have to go through many tests to accurately judge how well people will accept them (Lawless, 2010). The companies have to evaluate the new product by particular food gastronomy and have to respond to some potential questions including: (i) Will people like the product? (ii) Will they buy the product? What price? (iii) How can the product be successfully marketed to people? And (iv) Will they prefer the product over others? Useful information can be obtained by posing specific questions to panels about age, sex, religion, geographic nationality, location, employment and education (Bopp, 1997). Food sensory evaluation has been used as a useful tool for new product development by assisting in product matching and improvement. Evaluation of a product could be required to determine the effects an experiment has on it. Lastly, marketing and quality control are additional application of sensory testing (Stone et al., 2012).

2.6.1 Sensory attributes

Attributes of food items are typically perceived in the following order:

- Appearance
- Odour/aroma/fragrance
- Consistency and texture
- Flavour (aromatics, chemical feeling, taste)

> Appearance

The appearance of the product and/ or the package is often the only attribute that is used to base a decision on to purchase or consume a product. Sensory analyses must pay

meticulous attention to every aspect of the appearance of test samples (Meilgaard et al., 2006) and must often attempt to obliterate or mask many unattractive test samples with coloured lights, opaque containers, etc.

> Odour/aroma/fragrance

The odour of a product is detected when its aroma volatiles enter the nasal passage and they are detected by the olfactory system. Odour is discussed when the volatiles are sniffed through the nose. Aroma is the odour of a food product and fragrance is the odour of a perfume or cosmetic, while aromatics are the volatiles detected by the olfactory system from a substance in the mouth (Meilgaard et al., 2006).

Consistency/texture

The third set of attributes to be considered are those perceived by sensors in the mouth other than taste and chemical feeling. Texture is also perceived by the skin and muscles of the body, other than those in the mouth when evaluating personal care and home care products (Meilgaard et al., 2006).

> Flavour

Flavour, as an attribute of food, beverages and seasonings, has been defined as the sum of perceptions resulting from stimulation of the sense ends that are grouped together at the entrance of the alimentary and respiratory tracts (Amerine et al., 2013). However, for the purposes of practical sensory analyses, the term is restricted to the impressions perceived via chemical senses from a product in the mouth. This is defined in this manner as flavour and includes (Meilgaard et al., 2006):

- The aromatics, i.e. olfactory perception caused by volatile substances released from a product in the mouth via the posterior nares
- The tastes, i.e. gustatory perceptions (salty, sweet, sour, bitter) caused by soluble substances in the mouth
- The chemical feeling factors that stimulate nerve ends in the soft membranes of the buccal and nasal cavities (astringency, spice heat, cooling, bite, metallic flavour).

2.6.2 Hedonic scale

The subjective assessment of a food product uses the hedonic scale method (Figure 2.8). It measures the level of the liking of a product. This test relies on consumers' ability to rate their feelings of like or dislike. Hedonic testing is commonly used with experienced panel members as well as untrained panel members (Poste, 1991). When using hedonic scale testing, food samples are offered in succession and the subject is told to elect how much the panellist 'likes' or 'dislikes' the product and to mark the scales accordingly. The hedonic scale is anchored verbally with nine different categories ranging from 'like extremely' to 'dislike extremely' (Figure 2.8). Several different methods of the scale have been used with success; however, the differences in the scale form is likely to cause marked changes in the distribution of reactions and statistical factors such as variances and means (ASTM, 1968). The test attitudes and characteristics of the subjects and expectation have reflective effects on the results. Consequently, the investigator must be cautious about making implications on the basis of evaluation of average ratings obtained in different experiments (Stone et al., 2012). There is no question that for some products a subset of the population of consumers may alter the ordering; however, the usefulness of the benchmark is not lost. This degree of stability is especially important for companies that seek to develop a database for their own products as well as to have a means for rapid assessment of formulation changes. In addition to these scaling techniques, there is another scale such as, semantic differential, appropriateness measures and summative scales. These scales are used primarily by market research to measure consumer behaviour as it impacts on product image, social issues and attitudes. They impact on sensory evaluation when results are used to direct product formulation efforts or when results are compared with those from a sensory test (Stone et al., 2012).

Product code————————————————————————————————————	Name					
Please tick the term that best describes your attitude about the product. Like extremelyLike very muchLike moderatelyLike slightlyNeither like or dislikeDislike slightlyDislike moderatelyDislike wery muchDislike extremely	Product code					
Like extremely Like very much Like moderately Like slightly Neither like or dislike Dislike slightly Dislike moderately Dislike very much Dislike extremely	Date					
Like very muchLike moderatelyLike slightlyNeither like or dislikeDislike slightlyDislike moderatelyDislike very muchDislike extremely	Please tick the term that best d	escribes your attitude about the product.				
Like moderately Like slightly Neither like or dislike Dislike slightly Dislike moderately Dislike very much Dislike extremely	Like extremely					
Like slightlyNeither like or dislikeDislike slightlyDislike moderatelyDislike very muchDislike extremely	Like very much					
Neither like or dislike Dislike slightly Dislike moderately Dislike very much Dislike extremely	Like moderately					
Dislike slightlyDislike moderatelyDislike very muchDislike extremely	Like slightly					
Dislike moderatelyDislike very muchDislike extremely	Neither like or dislike					
Dislike very muchDislike extremely	Dislike slightly					
Dislike extremely	Dislike moderately					
	Dislike very much					
Comments:	Dislike extremely					
	Comments:					

Figure 2.8 An example of nine point hedonic scale; Like extremely-9; Dislike extremely-1.

2.6.3 The other sensory experiments

There are different sensory experiments designated by the following definitions besides the hedonic scale used in sensory evaluation of food products:

Preference or acceptance tests: Determine representative population preferences and require numerous panellists.

Duo-Trip test: In this test, three samples are offered to the taster. One is labelled "R"(reference) and the other two are coded. One coded sample is identical with "R" and the other is different.

Difference tests: In the difference test the panellists are asked if a difference exists between two or more samples.

Triangle test: In the triangle test, three coded samples are presented to the panellist. She/he is informed that two samples are identical and she/he is asked to indicate the odd one.

Paired comparison test: In the paired comparison test there are two coded samples that represent the standard or control. Experimental treatments are presented to the panellist who is asked to indicate which sample has the greater or lesser degree of intensity of a specified characteristic, such as sweetness and hardness. If more than two treatments are being considered, each treatment is compared with every other in the series.

Multiple comparisons: In multiple comparison tests, a known reference or standard is labelled "R" and presented to the panellist with numerous coded samples. The panellist is asked to score the coded samples in comparison with the reference sample.

Ranking: The panellist is asked to rank several coded samples according to the intensity of some particular characteristic.

Scoring: Coded samples are evaluated by the panellist who records his/her reactions on a descriptive graduated scale. These scores are given numerical values by the panellist who analyses the results.

Flavour-profile method: It consists of a small laboratory panel of six or eight testers trained in the method of measuring the flavour profile of food products. Descriptive words and numbers, with identifiable meaning to each panel member, are used to express the comparative strength of each note on the scale.

Dilution tests: Dilution tests include the determination of the identification threshold for the material under study (Poste, 1991; Stone et al., 2012).

Chapter 3 Proteolytic and angiotensin converting enzyme inhibitory activities of selected probiotic bacteria

This chapter has been accepted for publication. Fatah Ahtesh, Lily Stojanovska, Michael Mathia, Vasso Apostolopoulos and Vijay Mishra (2015). Proteolytic and angiotensin converting enzyme inhibitory activities of selected probiotic bacteria. *International journal of Food Science and Technology*: IJFST-2015-19010. In print (Appendex. I)

3.1 Introduction

The most extensively studied microorganisms are lactic acid bacteria (LAB), Streptococcus, Lactococcus, Lactobacillus, and Bifidobacterium (Castro et al., 1996; Christensen et al., 1999; Ziadi et al., 2010). LAB, which includes probiotic organisms, are fastidious in nature, demanding several essential growth factors (Donkor et al., 2007). The proteolytic systems of LAB have been studied widely and the enzymes involved have been isolated and characterised (Shihata & Shah, 2000). However, Bifidobacterium strains are not as proteolytic as other LAB, which explains why Bifidobacterium grow slowly in milk and may require supplementation from external sources (Dave & Shah, 1998; Gomes et al., 1998). Milk products, such as skim milk, although they are rich growth media, contain low concentrations of free amino acids and peptides to efficiently support growth of LAB (Shihata & Shah, 2000). Therefore, through proteolytic activity of LAB, bioactive peptides and amino acids are released from parent proteins in milk to support growth (Gobbetti et al., 2000).

There are two methods of releasing milk peptides namely, by milk fermentation with LAB and by enzymatic hydrolysis of proteins. The cell wall of LAB is able to hydrolyse caseins into peptides by extracellular proteinases and intracellular peptidases (Korhonen & Pihlanto, 2006; Otte et al., 2007). Some of these peptides are classified as having angiotensin converting enzyme inhibition (ACE-I) activity (Yamamoto et al., 1994). Angiotensin-I-converting enzyme (ACE) plays a role in the regulation of blood pressure by catalysing the production of vasoconstrictor Angiotensin-II and inactivating the vasodilator and bradykinin (Doolittle, 1983; Brown and Vaughan, 1998). Milk products with ACE-I peptides are fermented between 6-48 h, at optimal temperatures for the strains used, reaching pH 4 - 5 in most products (Salminen & von Wright, 2004; Muguerza et al., 2006). Some ACE-I peptides may be intermediate products of hydrolysis which, upon further fermentation, are degraded into inactive peptides. Other ACE-I peptides may stop or end the protein hydrolysis, e.g., many di- and tri-peptides, which would be formed upon longer fermentation (He et al., 2013; Boutrou et al., 2013). Furthermore, the effect of pH on ACE-I activity of fermented milk increases with reducing pH until pH 3.5 is reached (Nakamura et al., 1995; Nakamura et al., 1995; Donkor et al., 2006). These peptides generally exist as an inactive form in milk proteins and, following enzymatic hydrolysis, active peptides are released. Furthermore, enzymatic hydrolysates possess a number of physiological properties such as

antioxidant and ACE-I activity (Rajapakse et al., 2005; Unal & Akalin, 2012). Protease such as Flavourzyme[®], also known as a proteolytic enzyme aids in digestion of different kinds of proteins (Chen et al., 2007). It is able to break down bonds by a process of protein hydrolysis converting it into smaller chains of amino acids (Roy et al., 2000; Korhonen & Pihlanto, 2003). Proteins have a complex folded structure requiring these types of enzymes to disassemble the molecule in very specific ways (Tsai et al., 2008; Ahn et al., 2012).

Since the activity of ACE-I and antihypertensive peptides could be affected by the method of production, there is a need to evaluate the efficiency of proteases in releasing ACE-I peptides from milk proteins. Therefore, probiotic strains *Lactobacillus casei* (Lc210), *Bifidobacterium animalis spp12* (Bb12), *Lactobacillus delbrueckii* subsp. *bulgaricus* (Lb11842), *and Lactobacillus acidophilus* (La2410) were screened separately, or in combination with the commercial proteolytic enzyme protease (Flavourzyme®) for production of bioactive peptides with ACE-I activity in short fermentation time using two different media in 12 % reconstituted skim milk (RSM) or 4 % whey protein concentrates (WPC) by measuring the bacterial growth, proteolysis and ACE-I activity.

3.2 Material and Methods

3.2.1 Substrates and chemicals

A number of substrates and chemicals namely O-phthaldialdehyde (OPA), Hippurylhistidyl–leucine (HHL), trichloroacetic acid (TCA), bacteriological medium, bacteriological agar, trifluoroacetic acid (TFA), HCl, ACE enzyme were purchased from Sigma Chemical Company (Sigma Aldrich, NSW Australia). De Man Rogosa and Sharpe (MRS) were purchased from Oxoid, Ltd., VIC Australia. Flavourzyme[®] 1000 L (Protease enzymes .EC 3.4.11.1), an amino peptidase with an activity of [1000 Leucine Amino-peptidase unit (LAPU g⁻¹)] was purchased from Novozymes Australia, NSW Australia. Skim milk powder (SM) was purchased from Murray Goulburn Co-operative Co. Ltd, VIC Australia and whey protein concentrate (WPC-35) powder was purchased from United Milk Tasmania Ltd., TAS Australia. Acetonitrile and reinforced clostridia agar (RCA) were purchased from Merck, Darmstadt, Germany and bacteriological peptone from Oxoid, Ltd., VIC Australia. Peptone solution was obtained from Merck

Pty. Ltd., VIC Australia. Stuart colony was from Scientific Counter UK. Anaerobic kit was obtained from (OxoidTM, AnaeroGen Australia). Advantech #231 filter paper was from Advantech Australia, NSW Australia. Four strains of *Lactobacillus casei* (Lc210), *Bifidobacterium animalis* ssp12 (Bb12), *Lactobacillus delbrueckii* subsp. *bulgaricus* (Lb11842), and *Lactobacillus acidophilus* (La2410) were obtained from Dairy Innovation Australia Ltd, Werribee, VIC Australia. UV-VIS spectrophotometer was from LKB NOVASPEC II Pharmacia, LKB Bio- Chrom UK. Centrifuge was from Beckman Coulter, Avanti J-265xPI. Freeze-dried was purchased from Freeze-drier model FD-300; Air vac Engineering Pty. Ltd., VIC Australia. Column (C18) was purchased from Phenomenex, NSW Australia. Membrane filter was purchased from Schleicher & Schuell GmbH, Dassel Germany. Reversed phase (RP) - HPLC was from Varian Analytical Instruments, CA USA.

3.2.2 Experimental design, media preparation and fermentation

Table 3.1 shows 16 different fermented samples of RSM and WPC and Flavourzyme® as control media were prepared using 12 % RSM, skim milk powder (SMP) composition are (52 % lactose, 37 % protein, 8.6 % ash and 1.2 % fat) or 4 % WPC powder (47.5 % lactose, 35 % protein, 9 % ash, 2.5 % fat) separately. All media powder (SM or WPC) were reconstituted using sterilized water. Reconstituted media were heat treated in water path (20-30) min at 90°C. This optimal temperature and time for sterilization to avoid milk protein denaturation, cooled to 40°C and each medium was inoculated with 1 % v/v of *Lactobacillus casei* (Lc210), *Bifidobacterium animalis ssp12* (Bb12), *Lactobacillus delbrueckii subsp. bulgaricus* (Lb11842), and *Lactobacillus acidophilus* (La2410) separately and in combination with or without 0.14 % (w/w) Flavourzyme®. Fermentation was carried out for 12 h at 37°C and samples were collected at 0, 4, 8 and 12 h and stored at -20°C for further analysis.

Table 3.1 Experimental design and the coding used in the study to analyse and measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8 and 12 h) fermentation of probiotic strains in 12 % RSM or 4 % WPC and with or without combination of Flavourzyme[®].

Media	Code	Cultures used	Code	Combination of cultures
used		without combination		with Flavourzyme®
				(1 % v/v each)
RSM	L.b	L.bulgaricus	L.b	$L.bulgaricus + {\sf Flavourzyme}^{\circledR}$
	L.A	L. acidophilus	L.A	L. acidophilus+ Flavourzyme®
	L.C	L. casei	L.C	L. casei + Flavourzyme®
	Bb	L. Bifidobacterium	Bb	L. Bifidobacterium +Flavourzyme $^{\mathbb{R}}$
	control			Flavourzyme®
WPC	L.b	L.bulgaricus	L.b	$L.bulgaricus + Flavourzyme^{\mathbb{R}}$
	L.A	L. acidophilus	L.A	$\textit{L. acidophilus}+ \ \text{Flavourzyme}^{\mathbb{R}}$
	L.C	L. casei	L.C	L. casei + Flavourzyme®
	Bb	L. Bifidobacterium	Bb	L. Bifidobacterium +Flavourzyme $^{\mathbb{R}}$
	control			Flavourzyme®

3.2.3 Bacterial Counts

Four probiotic strains, Lc210, Bb12, Lb11842 and La2410, separately or combined with Flavourzyme[®] were added to 12 % RSM or 4 % WPC media. Bacterial growth was measured by pour-plate method. Appropriate serial dilutions were made using 0.1 % peptone solution and the strains were incubated at 37°C for 48 h using anaerobic jars with anaerobic kit. The colony enumeration system used was the Stuart colony. The growth of LAB strains was examined every 4 h up to 12 h during the fermentation process at 37°C. Plates showing 25 to 250 colonies were counted and expressed as colony forming units per mL (cfu mL⁻¹) of sample.

3.2.4 Preparation of crude water-soluble peptide extract

The crude water-soluble peptide extract was prepared from 250 mL fermented sample by centrifugation (J2-HS rotor, Beckman Instruments Inc., Palo Alto, CA USA) at 15,000~x~g for 30 min at 4°C. The supernatant was filtered through a $0.45~\mu m$ membrane filter (Schleicher & Schuell GmbH, Dassel Germany) and freeze-dried using Dynavac freeze drier (Dynavac Eng. Pty. Ltd., Melbourne Australia). The freeze-dried samples were stored at -80°C for further analysis.

3.2.5 Determination of proteolytic activity

Proteolytic activity of Lc210, Bb12, Lb11842 and La 2410 was determined using the Opathalaldehyde (OPA) method as previously described (Church et al., 1983). Briefly, 3 mL of sample was mixed with equal volume of 1 % trichloroacetic acid followed by filtration using Advantech #231 filter paper. Filtrate 150 μ L was mixed with 3 mL of OPA reagent and allowed to react at room temperature for 2 min. The OPA reagent was prepared by adding 25 mL of 100 mM di-sodium tetra-borate, 2.5 mL of 20 % (w / w) sodium dodecyl sulfate, 40 mg of OPA dissolved in 1 mL methanol and 100 μ l of β -mercaptoethanol in 50 mL total volume of the reagent. Absorbance of the samples was measured at 340 nm using UV-VIS spectrophotometer (LKB NOVASPEC II Pharmacia, LKB Bio- Chrom UK). The relative absorbance between the control and sample was used as an indication of proteolysis.

3.2.6 Determination of ACE inhibitor activity

ACE-I activity was determined according to the previously described method (Donkor et al., 2007). Briefly, 10 mL of fermented media WPC or RSM was centrifuged at 4000 x g at 4°C for 30 min and the supernatant was freeze-dried for 72 h (Freeze-drier model FD-300; Air vac Engineering Pty. Ltd., VIC Australia). The freeze-dried powder (40 mg) was dissolved in 2 mL Tris buffer (50 mM, pH 8.3) containing 300 mM sodium chloride. ACE enzyme and Hippuryl-L-histidyl-L-leucine (HHL) (Sigma, St. Louis, MO USA) were prepared in Tris buffer. Fifty μ L of 3.0 mM HHL, 50 μ L of 1.25 MU ACE enzyme (from rabbit lung), and 50 μ L of experimental samples were placed in a glass tube and incubated for 1 h at 37°C ensuring mixing for the first 30 min. Glacial acetic acid (150 μ L) was added to stop the reaction. The reaction mixture was stored at -20°C before further analysis of released hippuric acid (HA) by HPLC. An external

standard curve of hippuric acid was prepared to quantify the resultant hippuric acid in fermented samples. An aliquot (20 μ L) of the mixture was injected into Gemini[®] C18 110 Å (100 mm x 4.6 mm, 5 μ m) (Phenomenex, Pty Ltd., NSW Australia) using Varian HPLC equipped with an auto sampler. The separation was conducted at room temperature (~22°C) at a mobile phase flow rate of 0.6 mL min⁻¹. The mobile phase consisting of 12.5 % (v/v) acetonitrile (Merck Pty. Ltd., VIC Australia) in MilliQ-water, and pH was adjusted to 3.0 using glacial acetic acid. Ultraviolet-visible detector was set at 228 nm. The % ACE-I was calculated as follows:

$$ACEI \% = \frac{HA (control) - HA (sample)}{HA (control)} \times 100$$

Where ACE-I = angiotensin converting enzyme inhibition and HA = Hippuric acid.

3.2.7 RP-HPLC analysis of water-soluble peptides extract

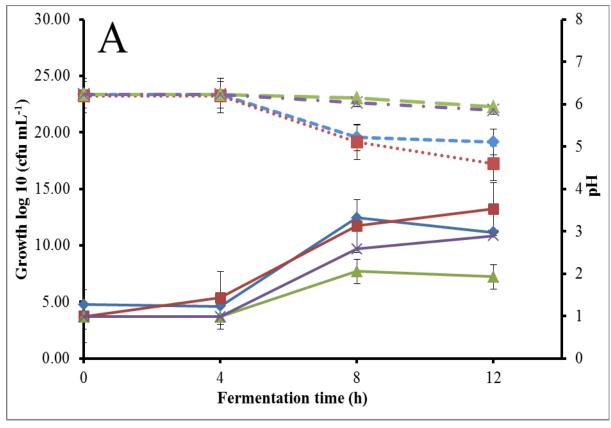
The water soluble peptides of fermented RSM samples were profiled by a reversed phase (RP) - HPLC using the method as previously described (Donkor et al. 2007) with some modifications. Briefly, 50 mL of dissolved freeze-dried samples of fermented RSM or WPC for 12 h (with or without supplementation of Flavourzyme®) were centrifuged at 15,000 x g for 30 min at 4°C (Beckman Instruments Inc. Palo Alto, CA USA) respectively. The supernatant was filtered through a 0.45 μm membrane filter (Schleicher & Schuell GmbH, Dassel, Germany) and 20 μL of the sample was injected into a C₋₁₈ monomeric column (5 μm, 300 Å, 250 mm x 4.6 mm; Grace Vydac, Hesperia CA, USA). The peptides were eluted by a linear gradient from 100 – 0 % solvent A (0.1 % TFA in deionised water) and solvent B (0.1 % TFA in 90 % acetonitrile/water v/v) over 70 min. Peaks were detected using a Varian UV/vis detector set at 214 nm. Separations were carried out at room temperature (~22°C) at a flow rate of 1.0 mL min¹.

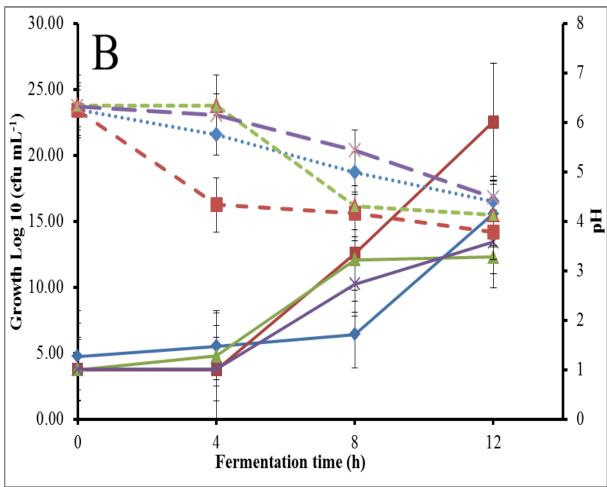
3.2.8 Statistical analysis

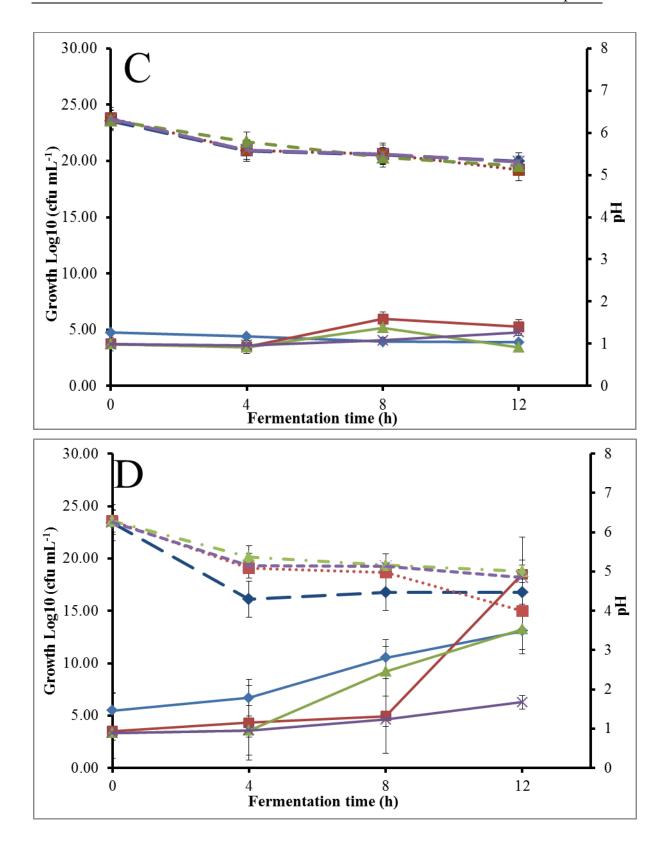
All results are expressed as mean values of 3 replicates with standard deviation. One way ANOVA was performed to investigate the differences in the treatments (bacterial strains, growth media, presence or absence of Flavourzyme[®] and fermentation time). Fisher's (least significant difference; LSD) test was used to investigate significant

differences among the means. All statistical analyses were carried out using SAS Version 9.0 software (SAS Institute Inc., Cary, NC, USA).

3.3 Results and Discussion


3.3.1 Preferential growth of selected LAB strains in RSM media with Flavourzyme® compared to WPC


Bacterial growth and pH value in RSM and WPC with and without Flavourzyme® at 37°C for 0, 4, 8 and 12 h are shown in (Figure 3.1). All strains grew differently in the media with varying pH. In general, higher bacterial growth logarithm was presented in RSM media compared with WPC media and was dependent on bacteria type and fermentation time (P < 0.05), (Figure 3.1). This may be attributed to the superior nutrient profile of RSM compared to WPC or due to heat treatments which leads to WPC protein denaturation (Dissanayake et al., 2012; Ramos et al., 2012; Dissanayake et al., 2013). The growth logarithm of the Bb12 was 12 cfu mL⁻¹ without Flavourzyme[®] in RSM at 12 h and pH 4.6 (Figure 3.1A). The highest growth logarithm was 25 cfu mL⁻¹ of Bifidobacterium animalis ssp12 (Bb12) with Flavourzyme[®] in RSM at 12 h and pH 3.6 (Figure 3.1B). Moreover, (Bb12) growth logarithm was weak in WPC without Flavourzyme[®] (5 cfu mL⁻¹) in the same fermentation time at pH 5.5 (Figure 3.1C). However, in WPC with Flavourzyme® the growth logarithm of Bb12 was 20 cfu mL⁻¹ at pH 4 (Figure 3.1D). Interestingly, the growth logarithm of *Lactobacillus casei* (Lc 210) was sharply increased between 8-12 h in RSM with Flavourzyme[®] (Figure 3.1B). Whilst the growth logarithm was stable in the same media without Flavourzyme® (Figure 3.1A), and in WPC with or without Flavourzyme® (Figure 3.1C and D). the optimal growth characteristics was with strain Bifidobacterium animalis ssp12 (Bb12), and the most effective media was RSM supplemented with Flavourzyme[®].


Analysis of variance showed that bacterial growth was significantly (P < 0.05) affected by media supplementation with Flavourzyme[®], fermentation time and strain type (Kilpi et al., 2007; Leclerc et al., 2002). Combination with Flavourzyme[®] increased the bacterial growth in both media types (P < 0.05); however, the growth and pH was higher in RSM media compared to WPC media (Figure 3.1). This implies that Flavourzyme[®] facilitates bacterial growth through its proteolytic action resulting in an increased amount of free amino acids. It has been reported that heat treatment at low pH

of WPC causes denaturation of WPC proteins (Dissanayake et al., 2013), in addition to having negative effects on milk proteins and peptides (Davies et al., 1998). Bb12 and Lc210 showed higher growth (~14 cfu mL⁻¹) at pH 4 and (~7 cfu mL⁻¹) at pH 4.9 respectively in 12 % RSM with Flavourzyme[®] supplementation compared to Lb11842 (12 cfu mL⁻¹) at pH 4.2 and La 2410 (10 cfu mL⁻¹) and pH 5.2 at 8 h (Figure 3.1), suggesting that LAB strains prefer substrate by enzymes. However, at 12 h incubation, Bb12 in 12 % RSM with Flavourzyme[®] showed significantly (*P* < 0.05) higher growth than Lc210, Lb11842 and La 2410 at pH 3.9 (Figure 3.1B). On the other hand, Bb12 showed low growth after 8 h fermentation (~12.5 cfu mL⁻¹) at pH 4.6 in 12 % RSM without Flavourzyme[®] supplementation (Figure 3.1A). The highest (*P* < 0.05) growth in the 4 % WPC media with Flavourzyme[®] supplementation was also shown by Bb12 after 12 h (~20 cfu mL⁻¹) at pH 4 but not in the first 8 h of fermentation (Figure 3.1D). Due to Flavourzyme[®] has the ability to hydrolyse milk proteins to free amino acids for all the media types resulted to an increase in bacterial growth compared with the media without Flavourzyme[®].

Hence, supplementation of Flavourzyme[®] effects the growth. In general, Bb12 and Lc210 strains were always more numerous than Lb11842 and La2410 during any given period for both media and were higher in RSM than WPC, most likely due to differences in protein type and protein structure of both media, variation amongst strains and utilization of limiting nutrients (Ramchandran et al., 2008; Dissanayake et al., 2013). It is likely that the growth of *L. delbrueckii ssp. bulgaricus* was lower due to low pH level (Tharmaraj & Shah, 2003). Similar growth characteristics were noted using LAB strains under the same media and same conditions (Ramchandran et al., 2010).

Figure 3.1 Growth (log 10 cfu ml⁻¹) and pH of (\rightarrow) *L. casei* (Lc210), (\rightarrow) *Bifidobacterium animalis ssp12* (Bb12), (\rightarrow) *L. delbrueckii* subsp. *bulgaricus* (Lb11842), (\rightarrow) *L. acidophilus* (La 2410) at 37°C for 12 hours (Error bars represent standard error of the mean) in RSM (**A**), RSM with Flavourzyme[®] (**B**), WPC (**C**) and WPC with Flavourzyme[®] (**D**).

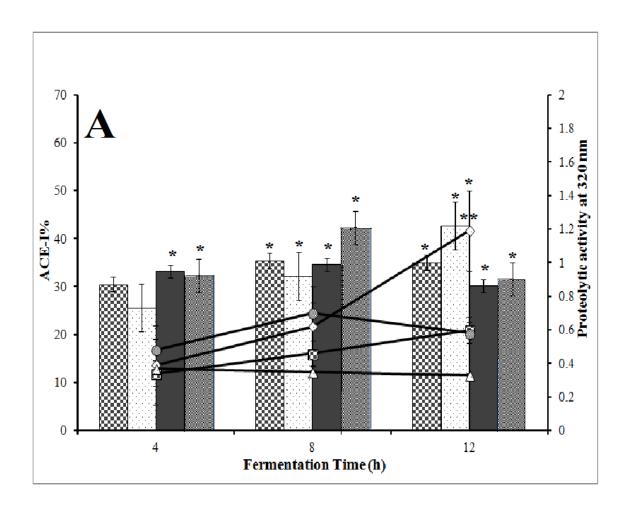
3.3.2 Proteolytic activity is higher in RSM media supplemented with Flavourzyme® Proteolytic activities of the four bacterial strains, Lc210, Bb12, Lb11842 and La2410 were measured to determine the free amino acids generated after 0, 4, 8 and 12 h of fermentation at 37°C in RSM or WPC and are shown in (Figure 3.2 (Line)). All organisms showed an increase in proteolysis with time (Figure 3.2). In general, supplementation with Flavourzyme[®] led to significantly increased processing of hydrolysis during 12 h fermentation time in both media. The proteolytic activity of strain (Bb12) was sharply increased, starting with initial fermentation at 4-8 h followed by no significant changes at 12 h fermentation in RSM supplemented with Flavourzyme[®], while proteolytic activity of La2410 and Lc210 were significantly increased during 12 h in the same media (Figure 3.2B). On the other hand, hydrolyses of the same strains were weak in RSM or WPC without supplementation (Figure 3.2A, C), even though strain Bb12 demonstrated high proteolytic activity in the same medium without supplementation (Figure 3.2A). Interestingly, strain La2410 showed the highest proteolytic activity in WPC supplemented with Flavourzyme® compared to the other strains in same media (Figure 3.2D). Highest proteolytic activity was observed in RSM media for all four strains compared to WPC media (P < 0.05). RSM supplemented with Flavourzyme[®] showed the highest proteolytic activity which increased with time, this correlated to a similar trend in the growth pattern (Figure 3.2).

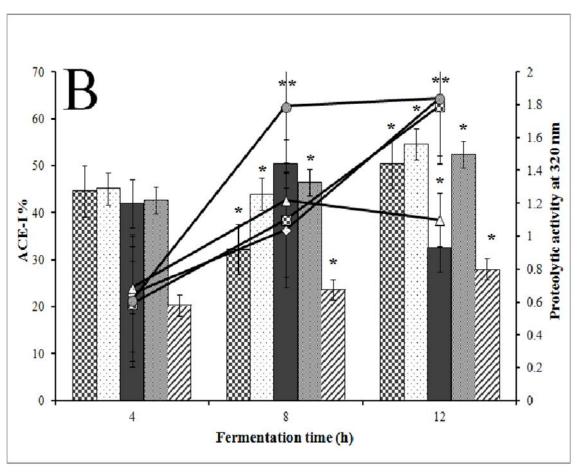
At 4 h the proteolytic activities of Lc 210, Bb12, Lb11842 and La2410 ranged between 35-65 % higher in RSM with Flavourzyme® compared to RSM without Flavourzyme® (Figure 3.2). Flavourzyme® has the ability to hydrolyse RSM's caseins (Tsai et al., 2008) more rapidly than whey proteins in WPC. This suggests that the addition of Flavourzyme® reduces the fermentation time required to achieve high proteolytic activity. As evidenced, protease enzymes hydrolyse large proteins to intermediate peptides (Tsai et al., 2008; Barbana & Boye, 2010), which in turn facilitated the activities of four strains (Figure 3.2). Similarly, the proteolytic activity and ACE-inhibition of LAB strains grown in 12 % RSM without Flavourzyme® supplementation with *Bifidobacterium* showed very high proteolytic capability compared to *L. delbrueckii ssp. bulgaricus* 1368, *L. casei* 15286, and *L. acidophilus* 4461 (Ramchandran et al., 2008 & 2010). The ability of *Bifidobacterium* to utilize almost all types of substrates could explain their high proteolytic capability (Ramchandran & Shah, 2008). However, *delbrueckii* subsp. *bulgaricus* has a poor ability to grow in milk

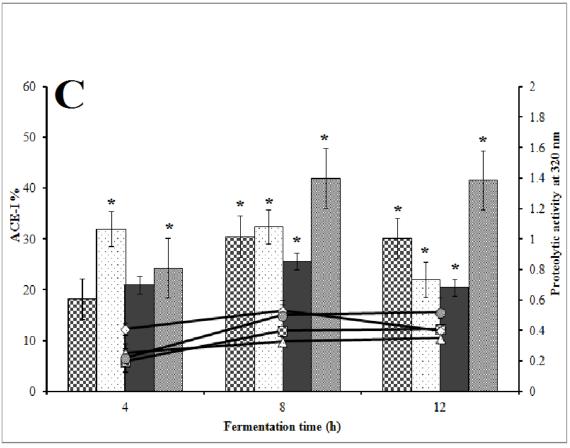
media due to its weak proteolytic activity. In general, proteolytic activities were significantly different (P < 0.05) between strains at any given fermentation time (Dave et al., 1998; Ramchandran et al., 2010). Similarly, the type of media used, as well as with or without Flavourzyme® supplementation, showed significant differences (Figure 3.2C, 3.2D), with the highest proteolytic activity in WPC media and Flavourzyme[®] observed with La 2410 at 12 h fermentation time and not at 8 h (Figure 3.2D). Bb12 and La2410 showed significantly (P < 0.05) higher proteolytic activity in both 12 % RSM and 4 % WPC with Flavourzyme® compared to L. casei and L. delbrueckii subsp. bulgaricus. These patterns of proteolysis correspond with the growth patterns of these organisms. Several reports have shown wide variations in the proteolytic abilities of different LAB strains (Oberg et al., 1991; Ramchandran & Shah, 2008). The highest proteolytic activities in RSM media with Flavourzyme® supplemented at 12 h was shown by strain Bb12 (Figure 3.2B). Flavourzyme[®] supplementation in WPC did not have the same effect as in RSM, especially at a lower fermentation time of 4 h and 8 h (Figure 3.2), which may be due to the effect of heat treatment and pH on the protein of WPC (Gauthier & Pouliot, 2003: Dissanavake et al., 2012). Flavourzyme[®] has the ability to hydrolyse peptides to free amino acids (Tsai et al., 2008) for all the media types due to an increase in bacterial growth (Figure 3.1, 3.2). Similarly, increasing proteolytic activity of probiotic organisms in RSM during fermentation process results in better survival (Donkor et al., 2006).

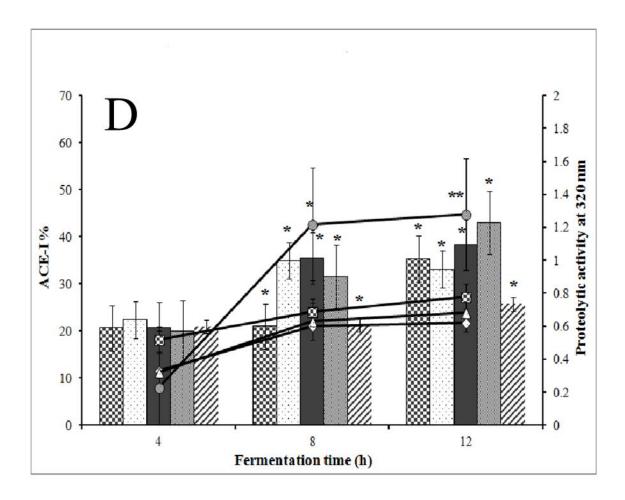
3.3.3 ACE-inhibition is influenced by strain type, media, fermentation time and ${\sf Flavourzyme}^{\tt @}$

The percentage of ACE-I activity of fermented RSM or WPC with Lc 210, Bb12, Lb11842 and La 2410 strains with or without Flavourzyme[®] supplementation at 37°C for (0-12 h) fermentation period is shown in (Figure 3.2 (bars)). Bacterial strain, media type, supplementation with or without Flavourzyme[®] and fermentation time demonstrated significant (P < 0.05) effects on ACE-I activity. Fermented RSM by LAB facilited with Flavourzyme[®] showed the strongest inhibitory activity on ACE-I (Tsai et al., 2008). Flavourzyme[®] alone was used for fermentation of RSM or WPC as a control (Figure 3.2B, 3.2D). At 0 h fermentation time, ACE-I showed no activity for all strains (Figure 3.2). Interestingly, strain La 2410 showed higher ACE-I activity in WPC or WPC with Flavourzyme[®] compared to Lc210, Bb12, Lb 11842, while this strain had


lesser ACE-I activity in RSM compared to the same strains used (Figure. 3.2C, D). Strain Bb12 (55 %) in RSM facilitated with Flavourzyme[®] at 12 h showed the highest ACE-I activity (Figure 3.2B (bars)). As the same time, the highest ACE-I activity at 8 h of fermentation was strain Lb11842 (50 %) in the same media compared to Flavourzyme[®] as control (25 %) at the same fermentation time. However, the same strain activity reached 35 % at 12 h in WPC Flavourzyme[®]-facilitated (Figure. 3.2D (bars)). The highest ACE-I activity in WPC Flavourzyme[®]-facilitated and without Flavourzyme[®]-facilitated was strain La 2410 (42 %), (Figure 3.2C, 2D (bars)). The best media to increase ACE-I activity was RSM with Flavourzyme[®] by strain Bb12 at 12 h, this correlated to a similar trend in the Proteolytic activity and growth pattern.


Flavourzyme® plays a role in increasing the production of bioactive peptides by hydrolysing proteins present in the media, resulting in the production of large and intermediate peptides. These become available to LAB strains, which utilize them as a source of essential and growth-stimulating amino acids (Juillard et al., 1998). These bacterial cells possess cell-envelope-located proteinases, which are able to degrade caseins/ oligo-peptides into peptides, allowing the internalization of the released peptides and intracellular peptidases and further hydrolysing them into smaller peptides and amino acids (Figure 3.3) (Juillard et al., 1998; Kunji et al., 1998). The differences observed in the two media (RSM and WPC) herein may be attributed to differences in the type of proteins present (Pan & Guo, 2010).


Previous studies have noted a similar trend with LAB fermentation in 12 % RSM showing ACE-I activity (Fitzgerald & Murray, 2006; Donkor et al., 2007). In both RSM and WPC media, supplementation with Flavourzyme[®] leads to increased ACE-I activity for all four bacterial strains with time of fermentation (P < 0.05). Bb 12 and La2410 had the highest ACE-I activity in both media types supplemented with Flavourzyme[®] compared to Lb 11842 and Lc 210 during 0- 12 h fermentation at 37°C (Figure 3.2).


ACE-I activity increased as the fermentation period increased from 4 h to 12 h for all strains due to increased protein hydrolyses. This likely resulted in high peptide production with ACE-I activity. However, the effect was more pronounced at 8 h fermentation as ACE-I activity increased from 30 to \geq 52 % in RSM supplemented with Flavourzyme[®] compared to 12 h (55 %) (Figure 3.2A, B). Whilst the highest ACE-

I activity in WPC with Flavourzyme[®] was stable between 8 h and 12 h (39 %) (Figure 3.2D), this implies that Flavourzyme[®] supplementation can be used to achieve the production of ACE-I activity peptides in a shorter time of fermentation at 8 h instead of 12 h. Generally, strains showing a greater percentage of ACE-I activity also indicates higher proteolysis, except in the case of *L. acidophilus*. In fact, oligo-peptides that cannot be transported into the cell usually remain in the media to exhibit bioactivity (Meisel and Bockelmann., 1999).

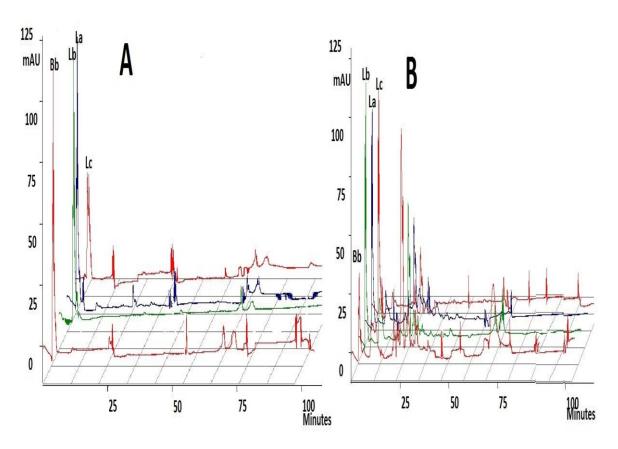


Figure 3.2 % ACE-inhibitory activities (bars) and Proteolytic activity (line) of 12% RSM (A) and 4% WPC (C) fermented by selected LAB.*L. casei* ()(Lc210), *Bifidobacterium animalis* ssp12()(Bb12), *L. delbrueckii* subsp. *bulgaricus* ()(Lb11842), *L. acidophilus*()(La2410) , Flavourzyme® as control and combination of LAB with Flavourzyme® ()(F+) (B and D) at 37°C up to 12 h .

3.3.4 RP-HPLC analysis of water-soluble peptides extract suggested that LAB's selected strains with Flavourzyme[®] is most optimal

The profiles of water-soluble peptides extract of 12 h fermented WPC or RSM hydrolysis by Lc210, Bb12, Lb11842 and La2410 strains combined with Flavourzyme[®] is shown in (Figure 3.3). The RP-HPLC elution profile of the hydrolysates was based on the hydrophobicity group of peptides (He et al., 2013). Both media hydrolyzed proteins providing peptides in the retention time range of 10-85 min in WPC with Flavourzyme[®] (Figure 3.3A), and, 10-60 min in RSM by strains Bb 12, Lb11842, La2410, and Lc210, respectively (Figure 3.3B). The effect of Flavourzyme[®] in both media and in particular RSM with Flavourzyme[®] was the most effective media to increase milk protein

hydrolysis as peptide peaks are shown in (Figure 3.3A, B). Strain Bb 12 had the largest number of peptide peaks between retention time (0-40) and (50-75), and this correlated to a similar trend in the ACE-I activity. Combination with Flavourzyme[®] generally aids strains in RSM media to increase proteolysis as evidenced by the presence of increased peptide's peaks (Figure 3.3B), compared to the same strains growing in WPC media (Figure 3.3A). On the other hand, based on the number of peaks, Bb12 and La2410 with Flavourzyme[®] were the best in terms of production of peptides in RSM. However, the supplementation was more beneficial to all strains in RSM compared with the same strains in WPC (Figure 3.3). Bb12 with Flavourzyme[®] in RSM was the most optimal in terms of providing an increased number of peaks. This corroborated our observation of high ACE-I activity (Figure 3.2).

Figure 3.3 RP-HPLC peptides profile of water soluble extracts obtained from fermented skim milk with *L. casei* (Lc210), *Bifidobacterium animalis ssp12* (Bb12), *L. delbrueckii* subsp. *bulgaricus* (Lb11842), *L. acidophilus* (La2410) at 37°C for 12 h, combined with Flavourzyme in WPC (A) compared to a combination with Flavourzyme in RSM (B) .

3.4 Conclusions

The proteolytic and ACE-I activities of *Lactobacillus casei* (Lc 210), *Bifidobacterium animalis ssp12* (Bb12), *Lactobacillus delbrueckii subsp. bulgaricus* (Lb11842), *Lactobacillus acidophilus* (La2410) were higher in RSM media compared with WPC media. *Bifidobacterium animalis ssp12* (Bb12) and *Lactobacillus acidophilus* (La 2410) demonstrated higher ACE-inhibitory and proteolytic activities compared to *Lactobacillus delbrueckii subsp. bulgaricus* (Lb11842) and *Lactobacillus casei* (Lc 210). However, the combination of Flavourzyme[®] and *Bifidobacterium animalis ssp12* (Bb12) have the highest proteolytic and ACE-I activities in RSM. The supplementation of media with Flavourzyme[®] increased proteolysis and thus increased ACE-I activities of all four bacterial strains. Moreover, Flavourzyme[®] supplementation of media could be used to reduce fermentation time from 12 h to 8 h.

Chapter 4 Effect of Flavourzyme® on Angiotensin Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by Lactobacillus helveticus

This chapter has been published. Ahtesh, F., Stojanovska, L., Shah, N., & Mishra, V. K. (2016). Effect of Flavourzyme® on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by *Lactobacillus helveticus*. *Journal of food science*, 81(1), M135-M143. (Appendex. I)

4.1 Introduction

Hypertension is considered a risk factor for coronary heart disease such as myocardial infarction and stroke (FitzGerald et al., 2004). According to the World Health Organisation, nearly one billion people worldwide suffer from hypertension (World Health Organisation, 2013). Angiotensin converting enzyme catalyses conversion of Angiotensin-I to Angiotensin-II (a vasoconstrictor), which contributes to hypertension and heart failure. Hypertension is usually controlled by a number of medications, the most common being a synthetic angiotensin converting enzyme inhibitory (ACE-I) drug such as captopril and enalapril (Hansson et al. 1999; Turner and Hooper 2002). ACE-I drugs decrease active angiotensin-II production from inactive angiotensin-I (Erdos, 1975; FitzGerald et al., 2004). Angiotensin-II receptor antagonists are agents used to modify the renin-angiotensin-aldosterone system through blocking angiotensin receptors, resulting in a decrease in blood pressure (Miura, Karnik, & Saku, 2011). However, long term use of synthetic ACE-I drugs may result in side effects such as cough, skin rash or development of impaired renal function (Sesoko & Kaneko, 1985; Coulter and Edwards 1987; Morgan, Anderson, & MacInnis, 2001; Acharya et al., 2003).

Peptides such as Val-Pro-Pro and Ile-Pro-Pro derived from milk proteins have been identified to have similar beneficial effects of ACE-I action opening the possibilities of replacing or complementing synthetic drugs (FitzGerald & Meisel, 2000; Pan et al. 2005; Tsai et al., 2008; Nielsen et al., 2009; Yamaguchi et al., 2009; Pihlanto, A., Virtanen, T., & Korhonen, H., 2010; Phelan and Kerins, 2011). Lactic acid bacteria (LAB) used to produce fermented dairy products (i.e. yoghurt, fermented milk, cheeses) have been shown to produce peptides with varied but significant ACE-I activities during fermentation as reported in several studies (Korhonen, 2009; Phelan & Kerins, 2011; Korhonen & Pihlanto 2003; Korhonen & Pihlanto, 2006; Korhonen & Pihlanto, 2007; Hernández-Ledesma et al., 2011). The use of specific LAB or proteases for producing ACE-I peptides from various milk media (yoghurt, cheese, sour milk) have been reported (van der Ven et al., 2002; Donkor et al., 2005; Pan et al., 2005; Kilpi et al., 2007; Meena et al., 2008; Tsai et al., 2008; Korhonen, 2009; Hamme et al., 2009; Ramchandran & Shah 2010; Ramchandran & Shah, 2011; Tellez et al., 2011; Chaves-López et al., 2012; García-Tejedor et al., 2013). Bioactive peptides which have ACE-I

activity have been derived from hydrolysis of proteins using skim milk and whey protein concentrate (Madureira et al., 2010; Donkor et al., 2007). Such peptides have clinically documented effects in the reduction of hypertension in humans (Aihara et al., 2005; Agyei et al., 2015). The production of these bioactive peptides thorough fermentation depends on several factors, such as growth media, fermentation time, temperature, pH and the type of LAB and strain used (Ramesh et al., 2012).

Lactobacillus helveticus (L. helveticus) is homo fermentative thermophilic LAB that possesses strong proteolytic activity and is used in the production of cheese and fermented milk beverages (Griffiths & Tellez., 2013). Due to its high proteolytic activity, L. helveticus is more effective compared to other LAB such as L. delbrueckii sp. bulgaricus and L. acidophilus in the production of ACE-I peptides (Korhonen & Pihlanto, 2006). Several studies have reported the use of L. helveticus for production of ACE-I peptides using milk media (Maeno et al., 1996; Leclerc et al., 2002; Kilpi et al, 2007; Nielsen et al., 2009; Sun et al., 2009; Pan and Guo 2010a; Otte et al., 2011; Singh et al., 2011; Lim et al., 2011; Unal and Akalin, 2012; Griffiths & Tellez, 2013). The effect of temperature, fermentation time and initial pH of fermented milk by L. helveticus has been reported for sour milk production (Pan, & Guo, 2010). Proteinases have been used extensively in the production of ACE-I peptides from dairy proteins (Pihlanto-Leppala, 2000). Pan and others (2005) used cell-free enzyme extract from L. helveticus consisting of proteinase, amino peptidase and x-prolyl-dipeptidyl amino peptidase to produce Val-Pro-Pro and Ile-Pro-Pro with potent ACE-I activities. Tsai and others (2008) reported a tenfold increase in the production of ACE-I peptides when milk was fermented by Streptococcus thermophiles and Lactobacillus bulgaricus in the presence of a proteinase. Since there are no published reports on the production of ACE-I peptides from milk employing proteases and *helveticus*, the objective of this study was to assess and compare L. helveticus strains for production of ACE-I peptides using two milk media (12 % reconstituted skim milk (RSM) and 4 % whey protein concentrate (WPC) with or without protease (Flavourzyme®) supplementation by measuring the bacterial growth, proteolytic activity and in vitro ACE-I activity. Therefore, the present study was performed to evaluate the hypothesis that a combination of Flavourzyme[®] and L. helveticus significantly increases ACE-I percentage in milk media.

4.2 Material and Methods

4.2.1 Experimental design and bacteria propagation

Bacteria and enzymes

L. helveticus strains ASCC 881315, 881188, 880474 and 880953 were obtained from Dairy Innovation Australia Ltd, Werribee, VIC, Australia and stored in a 40 % glycerol de Man, Rogosa, and Sharpe (MRS) broth (Oxoid, Ltd., West Heidelberg, VIC, Australia) at −80°C. For activation, an aliquot (100 μL) of each strain was individually transferred into the MRS broth and incubated at 37°C for 24 hours (h). Weekly subculturing of bacteria into the MRS broth was performed to maintain the bacterial activity. Prior to each experiment, bacteria were subcultured three times and fermented for 12 h in 12 % RSM or 4 % WPC. Flavourzyme[®] 1000 L (EC 3.4.11.1), an amino peptidase with an activity of 1000 Leucine Amino-peptidase (LAPU g-1), was obtained from Novozymes Australia., NSW Australia. Table 4.1 shows the types of experimental media, strains and enzyme combinations used in the study.

Table 4.1 Experimental design to analyse and measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8 and 12 h) fermentation of L. helveticus strains in 12 % RSM or 4 % WPC and with or without combination of Flavourzyme[®].

Media used		L. helveticus strains used	Combination of <i>L. helveticus</i> strains (1 % v/v each with	
		without combination		
			Flavourzyme® 0.14%)	
RSM		881315	881315+Flavourzyme®	
		881188	881188+Flavourzyme®	
		880474	880474+Flavourzyme®	
		880953	880953+Flavourzyme®	
	control	Flavourzyme®		
WPC		881315	881315+Flavourzyme®	
		881188	881188+Flavourzyme®	
		880474	880474+Flavourzyme®	
		880953	880953+Flavourzyme®	
	control	Flavourzyme®		

4.2.2 Media preparation

Fermentation media, preparation and procedure

Skim milk powder (52 % lactose, 37 % protein, 8.6 % ash and 1.2 % fat) and WPC (47.5 % lactose, 35 % protein, 9 % ash and 2.5 % fat) were obtained from Murray Goulburn Co-operative Co. Ltd., VIC and United Milk Tasmania Ltd., TAS Australia, respectively. RSM (12 %) and WPC (4 %) were prepared by dissolving appropriate quantities of skim milk powder and WPC in distilled water. Both media (RSM and WPC) were heated to 90°C for 20 minutes (min), cooled to room temperature and inoculated with 1% of *L. helveticus* strains with or without 0.14 % (w/w) Flavourzyme[®]1000 L. Fermentation was conducted at 37°C and samples collected at 4 h, 8 h and 12 h and stored at -20°C for analysis of bacterial growth, proteolytic and ACE-I activities and peptide profiling by Reverse Phase – High Performance Liquid Chromatography (RP-HPLC).

4.2.3 Measurement of bacterial growth

Growth was assessed every 4 h up to 12 h during fermentation in 12 % RSM or 4% WPC as described in the procedure in section 3.2.3.

4.2.4 Determination of proteolytic activity

Proteolytic activity during fermentation was determined according to the procedure described in section 3.2.5.

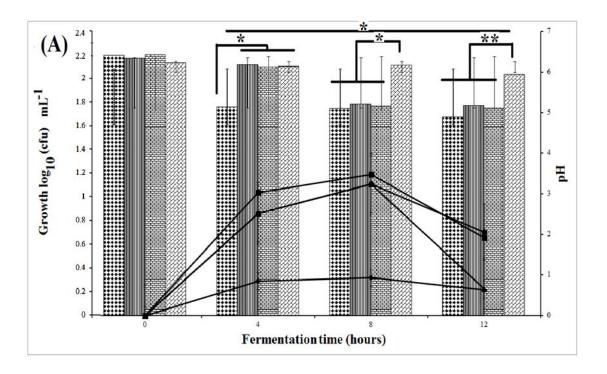
4.2.5 Determination of ACE-Inhibitory activity

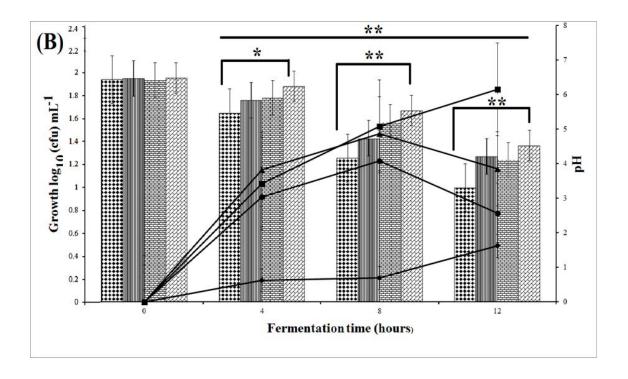
ACE inhibitory activity was measured according to the procedure described in section 3.2.6.

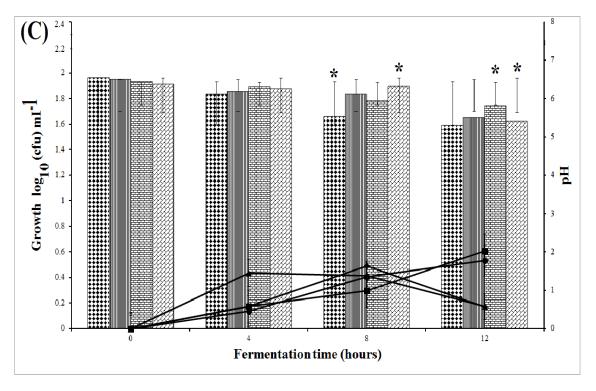
4.2.6 RP-HPLC analysis of water-soluble peptides extract

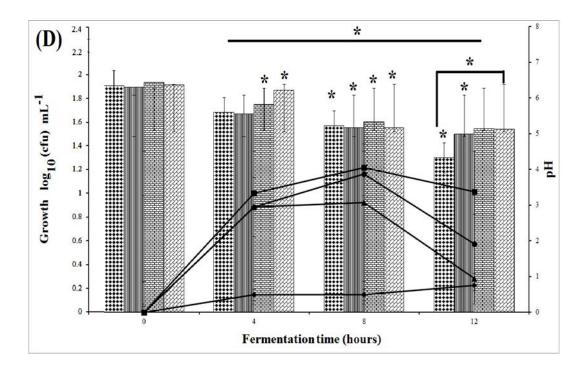
Water-soluble peptides extract was analysed according to the procedure described in section 3.2.7.

4.2.7 Statistical analysis


All results were expressed as mean values of three replicates with standard deviation. One-way ANOVA was performed to investigate the significant differences in the treatments (strains, growth media, presence or absence of Flavourzyme[®] and fermentation time). The level of significance was tested at 5% level (P < 0.05). Fisher's (least significant difference; LSD) test was used to investigate significant differences among the treatment means. Correlation analysis was carried out between variables for the same bacteria strain, growth media and presence or absence of Flavourzyme[®]. The degree of correlation between these variables was expressed as Pearson coefficient (r) and corresponding P values. All statistical analyses were carried out using SAS V9.0 software (SAS Inc., Cary, NC, USA).


4.3 Results and Discussion


4.3.1 Preferential growth of L. helveticus in RSM media with Flavourzyme[®] compared to WPC

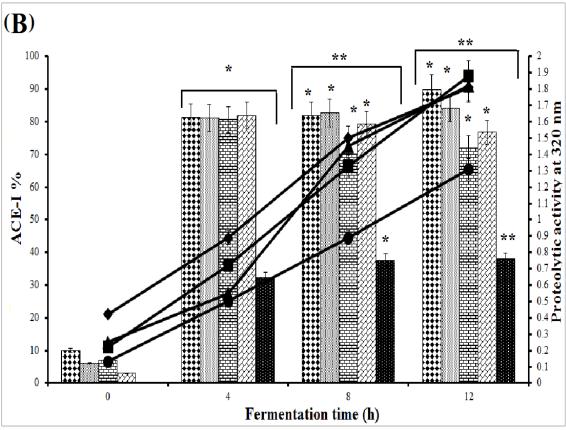

Figure 4.1 shows the microbial growth and the pH of media during fermentation with L. helveticus strains. All strains were able to grow in both media (Figure 4.1). Analysis of variance showed that the bacterial growth was significantly (P < 0.05) affected by media, media supplementation with protease (Flavourzyme®), fermentation time and strain type. Higher growth was significantly noted (P < 0.05) in RSM compared to WPC. This may be attributed to a superior nutrient profile of RSM compared to WPC (Kilpi et al., 2007; Leclerc et al., 2002) and higher specificity to caseins than whey proteins. Flavourzyme[®] led to increased growth in both media owing to higher proteolysis releasing more peptides and amino acids required for bacterial growth (Kenny et al., 2003). While L. helveticus 881315 showed the least growth (0.6 cfu mL⁻¹) at pH 4, L. helveticus 881188 (2.0 cfu mL⁻¹) at pH 4.2 showed the highest growth compared to other strains in RSM containing Flavourzyme® at 12 h for the entire duration of fermentation. L. helveticus strains 880474 (1.5 cfu mL⁻¹) and pH 5 at 8 h and 880953 (1.2 cfu mL⁻¹) and pH 5.5 at 8 h, also showed increased growth compared to 881315 in RSM. It appears that Flavourzyme[®] supplementation prolonged the log phase in 881188, whereas 880474 and 880953 strains went into a decline phase after 8 h (1.2) cfu mL⁻¹) and pH 4 and (0.6 cfu mL⁻¹) and pH 4.6. L. helveticus 881188 showed the highest growth (1.3 cfu mL⁻¹) and pH 4.2 at 8 h and decreased into (1.0 cfu mL⁻¹) and pH 4.9 at 12 h of fermentation in WPC with Flavourzyme[®]. In general, WPC showed a weak growth for all strains without the combination of Flavourzyme[®] compared to the same strains in combination with Flavourzyme® (Figure 4.1). However, growth for all

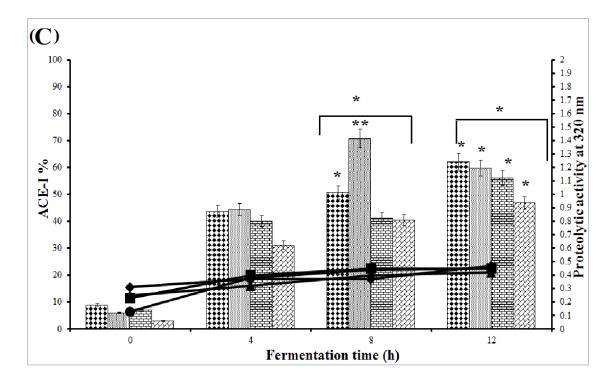
strains in WPC with Flavourzyme[®] increased significantly at 8 h and declined after 8 h of fermentation at pH 3.4, possibly due to low pH and heat treatment of WPC thereby reducing available nutrients for growth as previously reported (Zisu and Shah 2003; Dissanayake et al., 2013). Furthermore, accumulation of lactic acid in the media may have contributed to a decrease in bacterial growth observed after 8 h. Similar growth characteristics are known for most LAB as reported by Leroy and de Vuyst (2001) for *L. sakei* CTC 494. The differences observed in bacterial growth in the two media are related to the different nature of proteins present (Leroy & de Vuyst, 2001). Caseins in general are more susceptible to hydrolysis by *L. helveticus* enzymes than whey proteins (Griffith & Tellez, 2013).

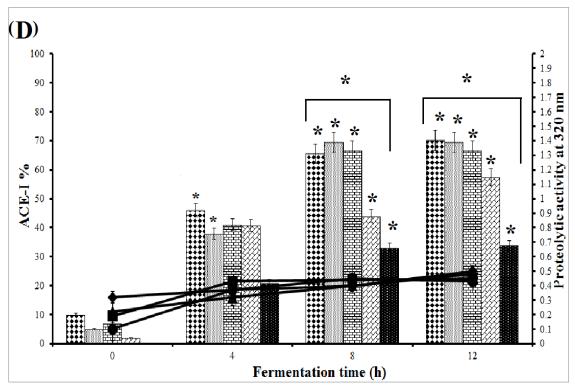
Figure 4.1 Growth (line) of *L. helveticus* strains and pH (bars) in (A) RSM, (B) RSM with Flavourzyme[®], (C) WPC and (D) WPC with Flavourzyme[®] fermented at 37°C for 12 h, (\longrightarrow 881315), (\longrightarrow 881188), (\longrightarrow 880474) and (\longrightarrow 880953). The vertical lines depict standard deviation and lines above signify differences at (*) P < 0.05 and (**) P < 0.01.

4.3.2 Proteolytic activity is higher in RSM media with Flavourzyme®

An increase in the amount of free amino acids (NH₃) groups as released by hydrolysis of milk proteins were quantified by the OPA method by measuring the change in the absorbance at 320 nm and are presented in Figure 4.2. Irrespective of *L. helveticus* strains grown in RSM or WPC with or without Flavourzyme[®] supplementation, the proteolysis continued at 37°C for 12 h (Figure 4.2). Higher proteolysis was noted in fermented RSM than WPC, with or without supplementation with Flavourzyme[®], indicating that all strains preferred RSM proteins as substrate over WPC. The proteolysis remained significantly lower (≤ 0.5) in WPC compared to RSM (> 0.78), indicating that proteins of RSM were the preferred substrate by proteolytic enzymes of *L. helveticus* strains investigated. This correlated with a similar trend noted in the growth pattern (Figure 4.1). The order of proteolytic activity of *L. helveticus* strains in RSM was 881315 > 881188 > 880474 > 880953. Supplementation of RSM with Flavourzyme[®] increased the proteolytic activity of all strains significantly (< 0.05),


reaching a maximum absorbance > 1.8 in 12 h by L. helveticus 881315, 880474 and 881188 (Figure 4.2). Interestingly, the proteolytic activity of strain 881315 was high during 12 h (Figure 4.2) despite poor growth in both media (Figure 4.1). The activity in RSM with Flavourzyme[®] was approximately higher by 45-60 % than that without Flavourzyme® even after 4 h of fermentation and was sustained over the 12 h duration of fermentation. However, except for L. helveticus 880953, the response to Flavourzyme[®] in increasing proteolysis was similar after 8 h of fermentation. Flavourzyme® appears to have hydrolysed large proteins present in RSM to intermediate peptides, which were used by L. helveticus to produce small peptides and free amino acids (Leclerc et al., 2002). Co-fermentation of RSM with Flavourzyme® supplementation with L. helveticus strains reduced the time required for a given degree of proteolysis. These results suggest that proteolysis was enhanced in the higher protein containing media supplemented with Flavourzyme® and that casein was a better substrate compared to whey proteins for all L. helveticus strains (Griffith & Tellez, 2013). In addition, the amount of free NH3 groups in the media continued to increase over 12 h except for media without Flavourzyme[®] for which the amount did not increase as much after 8 h (Figure 4.2). Matar et al., (1996) have noted differences in the proteolytic activities between strains.


4.3.3 ACE-Inhibitory activity is influenced by strain type, media and Flavourzyme[®] combination


The amount and type of peptides produced during hydrolysis is known to influence ACE-I activity. An *in vitro* assay was used to measure this activity following the method of Donkor et al., (2007). The ACE-I activity of *L. helveticus* strains (881315, 881188, 880474 and 880953) in RSM or WPC with or without Flavourzyme[®] at 37°C for 12 h are presented in (Figure 4.2). Flavourzyme[®] alone was used as a control. ACE-I activity differed significantly between strains. *L. helveticus* 881315 and 881188 showed higher ACE-I activity compared to other strains in RSM (Figure 4.2). Flavourzyme[®] enhanced the production of ACE-I peptides as previously reported for other LAB (Tsai et al., 2008). ACE-I activity for all strains in both media increased significantly during the fermentation period (P < 0.05). However, differences existed between strains and media used when compared at the same time of fermentation. Media type, strains, supplementation of Flavourzyme[®] and fermentation time had significant (P < 0.05)

effects on ACE-I activity. As with proteolytic activity, ACE-I activity also increased as fermentation time increased for all strains. Supplementation of RSM with Flavourzyme[®] significantly (P < 0.05) increased ACE-I activity of L. helveticus strains. Except for L. helveticus 880474, ACE-I increased from 40-60 % to \geq 85 % in RSM with Flavourzyme[®] supplementation after 8 h of fermentation. The inhibition increased during fermentation when L. helveticus 881315 and 881188 were used from 10-89.8 % and from 5-85 % in RSM with supplementation, respectively (Figure 4.2B). While the same strains in WPC with Flavourzyme[®] were present, the ACE-I increased from 10- 65 % and 5-60 % during 12 h, respectively (Figure 4.2D). Since both of these strains demonstrated high proteolysis, co-fermentation with enzyme appeared to have produced higher amounts of ACE-I peptides as evident in increased number of peaks (Figure 4.3). The inhibitory activity remained high at 12 h for all strains except L. helveticus 880474, which showed a significant drop in ACE-I after 4 h of fermentation. There was no significant difference (P < 0.05) in ACE-I between hydrolysates produced from WPC with or without Flavourzyme® at 4 h fermentation. Thereafter, ACE-I increased differentially among the strains and a maximum of 89.8 % observed for L. helveticus 881315 with Flavourzyme[®] in RSM at 12 h. However, the growth of the same strain was weak for the entire period of 12 h, it not only produced ACE-I peptides but also accumulated them without further conversion to free amino acids required for growth. This indicates that peptidase enzymes are not very active in strain 881315 as similar observation was previously reported for peptidase deficient mutant of L. helveticus CNRZ32 (Kilpi et al., 2007). Data also suggest a delayed effect of the addition of Flavourzyme[®] in WPC. The increase in ACE-I due to the addition of Flavourzyme[®] was significantly (P < 0.05) higher in RSM compared to WPC (Banks, Law, Leaver, & Horne, 1995; Patel & Creamer, 2008) and since ACE-I almost doubled in the first 8 h of fermentation, Flavourzyme® supplementation can be used to reduce the time of hydrolysis required for the production of ACE-I peptides. The differences observed between RSM and WPC may be attributed to differences in the type of proteins present and therefore the variety of peptides present in the hydrolysates (Matar & Goulet, 1996; Pan & Guo, 2010). Preference to casein by proteinases has been well documented (Matar & Goulet, 1996; Cheison et al., 2007; Lim et al. 2011; Griffiths & Tellez, 2013). Strains 881315 and 881188 appear to be the best of the four tested strains in providing maximum ACE-I (60-70 %). Flavourzyme® supplementation increased ACE-I of both media to 80-88 %.

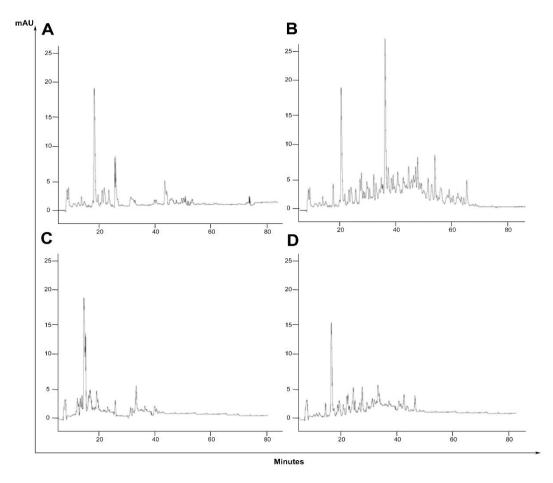


Figure 4.2 Proteolytic activity (line) and ACE-I % (bars) of *L. helveticus* strains (\blacksquare 881315), (\blacksquare 881188), (\blacksquare 880474), (\blacksquare 880953) and (\blacksquare Flavourzyme as control at 37°C for 12 h in (**A**) RSM, (**B**) RSM with Flavourzyme (**C**) WPC and (**D**) WPC with Flavourzyme . The vertical lines depict standard deviation and lines above signify differences at (*) P < 0.05 and (**) P < 0.01.

4.3.4 RP-HPLC analysis of water-soluble peptide extracts

The peptide profiles of water-soluble extracts of 12 h fermented skim milk, with or supplementation of Flavourzyme[®] by the two best performer strains, L. helveticus 881315 and 881188 showing high proteolytic and ACE-I activities, are shown in (Figure 4.3). The RP- HPLC elution profile of the hydrolysates is mainly based on the hydrophobicity of the peptides. In the control unfermented RSM, only one peak appeared at 10 min (not shown). The chromatograms (Figures 4.3A, 4.3C) show that 881315 and 881188 strains without enzyme supplementation hydrolysed skim milk proteins into peptides that showed the retention time range of 10-40 min and 10-45 min, respectively. Supplement with Flavourzyme[®] (Figure 4.3B and 4.3D) generally increased proteolysis as evident by the presence of more peptides appearing in the range of 10-65 min (881315) and 10-45 min (881188). Since peptide profile extended beyond 45 min for extracts from hydrolysates achieved by co-fermentation by strain 881315 combined with Flavourzyme[®], this combination was optimal in terms of providing peptides that are more hydrophilic and in higher amounts that the other three treatments. This trend is also followed by high ACE-I activity (Figure 4.2). However, the effect of supplementation was more beneficial to strain 881315 than that to 881188.

Figure 4.3 RP-HPLC peptide profile of water soluble extracts obtained from skim milk fermented by *L. helveticus* strains 881315(\mathbf{A}), 881315 with Flavourzyme[®] (\mathbf{B}), 881188 (\mathbf{C}) and 881188 with Flavourzyme[®] (\mathbf{D}) after 12 h fermentation at 37 °C.

4.3.5 Correlation between proteolytic activity, ACE-Inhibition and bacterial growth

The correlation between proteolytic activity and anti-hypertensive properties expressed as ACE-I and bacterial growth expressed as (cfu) for the same bacterial strain are presented in (Tables 4.2 and 4.3) for RSM and WPC respectively. A significant correlation in growth with all measurements for each strain in RSM was evident except L. helveticus 880953, which did not grow well in both media (P < 0.05). This correlated to proteolytic and ACE-I activity of strains (Table 4.2). This suggests that Flavourzyme[®] enhanced the proteolytic and ACE-I activities of L. helveticus in RSM. ACE-I activity positively and strongly correlated with proteolytic activity for each strain, both with or without Flavourzyme[®] (P < 0.05) (Table 4.2), implying that

increased proteolytic activity increased the production of ACE-I peptides. Moreover, ACE-I activity showed a strong correlation with bacterial growth in RSM with or without Flavourzyme[®], for all strains except L. helveticus 880953.

Table 4.2 Pearson coefficient correlations (r), proteolytic activity (OPA), ACE-inhibitory activity (ACE) and bacterial growth (CFU) for strain, *L. helveticus* 881315, *L. helveticus* 881188, *L. helveticus* 880474 and *L. helveticus* 880953 grown in 12 % RSM at 37°C for 12 h with or without Flavourzyme[®] combination.

L. helveticus strains	Variables	Without Flavourzyme®			With Flavourzyme®		
		OPA	ACE	CFU	OPA	ACE	CFU
881315	OPA	1.000	0.988**	0.918**	1.000	0.979**	0.946**
	ACE		1.000	0.945**		1.000	0.864**
	CFU			1.000			1.000
881188	OPA	1.000	0.991*	0.874*	1.000	0.966*	0.852*
	ACE		1.000	0.882*		1.000	0.694**
	CFU			1.000			1.000
880474	OPA	1.000	0.962**	0.805*	1.000	0.978*	0.835*
	ACE		1.000	0.825*		1.000	0.928*
	CFU			1.000			1.000
880953	OPA	1.000	0.989*	0.690**	1.000	0.891*	0.863*
	ACE		1.000	0.588**		1.000	0.597*
	CFU			1.000			1.000

^{*}*P* < 0.05, ** *P* < 0.01.

Table 4.3 Pearson coefficient correlations (r), proteolytic activity (OPA), ACE-inhibitory activity (ACE) and bacterial growth (CFU) of, *L. helveticus* 881315, *L. helveticus* 881188, *L. helveticus* 880474 and *L. helveticus* 880953 grown in 4 % WPC at 37°C for 12 h with or without Flavourzyme[®] combination.

L. helveticus strains	Variables	Without	Without Flavourzyme®		With	<u>A</u> (R)	
		OPA	ACE	CFU	OPA	ACE	CFU
881315	OPA	1.000	0.615*	0.713*	1.000	0.530*	0.580*
	ACE		1.000	0.927**		1.000	0.949**
	CFU			1.000			1.000
881188	OPA	1.000	0.946*	0.866*	1.000	0.626*	0.562*
	ACE		1.000	0.947*		1.000	0.978**
	CFU			1.000			1.000
880474	OPA	1.000	0.615**	0.666*	1.000	0.867*	0.907*
	ACE		1.000	0.894*		1.000	0.971*
	CFU			1.000			1.000
880953	OPA	1.000	0.716**	0.567*	1.000	0.686*	0.608*
	ACE		1.000	0.827*		1.000	0.634**
	CFU			1.000			1.000

^{*}*P*<0.05,***P*<0.01.

4.4 Conclusions

Production of ACE-I peptides by *L. helveticus* varied between the strains due to the differences in proteolytic activity. Casein-rich RSM supported higher growth, higher proteolytic activity and produced higher ACE-I activities by all *L. helveticus* strains. Therefore, RSM is superior to WPC as a medium for production of ACE-I peptides irrespective of supplementation with protease, which generally increased hydrolysis of proteins to produce more ACE-I peptides. Beneficial effects of protease supplementation were more pronounced in the first 8 h of fermentation and also sustained thereafter. However, *L. helveticus* 881315 showed the lowest growth. The highest ACE-I activity was observed in 12 % RSM supplemented with Flavourzyme[®] and up to 12 h fermentation by *L. helveticus* 881315 and 881188 at 37°C, respectively. These conditions will aid in the production of a functional fermented drink with high ACE-I activity.

Chapter 5 Effects of *Kluyveromyces marxianus* LAF4, combined with probiotic strains as a source of angiotensin converting-enzyme peptides

This chapter has been submitted for publication. Ahtesh F., Apostolopoulos V., Vijay M., Stojanovska L., (2016). Effects of *Kluyveromyces marxianus* LAF4 combined with probiotics as source of Angiotensin converting enzyme peptides. *Dairy science journal*. (Appendix. I).

5.1 Introduction

Probiotic microorganisms are defined as 'live microorganisms that when administered in adequate amounts confer health benefits to the host' (Sanders, 2008; World Health Organisation, 2013). Probiotic foods are 'food products that contain a living probiotic organism in adequate concentration, so that after their ingestion, the postulated effect is obtained and is beyond that of usual nutrient suppliers' (Saxelin et al., 2003). Milk is a rich growth medium that contains proteins and essential factors that are capable of supporting growth of LAB. ACE-I peptides activity has been extensively studied in the last few years (Hong et al., 2008; Fragasso et al., 2012; García-Tejedor et al., 2013). ACE-I peptides such as, antihypertensive peptides, decrease the level of vasoconstricting peptide, Angiotensin-II and therefore reduce blood pressure (Martinez-Maqueda et al., 2012; Arbia et al., 2013).

Bioactive peptides, derived from milk proteins, have been found to have similar ACE-I activity and may be used to decrease hypertension with no known side effects (Pfeffer et al., 2003; Tsai et al., 2008; Hernández-Ledesma et al., 2011; Wang et al., 2012; Unal and Akalin, 2012). The side effects of ACE-I drugs include coughing, skin rashes and impaired renal function (Sesoko S, 1985; Turner and Hooper, 2002; Fragasso et al., 2012). The beneficial alternatives of ACE-I drugs are peptides which are isolated from fermented milk products using probiotics (Hartmann and Meisel, 2007; Hernández-Ledesma et al., 2011; Ahtesh et al., 2016a). Probiotics consist of either yeast, in particular *Saccharomyces* or *Kluyveromyces marxianus* (*K. marxianus*) (Penner, Fedorak, & Madsen, 2005).

For thousands of years yeasts have been used to produce a wide range of fermented traditional foods and beverages (Chaves-López et al., 2011b; Roostita and Fleet, 1996). Yeast fermentation of milk involves hydrolysis of lactose and galactose, assimilation of lactate, lipolytic and proteolytic activity (Roostita & Fleet, 1996). Yeasts are considered fundamental in the production of some fermented milk products, such as Kumis and Kefir. Kumis is traditional fermented cow milk produced and consumed in South West Colombia (Chaves-López et al., 2011). Recently, skim milk fermented with yeast and LAB exhibited particular metabolic profiles, which possess great variability in ACE-I-inhibitory properties, contributing to the ACE-inhibitory activity of Colombian Kumis (Chaves-López et al., 2011). Natural fermented milk beverages are manufactured in many countries and yeasts are included in the production process of some of them (Graham, 2006). In different Colombian

Kumis, several yeast species have been found, and most of them have been generally described in indigenous Asian or African fermented milk products, contributing considerably to the development of the final flavours of the products (Graham, 2006; Kebede et al., 2007). In Asian fermented milks, the most prevalent species is *Kluyveromyces marxianus* (*K. marxianus*) often associated with *Saccharomyces spp* (Jespersen, 2003). It has been reported that yeasts isolated from dairy products have proteolytic characteristics (Jakobsen and Narvhus, 1996).

K. marxianus is dairy yeast that may have a promising and viable application in obtaining bioactive peptides from lactoglobulin by fermenting whey protein (Belem et al., 1999). The use of K. marxianus in milk fermentation is also a good source for producing oligonucleotides (flavour enhancers in food products); oligosaccharides (a prebiotic that stimulates the growth of Bifidobacterium sp. in animal and human intestines) and oligo peptides (immunostimulatory) (Belem and Lee, 1998; García-Tejedor et al., 2013; Chaves-López et al., 2012). K. marxianus has been reported as a promising candidate for the generation of antihypertensive peptides from whey proteins α -lactalbumin and β -lactoglobulin, (Belem et al., 1999) or in combination with *Lactobacillus rhamnosus* during 168 h of milk fermentation (Hamme et al., 2009). Yeast species such as K. marxianus, Saccharomyces cerevisiae and Candida parapsilosis have been documented to produce peptides with ACE-I activity (García-Tejedor et al., 2013; Gonzalez-Gonzalez et al., 2011; Chaves-López et al., 2012; Hamme et al., 2009; Kebede et al., 2007). Recently, K. marxianus isolated from Colombian Kumis was able to produce fermented milk with ACE-I activity (Chaves-López et al., 2012). However, the *in vivo* antihypertensive effect of casein and whey-derived bioactive peptides generated by yeast strains has not yet been demonstrated.

Herein, the efficacy of dairy yeast to generate milk protein-derived peptides with ACE-I activity was investigated. For this purpose, different strains of *Lactobacillus; L. casei* (Lc210), *L. delbrueckii subsp. bulgaricus* (Lb11842), *L. acidophilus* (La2410), and four different strains of *L. helveticus* (Lh) ASCC-881315, 881188, 880474 and 880953 combined separately with *K. marxianus* LAF4 were screened for their ability to grow in 12 % RSM to produce hydrolysates containing ACE-I peptides. The effect of fermentation time, media, probiotic strain and the presence or absence of yeast was evaluated.

5.2 Material and Methods

5.2.1 Experimental design and culture propagation

Fifteen different fermented treatments in 12 % RSM treatments with probiotic bacteria *L. casei* (Lc210), *L. delbrueckii ssp. bulgaricus* (Lb11842), *L. acidophilus* (La2410), *L. helveticus*; Lh 881315, Lh 881188, Lh 880474 and Lh 880953 were tested and the experiments were triplicated (Table 5.1) the treatments were obtained from Dairy Innovation Australia Ltd. The selected probiotic bacteria were stored in de Man Rogosa and Sharpe (MRS) broth containing 40 % glycerol (Oxoid, Ltd., West Heidelberg, Victoria, Australia) at −80 °C. *K. marxianus* LAF4/ 10U were obtained from Chr. Hansen Pty. Ltd, France. For activation 100 μL aliquot of each strain was individually transferred into sterile 10 mL MRS broth and incubated at 37 °C for 24 hours (h) prior to each experiment. The microorganisms were cultured three times and incubated for 12 h in 12 % RSM at 37 °C.

Table 5.1 The experimental design and codes used in the study to analyse and measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activity and % of ACE-inhibitory activities during (0, 4, 8) and (0, 4, 8) measure the pH, growth, proteolytic activities activities

Media	Code	Cultures used without	Code	Combination of cultures	
used		combination		with Kluyveromyces	
				(1 % v/v each)	
RSM	Lb	L.bulgaricus	Lb	L.bulgaricus + Kluyveromyces	
	La	L. acidophilus	La	L. acidophilus+ Kluyveromyces	
	LC	L. casei	LC	L. casei + Kluyveromyces	
	Control			Kluyveromyces	
	Lh	L h 881315	Lh	L h 881315+ Kluyveromyces	
	Lh	L h 881188	Lh	L h 881188+ Kluyveromyces	
	Lh	L h 880474	Lh	L h 880474+ Kluyveromyces	
	Lh	L h 880953	Lh	L h 880953 + Kluyveromyces	

5.2.2 Media Preparation

Media were prepared using RSM (52 % lactose, 37 % protein, 8.6 % ash and 1.2 % fat). All media were sterilised by heat treatment at 90 °C for 20 min, cooled to 40 °C. Each media was inoculated with 1 % v/v of *L. casei* (Lc210), *L. delbrueckii ssp. bulgaricus* (Lb11842), *L. acidophilus* (La2410), *L. helveticus* ASCC; Lh 881315, Lh 881188, Lh 880474 and Lh 880953 separately and in combination with or without *K. marxianus* and a fermented sample using *K. marxianus* alone as control (Table 5.1). Fermentation was carried out for 12 h and samples were collected at 0, 4, 8 and 12 h at 37 °C and immediately analysed and after that stored at -20 °C for further analysis.

5.2.3 Measurement of bacterial and yeast growth

Growth was assessed every 4 h up to 12 h during fermentation in 12 % RSM as described in the procedure in section 3.2.3.

5.2.4 Determination of proteolytic activity

Proteolytic activity during fermentation was determined according to the procedure described in section 3.2.5.

5.2.5 Determination of ACE inhibitor activity

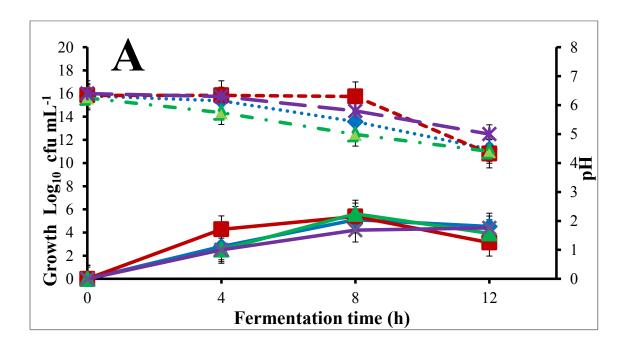
ACE inhibitory activity was measured according to the procedure described in section 3.2.6.

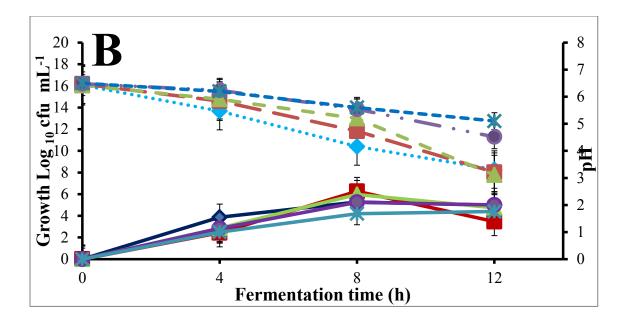
5.2.6 Preparation of water-soluble peptides extract

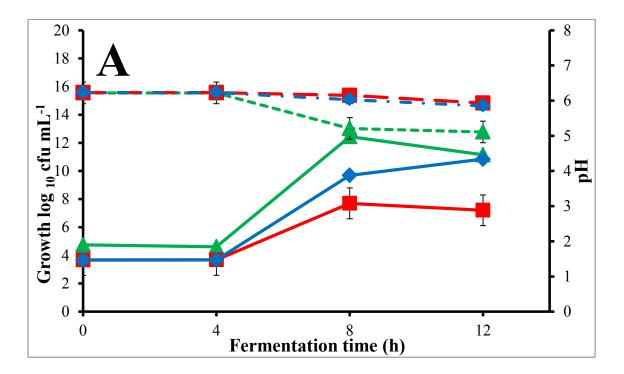
Water-soluble peptides extract was analysed according to the procedure described in section 3.2.7.

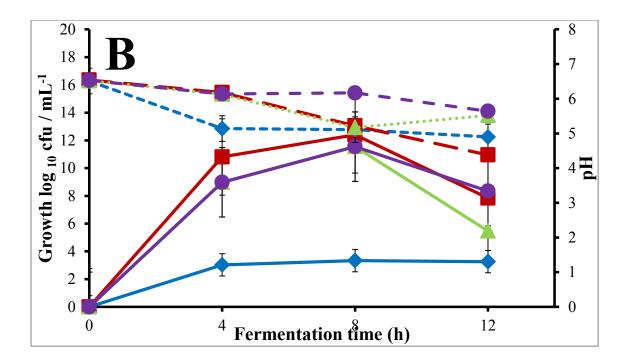
5.3 Statistical analysis

All results were expressed as mean values of 3 replicates with standard deviation. ANOVA was performed to investigate the significant differences in the treatments: bacteria strains with yeast, growth, and fermentation time using Minitab software. The level of significance was tested at P < 0.05. Fisher's (least significant difference; LSD) test was used to investigate significant differences among the treatment means.


5.4 Results and Discussion


5.4.1 Enumeration of organisms


Preferential growth of selected LAB strains in RSM media without combination of Kluyveromyces marxianus LAF4


The bacterial growth and pH measurements are shown in (Figure 5.1, 5.2). The pH was measured using a pH meter (model 8417, Hanna Instruments, Singapore). In the first 4 h of fermentation, log cfu counts of Lh 881315, Lh 881188, and Lh 880474 strains in samples with yeast cells were approximately 2.5 to 5.4 log cfu mL⁻¹. Log cfu counts increased significantly from (5.4 - 6.47 log cfu mL⁻¹) (P > 0.05) at 4 h and 8 h. PH was (2.9-5) after which Lh strains showed gradual growth decrease at 12 h. This was most likely due to alcohol production by yeast (Figure 5.1 A, B) compared to the LAB strains alone in RSM in the same conditions (Figure 5.2 A, B). Whereas, regarding L. acidophilus (La), L. delbrueckii subsp. bulgaricus (Lb) or L. Casei (Lc), the growth decreased from (2.5-4.9) log cfu mL⁻¹ between 4 and 12 h, pH (4-5.2). Bacterial growth significantly (P < 0.05) affected fermentation time, supplemented with K. marxianus and strain type (Leclerc et al., 2002; Kilpi et al., 2007). L. acidophilus (La), L. delbrueckii subsp. bulgaricus (Lb), or L. Casei (Lc), the growth increased from 2.5 to 6 log cfu mL⁻¹ between 4 and 8 h. Similarly, growth decreased from 6 to 5.5 log cfu mL⁻¹ between 8 and 12 h fermentation, due to alcohol production (Belem & Lee, 1999) (Figure 5.1, 5.2), compared to 4.6 log cfu mL⁻¹ for K. marxianus as control at pH 3.5 (Figure 5.1A, B). In general, the lowest pH value obtained for Lh strains (881315, 881188, and 880474) with K. marxianus on average after 4 h fermentation ranged between 3.2 to 3.5 compared with K. marxianus as control pH 5.1 (Belem & Lee, 1999; Yadav et al., 2014). The growth of probiotic strains, Lh 881315, Lh 880474 and La, Lb and Lc were slightly decreased between 8 h and 12 h, whilst the growth was stable between 8 h and 12 h for Lh 881188. This suggests an imbalance of glycolytic metabolism over oxidative metabolism and growth limitation during fermentation, due possibly to lactose consumption and ethanol production by yeast (Belem & Lee, 1999; Yadav et al., 2014). However, a previous study (chapter 3 and 4) used the same strains to ferment RSM separately reported that L. helveticus 881188 showed the highest growth compared to other strains in RSM whilst, L. helveticus 881315 showed the least growth at pH 3.4, possibly due to low pH and heat treatment reducing available nutrients for growth (Ahtesh et al., 2016b). There was no significant (P > 0.05) difference in growth between yeast and strain combination in the initial fermentation in RSM. In general, K. marxianus LAF4 decreased log counts of approximately (~12 to ~2.8 log cfu mL⁻¹) between 4 h and 12 h was observed

(Figure 5.1, 5.2). Similar counts have been reported using LAB and yeasts (Saccharomyces. sp and Candida. sp) to hydrolyse milk protein (Isono, Shingu, & Shimizu, 1994; Kebede et al., 2007). In comparison, a study demonstrated that yeasts and LAB strains counts ranged from 6.0 to 8.0 log cfu mL⁻¹ after two days of milk fermentation (Mathara et al., 2004). Overall, the highest growth observed in RSM fermented using LAB strains with yeast was Lh 881188 and with K. marxianus at 8 h compared to K. marxianus as control (Figure 5.1B). Similarly, a study by Mathara et al. (2004) reported bacterial counts in milk fermented with yeast and bacteria as 5.8 log cfu mL⁻¹ for Enterococcus and 4.24 to 7.44 log cfu mL,⁻¹ for yeast at pH 4.5. However, Chaves-López et al., (2012) reported substantial increased cell counts for *K. marxianus* KL26A during 72 h fermentation. The yeast counts recorded in this study were similar to those reported previously (Isono et al., 1994; Mathara et al., 2004), which indicated Saccharomyces. sp and Candida. sp growth in Tanzanian and Kenyan traditional fermented milks ranged from 6.0 to 8.0 log cfu mL⁻¹ and 4.3 to 7.4 log cfu mL⁻¹ respectively. The highest log coliform counts in our study increased gradually from 4.5 log cfu mL⁻¹ to a maximum of 12 cfu mL⁻¹ for Lh 881188 after 8 h of fermentation at 37°C (Figure 5.2). This corresponded to a final pH range of 3.1 at 12 h fermentation, which was dependent on strain type as well as yeast supplementation (Figure 5.1). Conversely, Roostita et al., (1996) reported that K. marxianus showed strong utilisation of lactose and weak metabolism of citrate, protein and fat resulting in the production of ethanol with strong growth responses.

Figure 5.2 The growth (log₁₀ cfu mL⁻¹) (lines-right)), and pH (dotted line-lift) characteristics of (**A**) *L. acidophilus* (——) *L. delbrueckii subsp. bulgaricus* (——), or *L. Casei* (——) and (**B**) *L. helveticus strains* Lh 881315(——), Lh 881188(——), Lh 880474(——) and h 880953(——), separately in 12 % RSM at 37°C for 12 h. (results were expressed as mean values of 3 replicates with standard deviation).

5.4.2 Proteolytic activity of *Kluyveromyces* is higher in fermented RSM media

The effectiveness of proteolytic activity of *K. marxianus* in combination with LAB strains in RSM compared to strains alone without combination were assessed for the ability to hydrolyse skim milk protein. Most of the combinations with strains and yeast had the ability to hydrolyse milk proteins into amino acids compared with fermented RSM by yeast alone (Figure 5.3 A, B). O-pathalaldehyde (OPA) index of yeast and Lh 881315 was higher than Lh (881188, 880474 and 880953) strains (Figure 5.3), compared to strains alone in RSM at 37°C for 12 h (Figure 5.4). It has been reported that the proteolytic activity of *K. marxianus* is higher than *Saccharomyces cerevisiae*, evidenced by increased amino acid content in milk (Roostita & Fleet, 1996). Similarly, yeasts from Kumis showed proteolytic activity although at lower levels (Chaves-López et al., 2012). The greatest increase in proteolytic activity was detected in samples fermented in combinations of Lh 881315 with *K. marxianus*, Lh 881188 with *K. marxianus*, compared to *K. marxianus* as control. Whilst, results reported by Roostita

& Fleet (1996) and Chaves-López et al., (2012) reported that *K. marxianus* had greater proteolytic activity than *S. cerevisiae* as evidenced by the increase of the amino acids content in milk. Proteolytic activities were also detected in different fermentation times. However, the level of activity was dependent on strain type. Those results indicated that *Kluyveromyces marxianus* LAF4 has high proteolytic activity.

5.4.3 ACE-inhibition activity of fermented skim milk

Results presented in (Figure 5.3, 5.4) show ACE-I activity of LAB and K. marxianus used as controls and in combination of K. marxianus with LAB in fermented skim milk at 37°C for 12 h. The ACE-I increased at varying activities in all samples up to 8 h fermentation after which the activity was almost stable for all combinations, compared with K. marxianus alone in which ACE-I activity increased up to 12 h (P < 0.05) (Figure 5.4 A). The highest ACE-I activity reached was sample fermented with K. marxianus alone which yielded 60 % ACE-I at 12 h, compared with the samples fermented with combination forms. However, ACE-I activities between strains in combination with K. marxianus showed varying differences (P < 0.05) (Figure 5.3) whereas, L. Casei with K. marxianus showed the lowest ACE-I activity (15 %) (Figure 5.3 A) compared to the same strain without combination (50 %) (Figure 5.4 B). A study by Hamme et al., (2009) noted that ACE-I activities of different yeast strains, Candida lusitaniae KL4, P. kudriavzevii KL52 and G. geotrichum KL20A in milk whey, were high (60 % - 72 %) after 52 h of fermentation at 37°C. These results with long fermentation time are possibly due to production of ethanol by K. marxianus lactose during the fermentation period (Roostita & Fleet, 1996). In the conditions tested, yeasts efficiently degraded casein since almost complete hydrolysis of the protein was observed (Jakobsen & Narvhus, 1996; Amrane & Prigent, 1998; Chaves-López et al., 2012; García-Tejedor et al., 2013). The agreements with experiments by García-Tejedor et al. (2013) in a study using different strains of yeast including K. marxianus to ferment milk separately for seven days, the highest ACE-I provoked by casein-derived peptides was 55 %, corresponding to hydrolysates generated by K. lactis Kl3 and K. marxianus K2. However, in this study the ACE-I activity of K. marxianus as control was 60 % at 12 h of fermentation compared to combination with strains (45 %) for strain Lh 881315 and 880953. In a recent study using the same strains, Lh 881315 and 880953 separately, to ferment 12 % RSM demonstrated that the highest ACE-I activity was 75 % in the same conditions (Ahtesh et al., 2016b). Hence, supplementation of *K. marxianus* affects the ACE-I activity which correlated to growth

activity of strands. As demonstrated by this study on the production kinetics of ACE-I peptides, the fermentation of milk by yeasts and or combination of yeast with LAB strains are prone to a dynamic system where peptides are constantly released; some of them are subsequently hydrolysed and most likely utilized for cell growth, while others accumulate during fermentation. It is well known that the production of high quality fermented dairy products depends on the proteolytic system of strains used, since peptides and the amino acids formed have a direct impact on flavour or act as flavour precursors (Williams and Banks, 1997).

Overall, these results clearly show increased ACE-I activity in the samples after fermentation depending on the strain type and fermentation time. In addition, this current research study shows that there is an increase of ACE-I activity in the samples fermented by yeast of *K. marxianus* separate more than using a combination with LAB strains. In fact, Chaves-López, et al. (2012) reported that peptide profiles show characteristic differences among strains. In fact, samples fermented with *K. marxianus* and LAB led to a decreased number of peaks between 8 and 12 h fermentation due to increased alcohol production by *K. marxianus* yeast during the fermentation period and that results affect of bacteria growth (Roostita & Fleet, 1996).

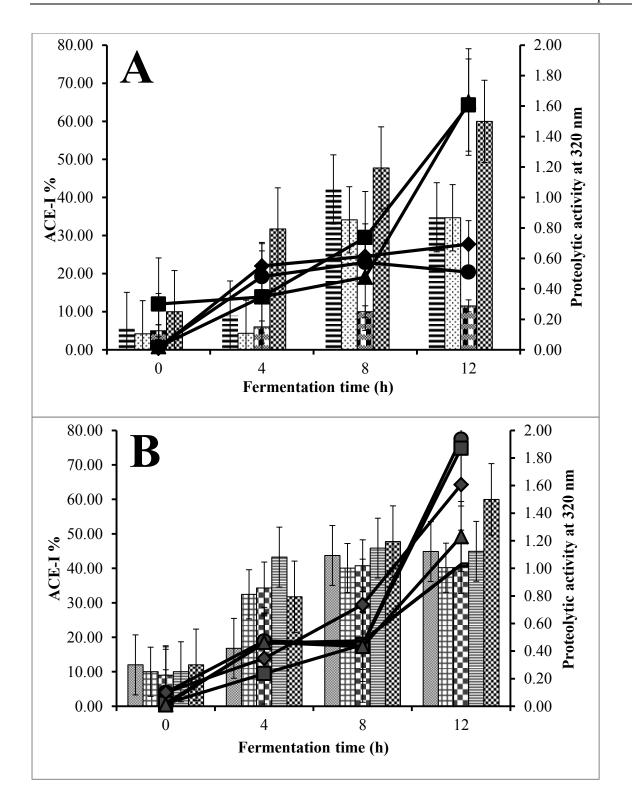
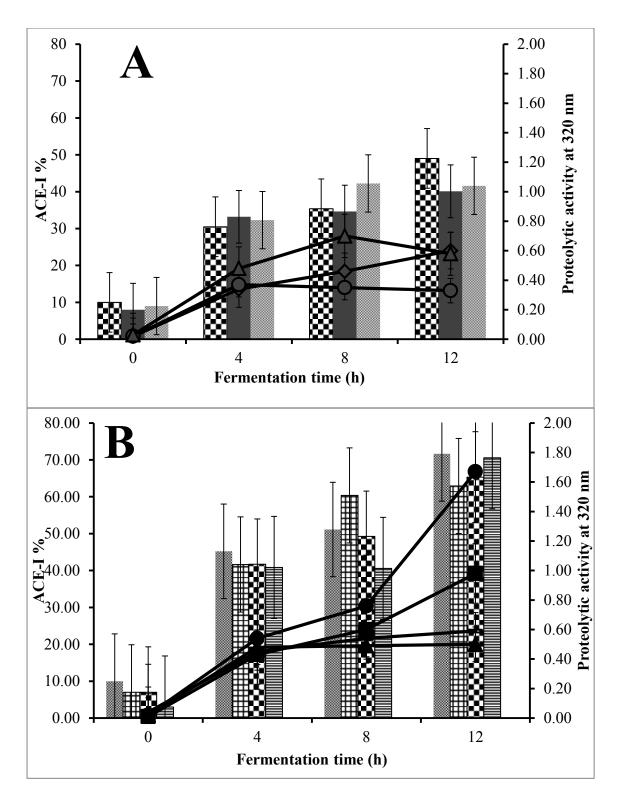
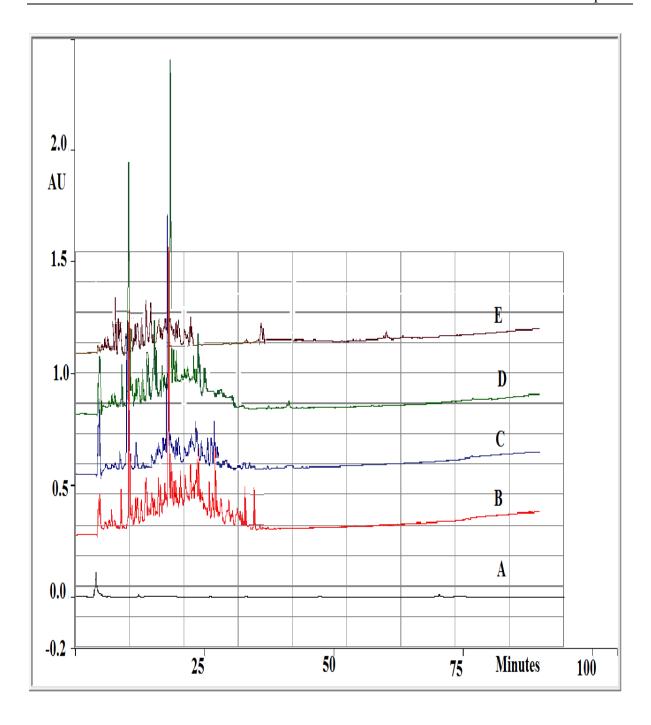
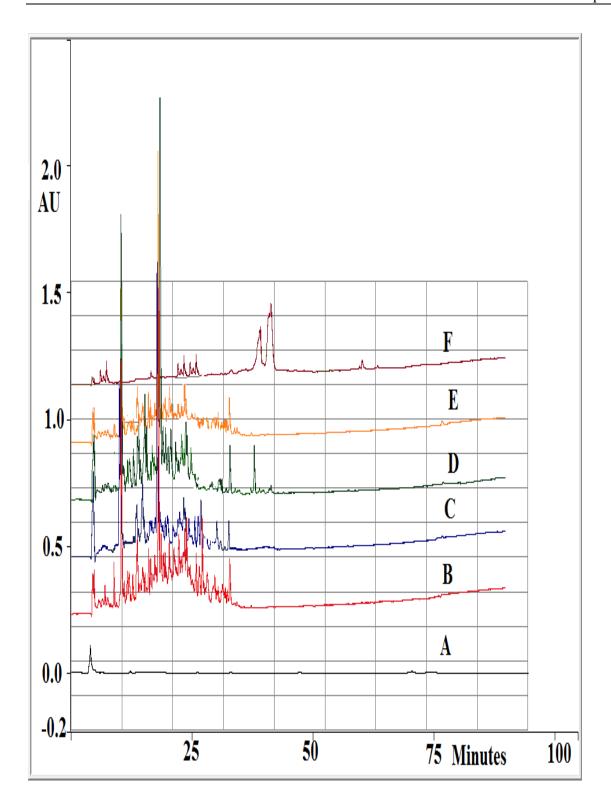


Figure 5.3 The absorbance of proteolytic activity at 320nm (lines-right)) and ACE-I % (barslift) of 12 % RSM fermented by a combination of (A) Kluyveromyces marxianus (with LAB strains; L. acidophilus (), L. delbrueckii subsp. bulgaricus (), L. Casei () (B) and Combination of Kluyveromyces marxianus () with, L. helveticus strains; Lh 881315 (), Lh 881188 (), Lh 880474 () and Lh 880953 () at 37°C for 12 h fermentation. (results were expressed as mean values of 3 replicates with standard deviation).


Figure 5.4 The absorbance of proteolytic activity at 320 nm (lines-right)) and ACE-I % (bars-lift) of 12 % RSM fermented by (A) LAB strains; L. acidophilus (, L. delbrueckii subsp. bulgaricus (, L. Casei (,) at 37°C for 12 h fermentation. (B) LAB strains; L. helveticus strains; Lh 881315 (,), Lh 881188 (,), Lh 880474 (, and, Lh 880953 (), at 37°C for 12 h fermentation. (results were expressed as mean values of 3 replicates with standard deviation).

5.4.4 RP-HPLC analysis of water-soluble peptide extracts

Reverse phase-HPLC was used to show the degree of proteolysis in fermented skim milk using a combination of LAB with K. marxianus, K. marxianus alone as control (1) and untreated skim milk as control (2) as presented in Figure 5.5 and Figure 5.6. A higher number of peptides were released when *K. marxianus* alone fermented in RSM for 12 h compared with *K. marxianus* combined with LAB strains and untreated RSM as control (Figure 5.5 and 5.6). In general, peptide peaks were appearing between 5 to 37 mins (Figure 5.5 and 5.6, line B). Whilst in line (F), peptide peaks were appearing between 5-45 mins due to milk caseins incomplete hydrolysis (Figure 5.6, lines D and F). However, peaks were observed between retention times 5 to 37 and the number of peaks were more when samples were fermented by *K. marxianus* alone as control (Figure 5.5 and 5.6, line B) compared to the untreated skim milk and to the combination forms which have less number of peaks. Chaves-López et al., (2012) reported that peptide profiles show characteristic differences among strains. In fact, samples fermented with K. marxianus and LAB led to a decreased number of peaks between 8 and 12 h fermentation due to increased alcohol production by K. marxianus yeast during the fermentation period (Figure 5.4 and 5.5) and that results correlated to bacterial growth (Roostita & Fleet, 1996).

Figure 5.5 RP-HPLC peptide profile of water soluble extracts obtained from fermented skim milk with combination of LAB strains and *Kluyveromyces Marxianus*; (**A**) untreated RSM as control, (**B**) fermented skim milk by *K. marxianus* only, (**C**) *K. marxianus* and *Lactobacillus Casei*, (**D**) *K. marxianus* and *Lactobacillus delbrueckii subsp. bulgaricus* and (**E**) *K. marxianus* with *Lactobacillus acidophilus* during 12 h fermentation at 37° C.

Figure 5.6 RP-HPLC peptides profile of water soluble extracts obtained from fermented skim milk made with combination of *L. helveticus* strains and *Kluyveromyces marxianus*; (**A**) untreated RSM as control (**B**), fermented skim milk by *K. marxianus* yeast only, (**C**) *K. marxianus* yeast and, Lh 880953, (**D**) *K. marxianus* yeast and Lh 881315, (**E**) *K. marxianus*. Yeast and Lh 880474, and (**F**) *K. marxianus* yeast with Lh 881188, during 12 h fermentation at 37°C.

5.5 Conclusion

The *K. marxianus* produced > 60 % ACE-I in 12 % RSM and there appears to be no significant advantage of co-culturing it with LAB for the conditions investigated. Since, the combination of *K. marxianus* with LAB led to reduced bacterial count, the production of ACE-I peptides was adversely impacted. Further research is needed to discover the understanding of the mechanism of inhibition and adaptation for the design of suitable combination for ACE-I peptides production strategies. Also, new yeast strains with superior biotechnological capabilities need to be further evaluated.

Chapter 6

Identification and purification of peptides from skim milk protein hydrolyses by combination of L. helveticus 8801315 and Flavourzyme[®].

This chapter has been submitted for publication. Ahtesh F., Apostolopoulos V., Vijay M., Stojanovska L., (2016). Identification and purification of peptides from skim milk protein hydrolyses by combination of *L. helveticus* 8801315 and Flavourzyme[®]. *Journal of Food Chemistry*. (Appendix. I).

6.1 Introduction

In addition to providing a source of nutrients and energy, fermented dairy products are also a source of bio-functional peptides that may impart improved health benefits when ingested (FitzGerald & Murray, 2006). Hypertension (high blood pressure) affects 1/4 adults worldwide (He et al., 2013; Otte et al., 2007), with 1/3 in the western population (Kearney et al., 2005). Angiotensin converting enzyme-inhibitory (ACE-I) peptides released from milk proteins have been used to treat hypertension in spontaneous hypertensive rats (SHR) (Fernández-Musoles et al., 2013; Ramchandran & Shah, 2011; Seppo et al., 2002; Wang et al., 2012; Yoshii et al., 2001). Several ACE-I peptides have been isolated from enzymatic hydrolysis of milk proteins (Hernández-Ledesma et al., 2004; Hernández-Ledesma et al., 2011; Hernández-Ledesma et al., 2014; Tauzin et al., 2002). Based on their extensive proteolytic systems, they are perfectly adapted to grow in milk (Degraeve & Martial-Gros, 2003). Several identified peptide sequences have been released from different milk proteins after fermentation and are able to inhibit ACE activity (Eisele et al., 2013; Jauregi & Welderufael, 2010; Pihlanto-Leppälä, 2000). In particular, regarding fermented skim milk, the authors previously reported that Lactobacillus helveticus (L. helveticus) strains combined with Flavourzyme® lead to increased ACE-I activity of fermented skim milk (Ahtesh et al., 2016b). In addition, skim milk fermented with L. helveticus and Saccharomyces, displayed a systolic blood pressure (SBP) decrease in mildly hypertensive human volunteers ranging from 4.6 to 14.1 mmHg (Fitzgerald et al., 2006). These human hypertensive effects have, in part, been attributed to the release of potent casein-derived tri-peptide inhibitors of ACE during fermentation. Tri-peptides such as, Ile-Pro-Pro (IPP) and Val-Pro-Pro (VPP) have positive effects on human and rat blood pressure (Jauhiainen et al., 2005; Lehtinen et al., 2010; López Expósito & Recio, 2006; Narva et al., 2004; Jauhiainen et al., 2010). ACE-inhibition has two biological activities: deca-peptide angiotensin-1, (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) and nano-peptide bradykinin, (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) activities (Cheung, Wang, Ondetti, Sabo, & Cushman, 1980). Two peptides, Hippuryl-L-histidyl-L-leucine (Hip-His-Leu) and Hip-Phe-Arg have similar binding affinity tendencies as bradykinin and Angiotensin-II, showing substrate specificity of ACE-I activity (Cheung et al., 1980). Several studies have used different processes for the production of bioactive peptides with ACE-I activity based on enzymatic hydrolysis of milk protein such as fermentation by bioreactor (Otagiri et al., 1985; Welderufael, Gibson, & Jauregi, 2012; Wu, Aluko, & Nakai, 2006). ACE-I

activity was correlated with a high degree of hydrolysis (Gonzalez-Gonzalez et al., 2011). For instance, different strains of *L. helveticus* have the ability to express proline-peptidases leading to the release of peptides IPP and VPP during milk fermentation (Seppo et al., 2002; Jauhiainen, 2010; Gonzalez-Gonzalez et al., 2013). However, there were no reports regarding the identification of ACE-inhibitory peptides released from fermented skim milk with *L. helveticus* combined with Flavourzyme[®].

Herein, the author investigated hydrolyses of skim milk proteins by using a combination of *L. helveticus* ASCC 8801315 and Flavourzyme[®] for the release of bioactive peptides with ACE-I properties. I isolated and identified these peptides from fermented reconstituted skim milk (RSM). The peptide and amino acid profiles were analysed.

6.2 Material and Methods

6.2.1 Substrates and Chemicals

Trichloroacetic acid (TCA), O-phthaldialdehyde (OPA), Hippuryl-Histidyl-Leucine, de Man Rogosa and Sharpe (MRS) bacteriological medium, sorbitol, bacteriological agar, trifluoroacetic acid (TFA), β-mercaptoethanol, Tris-HCl, glycerol, dithiothreitol, acetic acid were purchased from Sigma Chemical Company (St Louis, MO USA). Skim milk powder (52 % lactose, 37 % protein, 8.6 % ash and 1.2 % fat) was purchased from Murray Goulburn Co-operarative Co. Ltd. (Brunswick, Vic Australia). Acetonitrile was purchased from (Merck, Darmstadt, Germany) and bacteriological peptone was purchased from (Oxoid, West Heidelberg Australia). Flavourzyme[®]1000 L (EC 3.4.11.1, an amino peptidase with an activity of 1000 LAPU g⁻¹) was purchased from (Novozymes Australia, North Rocks, NSW Australia).

6.2.2 Propagation of cultures and preparation of fermented RSM

L. helveticus strain 881315 (Lh 881315) was obtained from (Dairy Innovation Australia Ltd, Werribee, Victoria, Australia) and stored at -80°C. Sterile 10 mL aliquots of MRS broth were inoculated with 1 % culture and incubated at 37°C for 18 h. Lh 881315 was inoculated at 1 % (v/v) into 10 mL aliquots of reconstituted skim milk (RSM, 12 % w/w) supplemented with 0.14 % Flavourzyme[®]. Following two successive transfers the cultures were finally transferred into sterile RSM. Reconstituted skim milk was

prepared by dissolving skim milk powder with distilled water. Reconstituted skim milk was heat-treated at 90°C for 20 min, cooled to 42°C.

6.2.2.1 Bioreactor assay of Low fat skim milk to increase the ACE-I % activity

Bioreactor (5-Litres) capacity (Bio-Stat® A plus, Germany) was employed to ferment 5 L of 12 % pasteurised RSM using a combination of Lh 881315 and Flavourzyme® at 37°C for 12 h. A jacketed thermostatic water bath bioreactor held at a constant temperature was used. Milk was continuously stirred by impellers (at 250 rpm). The pH during fermentation was measured using a sterile pH electrode (DPAS Ingold, Paris, France) connected to a transmitter (Demca 3B 1015; Alfortville, France). The pH electrode was calibrated before inoculating the medium. Bacterial growth, proteolytic and, ACE-I activities and pH were determined at 0, 2, 4, 6, 8 and 12 h of fermentation.

6.2.3 Determination of degree of hydrolysis (DH)

The degree of hydrolysis (DH) defined as the percent ratio of the number of peptide bonds broken to the total number of peptide bonds in the substrate studied (Ravallec-Plé et al., 2000) was calculated from the ratio of α -amino nitrogen (AN) to the total protein nitrogen (TPN) (Chen, Tao, & Li, 2003). Briefly, 60 mL of sample aqueous solution (0.05 mg mL⁻¹) was titrated with 0.05 M NaOH until its pH value reached 8.2. After adding 10 mL of 20 % (v/v) formaldehyde aqueous solution, the resulting solution was mixed and titrated again with 0.05 M NaOH until its pH value reached 9.2. The volume (mL) of 0.05 M NaOH added in the second-step titration was recorded as (V1). Deionised water was used as blank (V0) instead of a sample. The calculation formula used was α -amino nitrogen (%) = (V1–V0) C × 0.014/ M × 100 %, where C is the molar concentration of the aqueous NaOH used; M is the weight (g) of the sample used, using the equation:

DH (%) =
$$\frac{\alpha - \text{amino nitrogen (AN)}}{\text{total nitrogen (TN)}} \times 100$$

6.2.4 Determination of ACE inhibitor activity

A crude extract of the fermented sample (50 mL) was prepared by centrifugation at 4000 x g at 4°C for 30 min using Beckman Coulter (Avanti J-26S XPI) and the supernatant was freeze-dried (Freeze-drier model ALPHA 1-4 LSC plus; John Morris Scientific Pty. Ltd. Deepdene Australia) for 72 h. The freeze- dried extract (40 mg) was dissolved in 2 mL of Tris buffer (50 mM, pH 8.3) containing 300 mM Sodium chloride (Donkor et al., 2007) as previously reported (Ahtesh et al., 2016b). Fifty µL of 1.25 mU ACE enzyme from rabbit lung in Tris buffer and 50 μL of 3.0 mM Hippuryl-Histidyl-Leucine (HHL) in Tris were added to 50 µL of sample and incubated at 37°C in a shaking water bath for 30 min. 150 µL of Glacial acetic acid was added to stop the reaction. The amount of Hippuric acid (HA) released was analysed by HPLC. The HPLC system consisted of a Varian 9012 solvent delivery, a Varian 9100 auto-sampler and a Varian 9050 variable wavelength ultraviolet-visible detector. An analysis was carried out using Gemini® C18 110 Å (100 mm x 4.60 mm, 3 µm) column (Phenomenex, NSW Australia) at room temperature (~22°C) with a mobile phase consisting of 12.5 % (v/v) Acetonitrile (Merck) in distilled water, pH adjusted to 3.0 using glacial acetic acid. The flow rate was set at 0.6 mL min⁻¹ and the compounds were detected at 228 nm. The percentage ACE-I was calculated as follows:

ACEI % =
$$\frac{\text{HA (control)} - \text{HA (sample)}}{\text{HA (control)}} \times 100$$

A standard curve of HA was constructed using five predetermined concentrations (0.5 %, 1.0 %, 1.5 %, 2.0 %, and 2.5 %) for quantification of HA in the samples. ACE-I activity data were plotted against protein concentration in the sample in order to calculate IC_{50} value, defined as the protein concentration (μ g mL⁻¹) needed to inhibit 50 % of ACE-I activity (Mullally et al., 1997).

6.2.5 Micro-fluidic Lab-on-a- chip electrophoresis (Loa C)

This method was performed on an Agilent 2100 bio-analyser (Agilent Technologies, Wald Bonn Germany), using High Sensitivity Protein 250 Reagents and the 2100 software. Samples, dye and the preparation of chip were carried out according to the manufacturer's protocol and as described by Nikolić, et al. (2012) with some modifications. Briefly, 0.5 μ L of reconstituted dye solution added to 5 μ L of protein ladder (5 - 240 kD), 5 μ L of sample in micro tubes respectively, vortexed and incubated

for 30 min on ice. The samples and protein ladder in tubes were heated (95 °C, 5 min), all tubes were cooled for 15 s to recover the condensate of liquid and then briefly spun in a centrifuge (3000 x g) to ensure that the liquid sample and any condensate collected at the bottom of the tube. Distilled water (85 μ L) added to the protein ladder and milk samples to give each a total volume of 90 μ L. All samples were thoroughly mixed and incubated on ice before use. In a typical analysis, a new chip is primed with gel–matrix after which the protein ladder (6 μ L) and samples (6 μ L) are loaded and analysed.

6.2.6 Isolation and identification of peptides

6.2.6.1 Isolation of ACE-inhibitory peptides by RP-HPLC

Reconstituted skim milk (12 % w/v) was fermented with L. helveticus 881315 and Flavourzyme[®], in a Bioreactor. Fermented RSM samples were centrifuged at 14,000-x g for 30 min (Sorvall RT7, Newtown, CT USA). The supernatant was freeze-dried (John Morris Scientific, Pty. Ltd. Deepdene, VIC Australia) and further analysed using reversed-phase high performance liquid chromatography (RP-HPLC, Varian Analytical Creek, CA USA). The freeze-dried supernatant (80 mg) was dissolved in 1 mL of solvent A (0.1 % Trifluoroacetic acid (TFA) in deionised water) and filtered through a 0.2 µm membrane filter (Schleicher & Schuell GmbH Germany). A sample (1 mL) was injected onto an RP-column C-18 Jupiter Proteo 90 A 250 mm x 10.0 mm, 10 micron (Phenomenex. Lane Cove NSW Australia Pty Ltd). The mobile phase was 0.05 % solvent A (0.1 % trifluoroacetic acid (TFA) in deionised water) and 60 % solvent B (0.1 % TFA in 90 % v/v acetonitrile in deionised water). Samples were eluted by a linear gradient from 0 -100 % solvent A and over 90 % solvent B at flow rate of 1 mL min⁻¹. Elution profiles of samples were detected by a UV detector set at 214 nm for 70 min. The RP-HPLC separation procedure was repeated 15 times to obtain higher concentrations and those, which were separated into six fractions. The fractions were concentrated using a vacuum evaporator (Speed Vac SC110 concentrator, Savant Instruments Inc. Farmingdale, NY USA) and stored at -80°C until further analysis. Aliquots of 50 µL of each concentrated fraction were used to determine ACE-I activity and fractions with the highest ACE-I were selected for further purification.

6.2.6.2 Identification of ACE-I peptides

6.2.6.2.1 Nano-LC/MS/MS analysis

The freeze-dried peptide extract fractions (F1 and F6) which gave the highest ACE-I activity were sent to the Australian Proteome Analysis Facility (APAF) for analyses of peptides (Appendixes II). Each peptide/s fraction was introduced into the QSTAR Elite Mass Spectrometer (AB Sciex, MA USA) coupled with the Exigent TEMPO Nano-LC (AB Sciex, CA USA). For each analysis, a sample was loaded into a commercial 0.5 mm × 1.3 mm, capillary trap column (0.5 μL, C18, Optimize Technologies, Inc., Oregon City, Oregon USA) and a 10 cm × 300 μ m analytical column (3 μ m particle sizes, Proteo Col G C18, SGE Analytical Science, Melbourne Australia). Eighty-three min LC gradient was used to separate the peptide mixtures with a flow rate of 500 nL min⁻¹. Each reverse phase (RP) began with 5 % mobile phase B, a gradient elution from 5 -10 % mobile phase B for 1 min, 10-40 % for 39 min, 40-100 % for 10 min, 100-5 % mobile phase B for 1 min, and then 5 % mobile phase B for 9 min for re-equilibration. For MS parameters, a full-mass scan was performed between m/z 400 and m/z 1600, 0.5 s accumulation time, followed by MS/MS scans of the top 3 high-intensity precursor ions (charge state +2 to +4, and ion count > 25) by Collision Induced Dissociation (CID). The dynamic exclusion duration was 20 s, switched after 1 spectrum.

For identification of peptides by Nano-LC/MS/MS, mascot generic format files (MGF) were generated from format files (wiff), (QSTAR Elite MS) with MASCOT script. These were searched against the in-house server of MASCOT Version 2.3.2, using the Swiss-Prot protein database (539 829 sequences, 2013). Other bacteria species were searched (13, 034 and 328 828 sequences in Swiss-Prot database, respectively) and chosen for taxonomic categorisation. Precursor and product ion-mass-tolerance were set at 300 ppm and \pm 0.6 Da, respectively. Enzyme restriction was set as none, and a maximum of one missed cleavage was allowed. Methionine oxidation was set as a variable modification.

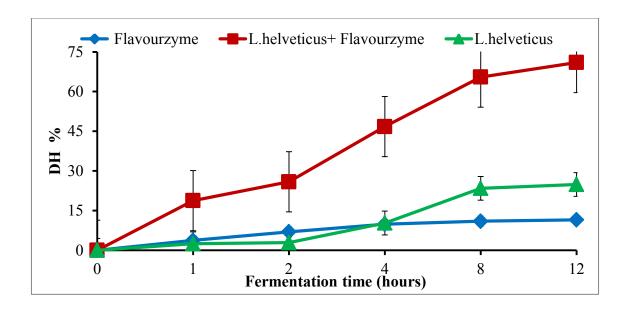
6.2.6.2.2 Matrix Assisted Laser Desorption Ionisation (MALDI)-MS/MS analysis

A matrix was prepared by dissolving alpha-cyano-4-hydroxycinnamic acid (1 mg mL⁻¹ in 90:9, 9:0.1 acetonitrile: water: formic acid). Samples were zip-tip extracted (Perfect Pure, C18, Eppendorf Germany) and spotted onto a MALDI target plate (1 μL) prior to

analysis. A peptide mixture containing bradykinin, angiotensin-I and neurotising (Sigma), each was at 2 p mol μ L⁻¹. Adrenocorticotropic hormones (ACTH) (clip 18-39) (Sigma) at 2 p mol μ L⁻¹ were spotted with matrix compositions for calibration of MS. Samples and calibration standards with the same matrix composition were spotted adjacent to each other on the target plate for optimal calibration and enhanced mass accuracy.

Matrix Assisted Laser Desorption Ionisation mass (MALDI) spectrometry was performed using the 4800 plus MALDI TOF/TOF Analyser (AB Sciex, MA USA). A Nd:YAG laser (355 nm) was used to irradiate the sample. Spectra were acquired in reflector MS scan mode in the mass range of 700 to 4000 Da. The instrument was then switched to MS/ MS mode where the eight strongest peptides from the MS scan were isolated and fragmented by CID, then re-accelerated to measure their masses and intensities. A near point calibration was applied and gave a typical mass accuracy of 50 ppm or better.

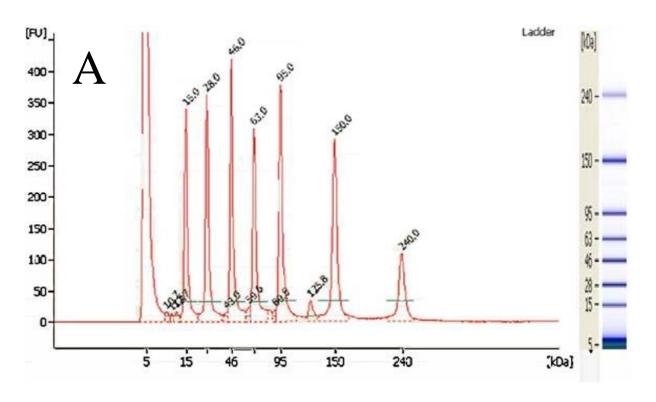
For identification of proteins by MALDI-MS/MS data, text files were generated from 2d files. These were searched against the in-house server of MASCOT Version 2.3.2, using the Swiss Prot protein database (539, 829 sequences, 2013). Other mammalian and bacteria species were searched (13, 034 and 328, 828 sequences in Swiss-Prot database, respectively) and chosen for taxonomic categorization. Precursor and product ion-mass-tolerance were set at 50 ppm and \pm 0.6 Da, respectively. Enzyme restriction was set as none, and a maximum of one missed cleavage was allowed. Methionine oxidation was set as a variable modification.

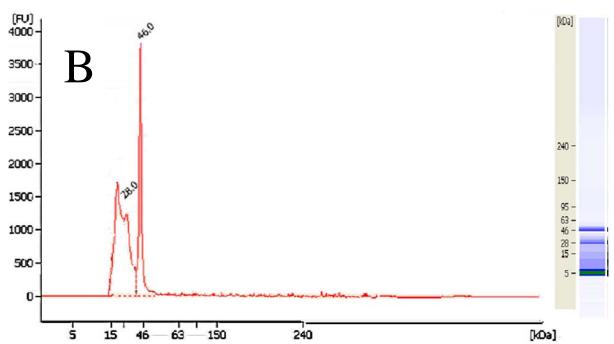

6.3 Statistical analyses

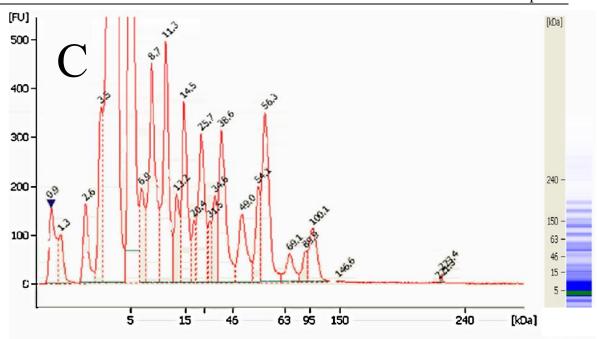
Using Minitab 16, all the data were expressed as mean values of three replicates with the mean (\pm SEM). The differences between the experimental groups were determined by one way ANOVA with mean differences tested by Tukey- test and P-values less than 0.05 considered to be significant.

6.4 Results and Discussion

6.4.1 Degree of hydrolysis


The degree of hydrolysis (DH) was defined as the percentage ratio of the number of peptide bonds broken to the total number of peptide bonds in the substrate (Guo, Pan, & Tanokura, 2009). Therefore, DH is an important parameter to understand and interpret the effects and extent of the hydrolytic process of proteins and is useful to establish the relationships between proteolysis and improvement of the functional, bioactive and sensory properties of these biomolecules (Cheison et al., 2009). The hydrolysis of skim milk proteins by a combination of L. helveticus 881315 (Lh) with (0.14 %) Flavourzyme[®] compared to hydrolysis of Lh or Flavourzyme[®] separately as controls after 12 h of fermentation at 37 °C are shown in (Figure 6.1). The hydrolysis of the combination increased rapidly in the first 1 h of fermentation and continually increased after 8 h compared to the Flavourzyme[®] or strain separately as controls (P < 0.05). No apparent hydrolysis was observed after this period, whereas hydrolysis by Lh or Flavourzyme® separately increased slowly during 8 h fermentation. However, the DH (70.9 %) during the 12 h fermentation was the highest for the combination of Lh and Flavourzyme $^{\circledR}$ (Figure 6.1) whilst DH was reached (~20 % and ~10 %) during the 12 h fermentation for Lh or Flavourzyme® respectively. Similarly, it was previously reported that the DH % of whey protein concentrate ranged between (13.3 % - 21 %) during 6 h fermentation using protease from B. licheniformis (Spellman et al., 2003). Here it was noted that DH significantly increased with a combination of Flavourzyme® and with increased fermentation time (P < 0.05) (Figure 6.1). The results suggested that Flavourzyme[®]-supplementation had the greatest effect on the DH of skim milk protein. The significant increase in the % DH by the combined activity was likely due to the complementary substrate specificities resulting in improved proteolytic activity (Ahtesh et al., 2016b). High proteolytic activity correlated with high DH and this was reflected in the performance of the combined activities of Lh and Flavourzyme® resulting in significant increased peptide production (Cheison et al., 2009; Pihlanto et al., 2010), (Figure 6.2C). Clearly, these results indicate that an increase in hydrolysis time of skim milk proteins by combination produced more small peptides, free amino acids and less large peptides.



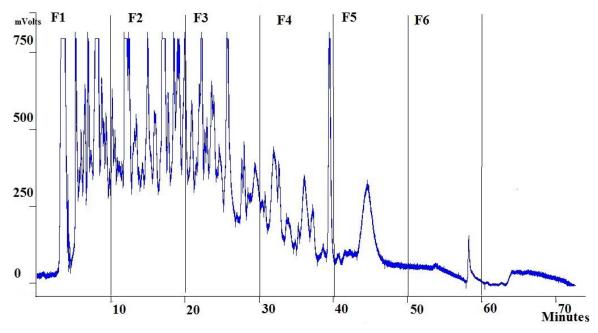

Figure 6.1 Degree of hydrolysis (DH %) in fermented skim milk generated with a combination of *L. helveticus* 881315 strain and Flavourzyme[®] ($\stackrel{\blacksquare}{-}$), *L. helveticus* 881315 alone ($\stackrel{\blacksquare}{-}$), and Flavourzyme[®] alone ($\stackrel{\blacksquare}{-}$) at 37°C for 0-12 h fermentation. Values are mean \pm SD of three determinations for DH values. Error bars show standard error.

6.4.2 Loa C electrophoresis

The micro-fluidic 'lab-on-a-chip (Loa C)' technique provides an alternative method for simultaneous separation of major proteins in milk, as well as information on size, concentration and purity of milk protein in a single assay (Anema, 2009; Nikolić et al., 2012). The simulated gel patterns for fermented and untreated skim milk as control, obtained by Loa C with the elution profiles are shown in (Figure 0.2). The protein bands of fermented and untreated samples were in a different molecular weight (MW) range. Loa C uses internal lower and upper protein markers to correct for possible changes in the migration behaviour, thus enabling accurate and reproducible sizing. Preliminary investigation using the Agilent Protein 240 kit indicated its suitability for the separation of most milk proteins (Figure 6.2A) showing the migration pattern for proteins in the molecular weight ladder, and (Figures 6.2B, C) show the MW migration pattern of proteins in control RSM and fermented RSM respectively. Untreated RSM proteins presented two peaks of MWs 28 and 46 kDa (Figure 6.2B) indicating un-hydrolysed proteins (Anema, 2009). The migration pattern and profile of fermented milk shows a number of peaks ranging from 5 kDa to 240 kDa. This provides evidence for casein and other milk protein hydrolyses with varying MW of peptides.

Figure 6.2 Lab-on-a-chip capillary electrophoresis and elution profiles with molecular weights, (**A**) Migration pattern for proteins MWs of the ladder, (**B**) migration pattern for untreated skim milk proteins as control and (**C**) migration pattern for fermented skim milk protein hydrolysis by combination of *L. helveticus* 881315 and Flavourzyme[®] at 37°C for 12 h.

6.4.3 Purification and identification of selected peptide fractions


Six fractions obtained from RP-HPLC, (F1and F6) showed the highest ACE-I activity and IC₅₀ (95.51 % and 85.40 %) respectively (Table 6.1). The ACE-inhibitory activities of F6 and F1 were significantly higher with both having of IC₅₀ 0.01 mg mL⁻¹, followed by F2 (72.04 % and IC₅₀ 0.34 mg mL⁻¹). However, the activities of the remaining fractions were considered significantly low. Fractions F1 and F6 analysed by MS contained several peptide components as presented in (Tables 6.4, 6.5,) and (Figures 6.4A, B) and peptides fraction profiles are shown in (Figure 6.3). Several strategies were used in the current study including MS to identify peptides released from protein hydrolysis for which data sequences are known. The identification of peptide fractions was achieved using both MALDI MS/MS and Nano-LC/ MS/MS. LC.ESI.MS/MS enabled the determination of molecular weights and primary structures of peptides as a result of MALDI/MS however, these alone could not confirm the molecular weights of peptides. Results were subjected to database searches using bovine and bacterial databases. Sample F6 contained peptides which matched (109) identified peptides with 99 % confidence from the bovine database (Table 6.3) and showed the highest ACE-I

% activity (Table 6.1). For F1, (24) peptides were identified with higher than 99 % confidence (Table 6.5). When the bacteria database (Swiss Prot 2013) was searched, the mass error 55.7 ppm was higher than all peptides matched compared to the bovine database. The results showed that peptides greater than 1150 Da f (214-224) were isolated from F6 with casein origin (Table 6.3). The LC.MS/MS spectrum matched one sequence of the group of peptides selected by mass from milk casein (Figure 6.4). The major fragment ions were observed between m/z 903.30-2898.01 and 1702.96-2108.21 for F1 and F6 respectively, which were identified as b-type ions (b) adjacent to proline, in particular b3 and b5, respectively. This amino acid is associated with abundant y- and b-type fragment ions resulting from the cleavage of a peptide bond adjacent to proline. The resulting peptide originating from alpha and β -case has been reported to decrease spontaneous hypertensive rats' (SHR) blood pressure (FitzGerald et al., 2004). Following this strategy, the majority of peptide components of each HPLC fraction identified and the results are summarised in (Table 6.4, 6.5). In (Figure 6.4) for example, a purified peptide from F6 TPVVVPPF was located between f(10-42). Most of the peptides in F6 contained proline amino acids, similar to captopril activity (Boutrou et al., 2013; Quirós et al., 2007) and high in ACE-I activity (Abd El-Salam, 2006). Peptide FFVAPFPGVFGK with antihypertensive properties was identified in F6 (Table 6.4). This was previously identified and has been shown to reduce SHR blood pressure (Hideaki et al., 1990). In addition, a novel casein-derived peptide sequence with ACE-I activity and antihypertensive activity was previously demonstrated in SHR (Contreras et al., 2009 and 2011). The peptides were obtained by enzymatic hydrolysis of total isoelectric casein with pepsin. To identify ACE-inhibitory peptides, the casein hydrolysate was fractionated by semi preparative HPLC, and 44 (CN) peptides contained in the active fractions were sequenced by using an ion-trap mass spectrometer. The identified peptide sequences, GPVRGPFPIIV, LHLPLPLL, RYLGY, AYFYPEL, and YQKFPQY, showed IC₅₀ values between (0.71 mM - 6.58 mM) (Contreras et al., 2009 and 2011). These peptides exert antihypertensive activity when they were orally administered to SHR at a dose of 5 mg kg⁻¹ of body weight (Contreras et al., 2009 and 2011). The activity of peptides RYLGY and AYFYPEL in SHR was similar to that found for tri-peptide VPP when orally administered (Contreras et al. 2009 and 2011). Similarly in our study, peptides GPVRGPFPIIV and LHLPLPLL were identified in F6 and F1 (Table 6.4, 6.5). In both fractions, a high amount of β-lacto globulin was present. β-lacto globulin has high biological importance as a source of bioactive peptides (Yoshii et al., 2001; Madureira et al., 2010; Yu et al., 2012). Overall, bioactive peptides from F6 have the highest ACE-I activities compared to that from other fractions. Further studies are required to measure the ACE-I activity for each isolated peptide.

Table 6.1 The percentage ACE-inhibitory activity and IC_{50} mg mL⁻¹ (means \pm SE) of fermented skim milk peptides fractions.

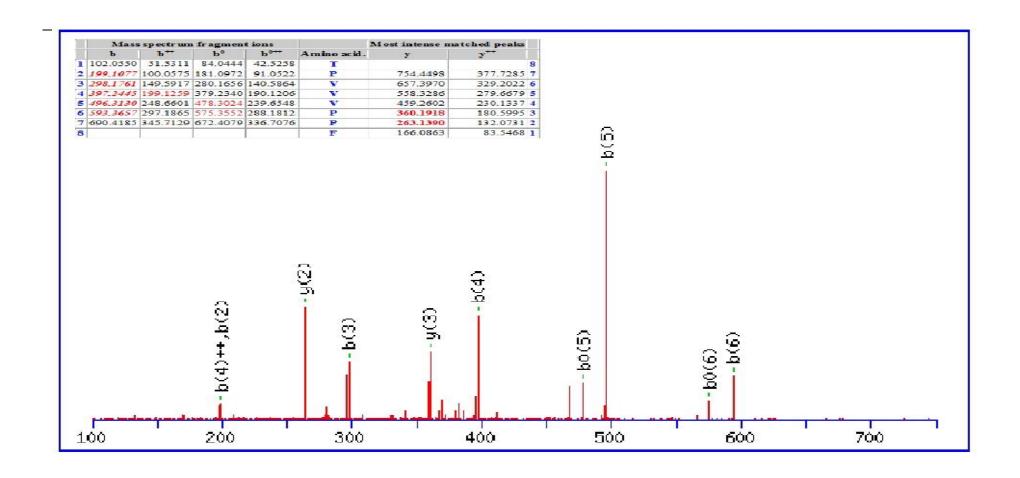
Fractions	ACE-I%	IC ₅₀ mg mL ⁻¹
F1	85.40±0.32 ^a	0.01±0.00 ^d
F2	72.04±0.91 ^b	$0.34 \pm 0.03c^{d}$
F3	42.39±1.20°	0.47±0.09b°
F4	17.31±2.21 ^d	1.18 ± 0.16^{a}
F5	27.91 ± 5.30^{d}	0.78 ± 0.11^{b}
F6	90.31±0.21 ^a	0.01 ± 0.00^{d}

Values followed by different letters indicated significant difference P < 0.001.

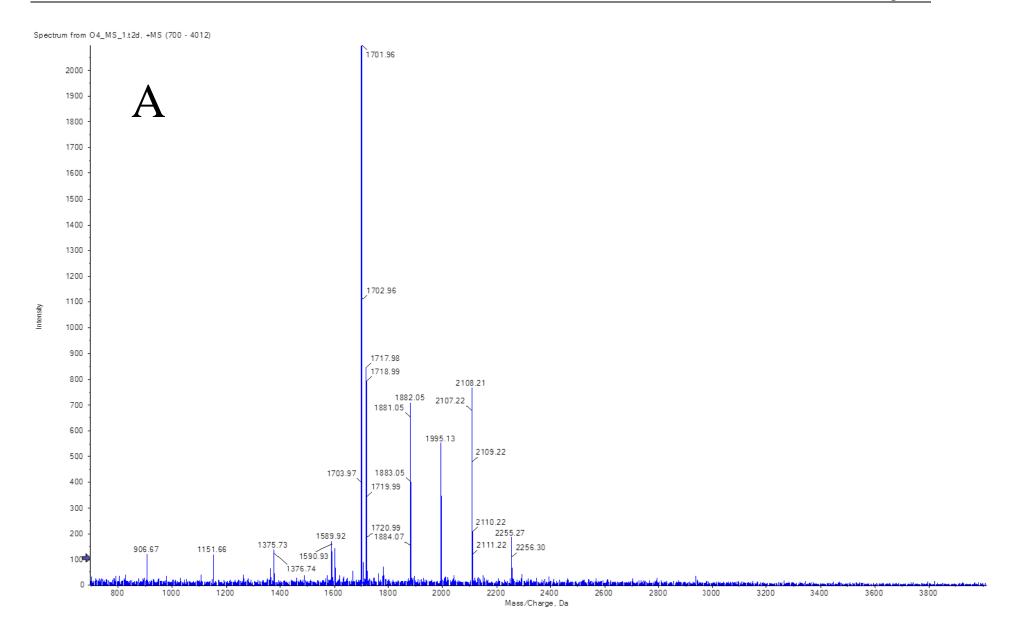
Figure 6.3 RP-HPLC purification of 6 peptide fractions from skim milk fermented by combination of L. helveticus 881315 and Flavourzyme[®].

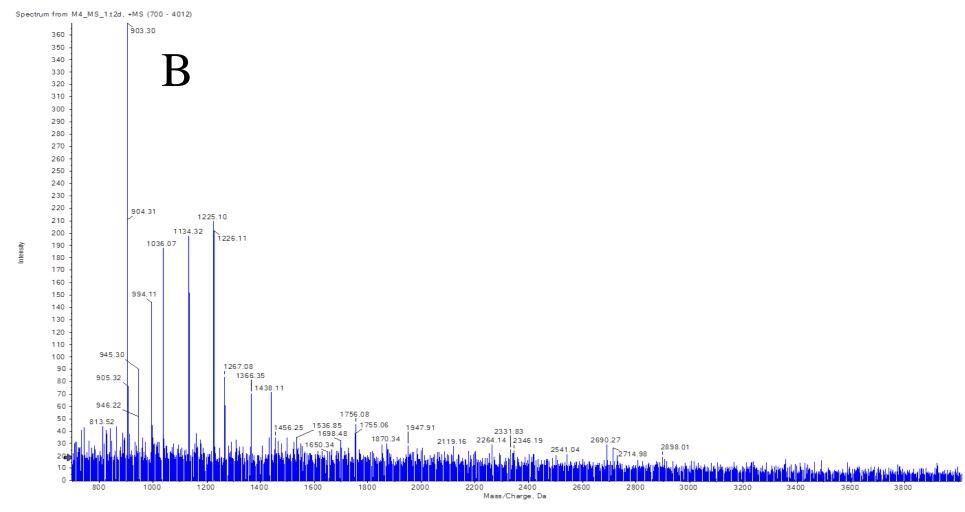
Table 6.2 Protein families of peptides identified in fraction (F1).

Protein family	Mass (D a)	Sequence
CASB_BOVIN	25091	Beta-casein
CASA1_BOVIN	24513	Alpha-S1-casein
CASA1_BUBBU	24311	Alpha-S1-casein
LACB_BOVIN	19870	Beta-lacto globulin
CAC1E_RABIT	254089	Voltage-dependent R-type calcium channel subunit alpha
CASA2_CAPHI	26372	Alpha-S2-casein
LALBA_BOSMU	16237	Alpha-lactoalbumin


Table 6.3 Protein families of peptides identified in fraction (F6).

Protein family	Mass (D a)	Sequence
CASB_BOVIN	25091	Beta-casein
CASA1_BOVIN	24513	Alpha-S1-casein
CASA1_BUBBU	24311	Alpha-S1-casein
LACB_BOVIN	19870	Beta-lacto globulin
CASA2_BOVIN	26002	Alpha-S2-casein
LALBA_BOSMU	16237	Alpha-lactoalbumin
CASK_BOVIN	21256	Kappa-casein OS
FETUA_BOVIN	38394	Alpha-2-HS-glycoprotein
GLCM1_BOVIN	17141	Glycosylation-dependent cell adhesion molecule


DDX56_BOVIN	61216	Probable ATP-dependent RNA helicase
BRAT1_AILME	88137	BRCA1-associated ATM activator
NIF3L_BOVIN	41880	NIF3-like protein


6.5 Conclusion

This study successfully identified 133 peptides with 99 % confidence from two fractions (F1 and F6). The highest ACE-inhibitory activity was in F6 (95.51 % with IC₅₀ 0.01 mg mL⁻¹). The most potent ACE-inhibitory peptides found in this hydrolysate corresponded to FFVAPFPGVFGK, GPVRGPFPIIV and LHLPLPLL and showed significant antihypertensive activity. Those peptides were examined (Chapter 7) in spontaneously hypertensive rats (SHR) and their high blood pressure was successfully reduced during ten weeks oral administration.

Figure 6.4 Peptide purified of Mono-isotopic mass of neutral peptide, Mr (calc):8854.4902, ions score :38, Expect :0.32 from fraction 6, (b) Molecular weight obtained with MALDI-TOF-MS .The first eight amino acids of the N-terminal was identified as $\frac{\text{TPVVVPPF}}{\text{Pollowing sequence interpretation}}$ and molecular weight determination, the peptide was identified as β-CN (f10-42) using 14 most intense peaks.

Figure 6.5 Identification of molecular mass and amino acid sequence of the fraction (**A**) F1 and (**B**) F2. MS/MS spectra of purified peptides were Q-TOF-MS/MS with an ESI source.

Table 6.4 Identification of peptides produced from fermented 12 % RSM in combination of *L. helveticus* 8801315 and Flavourzyme[®] ,and, contained in the RP-HPLC form F6, using MALDI-MS/MS analysis.

Protein Accession	Protein	Peptide,m/z	Peptide mass, Da	Peptide	Peptide Sequence
	Description	(Experimental)	(Experimental)	mass,Da	
				(Calculated)	
CASB_BOVIN	Beta-casein	458.3093	914.6041	914.5953	LHLPLPLL
CASB_BOVIN	Beta-casein	522.3336	1042.6526	1042.6539	LHLPLPLLQ
CASB_BOVIN	Beta-casein	576.3528	1150.691	1150.6863	GPVRGPFPIIV
CASB_BOVIN	Beta-casein	577.8162	1153.6179	1153.5979	LTLTDVENLH
CASB_BOVIN	Beta-casein	578.3098	1154.605	1154.5931	RELEELNVPG
CASB_BOVIN	Beta-casein	602.8169	1203.6192	1203.5998	MPFPKYPVEP
CASB_BOVIN	Beta-casein	630.3618	1258.7091	1258.6921	DVENLHLPLPL
CASB_BOVIN	Beta-casein	641.8809	1281.7472	1281.7292	SLSQSKVLPVPQ
CASB_BOVIN	Beta-casein	675.3345	1348.6545	1348.6373	EMPFPKYPVEP
CASB_BOVIN	Beta-casein	692.4111	1382.8077	1382.7922	LLYQEPVLGPVR
CASB_BOVIN	Beta-casein	696.889	1391.7634	1391.7561	QEPVLGPVRGPFP
CASB_BOVIN	Beta-casein	718.427	1434.8395	1434.8235	VLPVPQKAVPYPQ
CASB_BOVIN	Beta-casein	745.9481	1489.8816	1489.8657	EPVLGPVRGPFPII
CASB_BOVIN	Beta-casein	750.9352	1499.8558	1499.8348	DVENLHLPLPLLQ
CASB_BOVIN	Beta-casein	778.4273	1554.8401	1554.8195	YQEPVLGPVRGPFP

CASB_BOVIN	Beta-casein	787.9526	1573.8907	1573.8716	LTLTDVENLHLPLP
CASB_BOVIN	Beta-casein	794.4532	1586.8918	1586.8668	DVENLHLPLPLLQS
CASB_BOVIN	Beta-casein	795.4854	1588.9562	1588.9341	EPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	819.9557	1637.8968	1637.8817	LVYPFPGPIPNSLPQ
CASB_BOVIN	Beta-casein	828.418	1654.8215	1654.7879	FPKYPVEPFTESQS
CASB_BOVIN	Beta-casein	832.4226	1662.8307	1662.7989	PVEPFTESQSLTLTD
CASB_BOVIN	Beta-casein	834.9656	1667.9166	1667.9035	LYQEPVLGPVRGPFP
CASB_BOVIN	Beta-casein	844.4942	1686.9739	1686.9556	LTLTDVENLHLPLPL
CASB_BOVIN	Beta-casein	844.508	1687.0014	1686.9556	LTLTDVENLHLPLPL
CASB_BOVIN	Beta-casein	858.0044	1713.9943	1713.9665	LTDVENLHLPLPLLQ
CASB_BOVIN	Beta-casein	859.5263	1717.0381	1716.9927	QEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	574.0205	1719.0396	1719.0195	KVLPVPQKAVPYPQR
CASB_BOVIN	Beta-casein	863.4663	1724.9181	1724.9138	SLVYPFPGPIPNSLPQ
CASB_BOVIN	Beta-casein	876.9755	1751.9365	1751.9247	LVYPFPGPIPNSLPQN
CASB_BOVIN	Beta-casein	887.4898	1772.965	1772.9461	DVENLHLPLPLLQSW
CASB_BOVIN	Beta-casein	891.5102	1781.0058	1780.9876	LLYQEPVLGPVRGPFP
CASB_BOVIN	Beta-casein	891.5243	1781.0341	1780.9876	YQEPVLGPVRGPFPII
CASB_BOVIN	Beta-casein	908.5265	1815.0385	1815.0142	TLTDVENLHLPLPLLQ
CASB_BOVIN	Beta-casein	612.3702	1834.0887	1834.0465	KVLPVPQKAVPYPQRD
CASB_BOVIN	Beta-casein	941.0501	1880.0856	1880.056	YQEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	944.5647	1887.1148	1887.0717	SLTLTDVENLHLPLPLL

CASB_BOVIN	Beta-casein	948.0568	1894.099	1894.0717	LYQEPVLGPVRGPFPII
CASB_BOVIN	Beta-casein	949.0648	1896.1151	1896.0721	SLPQNIPPLTQTPVVVPP
CASB_BOVIN	Beta-casein	641.3729	1921.0968	1921.0785	SKVLPVPQKAVPYPQRD
CASB_BOVIN	Beta-casein	965.0612	1928.1078	1928.0983	LTLTDVENLHLPLPLLQ
CASB_BOVIN	Beta-casein	660.3951	1978.1634	1978.1251	LSQSKVLPVPQKAVPYPQ
CASB_BOVIN	Beta-casein	997.5923	1993.17	1993.1401	LYQEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	1004.6051	2007.1957	2007.1557	LLYQEPVLGPVRGPFPII
CASB_BOVIN	Beta-casein	1008.5819	2015.1492	2015.1303	LTLTDVENLHLPLPLLQS
CASB_BOVIN	Beta-casein	1008.5909	2015.1672	2015.1303	SLTLTDVENLHLPLPLLQ
CASB_BOVIN	Beta-casein	1022.585	2043.1554	2043.1405	SLPQNIPPLTQTPVVVPPF
CASB_BOVIN	Beta-casein	689.4024	2065.1854	2065.1572	SLSQSKVLPVPQKAVPYPQ
CASB_BOVIN	Beta-casein	719.0915	2154.2527	2154.2241	FLLYQEPVLGPVRGPFPII
CASB_BOVIN	Beta-casein	771.7326	2312.1761	2312.1446	MHQPHQPLPPTVMFPPQSVL
CASB_BOVIN	Beta-casein	856.1683	2565.4829	2565.4723	IQAFLLYQEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	932.2084	2793.6032	2793.5656	MPIQAFLLYQEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	937.5362	2809.5867	2809.5605	MPIQAFLLYQEPVLGPVRGPFPIIV
CASB_BOVIN	Beta-casein	931.2757	3721.0736	3720.0266	AVPYPQRDMPIQAFLLYQEPVLGPVRGPF
					PIIV
CASA1_BOVIN	Alpha-S1-casein	552.8222	1103.6299	1103.6339	LGYLEQLLR
CASA1_BOVIN	Alpha-S1-casein	559.3271	1116.6396	1116.6291	VLNENLLRF
CASA1_BOVIN	Alpha-S1-casein	571.7766	1141.5387	1141.5251	SDIPNPIGSEN

CASA1_BOVIN	Alpha-S1-casein	609.3681	1216.7216	1216.7179	LGYLEQLLRL
CASA1_BOVIN	Alpha-S1-casein	610.3212	1218.6279	1218.6285	VAPFPEVFGKE
CASA1_BOVIN	Alpha-S1-casein	669.8782	1337.7419	1337.7191	GLPQEVLNENLL
CASA1_BOVIN	Alpha-S1-casein	683.8746	1365.7347	1365.6969	FFVAPFPEVFGKE
CASA1_BOVIN	Alpha-S1-casein	706.3481	1410.6816	1410.6667	YVPLGTQYTDAPS
CASA1_BOVIN	Alpha-S1-casein	733.9029	1465.7913	1465.7776	QGLPQEVLNENLL
CASA1_BOVIN	Alpha-S1-casein	743.8594	1485.7042	1485.6947	SDIPNPIGSENSEK
CASA1_BOVIN	Alpha-S1-casein	787.8862	1573.7579	1573.73	YYVPLGTQYTDAPS
CASA1_BOVIN	Alpha-S1-casein	840.4579	1678.9013	1678.893	VPSERYLGYLEQLL
CASA1_BOVIN	Alpha-S1-casein	865.9281	1729.8417	1729.8192	IPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	923.4429	1844.8712	1844.8462	DIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	636.0105	1905.0097	1904.9778	IHAQQKEPMIGVNQELA
CASA1_BOVIN	Alpha-S1-casein	958.9612	1915.9078	1915.8833	SDIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	966.9605	1931.9065	1931.8782	SDIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	1032.5039	2062.9932	2062.9517	FSDIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	1040.5046	2078.9947	2078.9466	FSDIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	873.4381	2617.2925	2617.237	APSFSDIPNPIGSENSEKTTMPLW
CASA1_BOVIN	Alpha-S1-casein	906.8165	2717.4278	2717.3523	IHAQQKEPMIGVNQELAYFYPEL
CASA1_BOVIN	Alpha-S1-casein	912.1428	2733.4066	2733.3472	IHAQQKEPMIGVNQELAYFYPEL
CASA1_BOVIN	Alpha-S1-casein	955.8351	2864.4834	2864.4207	IHAQQKEPMIGVNQELAYFYPELF
CASA1_BOVIN	Alpha-S1-casein	961.1507	2880.4303	2880.4156	IHAQQKEPMIGVNQELAYFYPELF

CASA1_BOVIN	Alpha-S1-casein	760.1399	3036.5306	3036.5167	IHAQQKEPMIGVNQELAYFYPELFR
LACB_BOVIN	Beta-lactoglobulin	565.8182	1129.6219	1129.6132	LDIQKVAGTW
LACB_BOVIN	Beta-lactoglobulin	607.3079	1212.6012	1212.5874	VEELKPTPEGD
LACB_BOVIN	Beta-lactoglobulin	617.7779	1233.5413	1233.6639	LIVTQTMKGLD
LACB_BOVIN	Beta-lactoglobulin	662.8843	1323.7541	1323.7286	KPTPEGDLEILL
LACB_BOVIN	Beta-lactoglobulin	663.8516	1325.6887	1325.6714	VEELKPTPEGDL
LACB_BOVIN	Beta-lactoglobulin	665.3539	1328.6932	1328.6823	SDISLLDAQSAPL
LACB_BOVIN	Beta-lactoglobulin	686.844	1371.6734	1371.6518	VRTPEVDDEALE
LACB_BOVIN	Beta-lactoglobulin	691.9059	1381.7972	1381.7929	ISLLDAQSAPLRV
LACB_BOVIN	Beta-lactoglobulin	728.3702	1454.7258	1454.714	VEELKPTPEGDLE
LACB_BOVIN	Beta-lactoglobulin	738.4126	1474.8105	1474.8065	LIVTQTMKGLDIQ
LACB_BOVIN	Beta-lactoglobulin	500.9245	1499.7516	1499.7467	VRTPEVDDEALEK
LACB_BOVIN	Beta-lactoglobulin	773.4391	1544.8637	1544.8562	ISLLDAQSAPLRVY
LACB_BOVIN	Beta-lactoglobulin	544.6167	1630.8281	1630.8202	RVYVEELKPTPEGD
LACB_BOVIN	Beta-lactoglobulin	549.9501	1646.8284	1646.8152	VRTPEVDDEALEKF
LACB_BOVIN	Beta-lactoglobulin	549.9567	1646.8484	1646.8152	VRTPEVDDEALEKF
LACB_BOVIN	Beta-lactoglobulin	841.4592	1680.9039	1680.8822	VEELKPTPEGDLEIL
LACB_BOVIN	Beta-lactoglobulin	874.4813	1746.948	1746.9152	SDISLLDAQSAPLRVY
LACB_BOVIN	Beta-lactoglobulin	898.0071	1793.9997	1793.9662	VEELKPTPEGDLEILL
CASA1_BUBBU	Alpha-S1-casein	552.8222	1103.6299	1103.6339	LGYLEQLLR
CASA1_BUBBU	Alpha-S1-casein	559.3271	1116.6396	1116.6291	VLNENLLRF

CASA1_BUBBU	Alpha-S1-casein	571.7766	1141.5387	1141.5251	SDIPNPIGSEN
CASA1_BUBBU	Alpha-S1-casein	609.3681	1216.7216	1216.7179	LGYLEQLLRL
CASA1_BUBBU	Alpha-S1-casein	610.3212	1218.6279	1218.6285	VAPFPEVFGKE
CASA1_BUBBU	Alpha-S1-casein	683.8746	1365.7347	1365.6969	FVAPFPEVFGKE
CASA1_BUBBU	Alpha-S1-casein	840.4579	1678.9013	1678.893	VPSERYLGYLEQLL
CASA1_BUBBU	Alpha-S1-casein	922.9485	1843.8825	1843.8622	SDIPNPIGSENSGKTTMP
CASA1_BUBBU	Alpha-S1-casein	930.9524	1859.8902	1859.8571	SDIPNPIGSENSGKTTMP
CASA1_BUBBU	Alpha-S1-casein	636.0105	1905.0097	1904.9778	IHAQQKEPMIGVNQELA
LALBA_BOSMU	Alpha-lactalbumin	553.305	1104.5955	1104.5815	DLKGYGGVSLP
LALBA_BOSMU	Alpha-lactalbumin	617.8273	1233.6401	1233.6241	DLKGYGGVSLPE
CASA2_BOVIN	Alpha-S2-casein	573.3589	1717.0547	1717.029	IQPKTKVIPYVRYL
CASA2_BOVIN	Alpha-S2-casein	680.7142	2039.1208	2039.0952	LYQGPIVLNPWDQVKRN
CASK_BISBO	Kappa-casein	771.9113	1541.8081	1541.7937	SPPEINTVQVTSTAV
	(Fragment)				

Table 6.5 Identification of peptides produced from fermented 12 % RSM in combination of *L. helveticus* 8801315 and Flavourzyme[®], and, contained in the RP-HPLC form F1, using MALDI-MS/MS analysis.

Protein Accession	Protein	Peptide,m/z	Peptide mass,	Peptide mass,	Peptide Sequence
	Description	(Experimental)	(Experimental)	Da (Calculated)	
CASA1_BOVIN	Alpha-S1-casein	24513	1828.8711	1828.8513	DIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	24513	997.5195	997.508	GLPQEVLNE
CASA1_BOVIN	Alpha-S1-casein	24513	1713.8169	1713.8243	IPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	24513	1729.8584	1729.8192	IPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	24513	1141.5341	1141.5251	SDIPNPIGSEN
CASA1_BOVIN	Alpha-S1-casein	24513	1228.5711	1228.5571	SDIPNPIGSENS
CASA1_BOVIN	Alpha-S1-casein	24513	1485.6939	1485.6947	SDIPNPIGSENSEK
CASA1_BOVIN	Alpha-S1-casein	24513	1586.7638	1586.7424	SDIPNPIGSENSEKT
CASA1_BOVIN	Alpha-S1-casein	24513	1687.8317	1687.7901	SDIPNPIGSENSEKTT
CASA1_BOVIN	Alpha-S1-casein	24513	1931.9241	1931.8782	SDIPNPIGSENSEKTTMP
CASA1_BOVIN	Alpha-S1-casein	24513	1915.9254	1915.8833	SDIPNPIGSENSEKTTMP
CASB_BOVIN	Beta-casein	25091	1258.6949	1258.6921	DVENLHLPLPL
CASB_BOVIN	Beta-casein	25091	1332.6589	1332.6424	EMPFPKYPVEP
CASB_BOVIN	Beta-casein	25091	1150.691	1150.6863	GPVRGPFPIIV
CASB_BOVIN	Beta-casein	25091	1356.8285	1356.8017	IPPLTQTPVVVPP
CASB_BOVIN	Beta-casein	25091	1503.8765	1503.8701	IPPLTQTPVVVPPF

CASB_BOVIN	Beta-casein	25091	1503.8817	1503.8701	IPPLTQTPVVVPPF
CASB_BOVIN	Beta-casein	25091	1363.7167	1363.6846	KEMPFPKYPVE
CASB_BOVIN	Beta-casein	25091	1380.7026	1380.6972	MHQPHQPLPPTV
CASB_BOVIN	Beta-casein	25091	1219.619	1219.5947	MPFPKYPVEP
CASB_BOVIN	Beta-casein	25091	1319.7531	1307.7085	PVVVPPFLQPEV
CASB_BOVIN	Beta-casein	25091	1391.7784	1359.7398	QEPVLGPVRGPFP
CASB_BOVIN	Beta-casein	25091	1717.0048	1880.056	QEPVLGPVRGPFPIIV

Chapter 7 Dietary supplementation with milk-derived angiotensin converting enzyme peptides decreases food intake, body weight and blood pressure in spontaneously hypertensive rats

This chapter has been submitted for publication. Ahtesh F., Stojanovska L., Mishra V. K & Michael M. (2016). Dietary supplementation with milk-derived angiotensin- converting enzyme peptides decreases food intake, body weight and blood pressure in spontaneously hypertensive rats. *Nutrition, metabolism and cardiovascular Disease*. Submitted. (Appendix. 1).

7.1 Introduction

Cardiovascular disease (CVD) is one of the leading causes of death among people worldwide (Quirós et al., 2007). Many drugs that are ACE inhibitors were developed as pharmaceuticals to treat hypertension, such as captopril and enalapril (Bellamy et al., 1992; FitzGerald, 1998; McCann et al., 2006; Saito et al., 2000; Takano, 2002; Yamamoto, 1997). While these drugs possess potent antihypertensive effects; they have side effects, such as organ damage (kidney and liver), taste disturbances and dry cough (Case et al., 1980; Cushman et al., 1980; Rizzello et al., 2008; Zhou et al., 2010).

Fermented dairy products are part of an important dietary strategy to reduce the risk of CVD (Yamamoto, 1997). Milk proteins have been identified as sources of bioactive peptides (Cheviron et al., 2000; Danilczyk & Penninger, 2006; Korhonen & Pihlanto, 2006; Mattu et al., 1995; O'Malley et al., 1998). Bioactive peptides can be produced from milk proteins by three methods: (1) enzymatic hydrolysis with a protease, (2) fermentation of milk by microorganisms with high protease activity, or (3) through the action of enzymes derived from proteolytic microorganisms (Saito, 2008). Several milkderived peptides have been described to inhibit ACE in vitro (Saito, 2008). These peptides have considerable potential for the treatment and prevention of hypertension (Cheviron et al., 2000). To prepare bioactive peptides, milk proteins such as bovine casein are hydrolysed by lactic acid bacteria (LAB) (Gobbetti et al., 2002; Guan-Hong et al., 2004; Nakamura et al., 1995; Pihlanto-Leppälä, 2000). Fermentation with LAB involves the proteolytic processing of proteins to release peptides for use as a nitrogen source for bacteria. LAB is a suitable family of microorganisms for milk fermentation because they have a proteolytic system that decomposes casein, along with hydrolysing enzymes. It was shown that LAB such as L. helveticus have a higher proteolytic activity on milk proteins (Pan et al., 2005; Wakai & Yamamoto, 2012) compared with Lactobacillus casei (Ramchandran & Shah, 2011). Higher proteolytic activity leads to release of more antihypertensive peptides through higher extracellular proteinase activity in fermented milk (Griffiths & Tellez, 2013; Korhonen, 2009; Wakai & Yamamoto, 2012; Yamamoto et al., 1994). A variety of oligo-peptides released from casein by an extracellular proteinase of LAB has been reported. Recently, an antihypertensive effect related to ACE inhibitor peptides was found in sour milk produced by L. helveticus. Two kinds of bioactive short tri-peptides, Isoleucine-Proline-Proline (IPP) and Valine-Proline-Proline (VPP), with ACE inhibitor activity were

isolated and identified from sour milk, which had been fermented until pH 3.3 (Nakamura et al., 1995). The two tri-peptides termed 'lacto-tri-peptides' were confirmed as having antihypertensive activity using spontaneously hypertensive rats (SHR) (Nakamura et al., 1995). *In vitro*, the ACE inhibitory activities of the two peptides IPP and VPP were very high compared to other reported peptides, and the concentrations of peptides producing 50 % inhibition of ACE (IC₅₀ value) were 9 and 5 mM, respectively. The amino acid sequences of VPP and IPP were found in the primary structure of bovine β-casein *f* (84–86) (74–76) and k- casein *f* (108–110), respectively (Mizuno & Yamamoto, 2004). They are cleaved from the casein molecule by an extracellular proteinase, followed by peptidase action during fermentation. The importance of the extracellular proteinase in the first decomposition of casein and the endo-peptidase in the carboxyl terminal processing has been confirmed (Yamamoto et al., 1994). The *L. helveticus* LBK-16H-fermented milk containing IPP and VPP, when consumed daily, had a blood pressure-lowering effect in hypertensive patients in Japan (Hata et al., 1996) and Finland (Seppo et al., 2003).

Several studies have been carried out to determine the anti-hypertensive effect of milk protein derived ACE inhibitors on SHR (Cam & de Mejia, 2012; FitzGerald & Murray, 2006; Hartmann & Meisel, 2007; Kawase et al., 2000; Pal et al., 2010; Shah, 2007). SHR are a naturally occurring breed, which develop essential hypertension and are frequently used for in vivo studies (Maeno et al., 1996; Pan et al., 2005; Yamamoto et al., 1994). Studies have shown that ACE-inhibitory peptides from milk protein hydrolysates reduce blood pressure in SHR (Yamamoto et al., 1999; Yamamoto et al., 1999; Gobbetti et al., 2000; LeBlanc et al., 2002; Quirós et al., 2007; Ramchandran & Shah, 2011; Wakai & Yamamoto, 2012; Boutrou et al., 2013; He et al., 2013). Furthermore, it has been reported that the SHR fed fermented milk with L. helveticus have shown a reduction in blood pressure (Leclerc et al., 2002; Griffiths & Tellez, 2013). A study using different types of proteases including Flavourzyme® has also shown the ability to produce bioactive peptides that lower blood pressure in SHR (He et al., 2013). The major antihypertensive peptides in the fermented milk, VPP and IPP, were detected in a heat-treated solubilized fraction from the abdominal aorta of rats fed with the fermented milk, but not in rats fed with unfermented milk (Saito, 2008). In addition to the various organs, ACE activity in the aorta was significantly lower in the animals fed with fermented milk than in the control group (Nakamura et al., 1996). The

major antihypertensive peptides in the fermented milk, VPP and IPP were detected in a heat-treated solubilized fraction from the abdominal aorta of rats fed with the fermented milk, but not in rats fed with unfermented milk (Masuda et al., 1996). Those results suggested that the lacto-tri-peptides pair were absorbed directly, without being decomposed by digestive enzymes, and transported to the abdominal aorta, where they inhibited ACE, producing an antihypertensive effect in SHR (Masuda et al., 1996).

A study reported that ACE-inhibition with perindopril for 14 weeks reduced body weight (~10 %) in SHR as well as reducing blood pressure and heart weight (Campbell et al., 1995). Reduction in ACE activity in a mouse ACE knock-out was also associated with reduction in body weight and a decreased accumulation of body fat, particularly in abdominal fat depots (Jayasooriya et al., 2008). The decreased body fat is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance (Jayasooriya et al., 2008). The control of blood pressure and food intake involves highly complex systems integrating peripheral and central signals, some of which can affect both energy homeostasis and blood pressure. The renin-angiotensin system is important in blood pressure control and a number of studies have advocated the involvement of the renin angiotensin system in obesity related to hypertension (Hall et al., 2000; Boustany et al., 2004). There is evidence that tissues in organs such as the liver, brain, kidney, heart and blood vessels represent major sites of production of angiotensin-II, the main vasoconstrictor product of renin-angiotensin system (Lapointe & Rouleau, 2002). It has been shown that adipose tissue is able to produce all the components of angiotensin converting enzyme (ACE), angiotensinogen and the angiotensin type 1 receptor (Cassis, Saye, & Peach, 1988; Crandall et al., 1994). The presence of this fully functioning local adipose tissue may contribute to the pathogenic mechanisms by which obesity increases the risk of cardiovascular disease (Goossens, Blaak, & Van Baak, 2003; Engeli et al., 2005).

Previous studies have investigated the effectiveness of milk-derived peptides on rats using short-term period and using different bacteria strains to release ACE-I peptides activity injecting the peptides into the rats' circulation to reduce BP (Campbell et al., 1995; Boutrou et al., 2013; He et al., 2013). There have been no studies in regard to energy homeostasis, with the relationship of body weight and peptides.

In light of the above, the present study was performed to evaluate the hypothesis that peptide extractions from fermented skim milk using a combination of Flavourzyme® and *Lactobacillus helveticus* ASCC 881315 significantly decreases rats' blood pressure and body weight; this combination of strain and Flavourzyme® has successfully increased ACE-inhibitory peptides activity (~95.5%) *in vitro* (Ahtesh et al., 2016). Following a three-week acclimatization period, animals were fed with a diet containing freeze-dried peptides for ten weeks. Blood pressure, heart rate, daily food intake and weekly body weight were recorded. The dietary treatments containing the freeze-dried peptides extracted from fermented skim milk were compared with two controls: control (1) chow with untreated skim milk and control (2) standard chow. Tissue weights were recorded post-mortem after 10 weeks experimental period at 24 weeks of age.

7.2 Material and Methods

7.2.1 Substrates and chemicals

Standard maintenance diet (AIN-93M), modified versions of the standard diet containing either skim milk(SF13-118) or peptides derived from skim milk(SF13-119), were manufactured by an experienced animal food pellet processor (Specialty Feeds, Glenvale, Western Australia). O-phthaldialdehyde (OPA), hippuryl-histidyl-leucine (HHL), trichloroacetic acid (TCA), bacteriological medium, bacteriological agar, trifluoroacetic acid (TFA) and ACE enzyme were purchased from Sigma Chemical Company (St Louis, MO USA). De Man Rogosa and Sharpe (MRS) and bacteriological peptone were purchased from Oxoid, Ltd., West Heidelberg Victoria, Australia. Flavourzyme®1000 L (EC 3.4.11.1, an amino peptidase with an activity of 1000 LAPU g-1) purchased from Novozymes Australia, North Rocks, NSW Australia. Skim milk (SM) powder was purchased from (Murray Goulburn Co-operative Co. Ltd., Brunswick VIC Australia), while acetonitrile and reinforced clostridia agar (RCA) were purchased from Merck, Darmstadt Germany.

7.2.2 Determination of ACE inhibitor activity

ACE- inhibitory activity was measured according to the procedure described in section 3.2.6.

7.2.3 Animal diets and fermented skim milk preparation

The experimental design is shown in (Table 7.1). 12 % RSM (52 % lactose, 37 % protein, 8.6 % ash and 1.2 % fat) (160 litres) was fermented in bulk for 12 h using 1 % of L. helveticus 881315 (Dairy Innovation Australia Ltd. Australia) and 0.14 % (w/w) Flavourzyme® at 37°C in a Bioreactor Vessel system (bio Net® Bioreactor Vessel, Broadly-James Bioreactor Germany) with constant agitation at 120 rpm. Bioreactor assay was used for preparation of fermented RSM as described in section 6.2.2.1. The use of bioreactor improved production of ACE-I peptides. Fermented RSM was heattreated to 85°C for 20 mins to stop the growth of probiotic bacteria and enzyme activity. Samples were then stored in a fridge at 4°C for freeze-dried. Fermented and nonfermented RSM were freeze-dried in bulk (Biotech Freeze Drying, Knox field, Melbourne, VIC Australia). The freeze-dried fermented and non-fermented RSM powders were incorporated into the manufacturing of rat feed pellets respectively by Specialty Feeds (Perth, Western Australia). The rat feed pellets were stored at 4°C. All the rat feed contained standard nutrients of vitamins, minerals, sugars and lipids as indicated in (Table 7.1). The SM powder and freeze- dried fermented SM containing peptides amounts in the formulated diets were limited by the pelleting process. It was observed that quantities above 44.7 % hindered the process of pellet formation due to the caking property of the lactose in SM powder. The SM powder and a freeze-dried fermented SM sample were incorporated and pelleted in the experimental diets.

Table 7.1 The table shows the type and frequency of experimental design measurement. Group 1: Rats feed Chow (control) (NC).

parameters	Rats	Experimental period (daily and weekly)									
	groups										
	groups	1	2	3	4	5	6	7	8	9	10
D 11											
Daily											
Body	Group1										
weight/rat	Group2										
	Group3										
Feed intake	Group1										
(daily)/cage	Group2										
	Group3										
	1										
Weekly											
Blood pressure	Group1										
measurements	Group2										
	Group3										

Group 2: Rats feed Chow (control) + skim milk powder (NFC).

Group 3: Rats feed Chow + pelleted freeze dried fermented skim milk containing peptides (FC).

(N=9 each group).

7.2.4 Energy content measurements by bomb calorimeter

An isothermal (Static Jacket) bomb calorimeter system (Pty, Ltd, CAL2k) was used to determine the calorific value (energy content) of the pellet samples used in this study. A calorimeter is a device used for measuring the heat of the reaction, physical changes and heat capacity (Okoro et al., 2011). The calorimeter system uses a pellet of benzoic acid as a standard for calibration (1.216 g). The pellet is then tied to a 13 cm length cotton wire, placed inside the sample boat and the cotton wire was stretched between the electrodes. Oxygen is added through the gas inlet valve to give a pressure of 3000 K Pa and the system is ignited until the calorimeter indicates that the calibration is completed. The known mass of benzoic acid produces a standard amount of heat energy when burnt and this heat is transferred to the bomb. The increase in bomb temperature is measured accurately to calibrate the machine. Once this has been achieved, the bomb can then be cooled to baseline temperature using the water-cooler system. After that the calorimeter is ready to measure the pellets which have unknown energy content. The pre-weighed samples (chow, chow mixed with SM powder and chow mixed with peptide extract) are placed into a crucible; the firing cotton is placed in contact with the sample and the vessel pressurised with oxygen gas. The firing cotton is then ignited and the sample gets ignited because of contact with the firing cotton. The burning of the sample leads to a rise in temperature of the vessel which is then measured as the calorimetric value of the sample.

7.2.5 Animal care and experiments

This project was conducted with approval from the Animal Ethics Committee of Victoria University (AEC 12/009) (Appendixes II).

7.2.6 Experimental design spontaneously hypertensive rats (SHR)

The experimental design is shown in (Table 7.2). Twenty-seven male SHR were purchased from Animal Resource Centre in Western Australia at 14 weeks of age. These SHR were housed in animal care facilities at Victoria University. The weight of the SHR was recorded upon arrival (weight, 250 ± 5 g). The SHR were housed in three per stainless steel hanging wire mesh cages in 12 h dark light cycle with controlled environmental conditions (temperature $22.5^{\circ}\text{C} - 23.5^{\circ}\text{C}$ and humidity 32% - 40%). The rats were divided into three groups (n=9), and were allowed free access to feed and

tap water. The experimental group were fed the diets supplemented with freeze-dried peptide extract of fermented SM (FC), control group 1 were fed a diet with untreated SM (NFC) and control group 2 were fed standard chow (NC) (Table 7.2). Before starting the measurements, the rats were acclimatised for three weeks and trained on a blood pressure monitor system (Coda Non-Invasive Blood Pressure System, ODA NIBP Kent Scientific Corporation. Inc. U.S.A). The clear acrylic holders provided unrestricted breathing and allowed complete visibility to the researcher. During the three weeks, rats were fed on normal standard rats chow. SHR were fed with (40 to 70 g/box of pellets daily), with ad libitum tap water and food was changed daily. Blood pressure, heart rate, daily feed intake and weekly weights of all rats were recorded daily for ten weeks.

Table 7.2 Composition of the experimental groups feed.

Experimental group	Composition of the feed
FC	Freeze dried peptide extract of Fermented
	RSM
NFC	Non-fermented RSM control (1)
NC	Normal rat feed chow control (2)

7.2.7 Measurement of blood pressure

Rats were trained in Tail-Cuff (BP) Measurements for three weeks prior to the experiments and were familiarized with the procedures of tail-cuff BP monitoring, including regular handling and warming procedures. Correct SHR handling is critical for consistent and accurate blood pressure measurements. Nervous, stressed SHR may have diminished circulation in the tail. Systolic (SBP), diastolic (DBP), and mean blood pressure as well as heart rate (HR) and tail blood volume were measured in each animal weekly. This method used Volume Pressure Recording (VPR) sensor technology. (CODA® Non-Invasive Blood Pressure System, Kent Scientific Corporation. Inc. U.S.A). The VPR uses a specially designed differential pressure transducer to measure the blood flow and blood volume in the tail non-invasively. VPR actually measures six parameters simultaneously: systolic and diastolic blood pressure, mean calculated measure of blood pressure, heart pulse rate, tail blood volume and tail

blood flow. The pressure cuff device, similar to an arm blood pressure cuff used in humans, fits over the rodent's tail restricting inflow of blood to the tail when inflated. The unit then uses optical sensors to determine when the blood flow returns to the tail as the cuff is gradually deflated, which will be equivalent to SBP, DBP and HR, by recording the disappearance and reappearance of pulse signals in conjunction with measurements of cuff pressure. The SBP, DBP and HR were determined directly from the recordings. To make the pulsations of the tail artery detectable, rodents were taken to a quiet room and placed in an incubator at $(30 \pm 1^{\circ}\text{C})$ for 10 min), and then gently walked into the restrainer. The warming chamber and the restrainer were pre-warmed to the appropriate temperature (30 \pm 1°C). The SHR was allowed to enter the holder freely. After the rodent was placed in the holder, the nose cone was adjusted so the animal was comfortable but not able to move excessively. The tail was gently placed through the cuff and inflated by the computer system to a maximum pressure 300 mm mercury due to the breed of the rat. SHR are hypertensive and require a higher max cuff pressure than normal. After 5-10 minutes to acclimatise to the restrainer, 6 to 10 readings were taken from each rodent before the animal was removed from the restrainer and returned to its cages. For each measurement session, the animals were in the restrainer for around 15-25 minutes. Once rats were warmed, the VPR was attached to the tail of the animal, closer to the base of the tail. The five most consistent measurements of SBP, DBP and HR from 10 consecutive measurements were calculated as the mean of the measurements accepted by the CODA program and considered for statistical analysis. Mean arterial blood pressure (MAP) was calculated using the following equation (Leclerc et al., 2002):

$$MAP = DBP + \frac{SBP - DBP}{3}$$

7.2.8 Tissue collection

After the 13-weeks-period, SHR were euthanized using Sodium pentobarbital (100 mg/kg body weight). Blood samples were collected by cardiac puncture into heparinised tubes. The blood was centrifuged at 2000 x g for 10 min at 4°C (Beckman Coulter. Avanti J-265 XPI, Centrifuge). The blood and plasma samples were stored at -80°C. The kidney, heart, epididymal fat pad, liver, and left ventricular (LV) were then collected, weighed and stored at -80°C for further analysis.

7.3 Statistical analyses

Using Minitab 16, all the data were expressed as mean values and standard deviations of means of 5 closest measurements with the mean (± SEM). The differences between the experimental groups were determined by 2-way ANOVA and P-values less than 0.05 considered significant.

7.4 Results and Discussion

7.4.1 Feed intake, body weight, organ weights and energy contents

The food intake pattern and body weight of the SHR are shown in (Figures 7.1). Nutritional and energy content of diets are shown in (Table 7.3). Moreover, there were significant differences in energy content of the diets (P < 0.05). There were significant increases in food intake and body weight for the three different diet groups during ten weeks of feeding (P < 0.05) (Figures 7.1). All three groups, i.e. the group fed with freeze-dried peptide extract of Fermented RSM (FC), the group fed with non-fermented RSM control (1) (NFC) and group fed with normal rat food chow control (2) (NC) significantly increased food intake and body weight during the last seven weeks. However, the food intake was not consistent for all groups during the first four weeks. Food intake was initially lower in the FC group. By the end of the ten week period, the FC group consumed less food (~20 %), than the other groups (Figure 7.1B). However, there were no significant differences in total energy intake between diet groups (Table 7.5) because the FC diet was more energy-dense. The weight gained by rats in the three groups (Figure 7.1A) increased gradually over the course of the study, as expected. Similar results were found by Musoles et al., (2013) who conducted an acute study on the effect intake of a bovine lacto-ferrin hydrolysate enriched with low molecular weight peptides on the progression of hypertension SHR, and reported no differences in body weight between the two groups (Fernández-Musoles et al., 2013). The average body weight was less in the FC group compared with the groups fed with the diet containing skim milk (NFC) and standard rodent chow (NC). However, the calculated total energy intake showed no significant differences between the FC, NFC and NC groups (259.27; 212.77 and 238.14 MJ) (P < 0.05) respectively as presented in (Table 7.5). The study found that despite similar food energy consumption in all three groups, the FC group weighed less at the end of the study than the NC and NFC groups (Figures 7.1). There were no significant differences between the weights of organs of the three

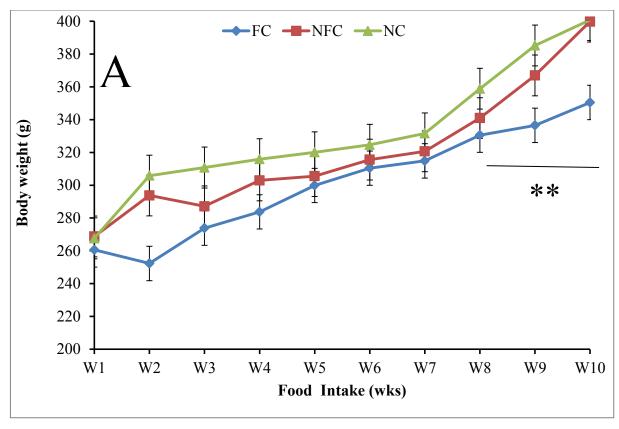
different treatment groups related to the body weight (Table 7.4). This is similar to the results using SHR fed a diet containing milk fermented with *L. helveticus* and *Saccharomyces cerevisiae* where the weight of heart, liver, testes, kidney, and spleen were not significantly different between the control and fermented milk groups (Nakamura et al., 1996). However, a previous study showed a 5 % reduction in heart, body weight ratio in SHR treated with perindopril for 14 weeks (Campbell et al., 1995). In ACE-KO mice, it was found that the lower body fat was primarily due to increased energy expenditure and not related to differences in food intake or energy digestibility. The increase in energy expenditure was independent of locomotor activity and appears to be mediated by increased fatty acid oxidation in the liver, so it is possible that the differences in body fat and energy expenditure were due to differences in fat metabolism (Jayasooriya et al., 2008).

In conclusion, food intake and body weight were affected by ACE inhibitory peptides, but body fat (using epididymal fat as an index) was not significantly reduced. Further study is needed to determine whether the differences in body fat and energy expenditure are due to differences in fat metabolism and putatively higher energy expenditure.

 Table 7.3 Nutrient composition of diet pellets prepared.

	Addition rate (g/100g)					
Ingredients	Control feed	Skim Milk powder	Fermented Skim Mill			
	(rats standard	Control containing	Peptides containing			
	chow) (NC)	feed (NFC)	feed (FC)			
Sucrose	10.00	10.00	10.00			
Freeze dried fermented SM	0.00	0.00	44.48			
containing Peptides (FSMP)						
Skim milk powder (SMPOC)	0.00	44.48	0.00			
Canola oil	4.00	3.50	3.50			
Cellulose	5.00	5.00	5.00			
Starch	19.26	19.26	19.16			
Dextrinised Starch	15.50	15.50	15.50			
DL- methionine	0.18	0.18	0.18			
AIN-93-trace minerals	0.14	0.14	0.14			
Calcium carbonate	0.13	0.06	0.06			
Sodium chloride	0.26	0.18	0.18			
Potassium sulphate	0.45	0.45	0.45			
AIN-93-Vitamins	1.00	1.00	1.00			
Choline chloride 75% W/W	0.25	0.25	0.25			
Blue food colour (10%)	0.00	0.00	0.10			
Energy content (MJ)*	15.1±0.012	18.4±0.002	16.9±0.011			

^{*}this represents the calorimetric value of the sample.


Table 7.4 Tissue weights of rats after 10 weeks treatments at 24 weeks of age.

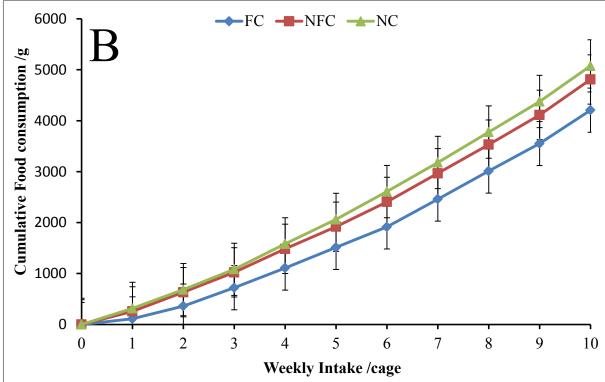

Groups/tissue	Fat	Kidney	Heart	L.V
FC	3.49±0.45	2.16±0.23	1.11±0.15	0.96±0.72
NC	3.94 ± 0.42	2.41 ± 0.15	1.2 ± 0.09	1.01 ± 0.08
NFC	3.96±0.21	2.23±0.16	1.18 ± 0.09	1.01±0.12

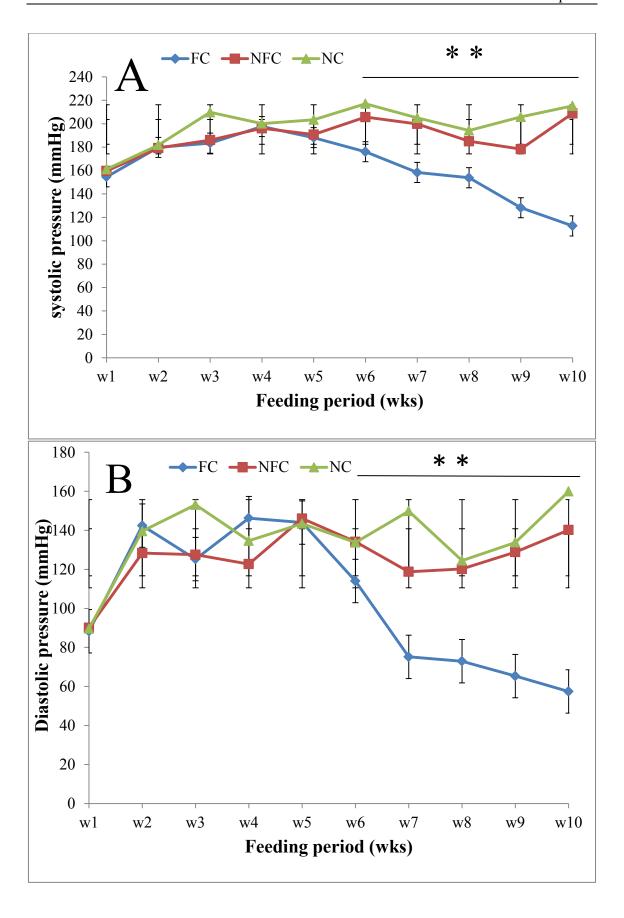
Table 7.5 Comparison of Food intake, body weight and total Energy intake of diet groups at the end of experiments.

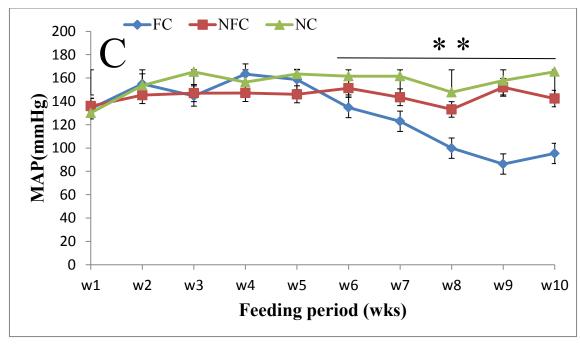
Measurments	Diet groups					
	FC	NFC	NC			
Food intake (g/cage)	42.00	48.10	51.5			
Body weight (g/rat)	350.46±0.32*	399.82±2.05	400.78±1.03			
Total Energy intake /each group (MJ)	238.14	259.27	212.77			

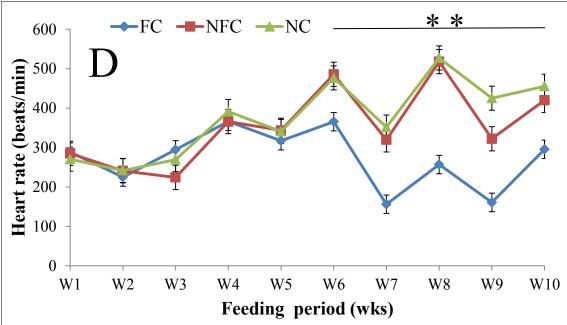
^{*=} means significant lower compared to the other groups

Figure 7.1 The body weight (A) and Cumulative feed consumption/g (B) of SHR orally administered with control 1 (NFC), control 2 (NC) and Fermented skim milk containing peptides (FC) during 10 weeks period feeding. All data were expressed as mean \pm SEM (n-9).

7.4.2 Antihypertensive effects of dietary peptides in SHR


Mean blood pressure (MBP), SBP and DBP were measured in SHR during dietary supplementation for ten weeks, as shown in (Figure 7.2). The BP values of all groups were similar in week 0 (~155/120 mmHg). The SBP, DBP and MBP of all groups (Figure 7.2A) showed no significant changes of BP in the first two weeks of feeding (P < 0.05). There was a gradual decrease in SBP, DBP and MBP after oral administration of the peptide extract of fermented skim milk (FC), which became significant from week six (P < 0.05) and continued until the end of the feeding intervention (week ten), compared with the control groups. The BP values of the control groups were similar. At the end of the feeding period the reduction in systolic BP of rats fed on FC was 40 % (120 mm Hg) and diastolic BP was 30 % (65 mm Hg) which is normal for a rat. However, those groups fed NC and NFC showed increased SBP and DBP (220 mmHg /150 mmHg) and (220 mmHg /140 mmHg) respectively. The peptides derived from milk proteins having ACE inhibiting properties likely affected the FC-fed group positively by reducing BP (Yamamoto & Takano, 1999). In previous experiments, it was found that the ACE inhibition activity was higher in fraction 6 (95.5 %), which contains peptides TPVVVPPF, YPFPGPIP and SLPQNIPPLTQTPVVVPP with potent anti-hypertensive properties as described in section 6.4.3.1 (Table 6.1). These peptides were identified in the fermented SM. Similar peptides including tri-peptides have been reported to lower blood pressure similar to captopril (Iwaniak & Minkiewicz, 2008; Wang et al., 2012; Du et al., 2013). Nakamura et al., (1996) suggested that fermented milk containing peptides not only have a temporary antihypertensive effect by single oral administration but also a long-lasting effect on the hypertensive stage during longterm feeding in SHR. The authors further stated that unlike the effect on blood pressure, fermented milk did not alter the heart rate, body weight and organ weight. It is known that these small di- or tri-peptides are easily absorbed in the intestine (Adibi & Morse, 1971) and the Pro-Pro sequence is resistant to gut enzyme degradation (Kim, S. Y & Kim, 1972). One possible explanation for the decrease of ACE activity is that the tripeptides are absorbed, they reach the systemic circulation and decrease ACE activity. Similarly, Fernández-Musoles et al., (2013) described that the long-term oral administration to SHR with low molecular weight peptides, attenuated and even reversed the progression of hypertension. The *in vitro* evidence of ACE-inhibitory properties was supported by reductions of ACE activity, angiotensin-II and aldosterone levels in the circulation, as well as a compensatory increase of renin activity in SHR,

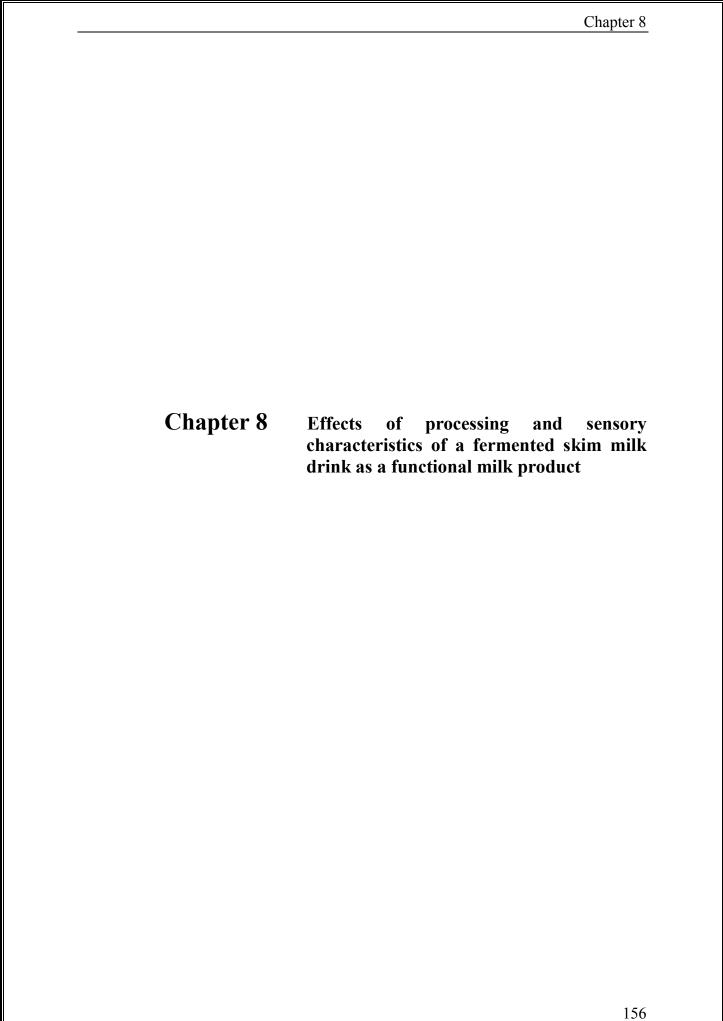

thus supporting ACE inhibition as an *in vivo* mechanism for the antihypertensive effects (Fernández-Musoles et al., 2013). Interestingly, during the period of dietary intervention, it was noticed that the FC group were more relaxed and calm when compared with SHR in the control groups, which were more active. Similarly, it has been reported that milk fermented by L. helveticus has a favourable effect on improving sleep in healthy, elderly people in the short-term (three-week) (Yamamura et al., 2009). This could have been as a result of the peptides effect on BP. It has been demonstrated that α -lactorphin, a tetra-peptide (YGLF) formed by in vitro proteolysis of α lactalbumin with pepsin and trypsin, lowers blood pressure when administered subcutaneously in SHR (Nurminen et al., 2000) and produces an endotheliumdependent relaxation of their mesenteric arteries that is inhibited by an endothelial nitric oxide synthase inhibitor (Sipola et al., 2002). Although α-lactorphin interacts with opioid receptors, it does not elicit effects typical of centrally active opioids such as antinociception and sedation (Ijäs et al., 2004). It has also been suggested that these opioid peptides might lower blood pressure through receptors expressed in the gastrointestinal tract, which implies that no absorbance is required (Yamada et al., 2002). However, in this study, an effect of opioid peptides on blood pressure by treatment of the rats with naloxone was not measured (Nurminen et al., 2000).


According to Jauhiainen et al., (2005 and 2010), the mechanistic theory of ACE-inhibition of tri-peptides such as (IPP and VPP) remains to be confirmed and other effects have to be taken into consideration. These effects have been evaluated in animal models and clinical studies, plasma renin activity and levels have been found to be raised in SHR receiving IPP and VPP for 14 weeks (Jauhiainen et al., 2005; Jauhiainen et al., 2010). Another study has reported the protective effects exerted by these peptides on endothelial function of isolated mesenteric arteries of rats after 24 h incubation (Jäkälä et al., 2009). The administration of VPP and IPP on gene expression of SHR abdominal aorta (using DNA microarray) reported a significant increase in expression of the endothelial nitric oxide synthase gene (eNOS), which is involved in blood pressure regulation. In another long-term study with a product based on the casein hydrolysate, which contained the peptides (RYLGY and AYFYPEL) it was found that the development of hypertension in the rats' group treated with the casein hydrolysate product was attenuated (Fuglsang et al., 2003). In addition, the treatment improved aorta and mesenteric acetylcholine relaxations and increased the eNOS expression in the

aorta. The left ventricular hypertrophy decreased in treated SHR. Fuglsang et al., (2003) reported that ingestion of milk fermented with *L. helveticus* provokes a decrease of the response to an intravenous injection of angiotensin-I in unconscious normotensive rats, whereas the response to bradykinin was increased, confirming the inactivation of ACE (Fuglsang et al., 2003).

In conclusion, the reduction in systolic BP of rats fed FC was 40 % (120 mmHg) and diastolic BP was 30 % (65 mmHg) compared to BP before treatments, and this is effectively a normalisation of blood pressure. In comparison, the groups fed NC and NFC had elevated SBP and DBP (220 mmHg /150 mmHg) and (220 mmHg /140 mmHg) respectively. Further studies are necessary to demonstrate the absorbance of these peptides, and confirm that the mechanism underpinning the normalisation of blood pressure is due to a decrease in ACE activity in blood vessels. During the experimental period, there were no physiological side effects or toxicity from peptides on SHR (Health monitoring form in Appendixes-II). Further analyses in future is needed to measure the percentage of ACE-I activity peptides in rats' blood and tissue to understand the mechanism theory of ACE- inhibition peptides activities.

Figure 7.2 Decrease in systolic (**A**), diastolic (**B**), mean arterial blood pressure (**C**) and Heart rate (**D**) of SHR Blood pressure lowering effect after oral administration of fermented skim milk containing peptides (FC), comparing with skim milk powder as control 1 (NFC), and diets Rats Chow as control 2 (NC). Data points are the mean \pm SEM. ** indicate significant differences between group treatments (P < 0.05). No significant differences were found in first 5 weeks administration for all the groups.


7.4.3 Heart rate

The heart rate of the FC-treated group was lower (P < 0.05) than that of the other two control groups (Figure 7.2D), whereas there were no significant differences between groups fed control diets. Also, it was noted that there were no significant differences (P

< 0.05) between the three groups during the initial five week period (Figure 7.2D). However, there were significant (P < 0.05) differences of heart rate averages between treatment groups fed by peptides extract (FC, 290 beats/min) and the two control groups (NC and NFC, 432 and 460 beats/min, respectively) at the end of experiments, while the normal heart rate for rats is between (300 - 400 beats/min). It has been reported that heart rate was lowered after taking a dose of 240 mg/kg b.w. and 1200 mg/kg b.w. of peptides generated from fermented whey protein which can reduce cardiac stress (Liu et al., 2013; Wang et al., 2012). Gillman et al. (1993) stated that heart rate averages may be an independent risk factor for cardiovascular death in persons with hypertension. As heart rate increases there is a significant increase in oxygen consumption per beat (Gillman et al., 1993). The increased myocardial oxygen consumption associated with augmented heart rate leads to an increase in myocardial load and cardiac stress (Boerth et al., 1969).

7.5 Conclusion

These results show that there were positive effects of the peptides in reducing blood pressure in SHR. The elevated BP gradually decreased to a normal level (P < 0.05) from six to ten weeks in the FC group, compared with the other two control groups (P < 0.05) which remained hypertensive. While body weight was lower in the FC group, this could not be attributed to a change in energy consumption (P < 0.05). In vitro, the ACE-inhibitory activities of the experimental feeds (FC) were ~95.5 %. The control diets did not show any ACE-inhibitory activity. We can conclude that diets supplemented with peptides extracted from fermented skim milk exhibited potent antihypertensive effects in spontaneously hypertensive rats that normalised blood pressure. In addition, there was a significant reduction in body weight that may be as a result of increased metabolic rate due to inhibition of angiotensin converting enzyme activity.

8.1 Introduction

Fermented milk product is defined as a dairy product which, during the fermentation process, has its nutritional aspects as well as its physical and chemical sensory characteristics changed (World Health Organisation, 2002). This process is a result of the activities of lactic acid bacteria (LAB) that use milk as substrate as their main carbon source and growth factors (Oliveira et al., 2002). Numerous LAB used in the production of fermented milk products are considered as probiotics. Probiotics have been defined as 'live microorganisms that when administered in adequate amounts confer a health benefit on the host' (Saxelin et al., 2003). The scientific understanding in the field of probiotic bacteria and the processes of bacterial fermentation are improving. The genera of bacteria and dairy yeasts commonly used as probiotics are able to hydrolyse dairy proteins and carbohydrates to produce different types of fermented dairy products (Abbas, 2006; Ramesh. Chandan, 2013). Hydrolysed dairy proteins have several benefits over non-hydrolysed proteins as they have developed functionality in the food matrix and are rich sources of bioactive peptides (Hernández-Ledesma et al., 2011). Bioactive compounds in foods provide physiological benefits including reduced blood pressure (Chen, Remondetto, & Subirade, 2006; Chen et al., 2014; Pihlanto & Korhonen, 2015). Milk proteins have long been considered as an essential source of amino acid, and a potential media for the production of biologically active peptides (Hernández-Ledesma et al., 2011). There have been different processes employed to release bioactive peptides in short-time fermentation; some of which have used a stirred bioreactor system (Sodini et al., 1998; Stressler et al., 2013; Yadav et al., 2014). Furthermore, various bioactive peptides have been isolated from hydrolysates of casein, which include opioid agonists and angiotensin-converting enzyme inhibitor (ACE-I) peptides (Miyauchi et al., 1997; Gill et al., 2000; Ahtesh et al., 2016). Peptides derived from milk fermentation appear to survive gastrointestinal digestion and have been identified in faeces (Ganjam et al., 1997; Gill et al., 2000). Among LAB, L. helveticus (Lh) has been reported to have high proteolytic activity (Yamamoto et al., 1999; Luoma et al., 2001; Griffiths & Tellez, 2013; Ahtesh et al., 2016) and has been used for milk fermentation, usually in cheese processing. These processes require long fermentation time to obtain the curd (Prevost & Divies, 1987). One of these processes is cell bioreactor technology, and this has been proposed for the continuous inoculation and acidification of fermented milk products (Prevost & Divies, 1987; Stressler et al., 2013; Yadav et al., 2014). An immobilised cell bioreactor may also be used to

inoculate and acidify milk simultaneously because of the growing activity of the immobilized culture and the resulting cell release into the bulk media (Prevost & Divies, 1987; Passos & Swaisgood, 1993; Sodini-Gallot et al., 1995). Bioreactor technology has optimal microbiological stability and a massive inoculation of milk with the starter culture of > 10⁸ cfu mL⁻¹ bieng observed (Sodini-Gallot et al., 1995). Continuous inoculation and milk acidification using four strains of mesophilic LAB that had been separately entrapped had very high productivity and good microbiological stability when operated with milk (Lacroix, 2005; Sodini-Gallot et al., 1995). Productivity increased further by 70 % when pH was controlled at 6.4 by adding fresh milk than when pH was controlled at 6.2 (Sodini et al., 1998).

Generally, dairy products, particularly fermented milks, are the most popular vehicles for delivery of bioactive peptides to the body due to their good compatibility, pleasant and attractive sensory profiles as well as high consumption around the world (Granato et al., 2010; Mohammadi & Mortazavian, 2011). However, bitterness of enzymatic hydrolysate may limit the use of these products (Favaro-Trindade et al., 2010; Spellman, O'Cuinn, & FitzGerald, 2009). Sensory evaluation is a method that provides integrated direct measurements of perceived intensities of target attributes (Bleibaum et al., 2002). The traditional method of evaluating the bitterness of fermented milk products is by sensory analysis using a human taste panel (Newman et al., 2014). Physicochemical characteristics have been used previously as predictors for bitterness in fermented foods, such as measuring poly- phenol content by HPLC analysis or by measuring peptide size and hydrophobicity using Urea-PAGE and RP-HPLC (Fallico et al., 2005; Newman et al., 2014). The consumption of fermented milk is widely associated with the presence of LAB due to their desirable sensory characteristics promoted by these microorganisms and the associated health benefits to the consumer. To the best of the author's knowledge, this work is the first to investigate the efficiency of agitation on ACE-I bioactive peptides by combination of Lactobacillus helveticus and Flavourzyme[®] using bioreactor. Therefore, the aims of this study were, (i) to reduce the bitterness of the fermented product by adding flavour and sucrose at the end of the fermentation processes and, (ii) to evaluate the chemical and sensory characteristics of the product using trained panellists. Furthermore, author's aim was to increase casein hydrolyses of fermented skim milk (SM) drink product in short fermentation time using a stirred bioreactor.

8.2 Material and Methods

8.2.1 Materials and Chemicals

Skim milk powder was obtained from (Murray Goulburn Co-operative Co. Ltd., Brunswick VIC Australia and United Milk Tasmania Ltd., TAS Australia), food acid, nature colour and flavour (Natural Strawberry, Flavouring Essence) were purchased from a local supermarket (Werribee, Victoria Australia), while MRS broth and sucrose were purchased from Oxoid (West Heidelberg, Vic Australia). Flavourzyme[®] [Flavourzyme[®]1000 L (EC 3.4.11.1, an amino peptidase with an activity of 1000 Leucine Amino-peptidase (LAPU g⁻¹) as quoted by Novozymes Australia] was purchased from Novozymes Australia, North Rocks, NSW, Australia, *Lactobacillus helveticus* ASCC 881315 strain was obtained from Dairy Innovation Australia Ltd. 20-Litres of bioreactor system was from (Bio-Stat[®] A plus, Germany). Bradford Reagent and Standard Bovine serum albumin (BSA) were purchased from Sigma Chemical Company, St Louis, MO, USA.

8.2.2 Ethics procedure

This study was approved by the Human Research Ethics Committee (HRECs) of Victoria University, under application ID number HRE 13-079, for the conduct of sensory evaluation. All participants signed consent forms before taking part in the sensory test (Appendix III).

8.2.3 Bacteria storage, culture conditions and propagation

The propagation was observed for Lh strain in RSM as described in section 6.2.2.

8.2.4 Preparation of Fermented skim milk drink

Reconstituted skim milk (RSM 12 %) was prepared by mixing skim milk powder (SMP; Murray Goulburn Co-operative Co. Ltd., Brunswick VIC., Australia) in distilled water (20 Litters) total volume, and pasteurised at 90°C for 20 min. The media was then inoculated with a combination of *L. helveticus* (1 % level) and Flavourzyme[®] (0.14 % w/w) (Novozymes Australia, North Rocks NSW Australia) and incubated at 37°C for 12 h with agitation. Flavourzyme[®] was added to improve proteolysis in milk. After the fermentation process, the samples were heat treated at 85°C for 20 min in water bath to kill and inactivate probiotic bacteria and enzyme activities. The product was cooled to room temperature, and strawberry flavour and sugar were added.

8.2.5 Bioreactor assay of low fat skim milk to increase the ACE-I% activity

Bioreactor assay was used for the preparation of fermented RSM as described in section 6.2.2.1.

8.2.6 Measurement of bacterial growth

Growth was assessed every 4 h up to 12 h during fermentation in 12 % RSM as described in the procedure in section 3.2.3.

8.2.7 Determination of proteolytic activity

Proteolytic activity during fermentation was determined according to the procedure described in section 3.2.5.

8.2.8 Determination of ACE-Inhibitory activity

ACE- inhibitory activity was measured according to the procedure described in section 3.2.6.

8.2.9 Chemical Measurements

Protein content of samples, ash and moisture, were examined according to the Association of Official Agricultural Chemists (AOAC) International (1995) methods. For protein concentration, the Bradford method (Bradford, 1976) was used. Three mL Bradford Reagent (Sigma) and 0.1 mL protein sample were added to a test-tube and vortexed to mix. The sample was then incubated at room temperature for 25 min and absorbance was measured at 595 nm using a Pharmacia spectrophotometer (LKB Novaspec II, LKB Biochrom St Albans U.K). Ash and total solids content were obtained using the muffle furnace method; approximately 5 g of fermented RSM was placed in a stainless steel crucible and evaporated to dryness in an oven at 100°C. The dry sample was placed in a muffle furnace at 550°C for 16 h, until it was free of carbon. Once ash temperature was the same as room temperature, the crucible containing the ash was weighed and the results calculated using the equation below:

Ash
$$\% = \frac{\text{weight of residue x100}}{\text{weight of sample}}$$

All samples were in triplicate using the same equipment and conditions. For pH measurements, a calibrated digital pH meter (Meter Lab, Pacific Laboratory Products, and Blackburn Victoria Australia) was used.

The percentage moisture content was determined by the oven-drying method at 102°C, using the equation according to the AOAC (1998):

Moisture
$$\% = \frac{A - B - C \times 100}{D}$$

A= Sample and dish weight/g

B=Blank average/g

C=Empty dish weight

D=Sample weight/g

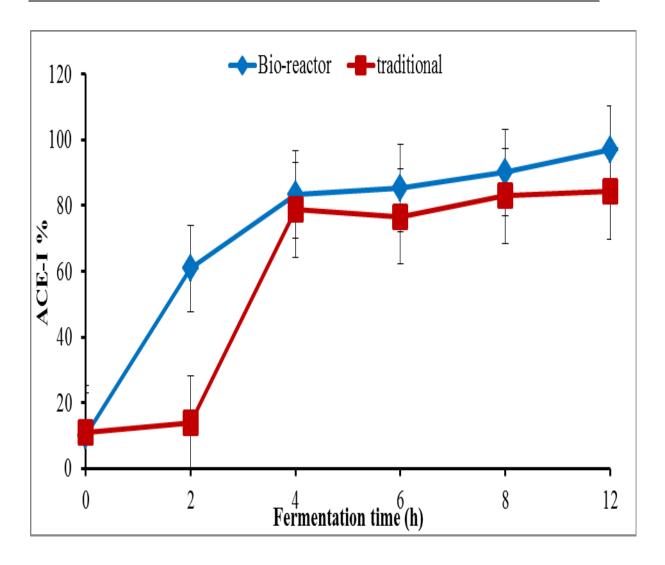
8.2.10 Sensory analyses of the fermented skim milk drink

Sensory properties of the fermented skim milk and control batches were assessed by 20 trained panellists recruited from staff members and students from the College of Health and Biomedicine at Werribee campus, Victoria University. The panellists were first trained for perception of flavour by giving them standard solutions of lactose 5 %, for sweetness judgement (normal sweetness) and 0.19 g/dl L-leucine for bitterness (extreme bitterness). They were presented with samples coded as (A) fermented skim milk drink containing peptides (FSMP) (Appendixes III); (B) final product of fermented skim milk containing peptides and 5 % sucrose (FSMPC) (to mask the bitterness) and (C) 15 % sucrose with 5 % strawberry flavor and aroma, FSMPCF; (D) Reference fermented milk commercially available-Yakult as control 1; and (E) unfermented skim milk (UN.F.SM) as control 2. The lighting and environmental conditions for the test were in accordance with international standards (Standard 8589; ISO, 1988). Samples in 30 mL white plastic cups coded with three digits at room temperature (~25°C), were presented to each panellist. Water and crackers were given to panellists for palate cleansing between samples allowing 15-min breaks between sessions. Panellists were advised not to swallow the product. Each panellist evaluated four samples for flavour (bitterness), texture, colour, and appearance, using a 10-point hedonic scale (0 = dislike extremely to 10 = like extremely) and compared them to the two controls. The test was repeated three times over the next three weeks as replicates.

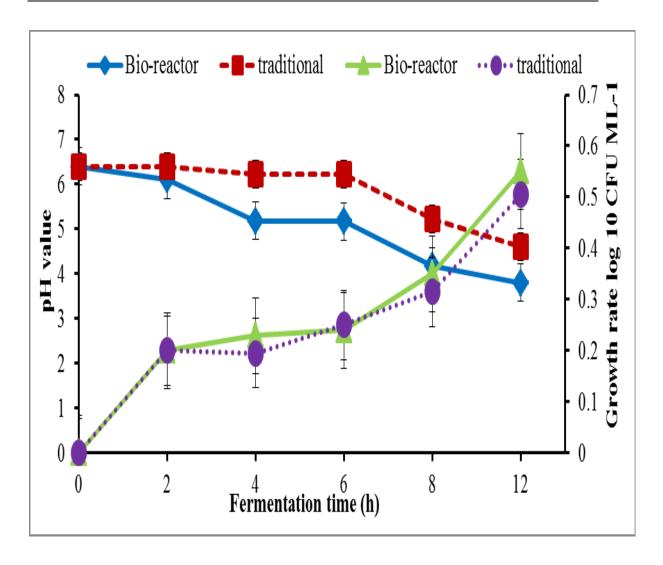
The results of this assessment will help the researchers understand how fermentation has influenced texture, flavour and aroma of fermented skim milk containing peptides and an insight into how to develop a product accepted by consumers. Three sensory evaluation sessions in 3 weeks were performed by the same group of panellists in order to assess the acceptability of the products compared to the controls as affected by supplementation with sucrose and/or peptides. The scores were analysed statistically using one-way ANOVA test.

8.2.11 Statistical analysis

All data were expressed as mean values of three replicates with standard deviation. One-way ANOVA was performed to investigate the significant differences in the treatments; by Minitab 16 software. The level of significance was tested at P < 0.01. The test was used to investigate significant differences among the treatment means.


8.3 Results and Discussion

8.3.1 Efficiency of mechanical agitation on ACE-I peptides activity, proteolytic activities, growth and pH


Several studies on *Lactobacillus species* have focused on the enhancement of lactic acid and biomass production using bioreactor rather than on bioactive peptides production (Bury, Hajsmanova, & Jelen, 2000; Altiok, Tokatli, & Harsa, 2006; Tobajas et al., 2007). This study reports on the development of an efficient fermentation process, with respect to effect of agitation, along with ACE-inhibition (ACE-I) peptide activity production during the 12 h fermentation and strategies like fed-batch and semi-continuous fermentation in the 20 L bioreactor (Parente & Zottola, 1991; Bury, Hajsmanova & Jelen, 2000).

The effect of using a bioreactor on skim milk fermentation with the combination of Lh 881315 and Flavourzyme[®] was compared to traditional fermentation presented in (Figure 8.1). There were sharp increases (P < 0.01) in ACE-I activity using stirred bioreactor between 0 and 2 h fermentation (~ 60 %) correlated to the protein hydrolysates (Figure 8.3) and compared to the traditional fermentation method in the same fermentation time (~ 10 %). This may due to the mechanical process of the bioreactor that has led to the improvement at the casein hydrolysis. ACE-I activity between 4 h and 12 h fermentation increased further from 60 % to 95 % at pH 3.5 using

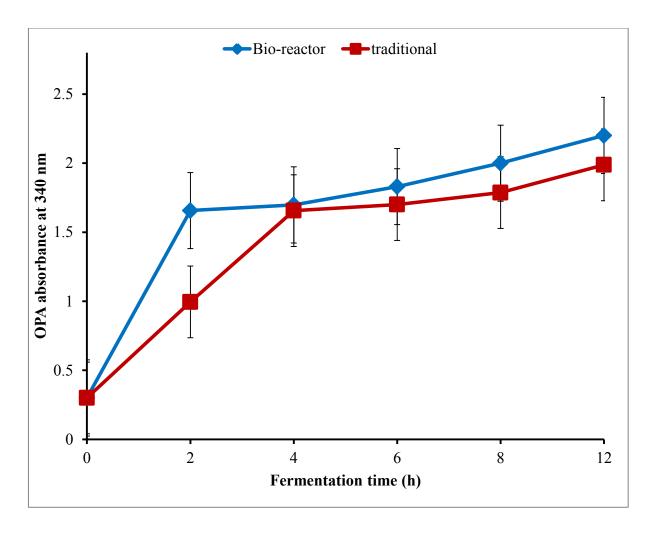

stirred bioreactor, whereas ACE-I activity using traditional fermentation was 82 % at 12 h fermentation and the pH was 4.9 (Figure 8.1). This could be attributed to selfdigestion of the enzyme (Lin et al., 1997). However, it has been reported that casein may act as a protecting agent against self-digestion and subsequent loss of enzyme activity (Boudrant & Cheftel, 1976). Results show that mechanical treatment in bioreactor actually aided membrane damage to bacteria and resulted in greater accessibility of enzyme hydrolyses of substrates and consequently yielded higher peptide production (Choonia & Lele, 2013; Stressler et al., 2013). The suggested concentration for probiotic bacteria providing health benefits was at least log 6 CFU mL ¹ of a product during its shelf life (Shah, 2000; Betoret et al., 2003). Probiotic fermented skim milk drink revealed populations of Lh of log 6 cfu mL⁻¹ using bioreactor fermentation at 37°C during 12 h, whilst log 5.6 cfu mL⁻¹ during 12 h with a traditional fermentation (Figure 8.2). There was an increase in growth during 12 h fermentation in both methods (agitation and non- agitation) with significantly higher growth in the agitated system (P < 0.01) (Figure 8.2). The growth correlated with a drop in pH measured during fermentation and was due to the lactic acid production which increased between 2 to 12 h fermentation in the bioreactor (pH dropped from ~ 6.5 to \sim 3.9 at 12 h) (Figure 8.2). There was no significant decrease in pH in the fermentation without agitation during the first 6 h; however, there was a significant decrease in pH between 6 - 12 h fermentation time (P < 0.01) (Figure 8.2). Overall, the bioreactor system hydrolyses with improved ACE-I activity in a shorter fermentation time compared to the traditional fermentation.

Figure 8.1 Comparison was between Bio-reactor fermentation system and the traditional fermentation (without agitation) of 12 % RSM by combination of L. helveticus 8801315 and Flavourzyme[®] at 37°C.

Figure 8.2 Effect of Bio-reactor fermentation system (solid line) on pH value and Bactrial growth of 12 % RSM by combination of *L. helveticus* 8801315 and Flavourzyme[®] at 37°C, compared with traditional fermentation (without agitation; dotted line).

Figure 8.3 The proteolytic activity of L. helveticus 8801314 combined with Flavourzyme[®] at 37° C using Bioreactor system compared with traditional fermentation without agitation.

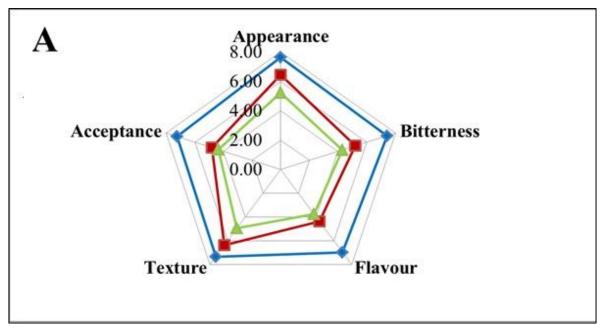
8.3.2 Chemical measurements

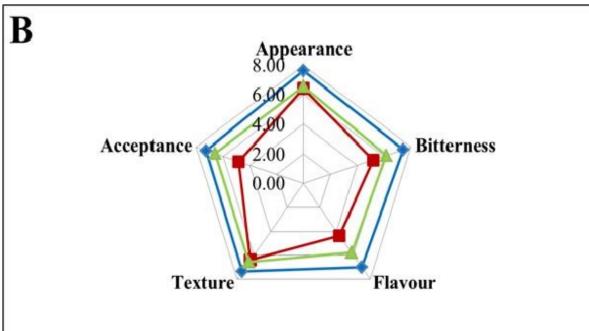
The nutritional ingredients of low-fat fermented SM drink compared to unfermented SM and commercial dairy product (Yakult) are shown in (Table 8.1). The ash content, sugar, moisture and protein were not significantly different between fermented RSM containing peptides compared to Yakult, whereas results of fermented SM drink were significantly different (P < 0.05) from untreated SM. Similarly, the use of *Lactobacillus plantarum* to ferment 10 % SM for 8 h at 37°C (Souza et al., 2013) were reported. Most analyses involving the development of milk-based fermented beverages, like fermented milk, yoghurts and milk drink, have reduced content or even absence of fat (Thamer & Penna, 2006; Venturoso et al., 2007). Overall, there is similarity between commercial dairy product (Yakult) compared to fermented SM drink;

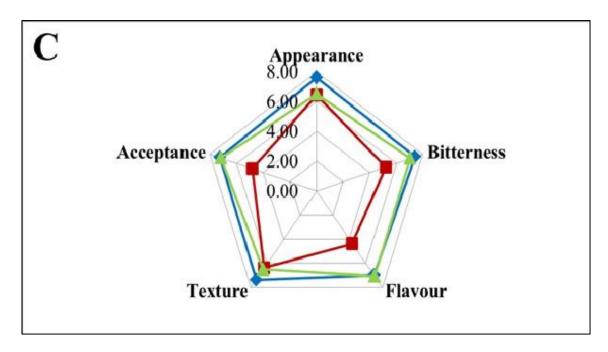
however, the protein content was less in fermented SM drink (0.1/100g) compared to Yakult (1.9/100g) due to the protein hydrolyses during the fermentation process (Table 8.1). In general, most of the nutrition ingredients specially Total minerals of fermented drink have been declined into the about half compared to the untreated skim milk powder and reconstituted skim milk due to the bacterial strains consumed it for growth.

Table 8.1 Nutrition ingredients of the developed low fat fermented skim milk drink by combination of *L. helveticus* 8801315 and Flavourzyme[®] compared with skim milk powder, reconstituted skim milk and Yakult as commercial products containing probiotic strains.

Ingredients	Skim milk	Skim milk (12%) (RSM) Fermented RSM		Yakult	
	powder		(final product)	(control)	
Protein/100g	3.5±0.01	3.2±0.14	0.1±0.29	1.9±0.75	
Fat/100g	0.1 ± 0.06	0.01 ± 0.05	0.01 ± 0.09	0.1 ± 0.96	
Moisture (%)	3.00 ± 0.21	88±0.54	89.9±0.01	82.4 ± 0.02	
Total minerals (%) ash	0.8 ± 0.28	0.8 ± 0.43	0.4 ± 0.03	0.3 ± 0.04	
Sugar (%)/100g	5.3±0.043	0.62 ± 0.07	15±0.17	16±0.01	


8.3.3 Sensory analyses


In these studies, sensory evaluation was fundamental to observe the behaviour of different types of SM drinks before and after the fermentation process. As such, the addition of sucrose that characterises the resulting products in relation to appearance, flavour, taste and/or texture, during their shelf-life, beyond verifying the acceptability by consumers was key to the evaluation. Comparisons of samples were conducted by means of sensory evaluation using the hedonic scale (Lawless & Heymann, 1999). Sensory evaluations were carried out after 12 h fermentation time at 37°C and cooled to 5°C. Twenty trained Panellists were asked to taste and compare three different fermented SM drink samples; fermented SM drink containing peptides (FSMP), fermented SM drink containing peptides and 5 % sucrose (FSMPC), and fermented SM drink containing peptides and 15 % sucrose with 5 % flavor (FSMPCF). Yakult and unfermented SM (UN.F.SM) were used as controls. The attributes described were bitterness, flavour and texture compared to the control samples (Figure 8.4). It has been reported that the production of quality of fermented milk products depends on the proteolytic activity of the strains used, since the amino acids and peptides formed have a direct impact on flavour (Williams & Banks, 1997). In addition, a study reported that bitterness was generated by peptides containing phenylalanine (Akira Kawakami, 1995). There was a significant difference (P < 0.05) verified between the initial and final mean values of the attributes: flavour, bitterness, appearance and overall acceptance of the product (Figure 8.4 A).


Adding flavor and aroma are considered to be important parameters for consumer acceptance (Williams & Banks, 1997). Koksoy & Kilic., (2004) reported that the addition of fruit flavor and sugar can mask the sour taste in the formulations of Only FSMCPF was noted as having small, visible fermented dairy products. differences in texture and appearance compared to untreated SM. Four from 20 panellists were able to accept the bitterness test of fermented SM containing peptides without flavor. Eighteen panellists preferred Yakult and FSMCPF, with no differences between them being reported. Hence, the addition of adding 15 % sucrose and 5 % flavour to fermented SM positively affected the product and masked the bitter taste. The acceptability of 5 samples were significantly different, whilst there were no significant differences of the acceptability between 15 % sucrose FSMPC and Yakult as control (P < 0.05). However, there were significant differences (P < 0.05) in acceptance, bitterness, texture and appearance of FSMPC compared to Yakult (Figure 8.4 B). UN.F.SM and un-flavoured fermented SM was not preferred. Similarly, what was observed in the present study for the fermented SM drink, on addition of sweetness (sucrose) in the fermented dairy products, has been shown to be related with improvement of sensory behaviour. In fact, fermented milk products by L. casei subsp. rhamnosus LBC 80 combined with Lactococcus lactis subsp. lactis and one strain of Lactococcus lactis subsp. cremoris produce positive sensory changes in relation to texture and flavour in low-fat cheese, when compared with control unfermented low-fat cheese (Katsiari et al., 2002). In addition, Menendez et al., (2000) obtained improvement of sensory parameters of cheeses by the reduction of bitter taste, in relation to control.

Generally, markets for functional dairy products have reached a significant level and are expected to grow in the future. However, it is important to point out that the maximum expressions of the real functional properties of these products must be reconciled with the sensory acceptance of the dairy that is being developed (Castro et al., 2004).

Several dairy products were tested as vehicle of probiotic cultures, which showed functionally and sensorial appropriateness (Oliveira et al., 2002). According to these results, the acceptable sensory quality and the nutritional and health claims may be used for the promotion of the products and increasing the marketing appeal of functional dairy products.

Figure 8.4 A graphic representation of the mean of sensory evaluation by quantitative descriptive analysis (QDA) of unfermented skim milk (UN.F.SM ■) as control, commercial product Yakult (♦) as control 2 and (A) fermented low fat skim milk drink containing 95.5 % peptides, FSMP (△), fermented low fat skim milk drink containing peptides and 5 % sucrose FSMPC (△) (B), and (C) fermented low fat skim milk drink containing peptides and 15 % sucrose with 5 % flavor, FSMPCF(△).

8.4 Conclusion

The efficiency of a bioreactor was improved with mechanical agitation during fermentation and resulted in increased cell viability and ACE-I activity from 90.3 % to 95.5 %, using *L. helveticus* 8801315 and Flavourzyme[®]. Fermented skim milk containing bioactive peptides was developed with acceptable sensory characteristics. However, increased acidity, as well as bioactive peptides, led to increased bitterness of the fermented skim milk drink. The addition of 15 % sucrose and 5 % strawberry flavour provided positive changes to the fermented product in terms of being accepted by consumers.

			Chapter 9	
Chapter 9	Overall Conclusions Directions	and	Future	Research
				171

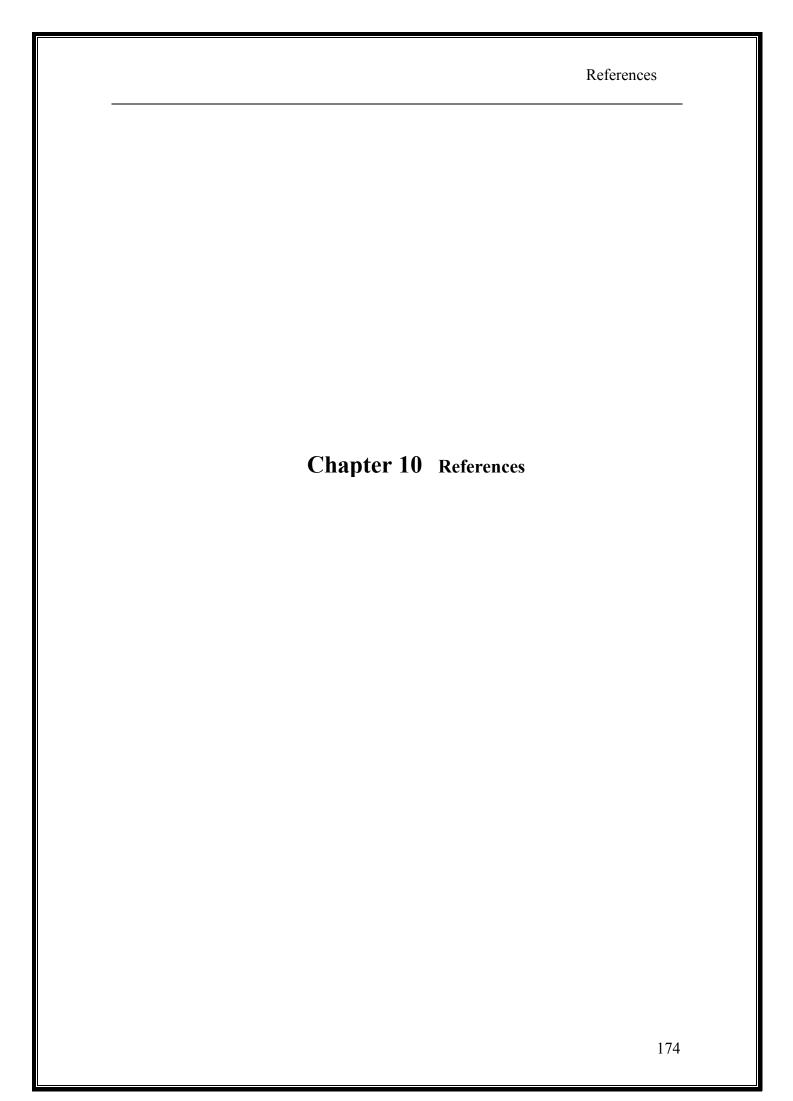
9.1 Overall Conclusions

RSM was a better growth promoter of probiotic bacteria than WPC. In fact, all strains were capable of growing well in RSM due to their proteolytic activities which resulted in increased ACE-inhibition activity, compared to WPC. When strains were incubated in combination with protease in RSM, the proteolytic and ACE-I activities of Lc210, Bb12, Lb11842, La2410 were higher in RSM media compared with WPC media. Bb12 and La2410 demonstrated higher ACE-inhibitory and proteolytic activities compared to Lb11842 and Lc210. The supplementation of media with Flavourzyme[®] increased proteolysis and thus production of ACE-I peptides of all four bacterial strains. Flavourzyme[®] supplementation of media reduced fermentation time from 12 h to 8 h. The increase in growth translated to the corresponding decrease in pH value.

Differences in the production of ACE-I peptides by *L. helveticus* (Lh 881315, Lh 881188, Lh 880474 and Lh 880953) varied between the strains due to differences in proteolytic activity. Casein-rich RSM supported higher growth of *L. helveticus* strains, higher proteolytic activity and higher production of ACE-I peptides. Beneficial effects of protease supplementation were more pronounced in the first 8 h of fermentation. The highest proteolytic and ACE-I activity was observed for Lh 881315 combined with Flavourzyme[®] in RSM. In fermented RSM, enhanced proteolytic activity by probiotic organisms and protease improved the production of ACE-I peptides, which, in turn, caused appreciable *in vitro* ACE-I activity.

The combination of LAB strains with *Kluyveromyces marxianus* LAF4 (*K. marxianus*) led to reduced bacterial growth and ACE-I activity after 8 h fermentation most likely due to alcohol production compared to LAB separately. It was suggested that the *K. marxianus* or LAB preferred separately to release more ACE-I peptides in fermented dairy products other than in combination forms.

The selected strains produced a range of bioactive peptides with varying degrees of ACE-inhibition. In this study, has been successfully identified 133 peptides with 99 % confidence from two fractions (F1 and F6). The highest ACE-I activity was in F6 (90.31 % with IC₅₀ 0.01 mg mL⁻¹). The most potent ACE-I peptides found in this hydrolysate corresponded to FFVAPFPGVFGK, GPVRGPFPIIV, and LHLPLPLL and showed significant antihypertensive activity.


Elevated blood pressure (BP) of spontaneously hypertensive rats (SHR) fed with peptide extraction gradually decreased to normal levels in six to ten weeks for the rats group, compared with the other 2 control groups, which remained hypertensive. While body weight was lower in the FC group, it could not be attributed to a change in energy consumption. The control group's feed did not show any effects on SHR blood pressure. Feeding diets supplemented with peptide extract from fermented skim milk drink exhibited potent antihypertensive effects on SHR blood pressure. There was a significant reduction in body weight that may be a result of increased metabolic rate due to inhibition of angiotensin converting enzyme activity.

The efficiency of a bioreactor improved with mechanical agitation during fermentation and resulted in increased cell viability and ACE-I activity from 90.3 % to \sim 95.5 % using *L. helveticus* 8801315 and Flavourzyme[®]. Fermented skim milk containing bioactive peptides was developed with acceptable sensory characteristics. However, increased acidity as well as bioactive peptides led to increased bitterness of the fermented skim milk. The addition of 15 % sucrose and 5 % of natural strawberry flavour proved more acceptable to consumers in terms of flavour.

9.2 Future Research Direction

The project results showed that probiotic organism (*Lactobacillus helveticus* 881315) used in this research released more bioactive compounds (peptides) in combination with Flavourzyme[®] during fermentation of low-fat skim milk in a bioreactor system. This research finding has raised some important questions that need to be addressed in future research studies which can be classified under two major areas of research:

- A) Stability, mechanism of the ACE-I peptides and human trials,
- **B)** Large scale production of biologically active peptides and the potential use as nutraceutical additives in functional foods.

- Abbas, C. (2006). Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In A. Querol & G. Fleet (Eds.), *Yeasts in Food and Beverages* (pp. 285-334): Springer Berlin Heidelberg.
- Abdelgadir, W. S., Ahmed, T. K., & Dirar, H. A. (1998). The traditional fermented milk products of the Sudan. *International Journal of Food Microbiology*, 44(1–2), 1-13. doi: http://dx.doi.org/10.1016/S0168-1605(98)00090-7.
- Acharya, K. R., Sturrock, E. D., Riordan, J. F., & Ehlers, M. R. W. (2003). Ace revisited: A new target for structure-based drug design. *Nat Rev Drug Discov*, 2(11), 891-902.
- Adibi, S. A., & Morse, E. L. (1971). Intestinal transport of dipeptides in man: relative importance of hydrolysis and intact absorbance. *Journal of clinical investegation*, 50(11), 2266-2275. doi: 10.1172/JCI106724.
- Agyei, D., Potumarthi, R., & Danquah, M. K. (2015). Food-derived multifunctional bioactive proteins and peptides *Biotechnology of Bioactive Compounds* (pp. 507-524): John Wiley & Sons, Ltd.
- Ahn, C.-B., Jeon, Y.-J., Kim, Y.-T., & Je, J.-Y. (2012). Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. *Process Biochemistry*, 47(12), 2240-2245. doi: http://dx.doi.org/10.1016/j.procbio.2012.08.019.
- Ahtesh, F. B., Stojanovska, L., Mathai, M. L., Apostolopoulos, V., & Mishra, V. K. (2016a). Proteolytic and angiotensin-converting enzyme-inhibitory activities of selected probiotic bacteria. *International Journal of Food Science & Technology*.
- Ahtesh, F., Stojanovska, L., Shah, N., & Mishra, V. K. (2016b). Effect of Flavourzyme[®] on Angiotensin-Converting Enzyme Inhibitory Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by *Lactobacillus helveticus*. *Journal of food science*, 81(1), M135-M143.
- Aihara, K., Kajimoto, O., Hirata, H., Takahashi, R., & Nakamura, Y. (2005). Effect of powdered fermented milk with *Lactobacillus helveticus* on subjects with highnormal blood pressure or mild hypertension. *Journal of the American College of Nutrition*, 24(4), 257-265.
- Akira Kawakami, H. K. (1995). Taste evaluations of angiotensin I converting enzyme inhibitors, Leu-Lys-Tyr analogues. Bioscience, biotechnology, and biochemistry, 59, 709–710.

- Alhaj, O. A., Kanekanian, A. D., & Peters, A. C. (2007). Investigation on whey proteins profile of commercially available milk-based probiotics health drinks using fast protein liquid chromatography (FPLC). *British Food Journal*, *109*(6), 469-480.
- Altiok, D., Tokatli, F., & Harsa, Ş. (2006). Kinetic modelling of lactic acid production from whey by *Lactobacillus casei* (NRRL B-441). *Journal of Chemical Technology and Biotechnology*, 81(7), 1190-1197.
- Amerine, M. A., Pangborn, R. M., & Roessler, E. B. (2013). *Principles of sensory evaluation of food*: Elsevier.
- Amrane, A., & Prigent, Y. (1998b). Influence of yeast extract concentration on batch cultures of Lactobacillus helveticus: Growth and production coupling. *World Journal of Microbiology and Biotechnology*, 14(4), 529-534.
- Amrane, A., & Prigent, Y. (1998a). Lactic acid production rates during the different growth phases of *Lactobacillus helveticus* cultivated on whey supplemented with yeast extract. *Biotechnology Letters*, 20(4), 379-383.
- Anema, S. G. (2009). The use of "lab-on-a-chip" microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. *International DairyJournal*, 19(4),198-204.doi:http://dx.doi.org/10.1016/j.idairyj.2008.11.001.
- Antalis, T. M., Shea-Donohue, T., Vogel, S. N., Sears, C., & Fasano, A. (2007). Mechanisms of disease: Protease functions in intestinal mucosal pathobiology. *Nature Clinical Practice Gastroenterology and Hepatology*, *4*(7), 393-402.
- AOAC, International. (1995). AOAC Official Methods of Analysis. Arlington, VA: AOAC International. (Accessed, 15.Sep. 2014).
- Appel, L. J., Moore, T. J., Obarzanek, E., Vollmer, W. M., Svetkey, L. P., Sacks, F. M., Harsha, D. W. (1997). A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. *New England Journal of Medicine*, 336(16), 1117-1124. doi: doi:10.1056/NEJM199704173361601.
- Banks, J. M., Law, A. J. R., Leaver, J., & Horne, D. S. (1995). Maturation profiles of cheddar-type cheese produced from high heat treatment milk to incorporate whey protein. *Advances in Experimental Medicine and Biology*, 367, 221-236.
- Barbana, C., & Boye, J. I. (2010). Angiotensin I-converting enzyme inhibitory activity of chickpea and pea protein hydrolysates. *Food Research International*, 43(6), 1642-1649. doi: 10.1016/j.foodres.2010.05.003.
- Bayoumi, M. A., & Griffiths, M. W. (2012). In vitro inhibition of expression of virulence genes responsible for colonization and systemic spread of enteric pathogens using Bifidobacterium bifidum secreted molecules. *International*

- Journal of Food Microbiology, 156 (3), 255-263.doi: http://dx.doi.org/10.1016/j.ijfoodmicro.2012.03.034.
- Belem, M. A. F., & Lee, B. H. (1999). Fed-batch fermentation to produce oligonucleotides from Kluyveromyces marxianus grown on whey. Process Biochemistry, 34(5), 501-509. doi: http://dx.doi.org/10.1016/S0032-9592(98)00118-6.
- Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., & Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochimica et Biophysica Acta (BBA) Protein Structure and Molecular Enzymology, 1121(1–2), 130-136. doi: http://dx.doi.org/10.1016/0167-4838(92)90346-F
- Bertrand-Harb, C., Baday, A., Dalgalarrondo, M., Chobert, J. M. & Haertle, T. (2002). Thermal modifications of structure and codenaturation of α-lactalbumin and β-lactoglobulin induce changes of solubility and susceptibility to proteases. *Food/Nahrung*, 46, 283-289.
- Betoret, N., Puente, L., Dı'az, M.J., Paga' n, M.J., Garcı'a, M.J., Gras, M.L., et al. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. *Journal of Food Engineering*, 56, 273-277.
- Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., & Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. *Food Quality and Preference*, *13*(6), 409-422. doi: http://dx.doi.org/10.1016/S0950-3293(02)00017-4.
- Boerth, R. C., covell, J. W., pool, P. E., & ross, J. (1969). Increased myocardial oxygen consumption and contractile state associated with increased heart rate in dogs. *Circulation Research*, 24(5), 725-734.
- Bopp, P. A. (1997). *Consumer Testing*. Access date,10. Sep. 2014. Doi: http://food.oregonstate.edu/sensory/phil2.html .
- Boudrant, J. and Cheftel, C. 1976. Continuous proteolysis with a stabilized protease. II Continuous experiments. Biotechnol. Bioeng. 18: 1735–1749. Cheftel, C., Ahern, M., Wang, D.I.C., and Tannenbaum, S.R. 1971. Enzymatic solubilization of fish protein concentrate: Batch studies applicable to continuous enzyme recycling processes. *Journal of Agriculture and Food Chem.* 19: 155–161.
- Boustany, C. M., Bharadwaj, K., Daugherty, A., Brown, D. R., Randall, D. C., & Cassis, L. A. (2004). Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. *American Journal of Physiology Regulatory, Integrative and Comparative Physiology*, 287(4), R943-R949. doi: 10.1152/ajpregu.00265.2004

- Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., Leonil, J. (2013). Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. *American Journal of Clinical Nutrition*, *97*(6), 1314-1323.
- Brew, K. (2003). Structure of human ACE gives new insights into inhibitor binding and design. *Trends in Pharmacological Sciences*, 24(8), 391-394. doi: http://dx.doi.org/10.1016/S0165-6147(03)00196-2
- Brew, K., Castellino, F. J., Vanaman, T. C., & Hill, R. L. (1970). The Complete Amino Acid Sequence of Bovine α-Lactalbumin. *Journal of Biological Chemistry*, 245(17), 4570-4582.
- Brown, N. J., & Vaughan, D. E. (1998). Angiotensin-Converting Enzyme Inhibitors. *Circulation*, *97*(14), 1411-1420. doi: 10.1161/01.cir.97.14.1411.
- Burke, V., Hodgson, J. M., Beilin, L. J., Giangiulioi, N., Rogers, P., & Puddey, I. B. (2001). Dietary protein and soluble fiber reduce ambulatory blood pressure in treated hypertensives. Hypertension, 38(4), 821-826.
- Cameron, A. J., Welborn, T. A., Zimmet, P. Z., Dunstan, D. W., Owen, N., Salmon, J., Shaw, J. E. (2003). Overweight and obesity in Australia: the 1999-2000 Australian diabetes, obesity and lifestyle study (AusDiab). *Medical Journal of Australia*, 178(9), 427-432.
- Cam, A., & de Mejia, E. G. (2012). Role of dietary proteins and peptides in cardiovascular disease. *Molecular Nutrition & Food Research*, 56(1), 53-66. doi: 10.1002/mnfr.201100535.
- Case, D., Atlas, S., Laragh, J., Sealey, J., Sullivan, P., & McKinstry, D. (1980). Clinical experience with blockade of the renin-angiotensin-aldosterone system by an oral converting enzyme inhibitor (SQ 14,225, Captopril) in hypertensive Patients. In D. Case, E. Sonnenblick, & J. Laragh (Eds.), *Captopril and Hypertension* (pp. 211-230): Springer US.
- Cassis, L. A., Saye, J., & Peach, M. J. (1988). Location and regulation of rat angiotensinogen messenger rna. *Hypertension*, 11(6 Pt 2), 591-596.
- Castro, I.A., Tirapegui, J., Silva, R.S.S.F. & Cutrim, A.J.S. (2004). Sensory evaluation of a milk formulation supplemented with n3 polyunsaturated fatty acids and soluble fibres. *Food Chemistry*, 85, 503–512.
- Castro, S., Vazquez Peyronel, D., & Cantera, A. M. B. (1996). Proteolysis of whey proteins by a Bacillus subtilis enzyme preparation. *International Dairy Journal*, 6(3), 285-294.

- Champagne, C. P., Girard, F., & Gardner, N. (1989). Growth of yeast contaminants in an immobilized lactic acid bacteria system. *Letters in Applied Microbiology*, 8(6), 207-210. doi: 10.1111/j.1472-765X.1989.tb00249.x.
- Chatterton, D. E. W., Smithers, G., Roupas, P., & Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. International Dairy Journal, 16(11), 1229-1240. doi: http://dx.doi.org/10.1016/j.idairyj.2006.06.001.
- Chaves-López, C., Serio, A., Paparella, A., Martuscelli, M., Corsetti, A., Tofalo, R., & Suzzi, G. (2014). Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. *Food Microbiology*, *42*(0), 117-121. doi: http://dx.doi.org/10.1016/j.fm.2014.03.005.
- Chaves-López, C., Tofalo, R., Serio, A., Paparella, A., Sacchetti, G., & Suzzi, G. (2012). Yeasts from Colombian Kumis as source of peptides with Angiotensin I converting enzyme (ACE) inhibitory activity in milk. *International Journal of Food Microbiology*, 159(1), 39-46.
- Chaves-López, C., Serio, A., Martuscelli, M., Paparella, A., Osorio-Cadavid, E., & Suzzi, G. (2011). Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on enterococci population. *Food Microbiology*, 28(5), 1041-1047.
- Cheison, S. C., Zhang, S.-B., Wang, Z., & Xu, S.-Y. (2009). Comparison of a modified spectrophotometric and the pH-stat methods for determination of the degree of hydrolysis of whey proteins hydrolysed in a tangential-flow filter membrane reactor. *Food Research International*, 42(1), 91-97.
- Cheison, S. C., Wang, Z., & Xu, S.-Y. (2007). Multivariate strategy in screening of enzymes to be used for whey protein hydrolysis in an enzymatic membrane reactor. *International Dairy Journal*, 17(4), 393-402. doi: http://dx.doi.org/10.1016/j.idairyj.2006.05.006.
- Chen, Y., Liu, W., Xue, J., Yang, J., Chen, X., Shao, Y., Kwok, L.y., Bilige, M., Mang, L. & Zhang, H. (2014). Angiotensin-converting enzyme inhibitory activity of *Lactobacillus helveticus* strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. *Journal of Dairy Science*, 97, 6680-6692.
- Chen, G.W., Tsai, J.-S., & Sun Pan, B. (2007). Purification of angiotensin I-converting enzyme inhibitory peptides and antihypertensive effect of milk produced by protease-facilitated lactic fermentation. *International Dairy Journal*, 17(6), 641-647. doi: http://dx.doi.org/10.1016/j.idairyj.2006.07.004.

- Chen, L., Remondetto, G. E., & Subirade, M. (2006). Food protein-based materials as nutraceutical delivery systems. *Trends in Food Science & Technology*, 17(5), 272-283. doi: http://dx.doi.org/10.1016/j.tifs.2005.12.011.
- Chen, J. H., Tao, L., & Li, J. (2003). The Formol titration method. Experiments of Biochemistry. *Beijing: Science Press*, 57–58.
- Cheviron, N., Rousseau-Plasse, A., Lenfant, M., Adeline, M.-T., Potier, P., & Thierry, J. (2000). Coumarin-Ser-Asp-Lys-Pro-OH, A fluorescent substrate for determination of angiotensin-converting enzyme activity via high-performance Liquid chromatography. *Analytical Biochemistry*, 280(1), 58-64. doi: http://dx.doi.org/10.1006/abio.2000.4484.
- Cheung, H. S., Wang, F. L., Ondetti, M. A., Sabo, E. F., & Cushman, D. W. (1980). Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the cooh-terminal dipeptide sequence. *Journal of Biological Chemistry*, 255(2), 401-407.
- Choonia, H. S., & Lele, S. S. (2013). Kinetic modeling and implementation of superior process strategies for β-galactosidase production during submerged fermentation in a stirred tank bioreactor. *Biochemical Engineering Journal*, 77, 49-57. doi: http://dx.doi.org/10.1016/j.bej.2013.04.021.
- Christensen, J. E., Dudley, E. G., Pederson, J. A., & Steele, J. L. (1999). Peptidases and amino acid catabolism in lactic acid bacteria. *Antonie Van Leeuwenhoek*, 76(1), 217-246. doi: 10.1023/a:1002001919720.
- Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. *Journal of Dairy Science*, 66(6), 1219-1227. doi: 10.3168/jds.S0022-0302(83)81926-2.
- Clare, D. A., & Swaisgood, H. E. (2000). Bioactive milk peptides: A prospectus1. *Journal of Dairy Science*, 83(6), 1187-1195.
- Commission, T. C. D. (2012). Fermented Milk Products. Canadian Dairy Commission. http://www.milkingredients.ca/index-eng.php?id=180.
- Contreras, M. d. M., Sevilla, M. A., Monroy-Ruiz, J., Amigo, L., Gómez-Sala, B., Molina, E., Recio, I. (2011). Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. *International Dairy Journal*, 21(7), 470-476. doi: 10.1016/j.idairyj.2011.02.004
- Contreras, M. d. M., Carrón, R., Montero, M. J., Ramos, M., & Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. *International Dairy Journal*, *19*(10), 566-573. doi: http://dx.doi.org/10.1016/j.idairyj.2009.05.004.

- Contor, L. (2001). Functional food science in europe. *Nutrition, metabolism, and cardiovascular diseases: NMCD, 11*(4 Suppl), 20-23.
- Coulter, D., & Edwards, R. (1987). Cough associated with captopril and enalapril. *British Medical Journal*, 294(6586), 1521-1523.
- Cushman, D., Cheung, H., Sabo, E., & Ondetti, M. (1980). Design of New Antihypertensive Drugs. In D. Case, E. Sonnenblick, & J. Laragh (Eds.), *Captopril and Hypertension* (pp. 103-113): Springer US.
- Cushman, D. W., Cheung, H. S., Sabo, E. F., & Ondetti, M. A. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. *Biochemistry*, *16*(25), 5484-5491. doi: 10.1021/bi00644a014.
- Cruz, A. G., Castro, W. F., Faria, J. A. F., Lollo, P. C. B., Amaya-Farfán, J., Freitas, M. Q., Godoy, H. T. (2012). Probiotic yogurts manufactured with increased glucose oxidase levels: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds. *Journal of Dairy Science*, 95(5), 2261-2269. doi: http://dx.doi.org/10.3168/jds.2011-4582.
- Damodaran, S., Parkin, K. L., & Fennema, O. R. (2008). Fennema's Food Chemistry, (4th ed.). Boca Raton FL: CRC press.
- Danilczyk, U., & Penninger, J. M. (2006). Angiotensin-converting enzyme II in the heart and the kidney. *Circulation Research*, *98*(4), 463-471. doi: 10.1161/01.RES.0000205761.22353.5f.
- Dave, R. I., & Shah, N. P. (1998). Ingredient supplementation effects on viability of probiotic bacteria in yogurt. *Journal of Dairy Science*, 81(11), 2804-2816. doi: http://dx.doi.org/10.3168/jds.S0022-0302(98)75839-4.
- Davies, E. A., Bevis, H. E., Potter, R., Harris, J., Williams, G. C., & Delves-Broughton, J. (1998). Research note: The effect of pH on the stability of nisin solution during autoclaving. *Letters in Applied Microbiology*, *27*(3), 186-187. doi: 10.1046/j.1472-765X.1998.t01-1-00401.x.
- Degraeve, P., & Martial-Gros, A. (2003). Purification and partial characterisation of X-prolyl dipeptidyl aminopeptidase of *Lactobacillus helveticus* ITG LH1. *International Dairy Journal*, *13*(7), 497-507. doi: http://dx.doi.org/10.1016/S0958-6946(03)00057-8.
- Del Mar Contreras, M., Carrón, R., Montero, M. J., Ramos, M., & Recio, I. (2009). Novel casein-derived peptides with antihypertensive activity. *International Dairy Journal*, 19(10), 566-573.

- Dissanayake, M., Ramchandran, L., Donkor, O. N., & Vasiljevic, T. (2013). Denaturation of whey proteins as a function of heat, pH and protein concentration. *International Dairy Journal*, 31(2), 93-99. doi: http://dx.doi.org/10.1016/j.idairyj.2013.02.002.
- Dissanayake, M., Ramchandran, L., Piyadasa, C., & Vasiljevic, T. (2013). Influence of heat and pH on structure and conformation of whey proteins. *International Dairy Journal*, 28 (2), 56-61. doi: http://dx.doi.org/10.1016/j.idairyj.2012.08.014.
- Dissanayake, M., Liyanaarachchi, S., & Vasiljevic, T. (2012). Functional properties of whey proteins microparticulated at low pH. *Journal of Dairy Science*, 95(4), 1667-1679. doi: http://dx.doi.org/10.3168/jds.2011-4823.
- Dolan, E., Thijs, L., Li, Y., Atkins, N., McCormack, P., McClory, S., Stanton, A. V. (2006). Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study. *Hypertension*, 47(3), 365-370.
- Domingues, L., Guimarães, P. M. R., & Oliveira, C. (2010). Metabolic engineering of *Saccharomyces cerevisiae* for lactose/whey fermentation. *Bioengineered Bugs*, 1(3), 164-171.
- Donkor, O., Henriksson, A., Singh, T. K., Vasiljevic, T., & Shah, N. P. (2007). ACE-inhibitory activity of probiotic yoghurt. *International Dairy Journal*, 17(11), 1321-1331. doi: 10.1016/j.idairyj.2007.02.009.
- Donkor, O., Henriksson, A., Vasiljevic, T., & Shah. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. *Lait*, 87(1), 21-38.
- Donkor, O., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2006). Effect of acidification on the activity of probiotics in yoghurt during cold storage. *International Dairy Journal*, *16*(10), 1181-1189. doi: 10.1016/j.idairyj.2005.10.008.
- Donkor, O., Henriksson, A., Vasiljevic, T., & Shah, N. P. (2005). Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yogurt. *Journal of Food Science*, 70(8), m375-m381. doi: 10.1111/j.1365-2621.2005.tb11522.x.
- Doolittle, R. (1983). Angiotensinogen is related to the antitrypsin-antithrombin-ovalbumin family. *Science*, 222(4622), 417-419. doi: 10.1126/science.6604942.
- Du, L., Fang, M., Wu, H., Xie, J., Wu, Y., Li, P., Wei, D. (2013). A novel angiotensin I-converting enzyme inhibitory peptide from Phascolosoma esculenta water-

- soluble protein hydrolysate. *Journal of Functional Foods*, *5*(1), 475-483. doi: http://dx.doi.org/10.1016/j.jff.2012.12.003.
- Ebner, J., Aşçı Arslan, A., Fedorova, M., Hoffmann, R., Küçükçetin, A. & Pischetsrieder, M. (2015). Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. *Journal of Proteomics*, 117, 41-57.
- Eisele, T., Stressler, T., Kranz, B., & Fischer, L. (2013). Bioactive peptides generated in an enzyme membrane reactor using bacillus lentus alkaline peptidase. *European Food Research and Technology*, 236(3), 483-490.
- Engeli, S., Böhnke, J., Gorzelniak, K., Janke, J., Schling, P., Bader, M., Sharma, A. M. (2005). Weight loss and the renin-angiotensin-aldosterone system. *Hypertension*, 45(3), 356-362.
- Erdos, E. G. (1975). Angiotensin I converting enzyme. *Circulation Research*, 36(2), 247-255.
- Erdmann, K., Cheung, B. W., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. *The Journal of Nutritional Biochemistry*, 19(10), 643-654.
- Fallico, V., McSweeney, P. L. H., Horne, J., Pediliggieri, C., Hannon, J. A., Carpino, S., & Licitra, G. (2005). Evaluation of Bitterness in Ragusano Cheese. *Journal of Dairy Science*, 88(4), 1288-1300. doi: http://dx.doi.org/10.3168/jds.S0022-0302(05)72795-8.
- Farrell Jr, H. M., Jimenez-Flores, R., Bleck, G. T., Brown, E. M., Butler, J. E., Creamer, L. K., Swaisgood, H. E. (2004). Nomenclature of the Proteins of Cows' Milk—Sixth Revision. Journal of Dairy Science, 87(6), 1641-1674. doi: http://dx.doi.org/10.3168/jds.S0022-0302(04)73319-6.
- Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A., & Netto, F. M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. *Food Hydrocolloids*, *24*(4), 336-340. doi: http://dx.doi.org/10.1016/j.foodhyd.2009.10.012.
- Fernández-Musoles, R., Manzanares, P., Burguete, M. C., Alborch, E., & Salom, J. B. (2013). In vivo angiotensin I-converting enzyme inhibition by long-term intake of antihypertensive lactoferrin hydrolysate in spontaneously hypertensive rats. *Food Research International*, *54*(1), 627-632. doi: http://dx.doi.org/10.1016/j.foodres.2013.07.063.
- Fiat, A.M., Migliore-Samour, D., Jollès, P., Drouet, L., Sollier, C. B. D., & Caen, J. (1993). Biologically Active Peptides from Milk Proteins with Emphasis on Two

- Examples Concerning Antithrombotic and Immunomodulating Activities. *Journal of Dairy Science*, 76(1), 301-310.
- FitzGerald, C., Gallagher, E., Tasdemir, D., & Hayes, M. (2011). Heart health peptides from macroalgae and their potential use in functional foods. Journal of Agricultural and Food Chemistry, 59(13), 6829-6836.
- FitzGerald, R. J., & Murray, B. A. (2006). Bioactive peptides and lactic fermentations. International Journal of Dairy Technology, 59(2), 118-125. doi: 10.1111/j.1471-0307.2006.00250.
- FitzGerald, R., Murray, B., & Walsh, D. (2004). Hypotensive peptides from milk proteins. The Journal of Nutrition, 134(4), 980-988.
- FitzGerald, R. J., & Meisel, H. (2003). Milk protein hydrolysates and bioactive peptides. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced Dairy Chemistry—1 Proteins (pp. 675-698): Springer US.
- FitzGerald, R., & Meisel, H. (2000). Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. British Journal of Nutrition, 84, 33-37. 5.
- FitzGerald, R. J. (1998). Potential Uses of Caseinophosphopeptides. *International Dairy Journal*, 8(5–6), 451-457. doi: http://dx.doi.org/10.1016/S0958-6946(98)00068.
- Fitzsimons, S. M., Mulvihill, D. M., & Morris, E. R. (2007). Denaturation and aggregation processes in thermal gelation of whey proteins resolved by differential scanning calorimetry. *Food Hydrocolloids*, *21*(4), 638-644. doi: http://dx.doi.org/10.1016/j.foodhyd.2006.07.007.
- Food and Agriculture Organization of the United Nations, & World Health Organization. (2002). Guidelines for the evaluation of probiotics in food: Report of a joint FAO/WHO working group on drafiting guidelines for the evaluation of probiotics in food. Accessed 2 February, 2013, fromhttp://www.fda.gov/ohrms/dockets/dockets/95s0316/95s-0316-rpt0282-tab-03-ref-19-joint-faowho-vol219.pdf.
- Fox, P. F. (2003). *Milk Proteins: General and Historical Aspects*. In P. F. Fox & P. L. H. McSweeney (Eds.), *Advanced Dairy Chemistry-1 Proteins* (pp. 1-48): Springer US.
- Fuglsang, A., Rattray, F., Nilsson, D., & Nyborg, N. (2003). Lactic acid bacteria: inhibition of angiotensin converting enzyme; in vitro and in vivo. Antonie Van Leeuwenhoek, 83(1), 27-34. doi: 10.1023/a:1022993905778.
- Fuller, R. (2012). Probiotics: the scientific basis (R. Fuller Ed.): *Springer Science & Business Media*.

- Galat, A., Dufresne, J., Combrisson, J., Thépaut, J., Boumghar-Bourtchai, L., Boyer, M., & Fourmestraux, C. (2015). Novel method based on chromogenic media for discrimination and selective enumeration of lactic acid bacteria in fermented milkproducts. *Food Microbiology*. doi:http://dx.doi.org/10.1016/j.fm. 2015.11.005.
- Ganjam, L. S., Thornton Jr, W. H., Marshall, R. T., & MacDonald, R. S. (1997). antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells. *Journal of Dairy Science*, 80(10), 2325-2329. doi: http://dx.doi.org/10.3168/jds.S0022-0302(97)76183-6.
- García-Tejedor, A., Padilla, B., Salom, J. B., Belloch, C., & Manzanares, P. (2013). Dairy yeasts produce milk protein-derived antihypertensive hydrolysates. *Food Research International*, 53(1), 203208. doi:http://dx.doi.org/10.1016/j.foodres.2013.05.005.
- Gaudichon, C., Roos, N., Mahé, S., Sick, H., Bouley, C., & Tomé, D. (1994). Gastric Emptying Regulates the Kinetics of Nitrogen Absorbance from 15N-Labeled Milk and 15N-Labeled Yogurt in Miniature Pigs. *The Journal of Nutrition*, 124(10), 1970-1977.
- Gauthier, S. F., & Pouliot, Y. (2003). Functional and biological properties of peptides obtained by enzymatic hydrolysis of Whey proteins. *Journal of Dairy Science*, 86, Supplement(0), E78-E87. doi: http://dx.doi.org/10.3168/jds.S0022-0302(03)74041-7.
- Ghiadoni, L., Bruno, R., Stea, F., Virdis, A., & Taddei, S. (2009). Central blood pressure, arterial stiffness, and wave reflection: New targets of treatment in essential hypertension. *Current Hypertension Reports*, 11(3), 190-196. doi: 10.1007/s11906-009-0034-5.
- Gill, H. S., Doull, F., Rutherfurd, K. J., & Cross, M. L. (2000). Immunoregulatory peptides in bovine milk. *British Journal of Nutrition*, 84(SupplementS1), 111-117. doi: doi:10.1017/S0007114500002336.
- Gillman, M. W., Kannel, W. B., Belanger, A., & D'Agostino, R. B. (1993). Influence of heart rate on mortality among persons with hypertension: the Framingham Study. *American heart journal*, 125(4), 1148-1154.
- Gobbetti, M., Minervini, F., & Rizzello, C. G. (2004). Angiotensin I-converting-enzyme-inhibitory and antimicrobial bioactive peptides. *International Journal of Dairy Technology*, *57*(2-3), 173-188.
- Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., & Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: Proteolytic activation and

- significance in dairy processing. *Critical Reviews in Food Science and Nutrition*, 42(3), 223-239.
- Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., & Addeo, F. (2000). Production of Angiotensin-I-Converting-enzyme-inhibitory peptides in fermented milks started by *Lactobacillus delbrueckii subsp. bulgaricus SS1* and *Lactococcus lactis* subsp. *cremoris* FT4. *Applied and Environmental Microbiology*, 66(9), 3898-3904. doi: 10.1128/aem.66.9.3898-3904.2000.
- Gomes, A. M. P., Malcata, F. X. & Klaver, F. A. M. (1998). Growth Enhancement of *Bifidobacterium lactis Bo* and *Lactobacillus acidophilus Ki* by Milk Hydrolyzates. Journal of Dairy Science, 81, 2817-2825.
- Gómez-Ruiz, J. Á., Ramos, M. & Recio, I. (2002). Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. *International Dairy Journal*, 12, 697-706.
- Gonzalez-Gonzalez, C., Gibson, T., & Jauregi, P. (2013). Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by *Bifidobacterium bifidum* MF 20/5. *International Journal of Food Microbiology*, 167(2), 131-137.
- Gonzalez-Gonzalez, C. R., Tuohy, K. M., & Jauregi, P. (2011). Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACE-inhibitory activity. *International Dairy Journal*, 21(9), 615-622.
- Goossens, G., Blaak, E., & Van Baak, M. (2003). Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. *Obesity Reviews*, 4(1), 43-55.
- Graham H, F. (2006). The commercial and community significance of yeasts in food and beverage production. Book, 2(3), 540. doi: DOI: 10.1007/978-3-540-28398.
- Granato, D., Branco, G. F., Cruz, A. G., Faria, J. d. A. F., & Shah, N. P. (2010). probiotic dairy products as functional foods. Comprehensive Reviews in Food Science and Food Safety, 9(5), 455-470. doi: 10.1111/j.1541-4337.2010.00120.
- Crandall, D. L., Herzlinger, H. E., Saunders, B. D., Armellino, D. C., & Kral, J. G. (1994). Distribution of angiotensin ii receptors in rat and human adipocytes. *Journal of Lipid Research*, 35(8), 1378-1385.
- Grigorov, M., Germond, J.-E., Tournade, S., & Affolter, M. (2014). *Lactobacillus helveticus* strains for producing hypotensive peptides: Google Patents.

- Griffiths, M. W., & Tellez, A. M. (2013). *Lactobacillus helveticus*: the proteolytic system. *Frontiers in Microbiology*, 4(30). doi: 10.3389/fmicb.2013.00030.
- Guan-Hong, L., Guo-Wei, L., Yong-Hui, S., & Shrestha, S. (2004). Angiotensin I—converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. *Nutrition Research*, *24*(7), 469-486. doi: http://dx.doi.org/10.1016/j.nutres.2003.10.014.
- Guo, S., Goetze, J. P., Jeppesen, J. L., Burnett, J. C., Olesen, J., Jansen-Olesen, I., & Ashina, M. (2015). Effect of natriuretic peptides on cerebral artery blood flow in healthyvolunteers. *Peptides*, 74,33-42.doi:http://dx.doi.org/10.1016/j. peptides. 2015.09.008.
- Guo, Y., Pan, D., & Tanokura, M. (2009). Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. *Food Chemistry*, 114(1), 328-333.
- Halken, S. & Host, A. (1997). How hypoallergenic are hypoallergenic cow's milk-based formulas? *Allergy*, 52, 1175-1183.
- Hall, J., Brands, M., Hildebrandt, D., Kuo, J., & Fitzgerald, S. (2000). Role of sympathetic nervous system and neuropeptides in obesity hypertension. *Brazilian Journal of Medical and Biological Research*, 33(6), 605-618.
- Hamme, V., Sannier, F., Piot, J.-M., Didelot, S., & Bordenave-Juchereau, S. (2009). Crude goat whey fermentation by *Kluyveromyces marxianus* and *Lactobacillus rhamnosus*: contribution to proteolysis and ACE inhibitory activity. *Journal of Dairy Research*, 76(02), 152-157. doi: doi:10.1017/S0022029908003877.
- Hansson, L., Lindholm, L. H., Niskanen, L., Lanke, J., Hedner, T., & Niklason, A. (1999). Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: The Captopril Prevention Project (CAPPP) randomised trial. *The Lancet*, 353(9153), 611-616.
- Hansen, E. B. (2002). Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78(1–2), 119-131. doi: http://dx.doi.org/10.1016/S0168-1605(02)00238-6.
- Hansen, T. K., & Jakobsen, M. (2001). Taxonomical and technological characteristics of Saccharomyces spp. associated with blue veined cheese. *International Journal of Food Microbiology*, 69(1–2), 59-68. doi: http://dx.doi.org/10.1016/S0168-1605(01)00573-6.

- Hansen, M., Sandstrom, B., & Lonnerdal, B. (1996). The effect of casein phosphopetides on zinc and calcium absorbance from high phytate infant diets assessed in rat pups and Caco-2 Cells. *Pediatr Res*, 40(4), 547-552.
- Hansson, L., Lindholm, L. H., Niskanen, L., Lanke, J., Hedner, T., & Niklason, A. (1999). Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: The Captopril Prevention Project (CAPPP) randomised trial. *The Lancet*, 353(9153), 611-616.
- Hara, H., funabiki, R., iwata, M. & yamazaki, K.-I. (1984). Portal absorbance of small peptides in rats under unrestrained conditions. *The Journal of Nutrition*, 114, 1122-1129.
- Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. *Current Opinion in Biotechnology*, *18*(2), 163-169. doi: http://dx.doi.org/10.1016/j.copbio.2007.01.013.
- Hata, Y., Yamamoto, N., Ohni, M., Nakajima, K., Nakamura, Y., & Takano, T. (1996).
 A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. *The American Journal of Clinical Nutrition*, 64, 767-771.
- Haug, A., Hostmark, A. T., & Harstad, O. M. (2007). Bovine milk in human nutrition—a review. *Lipids Health Dis*, 6(25), 1-16.
- Hayes, M., Stanton, C., FitzGerald, G. F., & Ross, R. P. (2007). Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. *Biotechnology Journal*, *2*(4), 435-449. doi: 10.1002/biot.200700045.
- He, R., Alashi, A., Malomo, S. A., Girgih, A. T., Chao, D., Ju, X., & Aluko, R. E. (2013). Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. *Food Chemistry*, *141*(1), 153-159. doi: http://dx.doi.org/10.1016/j.foodchem.2013.02.087.
- Hébert, E. M., Raya, R. R., & De Giori, G. S. (1999). Characterisation of a cell-envelope proteinase from Lactobacillus helveticus. Biotechnology Letters, 21(9), 831-834.
- Hekmat, S., Soltani, H., & Reid, G. (2009). Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innovative food science & emerging technologies, 10(2), 293-296.
- Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits.

- International Dairy Journal, 38(2), 82-100.doi:http://dx.doi.org/10.1016/j.idairyj. 2013.11.004.
- Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. *Advances in Colloid and Interface Science*, *165*(1),23-35.doi:http://dx.doi.org/10.1016/j.cis. 2010.11.001.
- Hernández-Ledesma, B., Amigo, L., Ramos, M., & Recio, I. (2004). Angiotensin-I converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. *Journal of Agricultural and Food Chemistry*, 52(6), 1504-1510. doi: 10.1021/jf034997.
- Hernández-Ledesma, B., García-Nebot, M. J., Fernández-Tomé, S., Amigo, L., & Recio, I. (2014). Dairy protein hydrolysates: Peptides for health benefits. *International Dairy Journal*, 38(2),82-100.doi:http://dx.doi.org/10.1016/j. idairyj. 2013.11.004.
- Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. *Advances in Colloid and Interface Science*, *165*(1),23-35.doi:http://dx.doi.org/10.1016/j.cis. 2010.11.001.
- Heyman, M. (1999). Evaluation of the impact of food technology on the allergenicity of cow's milk proteins. *Proceedings of the Nutrition Society*, 58, 587-592.
- Hideaki, K., Kunio, D., Shigeru, S., Hideyo, U., Ryuji, S., Umeji, M., & Shizume, T. (1990). Antihypertensive effect of tryptic hydrolysate of milk casein in spontaneously hypertensive rats. *Comparative Biochemistry and Physiology Part C: Comparative Pharmacology*, 96(2), 367-371. doi: http://dx.doi.org/10.1016/0742-8413(90)90023-3.
- Hiroyuki, K., Hirohito, M., Tsutomu, M., & Akira, N. (2013). Angiotensin II Blockade and Renal Protection. *Current pharmaceutical design*, 19(17), 3033-3042. doi: http://dx.doi.org/10.2174/1381612811319170009.
- Hong, F., Ming, L., Yi, S., Zhanxia, L., Yongquan, W., & Chi, L. (2008). The antihypertensive effect of peptides: A novel alternative to drugs? *Peptides*, 29(6), 1062-1071. doi: http://dx.doi.org/10.1016/j.peptides.2008.02.005.
- Huppertz, T., Fox, P. F., de Kruif, K. G., & Kelly, A. L. (2006). High pressure-induced changes in bovine milk proteins: A review. *Biochimica et Biophysica Acta (BBA)* Proteins and Proteomics, 1764(3), 593-598.doi: http://dx.doi.org/10.1016/j. 2005.11.010.

- Ijäs, H., Collin, M., Finckenberg, P., Pihlanto-Leppälä, A., Korhonen, H., Korpela, R., Nurminen, M.-L. (2004). Antihypertensive opioid-like milk peptide α-lactorphin: lack of effect on behavioural tests in mice. *International Dairy Journal*, *14*(3), 201-205.
- Illanés, A. (2011). Whey upgrading by enzyme biocatalysis. *Electronic Journal of Biotechnology*, 14(6).
- Isono, Y., Shingu, I., & Shimizu, S. (1994). Identification and characteristics of Lactic acid bacteria isolated from masai fermented milk in northern tanzania. *Bioscience, biotechnology, and biochemistry, 58*(4), 660-664. doi: 10.1271/.58.660.
- Iwaniak, A., & Minkiewicz, P. (2008). Biologically active peptides derived from proteins-a review. *Polish Journal of Food and Nutrition Sciences*, *58*(3), 289-294.
- Jakobsen, M., & Narvhus, J. (1996). Yeasts and their possible beneficial and negative effects on the quality of dairy products. *International Dairy Journal*, *6*(8–9), 755-768. doi: http://dx.doi.org/10.1016/0958-6946(95)00071-2.
- Jäkälä, P., Jauhiainen, T., Korpela, R., & Vapaatalo, H. (2009). Milk protein-derived bioactive tripeptides Ile-Pro-Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. *Journal of Functional Foods*, 1(3), 266-273.
- Jauhiainen, T., Rönnback, M., Vapaatalo, H., Wuolle, K., Kautiainen, H., Groop, P. H., & Korpela, R. (2010). Long-term intervention with Lactobacillus helveticus fermented milk reduces augmentation index in hypertensive subjects. European Journal of Clinical Nutrition, 64(4), 424-431.
- Jauhiainen, T., Collin, M., Narva, M., Cheng, Z. J., Poussa, T., Vapaatalo, H., & Korpela, R. (2005). Effect of long-term intake of milk peptides and minerals on blood pressure and arterial function in spontaneously hypertensive rats. Milchwissenschaft-Milk Science International, 60(4), 358-362.
- Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyrönpalo, S., Rasmussen, M., & Korpela, R. (2005). Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. American Journal of Hypertension, 18(12), 1600-1605.
- Jauregi, P., & Welderufael, F. (2010). Added-value protein products from whey. *Nutrafoods*, 9(4), 13-23. doi: 10.1007/BF03223344.
- Jespersen, L. (2003). Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods

- and beverages. *FEMS Yeast Research*, *3*(2), 191-200. doi: 10.1016/s1567-1356(02)00185-x.
- Juillard, V., Guillot, A., Le Bars, D., & Gripon, J.-C. (1998). Specificity of milk Peptide utilization by *Lactococcus lactis*. *Applied and Environmental Microbiology*, 64(4), 1230-1236.
- Katsiari, M.C., Voutsinas, L.P. & Kondyli, E. (2002). Improvement of sensory quality of low-fat Kefalograviera-type cheese with commercial adjunct cultures. *International Dairy Journal*, 12, 757–764.
- Kawase, M., Hashimoto, H., Hosoda, M., Morita, H., & Hosono, A. (2000). Effect of administration of fermented milk containing Whey protein concentrate to rats and healthy men on serum lipids and blood pressure. *Journal of Dairy Science*, 83(2), 255-263.
- Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: analysis of worldwide data. *The Lancet*, *365*(9455), 217-223. doi: http://dx.doi.org/10.1016/S0140-6736(05)17741-1.
- Kebede, A., Viljoen, B. C., Gadaga, T. H., Narvhus, J. A., & Lourens-Hattingh, A. (2007). The effect of container type on the growth of yeast and lactic acid bacteria during production of Sethemi, South African spontaneously fermented milk. Food Research International, 40(1), 33-38. doi: http://dx.doi.org/10.1016/j.foodres.2006.07.012.
- Kenny, O., FitzGerald, R. J., O'Cuinn, G., Beresford, T., & Jordan, K. (2003). Growth phase and growth medium effects on the peptidase activities of *Lactobacillus helveticus*. *International Dairy Journal*, 13(7), 509-516. doi: http://dx.doi.org/10.1016/S0958-6946(03)00073-6.
- Khan, R. S., Grigor, J., Winger, R., & Win, A. (2013). Functional food product development–Opportunities and challenges for food manufacturers. *Trends in Food Science & Technology*, 30(1), 27-37.
- Kilpi, E. E. R., Kahala, M. M., Steele, J. L., Pihlanto, A. M., & Joutsjoki, V. V. (2007). Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of *Lactobacillus helveticus* CNRZ32. *International Dairy Journal*, 17(8),976-984.doi:http://dx.doi.org/10.1016/j.idairyj. 2006. 12.001.
- Kim, Y. S., & Kim, Y. W. (1972). Peptide hydrolases in the brush border and soluble fractions of small intestinal mucosa of rat and man. Journal of clinical investigation, 51(6), 1419–1430. doi: 10.1172/JCI106938.

- Kitts, D. D., & Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. *Current pharmaceutical design*, *9*(16), 1309-1323.
- Koksoy, A., & Kilic, M. (2004). Use of hydrocolloids in textural stabilization of a yoghurt drink, ayran. *Food Hydrocolloids*, *18*(4), 593-600. doi: http://dx.doi.org/10.1016/j.foodhyd.2003.10.002.
- Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. *Journal of Functional Foods*, 1(2), 177-187.
- Korhonen, H., & Pihlanto, A. (2007). Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. *Current pharmaceutical design*, 13(8), 829-843.
- Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. *International Dairy Journal*, 16(9), 945–960. doi: 10.1016/j.idairyj.2005.10.012.
- Korhonen, H., and Pihlanto-Leppälä. (2004). Milk-derived bioactive peptides: Formation and prospects for health *.Book*, *6*, 109.
- Korhonen, H., & Pihlanto, A. (2003). Food-derived bioactive peptides opportunities for designing future foods. *Current pharmaceutical design*, *9*(16), 1297-1308. doi: 10.2174/1381612033454892.
- Kuwabara, Y., Nagai, S., Yoshimitsu, N., Nakagawa, I., Watanabe, Y., & Tamai, Y. (1995). Antihypertensive effect of the milk fermented by culturing with various lactic acid bacteria and a yeast. *Journal of Fermentation and Bioengineering*, 80(3), 294-295. doi: http://dx.doi.org/10.1016/0922-338X(95)90834.
- Kunji, E. R. S., Fang, G., Jeronimus-Stratingh, C. M., Bruins, A. P., Poolman, B., & Konings, W. N. (1998). Reconstruction of the proteolytic pathway for use of β-casein by Lactococcus lactis. *Molecular Microbiology*, *27*(6), 1107-1118. doi: 10.1046/j.1365-2958.1998.00769.
- Lacroix, C., Grattepanche, Franck, Doleyres, Yann, Bergmaier, Dirk,. (2005). Immobilised cell technologies for the dairy industry. In V. Nedović & R. Willaert (Eds.), Applications of Cell Immobilisation Biotechnology (Vol. 8B, pp. 295-319): Springer Netherlands.
- Lahtinen, S., Ouwehand, A. C., Salminen, S., & von Wright, A. (2011). *Lactic Acid Bacteria*: Microbiological and Functional Aspects, Fourth Edition: Taylor & Francis.

- Lamoureux, L., Roy, D., & Gauthier, S. F. (2002). Production of oligosaccharides in yogurt Containing *Bifidobacteria* and yogurt cultures. *Journal of Dairy Science*, 85(5), 1058-1069. doi: DOI: 10.3168/jds.S0022-0302(02)74166-0.
- Lapointe, N., & Rouleau, J. L. (2002). Activation of vascular tissue angiotensin-converting enzyme (ACE) in heart failureEffects of ACE inhibitors. *Journal of the American College of Cardiology*, 39(5), 776-779. doi: 10.1016/S0735-1097(01)01830-7.
- Lapre, V. d. M. R. J. (1991). Calcium and colon cancer. *Bulletin of the International Dairy Federation*, 255, 55-59.
- Lawless, H. T., Heymann, Hildegarde, (2010). Sensory evaluation of food: principles and practices (Vol. 5999): Springer Science & Business Media
- Lawless, H.T. & Heymann, H. (1999). Sensory Evaluation of Foods: Principles and Practices. Pp.827. Gaithersburg: Aspen.
- LeBlanc, J. G., Matar, C., Valdéz, J. C., LeBlanc, J., & Perdigon, G. (2002). Immunomodulating effects of peptidic fractions issued from milk fermented with *Lactobacillus helveticus*. *Journal of Dairy Science*, 85(11), 2733-2742.
- Leclerc, P.-L., Gauthier, S. F., Bachelard, H., Santure, M., & Roy, D. (2002). Antihypertensive activity of casein-enriched milk fermented by *Lactobacillus helveticus*. *International Dairy Journal*, *12*(12), 995-1004. doi: 10.1016/s0958-6946(02)00125-5.
- Lehtinen, R., Jauhiainen, T., Kankuri, E., Lindstedt, K., Kovanen, P. T., Kerojoki, O., Vapaatalo, H. (2010). Effects of milk casein-derived tripeptides Ile-Pro-Pro, Val-Pro-Pro, and Leu-Pro-Pro on enzymes processing vasoactive precursors in vitro. *Arzneimittelforschung*, 60(04), 182-185. doi: 10.1055/s-0031-1296270.
- Lemarié, C. A., & Schiffrin, E. L. (2010). The angiotensin II type 2 receptor in cardiovascular disease. *Journal of Renin-Angiotensin-Aldosterone System*, 11(1), 19-31. doi: 10.1177/1470320309347785.
- Leroy, F., & De Vuyst, L. (2001). Growth of the Bacteriocin-Producing *Lactobacillus sakei* Strain CTC 494 in MRS Broth Is Strongly Reduced Due to Nutrient Exhaustion: a Nutrient Depletion Model for the Growth of Lactic Acid Bacteria. *Applied and Environmental Microbiology*, 67(10), 4407-4413. doi: 10.1128/aem.67.10.4407-4413.2001.
- Li, S., & Shah, N. P. (2015). Effects of pleurotus eryngii polysaccharides on bacterial growth, texture properties, proteolytic capacity, and angiotensin-i-converting

- enzyme—inhibitory activities of fermented milk. *Journal of Dairy Science*, 98(5), 2949-2961. doi: http://dx.doi.org/10.3168/jds.2014-9116.
- Lim, S. M., Lee, N. K., Park, K. K., Yoon, Y. C., & Paik, H. D. (2011). ACE-inhibitory effect and physicochemical characteristics of yogurt beverage fortified with whey protein hydrolysates. *Korean Journal for Food Science of Animal Resources*, 31(6), 886-892.
- Lin, S.-B., Chiang, W.-D., Cordle, C. T., & Thomas, R. L. (1997). Functional and Immunological Properties of Casein Hydrolysate Produced from a Two-Stage Membrane System. *Journal of Food Science*, 62(3), 480-483.
- Liu, X., Zhang, M., Jia, A., Zhang, Y., Zhu, H., Zhang, C., Liu, C. (2013). Purification and characterization of angiotensin I converting enzyme inhibitory peptides from jellyfish Rhopilema esculentum. *Food Research International*, *50*(1), 339-343. doi: http://dx.doi.org/10.1016/j.foodres.2012.11.002.
- Liu, K. (2012). Soybeans: chemistry, technology, and utilization (C. Hall Ed.). New York Springer.
- López-Expósito, I., Amigo, L., & Recio, I. (2012). A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. *Dairy Science & Technology*, *92*(5), 419-438. doi: 10.1007/s13594-012-0066-5.
- López Expósito, I., & Recio, I. (2006). Antibacterial activity of peptides and folding variants from milk proteins. *International Dairy Journal*, 16(11), 1294-1305.
- López-Fandiño, R., Otte, J., & van Camp, J. (2006). Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. *International Dairy Journal*, *16*(11), 1277-1293. doi: http://dx.doi.org/10.1016/j.idairyj.2006.06.004.
- Losito, I., Carbonara, T., De Bari, M. D., Gobbetti, M., Palmisano, F., Rizzello, C. G. & Zambonin, P. G. (2006). Identification of peptides in antimicrobial fractions of cheese extracts by electrospray ionization ion trap mass spectrometry coupled to a two-dimensional liquid chromatographic separation. *Rapid Communications in Mass Spectrometry*, 20, 447-455.
- Lourens-Hattingh, A., & Viljoen, B. C. (2001). Yogurt as probiotic carrier food. *International Dairy Journal*, 11(1–2), 1-17. doi: 10.1016/s0958-6946(01)00036.
- Luoma, S., Peltoniemi, K., Joutsjoki, V., Rantanen, T., Tamminen, M., Heikkinen, I., & Palva, A. (2001). Expression of six peptidases from *Lactobacillus helveticus* in *Lactococcus lactis*. *Applied and Environmental Microbiology*, 67(3), 1232-1238. doi: 10.1128/aem.67.3.1232-1238.2001.

- Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., & Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93(2), 437-455.
- Maehashi, K., Matano, M., Wang, H., Vo, L. A., Yamamoto, Y., & Huang, L. (2008). Bitter peptides activate hTAS2Rs, the human bitter receptors. Biochemical and Biophysical Research Communications, 365(4), 851-855. doi: http://dx.doi.org/10.1016/j.bbrc.2007.11.070.
- Maeno, M., Yamamoto, N., & Takano, T. (1996). Identification of an antihypertensive peptide from casein hydrolysate produced by a Proteinase from *Lactobacillus helveticus* CP790. *Journal of Dairy Science*, 79(8), 1316-1321. doi: http://dx.doi.org/10.3168/jds.S0022-0302(96)76487-1.
- Maganha, L. C., Rosim, R. E., Corassin, C. H., Cruz, A. G., Faria, J. A. F., & Oliveira, C. A. F. (2014). Viability of probiotic bacteria in fermented skim milk produced with different levels of milk powder and sugar. International Journal of Dairy Technology, 67(1), 89-94. doi: 10.1111/1471-0307.12087.
- Marteau, P., Flourie, B., Pochart, P., Chastang, C., Desjeux, J.-F., & Rambaud, J.-C. (1990). Effect of the microbial lactase (EC 3.2. 1.23) activity in yoghurt on the intestinal absorbance of lactose: an in vivo study in lactase-deficient humans. *British Journal of Nutrition*, 64(01), 71-79.
- Marinik, E. L., Frisard, M. I., Hulver, M. W., Davy, B. M., Rivero, J. M., Savla, J. S., & Davy, K. P. (2013). Angiotensin ii receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure. Therapeutic Advances in Cardiovascular Disease, 7(1), 11-20. doi: 10.1177/1753944712471740.
- Martín, R., Langa, S., Reviriego, C., Jimínez, E., Marín, M. L., Xaus, J., Rodríguez, J. M. (2003). Human milk is a source of lactic acid bacteria for the infant gut. The Journal of Pediatrics,143(6),754-758.doi:http://dx.doi.org/10.1016/j. jpeds. 2003.09.028.
- Maruyama, S., Nakagomi, K., Tomizuka, N., & Suzuki, H. (1985). Angiotensin converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. Isolation and bradykinin-potentiating activity on the uterus and the ileum of rats. Agricultural and Biological Chemistry, 49(5), 1405-1409. doi: 10.1271/bbb1961.49.1405.
- Maruyama, S., & Suzuki, H. (1982). A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agricultural and Biological Chemistry, 46(5), 1393-1394.

- Masuda, O., Nakamura, Y., & Takano, T. (1996). Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. The Journal of Nutrition, 126(12), 3063-3068.
- Matar, C., Amiot, J., Savoie, L., & Goulet, J. (1996). The Effect of milk fermentation by *Lactobacillus helveticus* on the release of peptides during in vitro digestion. *Journal of Dairy Science*, 79(6), 971-979.
- Matar, C., & Goulet, J. (1996). β-Casomorphin 4 from milk fermented by a mutant of *Lactobacillus helveticus*. *International Dairy Journal*, 6(4), 383-397.
- Mathara, J. M., Schillinger, U., Kutima, P. M., Mbugua, S. K., & Holzapfel, W. H. (2004). Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. *International Journal of Food Microbiology*, *94*(3), 269-278. doi: http://dx.doi.org/10.1016/j.ijfoodmicro.2004.01.008.
- Mattu, R. K., Needham, E. W. A., Galton, D. J., Frangos, E., Clark, A. J. L., & Caulfield, M. (1995). A DNA Variant at the Angiotensin-converting enzyme gene locus associates With coronary artery disease in the caerphilly heart Study. *Circulation*, *91*(2), 270-274. doi: 10.1161/01.cir.91.2.270.
- Maubois, J., L., & Léonil, J. (1989). Peptides du lait à activité biologique. *Lait*, 69(4), 245-269.
- Mavromoustakos, T. (2004). Modern aspects in the design and discovery of novel antihypertensive drugs-Preface. *Current Topics in Medicinal Chemistry*, 4(4), 1.
- Mavromoustakos, T., Apostolopoulos, V., & Matsoukas, J. (2001). Antihypertensive Drugs that Act on Renin-Angiotensin System with Emphasis in AT1 Antagonists. *Mini-Reviews in Medicinal Chemistry*, 1(2), 207-217. doi: http://dx.doi.org/10.2174/1389557013407115.
- Maxime, D., marcotte, M. & arcand, Y. (2006). Development of eco-efficiency indicators for the Canadian food and beverage industry. *Journal of Cleaner Production*, 14, 636-648.
- McCann, K. B., Shiell, B. J., Michalski, W. P., Lee, A., Wan, J., Roginski, H., & Coventry, M. J. (2006). Isolation and characterisation of a novel antibacterial peptide from bovine αS1-casein. *International Dairy Journal*, *16*(4), 316-323. doi: http://dx.doi.org/10.1016/j.idairyj.2005.05.005.
- McIntosh, G. H., Regester, G. O., Le Leu, R. K., Royle, P. J., & Smithers, G. W. (1995). Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. *The Journal of Nutrition*, *125*(4), 809-816.

- McKinley, M. C. (2005). The nutrition and health benefits of yoghurt. *International Journal of Dairy Technology*, 58(1), 1-12. doi: 10.1111/j.1471-0307.2005.00180.
- McLeod A, F. W., Ozimek L. (1996). Binding of retinoic acid to lactoglobulin variants A and B:effect of hepatic and tryptic digestion on the protein-ligand complex. *Milchwissenschaft*, *51*, 3-7.
- McNeil, B., & Harvey, L. M. (2008). *Practical fermentation technology*: Wiley Online Library.
- Medicine, I. o. (1997). Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC: The National Academies Press. Washington: Institute of Medicine.
- Meena, K., Kapila, S., Chand, R., Haque, E., Singh, S., & Aggarwal, P. K. (2008). Immunomodulatory effect of oral administration of milk fermented with *Lactobacillus helveticus* in mice. *Milchwissenschaft*, 63(1), 27-29.
- Meilgaard, M. C., Carr, B. T., & Civille, G. V. (2006). Sensory Evaluation Techniques, Fourth Edition: Taylor & Francis.
- Meisel, H., & Bockelmann, W. (1999). Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. *Antonie van Leeuwenhoek*, 76(1-4), 207-215. doi: 10.1023/a:1002063805780.
- Meisel, H. (1998). Overview on Milk Protein-derived Peptides. *International Dairy Journal*, 8(5–6), 363-373. doi: http://dx.doi.org/10.1016/S0958-6946(98) 00059-4.
- Meisel, H., & Schlimme, E. (1990). Milk proteins: precursors of bioactive peptides. *Trends in Food Science & Technology, 1*(0), 41-43. doi: http://dx.doi.org/10.1016/0924-2244(90)90029.
- Menendez, S., Centeno, J.A., Godı'nez, R. & Rodrı'guez-Otero, J.L. (2000). Effect of Lactobacillus strains on the ripening and organoleptic characteristics of Arzu' a-Ulloa cheese. *International Journal of Food Microbiology*, 59, 37–46.
- Merrifield, D. L., Bradley, G., Baker, R. T. M., & Davies, S. J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. *Aquaculture Nutrition*, 16(5), 496-503. doi: 10.1111/j.1365-2095.2009.00688.

- Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V., & Gobbetti, M. (2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from *Lactobacillus helveticus* PR4 proteinase-hydrolyzed caseins of milk from six species. *Applied and Environmental Microbiology*, 69(9), 5297-5305.
- Miura, S.-i., Karnik, S. S., & Saku, K. (2011). Review: Angiotensin II type 1 receptor blockers: class effects versus molecular effects. *Journal of Renin-Angiotensin-Aldosterone System*, 12(1), 1-7. doi: 10.1177/1470320310370852.
- Miyauchi, H., Kaino, A., Shinoda, I., Fukuwatari, Y., & Hayasawa, H. (1997). Immunomodulatory effect of bovine lactoferrin pepsin hydrolysate on murine splenocytes and peyer's patch cells. *Journal of Dairy Science*, 80(10), 2330-2339. doi: http://dx.doi.org/10.3168/jds.S0022-0302(97)76184-8.
- Mizuno, S., Nishimura, S., Matsuura, K., Gotou, T., & Yamamoto, N. (2004). Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an *Aspergillus oryzae* protease. *Journal of Dairy Science*, 87, 3183-3188.
- Mohammadi, R., & Mortazavian, A. M. (2011). Review Article: Technological aspects of prebiotics in probiotic fermented milks. *Food Reviews International*, *27*(2), 192-212. doi: 10.1080/87559129.2010.535235.
- Morgan, T. O., Anderson, A. I. E., & MacInnis, R. J. (2001). Ace inhibitors, beta-blockers, calcium blockers, and diuretics for the control of systolic hypertension. *American Journal of Hypertension*, 14(3), 241-247. doi: http://dx.doi.org/10.1016/S0895-7061(00)01266-8.
- Morr, C., & Ha, E. (1993). Whey protein concentrates and isolates: processing and functional properties. *Critical Reviews in Food Science & Nutrition*, 33(6), 431-476.
- Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. *International Dairy Journal*, *16*(1), 61-69.
- Mullally, M. M., Meisel, H., & FitzGerald, R. J. (1997). Angiotensin-I-converting enzyme inhibitory activities of gastric and pancreatic proteinase digests of whey proteins. *International Dairy Journal*, 7(5), 299-303. doi: http://dx.doi.org/10.1016/S0958-6946(97)00018-6.
- Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., Yadav, H. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. *Food & Function*, *2*(1), 18-27. doi: 10.1039/c0fo00016g.

- Nakamura, Y., MASUDA, O., & TAKANO, T. (1996). Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. *Bioscience, biotechnology, and biochemistry, 60*, 488–489. doi: http://dx.doi.org/10.1271/bbb.60.488.
- Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., & Takano, T. (1995). Purification and characterization of Angiotensin I-converting enzyme inhibitors from sour milk. *Journal of Dairy Science*, 78, 777-783.
- Nakamura, Y., Yamamoto, N., Sakai, K., & Takano, T. (1995). Antihypertensive effect of sour milk and peptides isolated from It that are inhibitors to Angiotensin I-Converting Enzyme. *Journal of Dairy Science*, 78(6), 1253-1257. doi: http://dx.doi.org/10.3168/jds.S0022-0302(95)76745-5.
- Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., & Takano, T. (1995). Purification and characterization of angiotensin I-converting enzyme inhibitors from sour milk. *Journal of Dairy Science*, 78(4), 777-783. doi: http://dx.doi.org/10.3168/jds.S0022-0302(95)76689-9.
- Nakamura, H. (1987). Effects of antihypertensive drugs on plasma lipid. American Journal of Cardiology, 60, 24E-28E.
- Narva, M., Collin, M., Jauhiainen, T., Vapaatalo, H., & Korpela, R. (2004). Effects of *Lactobacillus helveticus* fermented milk and its bioactive peptides on bone parameters in spontaneously hypertensive rats. *Milchwissenschaft*, 59(7-8), 359-363.
- Newman, J., Egan, T., Harbourne, N., O'Riordan, D., Jacquier, J. C., & O'Sullivan, M. (2014). Correlation of sensory bitterness in dairy protein hydrolysates: Comparison of prediction models built using sensory, chromatographic and electronic tongue data. *Talanta*, *126*(0), 46-53. doi: http://dx.doi.org/10.1016/j.talanta.2014.03.036.
- Nielsen, M. S., Martinussen, T., Flambard, B., Sørensen, K. I., & Otte, J. (2009). Peptide profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. *International Dairy Journal*, 19(3), 155-165. doi: http://dx.doi.org/10.1016/j.idairyj.2008.10.003.
- Nikolić, Z., Đorđević, V., Torbica, A., & Mikić, A. (2012). Legumes seed storage proteins characterization by SDS-PAGE and Lab-on-a-Chip electrophoresis. *Journal of Food Composition and Analysis*, 28(2), 75-80. doi: http://dx.doi.org/10.1016/j.jfca.2012.08.005.
- Nurminen, M.-L., Sipola, M., Kaarto, H., Pihlanto-Leppälä, A., Piilola, K., Korpela, R., Vapaatalo, H. (2000). α-Lactorphin lowers blood pressure measured by

- radiotelemetry in normotensive and spontaneously hypertensive rats. *Life sciences*, 66(16), 1535-1543.
- Oberg, C. J., Weimer, B. C., Moyes, L. V., Brown, R. J., & Richardson, G. H. (1991). Proteolytic Characterization of *Lactobacillus delbrueckii ssp.* {Bounous, 2000 #670} {Bounous, 2000 #670} Strains by the o-Phthaldialdehyde Test and Amino Acid Analysis. *Journal of Dairy Science*, 74(2), 398-403. doi: http://dx.doi.org/10.3168/jds.S0022-0302(91)78181-2.
- Oliveira, M.N., Sivieri, K., Alegro, J.H.A. & Saad, S.M.I. (2002). Aspectos tecnolo' gicos de alimentos funcionais contendo probio' ticos. *Brazilian Journal of Pharmaceutical Sciences*, 38, 1–21.
- O'Malley, J. P., BS, Maslen, C. L., & Illingworth, D. R. (1998). Angiotensin-I-converting enzyme DD genotype and cardiovascular disease in heterozygous familial hypercholesterolemia. Circulation, 97(18), 1780-1783. doi: 10.1161/01.cir.97.18.1780.
- Ono, H., Yamamoto, N., Maeno, M., Takano, T., & Momose, H. (1997). Purification and characterization of a cell-wall associated proteinase of *Lactobacillus helveticus* CP53. *Milchwissenschaft*, 52(7), 373-376.
- Otte, J., Lenhard, T., Flambard, B., & Sørensen, K. I. (2011). Influence of fermentation temperature and autolysis on ACE-inhibitory activity and peptide profiles of milk fermented by selected strains of *Lactobacillus helveticus* and *Lactococcus lactis*. *International Dairy Journal*, 21(4), 229-238. doi: 10.1016/j.idairyj.2010.12.008.
- Otte, J., Shalaby, S. M., Zakora, M., Pripp, A. H., & El-Shabrawy, S. A. (2007). Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of substrate, enzyme and time of hydrolysis. *International Dairy Journal*, 17(5), 488-503. doi: http://dx.doi.org/10.1016/j.idairyj.2006.05.011.
- Otte, J., Shalaby, S. M. A., Zakora, M., & Nielsen, M. S. (2007). Fractionation and identification of ACE-inhibitory peptides from α -lactalbumin and β -casein produced by thermolysin-catalysed hydrolysis. *International Dairy Journal*, 17(12), 1460-1472. doi: http://dx.doi.org/10.1016/j.idairyj.2007.04.008.
- Otagiri, K., Nosho, Y., Shinoda, I., Fukui, H., & Okai, H. (1985). Studies on a Model of Bitter Peptides Including Arginine, Proline and Phenylalanine Residues. I. Bitter Taste of Di- and Tripeptides, and Bitterness Increase of the Model Peptides by Extension of the Peptide Chain. *Agricultural and Biological Chemistry*, 49(4), 1019-1026. doi: 10.1080/00021369.1985.10866857.

- Okoro, L. N., Sambo, F. I., Lawal, M., & Nwaeburu, C. (2011). Thermodynamic and viscometric evaluation of biodiesel and blends from olive oil and cashew nut oil. *Research journal of chemical sciences*, 1(4), 90-97.
- Ozer, B., Kirmaci, H. A., Oztekin, S., Hayaloglu, A., & Atamer, M. (2007). Incorporation of microbial transglutaminase into non-fat yogurt production. *International Dairy Journal*, 17(3), 199-207.
- Pal, S., Ellis, V., & Dhaliwal, S. (2010). Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. *British Journal of Nutrition*, 104(05), 716-723. doi: doi:10.1017/S0007114510000991.
- Panagiotopoulos, D., Matsoukas, J. M., Alexopoulos, K., Zebeki, A., Mavromoustakos, T., Saifeddine, M., & Hollenberg, M. D. (1996). Synthesis and activities of cyclic thrombin-receptor-derived peptide analogues of the Ser42-Phe-Leu-Leu-Arg46 motif sequence containing D-Phe and/or D-Arg. *Letters in Peptide Science*, 3(4), 233-240.
- Pan, D., Luo, Y., & Tanokura, M. (2005). Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of *Lactobacillus helveticus* JCM1004. *Food Chemistry*, *91*(1),123-129.doi:10.1016/j.foodchem.2004.05.055.
- Pan, D., & Guo, Y. (2010). Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate. *International Dairy Journal*, 20, 472-479.
- Park, Y. W. (2009). Overview of bioactive components in milk and dairy products. *Bioactive components in milk and dairy products*, 3-5.
- Paola Ortiz-Chaoa, J. A. G.-R., 1, Robert A. Rastalla, Davinia Millsb, Rainer Cramerb, Anne Pihlantoc, Hannu Korhonenc, Paula Jauregi. (2009). Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. *International Dairy Journal*, 19 (2), 69-76.
- Parker, R. (2007). *Yakult: Targeting US demand for functional health, convenience,*(Online). Available: http://www.drinks-business review.com/article_feature.asp?guid=58B1CB95-5BBB-40E4-883B-29F347924DF1, (Accessed 8th/07/2015).
- Pariza, MW1, P. Y., Cook ME. (1999). Conjugated linoleic acid and the control of cancer and obesity., 52(2), 107-110.
- Parente, E., & Zottola, E. A. (1991). Growth of Thermophilic Starters in Whey Permeate Media1. Journal of Dairy Science, 74(1), 20-28.

- Passos, F. M. L., & Swaisgood, H. E. (1993). Development of a spiral mesh bioreactor with immobilized *lactococci* for continuous inoculation and acidification of milk. *Journal of Dairy Science*, 76(10), 2856-2867. doi: http://dx.doi.org/10.3168/jds.S0022-0302(93)77624-9.
- Patel, HA, Creamer LK. 2008. High-pressure-induced interactions involving whey proteins. Chapter 7.In: A. T. B. Singh editor. Milk Proteins. San Diego: *Academic Press*; p. 205-238.
- Penner, R., Fedorak, R. N., & Madsen, K. L. (2005). Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases. *Current Opinion in Pharmacology*, *5*(6),596-603. doi: http://dx.doi.org/10.1016/j.coph.2005.06.009.
- Pepe, G., Tenore, G. C., Mastrocinque, R., Stusio, P., & Campiglia, P. (2013). Potential Anticarcinogenic Peptides from Bovine Milk. *Journal of Amino Acids*, 2013, 7. doi: 10.1155/2013/939804.
- Pescuma, M., Hébert, E. M., Mozzi, F., & Font de Valdez, G. (2008). Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. *Food Microbiology*, *25*(3), 442-451. doi: 10.1016/j.fm.2008.01.007.
- Phelan, M., Aherne, A., FitzGerald, R. J., & O'Brien, N. M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. *International Dairy Journal*, 19(11), 643-654. doi: http://dx.doi.org/10.1016/j.idairyj.2009.06.001.
- Phelan, M., & Kerins, D. (2011). The potential role of milk-derived peptides in cardiovascular disease. *Food & Function*, 2(3-4), 153-167. doi: 10.1039/c1fo10017c.
- Pihlanto, A. & Korhonen, H. (2015). Bioactive peptides from fermented foods and health promotion. In: Holzapfel, W. (ed.) Advances in Fermented Foods and Beverages. Woodhead Publishing, 39-74. doi:10.1016/B978-1-78242-015-6.00003-7.
- Pihlanto, A., Virtanen, T., & Korhonen, H. (2010). Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. *International Dairy Journal*, 20(1), 3-10. doi: 10.1016/j.idairyj.2009.07.003.
- Pihlanto, A., & Korhonen, H. (2003). Bioactive peptides and proteins. Advances in food and nutrition research, 47, 175-276.
- Pihlanto-Leppälä, A. (2000). Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. *Trends in Food Science & Technology*, 11(9–10), 347-356. doi: http://dx.doi.org/10.1016/S0924-2244(01)00003-6.

- Pihlanto-Leppälä, A., Rokka, T., & Korhonen, H. (1998). Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. *International Dairy Journal*, *8*, 325-331.
- Plessas, S., Fisher, A., Koureta, K., Psarianos, C., Nigam, P., & Koutinas, A. A. (2008). Application of *kluyveromyces marxianus*, *lactobacillus delbrueckii ssp. bulgaricus* and *L. Helveticus* for sourdough bread making. *Food Chemistry*, 106(3), 985-990.
- Poste, L. M., Mackie DA, Butler G, Larmond E,. (1991). Laboratory methods for sensory analysis of food. Canada: *Canada Communication Group*, Pub. Centre. *1864/E*.
- Pripp, A. H., & Ardö, Y. (2007). Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. *Food Chemistry*, 102(3), 880-888. doi: http://dx.doi.org/10.1016/j.foodchem.2006.06.026.
- Pripp, A. H., Isaksson, T., Stepaniak, L., & Sørhaug, T. (2004). Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. *European Food Research and Technology*, 219(6), 579-583.
- Prevost, H., & Divies, C. (1987). Fresh fermented cheese production with continuous pre-fermented milk by a mixed culture of *mesophilic lactic streptococci* entrapped in Ca-Al ginate. *Biotechnology Letters*, *9*(11), 789-794. doi: 10.1007/BF01028285.
- Quirós, A., Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., Aleixandre, A., & Recio, I. (2007). Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. *International Dairy Journal*, 17(1), 33-41. doi: http://dx.doi.org/10.1016/j.idairyj.2005.12.011.
- Rajapakse, N., Mendis, E., Byun, H.-G., & Kim, S.-K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9), 562-569. doi: http://dx.doi.org/10.1016/j.jnutbio.2005.02.005.
- Ramesh C. Chandan, A. K. (2013). Manufacturing Yogurt and Fermented Milks *Technology & Engineering*, 496.
- Ramesh, V., Kumar, R., Singh, R. R. B., Kaushik, J. K., & Mann, B. (2012). Comparative evaluation of selected strains of lactobacilli for the development of antioxidant activity in milk. Dairy Science and Technology, 92(2), 179-188.
- Ramchandran, & Shah, N. P. (2011). Yogurt can beneficially affect blood contributors of cardiovascular health status in hypertensive rats. *Journal of Food Science*, 76(4), H131-H136. doi: 10.1111/j.1750-3841.2011.02127.

- Ramchandran, & Shah, N. P. (2010). Influence of addition of Raftiline HP[®] on the growth, proteolytic, ACE- and α-glucosidase inhibitory activities of selected lactic acid bacteria and *Bifidobacterium*. *LWT Food Science and Technology*, 43(1), 146-152. doi: http://dx.doi.org/10.1016/j.lwt.2009.06.022.
- Ramchandran, L., & Shah, N. P. (2008). Proteolytic Profiles and Angiotensin-I Converting enzyme and α-Glucosidase inhibitory activities of selected Lactic acid bacteria. *Journal of Food Science*, 73(2), M75-M81. doi: 10.1111/j.1750-3841.2007.00643.
- Ramos, Ó. L., Pereira, J. O., Silva, S. I., Amorim, M. M., Fernandes, J. C., Lopes-da-Silva, J. A., Malcata, F. X. (2012). Effect of composition of commercial whey protein preparations upon gelation at various pH values. Food ResearchInternational,48(2),681-689.doi: http://dx.doi.org/10.1016/j. foodres. 2012.06.004.
- Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. *Microbiology and molecular* biology reviews, 62(3), 597-635.
- Rasic, J. L., & Kurmann, J. A. (1983). Bifidobacteria and their role. Microbiological, nutritional-physiological, medical and technological aspects and bibliography (Vol. 39).
- Ravallec-Plé, R., Gilmartin, L., Van Wormhoudt, A., & Le Gal, Y. (2000). Influence of the hydrolysis process on the biological activities of protein hydrolysates from cod (Gadus morhua) muscle. *Journal of the Science of Food and Agriculture*, 80(15), 2176-2180. doi: 10.1002/1097-0010(200012)80:15<2176::AID-JSFA763>3.0.CO;2-G.
- Rijkers, G. T., de Vos, W. M., Brummer, R.-J., Morelli, L., Corthier, G., & Marteau, P. (2011). Health benefits and health claims of probiotics: bridging science and marketing. *British Journal of Nutrition*, *106*(09), 1291-1296. doi: doi:10.1017/S000711451100287.
- Rizzello, C. G., Cassone, A., Di Cagno, R., & Gobbetti, M. (2008). Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and γ-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. *Journal of Agricultural and Food Chemistry*, 56(16), 6936-6943. doi: 10.1021/jf800512.
- Roberfroid, M. B. (2000). Prebiotics and probiotics: are they functional foods? *The American Journal of Clinical Nutrition*, 71(6), 1682s-1687.

- Roberfroid, M. B. (1999). Concepts in functional foods: the case of inulin and oligofructose. *The Journal of Nutrition*, *129*(7), 1398S-1401.
- Roostita, R., & Fleet, G. H. (1996). Growth of yeasts in milk and associated changes to milk composition. *International Journal of Food Microbiology*, 31(1-3), 205-219.
- Roy, M. K., Watanabe, Y., & Tamai, Y. (2000). Yeast protease B-digested skimmed milk inhibits angiotensin-I-converting-enzyme activity. *Biotechnology and Applied Biochemistry*, 31(2), 95-100. doi: 10.1042/ba19990081.
- Roy, M. K., Watanabe, Y., & Tamai, Y. (1999). Induction of apoptosis in human leukemia (HL-60) cells by skimmed milk digested with a proteolytic enzyme purified from *Saccharomyces cerevisiae*. *Biotechnology Techniques*, *13*(11), 727-734.
- Saito, T. (2008). Antihypertensive peptides derived from bovine casein and Whey proteins. In Z. Bösze (Ed.), *Bioactive Components of Milk* (Vol. 606, pp. 295-317): Springer New York.
- Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., & Itoh, T. (2000). Isolation and structural analysis of antihypertensive peptides that exist naturally in gouda cheese. *Journal of Dairy Science*, 83(7), 1434-1440. doi: http://dx.doi.org/10.3168/jds.S0022-0302(00)75013-2.
- Salminen, S., & von Wright, A. (2004). *Lactic Acid Bacteria: Microbiological and Functional Aspects*. In. Salminen, S (3rd Ed): CRC Press.New York: Marcel Dekker,INC.656-656.
- Salminen, S., & Wright A. (1998). *Lactic acid bacteria: Microbiology and functional aspects*. In. Salminen, S. (2nd Ed.). New York: Malcr Dekker.14-19.
- Sanders, M. E. (2008). Probiotics: definition, sources, Selection, and uses. Clinical Infectious Diseases, 46(Supplement 2), S58-S61. doi: 10.1086/523341.
- Santos, A., San Mauro, M., & Diaz, D. M. (2006). Prebiotics and their long-term influence on the microbial populations of the mouse bowel. *Food Microbiology*, 23(5), 498-503.
- SAS, II. (2008). SAS V9.0 software.
- Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. *Applied Microbiology and Biotechnology*, 71(4), 394-406. doi: 10.1007/s00253-006-0427-1.

- Saxelin, M., Korpela, R., & Mäyrä-Mäkinen, A. (2003). 1 Introduction: classifying functional dairy products. In T. Mattila-Sandholm & M. Saarela (Eds.), *Functional Dairy Products* (pp. 1-16): Woodhead Publishing.
- Schanbacher, F. L., Talhouk, R. S., Murray, F. A., Gherman, L. I., & Willett, L. B. (1998). Milk-borne bioactive peptides. *International Dairy Journal*, 8(5-6), 393-403.
- Schlimme, E., & Meisel, H. (1995). Bioactive peptides derived from milk proteins. Structural, physiological and analytical aspects. *Food/Nahrung*, *39*(1), 1-20.
- Seppo, L., Jauhiainen, T., Poussa, T., & Korpela, R. (2003). A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. *American Journal of Clinical Nutrition*, 77(2), 326-330.
- Seppo, L., Kerojoki, O., Suomalainen, T., & Korpela, R. (2002). The effect of a *Lactobacillus helveticus* LBK-16 H fermented milk on hypertension A pilot study on humans. *Milchwissenschaft*, 57(3), 124-127.
- Sesoko, S., & Kaneko, Y. (1985). Cough associated with the use of Captopril. *Internal Medicine*, 145(8), 1524.
- Shah, N. P. (2007). Functional cultures and health benefits. *International Dairy Journal*, 17(11), 1262-1277. doi: http://dx.doi.org/10.1016/j.idairyj.2007.01.014.
- Shah, N. P., & Ravula, R. (2000). Influence of water activity on fermentation, organic acids production and viability of yogurt and probiotic bacteria. *The Australian Journal of Dairy Technology*, 55, 127–131.
- Shah, N. P. (2001). Functional foods, probiotics and prebiotics. *Food Technology*, 55, 46–53.
- Shah, N. P. (2000). Effects of milk-derived bioactives: an overview. *British Journal of Nutrition*, 84(SupplementS1), 3-10. doi: doi:10.1017/S000711450000218.
- Shah, N. P. (2000). Probiotic bacteria: selective enumeration and survival in dairy foods. *Journal of Dairy Science*, 83, 894–907.
- Shihata, A., & Shah, N. P. (2000). Proteolytic profiles of yogurt and probiotic bacteria. *International Dairy Journal*, 10(5–6), 401-408. doi: 10.1016/s0958-6946(00)00072-8.
- Silva, S. V., & Malcata, F. X. (2005). Caseins as source of bioactive peptides. *InternationalDairyJournal*, 15(1),1-15. doi:http://dx.doi.org/10.1016/j. idairyj. 2004.04.009.

- Singh, H., & Thompson, A. (2014). Milk Proteins: From Expression to Food, Hardback *Food Science and Technology*, 2nd Revised edition. Book, 10(13), 622.
- Singh, B., Chand, R., & Singh, R. (2011). Angiotensin-1 converting enzyme (ACE) inhibitory activity of peptides isolated from bovine milk fermented with *Lactobacillus helveticus* NCDC- 288. *Milchwissenschaft*, 66(4), 429-432.
- Singh, B., & Singh, R. (2011). Antimicrobial effect of peptides isolated from bovine milk fermented with *Lactobacillus helveticus*. *Milchwissenschaft*, 66(3), 262-265.
- Sipola, M., finckenberg, P., korpela, R., vapaatalo, H., & nurminen, M.-L. (2002). Effect of long-term intake of milk products on blood pressure in hypertensive rats. *Journal of Dairy Research*, 69(01), 103-111.doi:doi: 10. 1017/ S0022-0299(01) 0052-6.
- Siró, I., Kápolna, E., Kápolna, B., & Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance A review. *Appetite*, *51*(3), 456-467. doi: 10.1016/j.appet.2008.05.060.
- Smacchi, E., & Gobbetti, M. (2000). Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. *Food Microbiology*, *17*(2), 129-141.
- Sobol, C. V. (2014). How Microbiome Impact on the Cardiovascular System. *J Clin Trial Cardiol*, 1(1), 1-4.
- Sodini, Lagace, L., Lacroix, C., & Corrieu, G. (1998). Effect of continuous prefermentation of milk with an immobilized cell bioreactor on fermentation kinetics and curd properties. *Journal of Dairy Science*, 81(3), 631-638. doi: http://dx.doi.org/10.3168/jds.S0022-0302(98)75617-6.
- Sodini-Gallot, Corrieu, G., Boquien, C. Y., Latrille, E., & Lacroix, C. (1995). Process performance of continuous inoculation and acidification of milk with immobilized lactic acid bacteria. *Journal of Dairy Science*, 78(7), 1407-1420. doi: http://dx.doi.org/10.3168/jds.S0022-0302(95)76763-7.
- Souza, A. H. P. d., Costa, G. A. N., Miglioranza, L. H. d. S., Furlaneto-Maia, L., & Oliveira, A. F. d. (2013). Microbiological, physical, chemical and sensory characteristics of milk fermented with *Lactobacillus plantarum*. Acta Scientiarum. *Health Sciences*, 35(1).
- Spellman, D., O'Cuinn, G., & FitzGerald, R. J. (2009). Bitterness in Bacillus proteinase hydrolysates of whey proteins. *Food Chemistry*, *114*(2), 440-446. doi: http://dx.doi.org/10.1016/j.foodchem.2008.09.067

- Spellman, D., McEvoy, E., O'cuinn, G., & FitzGerald, R. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. *International Dairy Journal*, 13(6), 447-453.
- Standard. Australian Food Standards. Act. (2003). Food standards code Australian New Zealand: http: Accessed from // www.foodstandards.gov.au /code/ Pages/ default. aspx.
- Steenson, L. R., Klaenhammer, T. R., & Swaisgood, H. E. (1987). Calcium alginate-immobilized cultures of *lactic streptococci* are protected from bacteriophages. *Journal of Dairy Science*, 70(6), 1121-1127.
- Stone, H., Bleibaum, R., & Thomas, H. A. (2012). *Sensory evaluation practices* (B. Herbert Stone, Heather Thomas, & Eds. Chapter 3.4th ed. London: *Academic press*.p. 1-178.
- Stressler, T., Eisele, T., Schlayer, M., Lutz-Wahl, S., & Fischer, L. (2013). Characterization of the recombinant exopeptidases PepX and PepN from *Lactobacillus helveticus* ATCC 12046 important for food protein hydrolysis. *PLoS ONE*, 8(7), e70055. doi: 10.1371/journal.pone.0070055.
- Stanton, C., Ross, R. P., FitzGerald, G. F., & Van Sinderen, D. (2005). Fermented functional foods based on probiotics and their biogenic metabolites. *Current Opinion in Biotechnology*, 16(2), 198-203.
- Stanton, C., Desmond, C., FitzGerald, G., & Ross, R. (2003). Probiotic health benefits: reality or myth? *Australian journal of dairy technology*, *58*(2), 107-113.
- Sun, T., Zhao, S., Wang, H., Cai, C., Chen, Y., & Zhang, H. (2009). ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by *Lactobacillus helveticus* isolated from Xinjiang koumiss in China. *European Food Research and Technology*, 228(4), 607-612.
- Swedish, i. (2007). Arla Foods. *Foodservice*. Arla Foods växel: 08 789 50 00. Doi: http://www.arlafoodservice.se/produkter.
- Takano, D. T. (2002). Anti-hypertensive activity of fermented dairy products containing biogenic peptides. *Antonie Van Leeuwenhoek*, 82(1-4), 333-340. doi: 10.1023/a:1020600119907.
- Tamime, A. (2002). Fermented milks: a historical food with modern applications—a review. *European Journal of Clinical Nutrition*, 56(Suppl 4), s2-s15.

- Tamime, A. Y., & Robinson, R. K. (1999). *Yoghurt: science and technology*: Woodhead Publishing.
- Tauzin, J., Miclo, L., & Gaillard, J.-L. (2002). Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αS2-casein. *FEBS Letters*, 531(2), 369-374. doi: http://dx.doi.org/10.1016/S0014-5793(02)03576-7.
- Tellez, A., Corredig, M., Turner, P. V., Morales, R., & Griffiths, M. (2011). A peptidic fraction from milk fermented with *Lactobacillus helveticus* protects mice against Salmonella infection. *International Dairy Journal*, 21(9), 607-614.
- Tharmaraj, N., & Shah, N. P. (2003). Selective Enumeration of *Lactobacillus delbrueckii ssp. bulgaricus*, *Streptococcus thermophilus*, *Lactobacillus acidophilus*, *Bifidobacteria*, *Lactobacillus casei*, *Lactobacillus rhamnosus*, and Propionibacteria. *Journal of Dairy Science*, *86*(7), 2288-2296. doi: http://dx.doi.org/10.3168/jds.S0022-0302(03)73821-1.
- Thamer, K. G., & Penna, A. L. B. (2006). Caracterização de bebidas lácteas funcionais fermentadas por probióticos e acrescidas de prebiótico. Food Science and Technology (Campinas), 26, 589-595.
- Thomas, T. D., & Crow, V. L. (1984). Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. *Applied and Environmental Microbiology*, 48(1), 186-191.
- Thomas, J. (2014). *Functional foods market increases in size*. Retrieved from(https://www.leatherheadfood.com/functional-foods-market-increases-in size#sthash.Fvjn91qF.dpuf). Online access 4.Jun.2013.
- Tiina Jauhiainen, T. P., Zhong Jian Cheng, Hannu Kautiainen, Dominik N. Müller, Heikki Vapaatalo, Riitta Korpela, and Eero Mervaala. (2010). Milk products containing bioactive tripeptides have an antihypertensive effect in double transgenic rats (dTGR) harbouring human renin and human angiotensinogen Genes. *Journal of Nutritional Metabolism.*, 287030.
- Tobajas, M., Mohedano, A. F., Casas, J. A., & Rodríguez, J. J. (2007). A kinetic study of reuterin production by *Lactobacillus reuteri* PRO 137 in resting cells. *Biochemical Engineering Journal*, 35(2), 218-225.
- Toledo, E., Delgado-Rodríguez, M., Estruch, R., Salas-Salvadó, J., Corella, D., Gomez-Gracia, E., Arós, F. (2009). Low-fat dairy products and blood pressure: follow-up of 2290 older persons at high cardiovascular risk participating in the PREDIMED study. *British Journal of Nutrition*, 101(01), 59-67.

- Tsai, J.-S., Chen, T.-J., Pan, B. S., Gong, S.-D., & Chung, M.-Y. (2008). Antihypertensive effect of bioactive peptides produced by protease-faciliated lactic acid fermentation of milk. *Food Chemistry*, 106, 552-558.
- Turner, A. J., & Hooper, N. M. (2002). The angiotensin-converting enzyme gene family: Genomics and pharmacology. *Trends in Pharmacological Sciences*, 23(4), 177-183.
- Tomasik, P. J., & Tomasik, P. (2003). Probiotics and prebiotics. *Cereal Chemistry*, 80(2), 113-117.
- Tuohy, K. M., Probert, H. M., Smejkal, C. W., & Gibson, G. R. (2003). Using probiotics and prebiotics to improve gut health. *Drug discovery today*, 8(15), 692-700.
- Unal, G., & Akalin, A. S. (2012). Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt fortified with sodium calcium caseinate or whey protein concentrate. *Dairy Science and Technology*, 92(6), 627-639.
- Unger, T., Ganten, D., Lang, R. E., & Schölkens, B. A. (1985). Persistent Tissue Converting Enzyme Inhibition Following Chronic Treatment with Hoe498 and MK421 in Spontaneously Hypertensive Rats. *Journal of Cardiovascular Pharmacology*, 7(1), 36-41.
- Unger, T., Ganten, D., Lang, R. E., & Schölkens, B. A. (1984). Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors? Studies with the two different compounds, Hoe498 and MK421, in spontaneously hypertensive rats. *Journal of Cardiovascular Pharmacology*, 6(5), 872-880.
- Van Beresteijn, E. C. H., & Alting, A. C. (2002). Method for the selective degradation of milk protein in the presence of other milk proteins: Google Patents.
- Van der Burg-Koorevaar, M. C., & Schalk, J. (2010). Hydrolysed casein product comprising tripeptides IPP and/or VPP: Google Patents.
- Van der Ven, C., Gruppen, H., de Bont, D. B. A., & Voragen, A. G. J. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. *International Dairy Journal*, 12(10), 813-820. doi: 10.1016/s0958-6946(02)00077-8.
- Van Mierlo, L., Arends, L., Streppel, M., Zeegers, M., Kok, F., Grobbee, D., & Geleijnse, J. (2006). Blood pressure response to calcium supplementation: a meta-analysis of randomized controlled trials. *Journal of human hypertension*, 20(8), 571-580.

- Venturoso, R. C., Almeida, K. E. d., Rodrigues, A. M., Damin, M. R., & Oliveira, M. N. d. (2007). Determinação da composição físico-química de produtos lácteos: estudo exploratório de comparação dos resultados obtidos por metodologia oficial e por ultra-som. *Revista Brasileira de Ciências Farmacêuticas*, 43, 607-613.
- Verheul, M., & Roefs, S. P. F. M. (1998). Structure of whey protein gels, studied by permeability, scanning electron microscopy and rheology. *Food Hydrocolloids*, *12*(1), 17-24. doi: http://dx.doi.org/10.1016/S0268-005X(98)00041-1.
- Vermeirssen, V., Van Camp, J., Decroos, K., Van Wijmelbeke, L., & Verstraete, W. (2003). The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and Whey Protein. *Journal of Dairy Science*,86(2),429-438.doi: http://dx.doi.org/10.3168/jds. S0022-0302(03)73621-2.
- Vierhele, T. (2006). Functional 'add-ins' boost yogurt consumption. *Food technology*, 60(v. 60, no. 7), 44-46, 48.
- Virginie, Amilien, Hanne, & Vittersø, T. a. G. (2005). Tjukkmjølk, the traditional thick sour milk from Røros, Norway. *Anthropology of food*.
- Vioque, M., Gómez, R., Sánchez, E., Mata, C., Tejada, L., & Fernández-Salguero, J. (2000). Chemical and microbiological characteristics of ewes' milk cheese manufactured with extracts from flowers of cynara cardunculus and cynara humilis as coagulants. *Journal of Agricultural and Food Chemistry*, 48(2), 451-456. doi: 10.1021/jf990326v.
- Wakai, T., Shinoda, T., Uchida, N., Hattori, M., Nakamura, Y., Beresford, T., Yamamoto, N. (2013). Comparative analysis of proteolytic enzymes need for processing of antihypertensive peptides between *Lactobacillus helveticus* CM4 and DPC4571. *Journal of Bioscience and Bioengineering*, 115(3), 246-252. doi: http://dx.doi.org/10.1016/j.jbiosc.2012.09.020.
- Wakai, T., Yamaguchi, N., Hatanaka, M., Nakamura, Y., & Yamamoto, N. (2012). Repressive processing of antihypertensive peptides, Val-Pro-Pro and Ile-Pro-Pro, in *Lactobacillus helveticus* fermented milk by added peptides. *Journal of Bioscience and Bioengineering*, 114(2), 133-137.
- Wakai, T., & Yamamoto, N. (2012). Antihypertensive peptides specific to *Lactobacillus helveticus* fermented milk. Biotechnology-Molecular Studies and Novel Applications for Improved Quality of Human Life. Biochemistry, Genetics and Molecular Biology. InTech, 159-172.

- Walstra, P., Walstra, P., Wouters, J. T., & Geurts, T. J. (2005). *Dairy science and technology* (Seppo Salminen, and & Ouwehand Eds. 2th ed. Vol. 13). USA: CRC press.
- Wang, X., Wang, L., Cheng, X., Zhou, J., Tang, X., & Mao, X.-Y. (2012). Hypertension-attenuating effect of whey protein hydrolysate on spontaneously hypertensive rats. *Food Chemistry*, *134*(1), 122-126. doi: http://dx.doi.org/10.1016/j.foodchem.2012.02.074.
- Wanasundara, P. K. J. P. D., Ross, A. R. S., Amarowicz, R., Ambrose, S. J., Pegg, R. B., & Shand, P. J. (2002). Peptides with Angiotensin I-Converting enzyme (ACE) inhibitory activity from defibrinated, hydrolyzed bovine plasma. *Journal of Agricultural and Food Chemistry*, 50(24), 6981-6988. doi: 10.1021/jf025592.
- Welderufael, F. T., Gibson, T., & Jauregi, P. (2012). Production of angiotensin-I-converting enzyme inhibitory peptides from β-lactoglobulin- and casein-derived peptides: An integrative approach. *Biotechnology Progress*, 28(3), 746-755. doi: 10.1002/btpr.1541.
- Williams, C. M., & Jackson, K. G. (2002). Inulin and oligofructose: effects on lipid metabolism from human studies. *British Journal of Nutrition*, 87(S2), S261-S264.
- World Health Organization. (2013). *A global brief on hypertension: Silent killer, global public health crisis. Cardiovascular disease*. Retrieved 2 February, 2013, from http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/.
- World Health Organization. (2003). diet, nutrition and the prevention of chronic diseases. *WHO Library Cataloguing-in-Publication Data*. (WHO technical report series; 916), from http://whqlibdoc.who.int/trs/who trs 916.pdf.
- Wu, J., Aluko, R. E., & Nakai, S. (2006). Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure—Activity Relationship Study of Di- and Tripeptides. *Journal of Agricultural and Food Chemistry*, 54(3), 732-738. doi: 10.1021/jf0512631.
- Wyss, J. & Carlson, S. (2001). The role of the nervous system in hypertension. (3), 255-62.
- Yamada, Y., Matoba, N., Usui, H., ONISHI, K., & YOSHIKAWA, M. (2002). Design of a highly potent anti-hypertensive peptide based on ovokinin (2-7). *Bioscience, biotechnology, and biochemistry, 66*(6), 1213-1217.

- Yadav, J. S. S., Bezawada, J., Ajila, C. M., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2014). Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology,164(0),119-127.doi:http://dx.doi.org/10.1016/j.biortech.2014.04.06.
- Yamaguchi, N., Kawaguchi, K., & Yamamoto, N. (2009). Study of the mechanism of antihypertensive peptides VPP and IPP in spontaneously hypertensive rats by DNA microarray analysis. *European Journal of Pharmacology, 620*(1–3), 71-77. doi: http://dx.doi.org/10.1016/j.ejphar.2009.08.005.
- Yamamoto, N., Mine, Y., Li-Chan, E., & Jiang, B. (2010). Functional food products with antihypertensive effects. Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, 29, 169.
- Yamamoto, N., Maeno, M., & Takano, T. (1999). Purification and characterization of an antihypertensive peptide from a yoghurt-like product fermented by *Lactobacillus helveticus* CPN4. *Journal of Dairy Science*, 82, 1388-1393.
- Yamamoto, N., & Takano, T. (1999). Antihypertensive peptides derived from milk proteins. *Die Nahrung*, 43(3), 159-164.
- Yamamoto, N. (1997). Antihypertensive peptides derived from food proteins. *Peptide Science*, 43(2), 129-134. doi:10.1002/(sici)1097-0282(1997)43:2<129:aid-bip5>3.0.co;2.
- Yamamoto, N., Akino, A., & Takano, T. (1994). Antihypertensive Effect of the Peptides Derived from Casein by an Extracellular Proteinase from *Lactobacillus helveticus* CP790. *Journal of Dairy Science*, 77(4), 917-922. doi: http://dx.doi.org/10.3168/jds.S0022-0302(94)77026-0.
- Yamamura, S., Morishima, H., Kumano-Go, T., Suganuma, N., Matsumoto, H., Adachi, H., Takeda, M. (2009). The effect of *Lactobacillus helveticus* fermented milk on sleep and health perception in elderly subjects. *European Journal of Clinical Nutrition*, 63(1), 100-105.
- Yoshii, H., Tachi, N., Ohba, R., Sakamura, O., Takeyama, H., & Itani, T. (2001). Antihypertensive effect of ACE inhibitory oligopeptides from chicken egg yolks. *Comparative Biochemistry and Physiology Part C: Toxicology & Amp; Pharmacology*, 128(1), 27-33. doi: 10.1016/s1532-0456(00)00172-1.
- Zhou, F., Xue, Z., & Wang, J. (2010). Antihypertensive effects of silk fibroin hydrolysate by alcalase and purification of an ACE inhibitory dipeptide. *Journal of Agricultural and Food Chemistry*, 58(11), 6735-6740. doi: 10.1021/jf101101.

Ziadi, M., Bergot, G., Courtin, P., Chambellon, E., Hamdi, M., & Yvon, M. (2010). Amino acid catabolism by *Lactococcus lactis* during milk fermentation. *International Dairy Journal*, 20(1), 25-31.

APPENDIX-I Published papers

Effect of Flavourzyme® on **Angiotensin-Converting Enzyme Inhibitory** Peptides Formed in Skim Milk and Whey Protein Concentrate during Fermentation by Lactobacillus helveticus

Fatah Ahtesh, Lily Stojanovska, Nagendra Shah, and Vijay Kumar Mishra

Angiotensin-converting enzyme inhibitory (ACE-I) activity as affected by Lactobacillus helveticus strains Abstract: (881315, 881188, 880474, and 880953), and supplementation with a proteolytic enzyme was studied. Reconstituted skim milk (12% RSM) or whey protein concentrate (4% WPC), with and without Flavourzyme[©] (0.14% w/w), were fermented with 4 different L. helveticus strains at 37 °C for 0, 4, 8, and 12 h. Proteolytic and in vitro ACE-I activities, and growth were significantly affected (P < 0.05) by strains, media, and with enzyme supplementation. RSM supported higher growth and produced higher proteolysis and ACE-I compared to WPC without enzyme supplementation. The strains L. helveticus 881315 and 881188 were able to increase ACE-I to >80% after 8 h of fermentation when combined with Flavourzyme[€] in RSM compared to the same strains without enzyme supplementation. Supplementation of media by Flavourzyme[®] was beneficial in increasing ACE-I peptides in both media. The best media to release more ACE-I peptides was RSM with enzyme supplementation. The L. helveticus 881315 outperformed all strains as indicated by highest proteolytic and ACE-I activities.

Keywords: ACE inhibition, flavourzyme, Lactobacillus helveticus, skim milk

Practical Application: Lactobacillus helveticus in combination with Flavourzyme was used for producing ACE-I peptides from reconstituted skim milk and whey protein concentrate. Fermentation of skim milk by L. helveticus in combination with Flavourzyme[®] resulted in >80% ACE-I after 8 h. These conditions can be used for developing a functional drink with antihypertensive activity.

Introduction

Hypertension is considered a risk factor for coronary heart disease, such as myocardial infarction and stroke (FitzGerald and others 2004). According to the World Health Organization, nearly one billion people worldwide suffer from hypertension (World Health Organization 2013). Angiotensin-converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1) catalyses converstion of angiotensin-I to angiotensin-II (a vasoconstrictor), which contributes to hypertension and heart failure. Hypertension is usually controlled by a number of drugs, the most common being synthetic angiotensin-converting enzyme inhibitory (ACE-I) drugs such as captopril and enalapril (Hansson and others 1999; Turner and Hooper 2002). ACE-I drugs decrease active angiotensin-II production from inactive angiotensin-I (Erdos 1975; FitzGerald and others 2004). Angiotensin-II receptor antagonists are agents used to modify the renin-angiotensin-aldosterone system through

MS 20151290 Submitted 7/30/2015, Accepted 11/8/2015. Authors Ahtesh and Stojanovska are with College of Health and Biomedicine, Center for Chronic Disease, Victoria Univ., Werribee Campus, P.O. Box 14428, Melbourne, VIC 8001, Australia. Author Shah is with Food and Nutritional Science, School of Biological Sciences, Hong Kong Univ., Hong Kong. Author Mishra is with Inst. of Sustainability and Innovation, Victoria Univ., Werribee Campus, P.O. Box 14428, Melbourne, VIC 8001, Australia. Direct inquiries to author Mishra (E-mail: Vijay.Mishra@vu.edu.au).

blocking angiotensin receptors, resulting in a decrease in blood. pressure (Miura and others 2011). Long-term use of synthetic ACE-I drugs, however, may result in side effects such as, cough, skin rash or development of impaired renal function (Sesoko and Kaneko 1985; Coulter and Edwards 1987). Peptides such as Val-Pro-Pro and Ile-Pro-Pro derived from milk proteins (FitzGerald and Meisel 2000; Pihlanto-Leppälä 2000; Pan and others 2005; Tsai and others 2008; Nielsen and others 2009; Pihlanto and others 2010; Phelan and Kerins 2011) have been identified to have similar effects of ACE-I action opening possibilities of replacing or complementing synthetic drugs (FitzGerald and Meisel 2000; Pan and others 2005; Tsai and others 2008; Nielsen and others 2009; Pihlanto and others 2010; Phelan and Kerins 2011). Lactic acid bacteria (LAB) used to produce fermented dairy products (yoghurt, fermented milk, cheeses) have shown to produce peptides with varied but significant ACE-I activities as reported in several studies (Korhonen and Pihlanto 2003, 2006, 2007; Korhonen 2009; Phelan and Kerins 2011; Hernández-Ledesma and others 2011). The use of specific LAB or proteases for producing ACE-I peptides from various milk media have been reported (van der Ven and others 2002; Donkor and others 2005; Pan and others 2005; Kilpi and others 2007; Meena and others 2008; Tsai and others 2008; Korhonen 2009; Hamme and others 2009; Ramchandran and Shah 2010, 2011; Tellez and others 2011; Chaves-López and others 2012;

International Journal of Food Science and Technology 2016

Original article

Proteolytic and angiotensin-converting enzyme-inhibitory activities of selected probiotic bacteria

Fatah B. Ahtesh, Lily Stojanovska, Michael L. Mathai, Vasso Apostolopoulos & Vijay K. Mishra*

Center for Chronic Disease, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Vic., 8001, Australia

(Received 26 October 2015; Accepted in revised form 14 December 2015)

Summary

This study was carried out to examine the proteolytic and angiotensin-converting enzyme (ACE-I) activities of probiotic lactic acid bacteria (LAB) as influenced by the type of media, fermentation time, strain type and media supplementation with a proteolytic enzyme (Flavourzyme[®]). Lactobacillus casei (Lc210), Bifidobacterium animalis ssp12 (Bb12), Lactobacillus delbrueckii subsp. bulgaricus (Lb11842) and Lactobacillus acidophilus (La2410) were grown in 12% of reconstituted skim milk (RSM) or 4% of whey protein concentrates (WPC-35) with or without combination (0.14%) of Flavourzyme[®] for 12 h at 37 °C. All the strains were able to grow in both media depending on type of strains used and fermentation time. All the strains showed higher proteolytic activity and produced more antihypersensitive peptides when grown in RSM medium at 12 h, when compared to WPC. Combination with Flavourzyme[®] also increased LAB growth and proteolytic and ACE-I activities. Of the four strains used, Bb12 and La2410 outperformed Lc210 and Lb11842. The highest ACE-I activity and proteolytic activity were found in B. animalis ssp12 combined with Flavourzyme[®]. Flavourzyme[®] led to an increase in the production of bioactive peptides with ACE-I activity during 12 h at 37 °C.

Keywords

Angiotensin-converting enzyme, Flavourzyme[®], proteolytic activity, reconstituted skim milk, whey protein concentration.

Introduction

The most extensively studied microorganisms are lactic acid bacteria (LAB), Streptococcus, Lactococcus, Lactobacillus and Bifidobacterium (Castro et al., 1996; Christensen et al., 1999; Ziadi et al., 2010). LAB including probiotic organisms are fastidious in nature, demanding several essential growth factors (Donkor et al., 2007b). The proteolytic systems of LAB have been studied widely, and the enzymes involved have been isolated and characterised (Shihata & Shah, 2000). However, Bifidobacterium strains were not as proteolytic as other LAB, which explains why Bifidobacterium grow slowly in milk and may require supplementation from external sources (Dave & Shah, 1998; Gomes et al., 1998). Milk products, such as skim milk, although they are rich growth media, contain low concentration of free amino acids and peptides to efficiently support growth of LAB (Shihata & Shah, 2000). Therefore, through proteolytic activity of LAB, bioactive peptides and amino acids are released from parent proteins in milk to support growth (Gobbetti

et al., 2000). There are two methods of releasing milk peptides, namely by milk fermentation with LAB and by enzymatic hydrolysis of proteins. The cell wall of LAB is able to hydrolyse caseins into peptides by extracellular proteinases and intracellular peptidases (Korhonen & Pihlanto, 2006; Otte et al., 2007). Some of these peptides are classified as having angiotensinconverting enzyme (ACE-I inhibition) activity (Yamamoto et al., 1994). Angiotensin-I-converting enzyme (ACE) plays a role in the regulation of blood pressure by catalysing the production of vasoconstrictor angiotensin II and inactivating the vasodilator and bradykinin (Doolittle, 1983; Brown & Vaughan, 1998). Hypertension is defined as persistent systolic blood (≥140 mmHg) and diastolic pressure (>90 mmHg) (Lollo et al., 2015). Consumption of cheese with probiotics exhibits significantly lower blood pressure and improved blood lipids (triglycerides and cholesterol) when compared to consumption of cheese without probiotics (traditional cheese) (Lollo et al., 2015). Hence, consumption of probiotics may potentially be useful in improving cardiovascular health parameters (Lollo et al., 2015). Several factors are related to the development of hypertension, includ-

^{*}Correspondent: E-mail: Vijay.Mishra@vu.edu.au

APPENDIX-II Identification of peptides

Report: MALDI TOF/TOF MS analysis for gel spots

Project code:

PROJ15328

Client:

Fatah Ahtesh

Address:

Victoria University Building 2, Rm 21.68

Hoppers Lane

Werribee VIC 3030

Contact tel:

0469808940

E-mail:

fateh.ahtest@live.vu.edu.au

Supervisor's name: Vijay Mishba

Report date:

1st July 2013

Report prepared by: Matthew Fitzhenry

E-mail:

mfitzhenry@proteome.org.au

APAF - Australia's premier proteomics provider since 1995

A NATIONAL COLLABORATIVE RESEARCH INFRASTRUCTURE STRATEGY FACILITY

Australian Proteome Analysis Facility

Level 4, Building F7B, Research Park Drive, Macquarie University, Sydney NSW 2109 Australia

Telephone: +61 2 9850 6201 Facsimile: +61 2 9850 6200 Email: apafinfo@proteome.org.au Website: www.proteome.org.au

(a) Date samples received:

7th June 2013

(b) Sample names:

Fraction 1 and 6

(c) Instrument used

4800 plus MALDI TOF/TOF Analyser (AB Sciex)

(d) Sample preparation

Sample was reconstituted in formic acid, then zip-tipped with C18 PerfectPure zip-tips (Millipore) with spotted onto a MALDI target plate with alpha cyano cinnamic acid matrix.

(e) Data acquisition

Matrix Assisted Laser Desorption Ionisation (MALDI) mass spectroscopy was performed using the 4800 plus MALDI TOF/TOF Analyser. A Nd:YAG laser (355 nm) was used to irradiate the sample. Spectra were acquired in reflectron MS scan mode in the mass range of 700 to 4000 Da. The instrument was then switched to MS/MS mode where the twelve strongest peptides from the MS scan were isolated and fragmented by collision-induced dissociation, then re-accelerated to measure their masses and intensities. A near point calibration was applied and will give a typical mass accuracy of 50 ppm or better.

(f) Data processing

The data were exported in a format suitable for submission to the database search program, Mascot (Matrix Science Ltd, London UK). Peaklists were searched against *Other Mammals and Bacteria* in the SwissProt database. High scores in the database search indicate a likely match, confirmed or qualified by operator inspection.

(g) Results:

The monoisotopic peak list in text format and MS scan spectra and Mascot search result PDF files are attached.

Sample	ID	ID	Score	MS	MSMS	Coverage
Fraction 6	CASB_BOVIN	Beta-casein	196	14	7	37%
Fraction 1	17	-			(*)	-

Acknowledgment

Any publication arise from this work should be acknowledged the contribution of APAF with the words "This work was undertaken at APAF the infrastructure provided by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS)."

We welcome your feedback on our services. To go into our quarterly draw to win a prepaid \$200 debit card follow the link and complete a 5min questionaire.

https://www.surveymonkey.com/s/APAFSURVEY

Report: 1D nanoLC ESI MS/MS analysis

Project code:

PROJ15328

Client:

Fatah Ahtesh

Address:

Victoria University Building 2, Rm 21.68

Hoppers Lane

Werribee VIC 3030

Contact tel:

0469808940

E-mail:

fateh.ahtest@live.vu.edu.au

Supervisor's name: Vijay Mishba

Report date:

1st July 2013

Report prepared by:

Matthew Fitzhenry

E-mail:

mfitzhenry@proteome.org.au

APAF – Australia's premier proteomics provider since 1995

A NATIONAL COLLABORATIVE RESEARCH INFRASTRUCTURE STRATEGY FACILITY

Australian Proteome Analysis Facility

Level 4, Building F7B, Research Park Drive, Macquarie University, Sydney NSW 2109 Australia

Telephone: +61 2 9850 6201 Facsimile: +61 2 9850 6200 Email: apafinfo@proteome.org.au Website: www.proteome.org.au

(a) Date samples received:

7th June 2013

(b) Sample names:

Fraction 1 and 6

(c) Instrument used

Mass Spectrometer: Q Star Elite (AB Sciex)
NanoLC system: Exigent TEMPO nanoflow

Analytical Column: SGE ProteCol C18, 300A, 3μm, 150μm x 10 cm

(d) Sample preparation

Solid sample was reconstituted with formic acid, then run.

(e) Data acquisition

(f) Solution was made up to 40 μ L in ESI loading buffer then was injected onto a peptide trap (Michrome peptide Captrap) for preconcentration and desalted with 0.1% formic acid, 2% ACN, at 8μ L/min.

The peptide trap was then switched into line with the analytical column. Peptides were eluted from the column using a linear solvent gradient, with steps, from $H_2O:CH_3CN$ (100:0, + 0.1% formic acid) to $H_2O:CH_3CN$ (10:90, + 0.1% formic acid) at 500nL/min over an 80 min period. The LC eluent was subject to positive ion nanoflow electrospray MS analysis on QSTAR which was operated in an information dependant acquisition mode (IDA).

In IDA mode a TOFMS survey scan was acquired (m/z 400-1600, 0.5s), with the three largest multiply charged ions (counts >25) in the survey scan sequentially subjected to MS/MS analysis. MS/MS spectra were accumulated for 2 s (m/z 100-1600).

(q) Data processing

The data was exported in a format suitable for submission to the database search program, Mascot (Matrix Science Ltd, London UK). Peaklists were searched against *Other Mammals and Bacteria* in the SwissProt database. High scores in the database search indicate a likely match, confirmed or qualified by operator inspection. Search results were generated with a significance threshold of P < 0.01 with minimum cut-off score of 54 for all samples except Fraction 1 Bacteria (P<0.05 cut-off 60)

Commercial in confidence

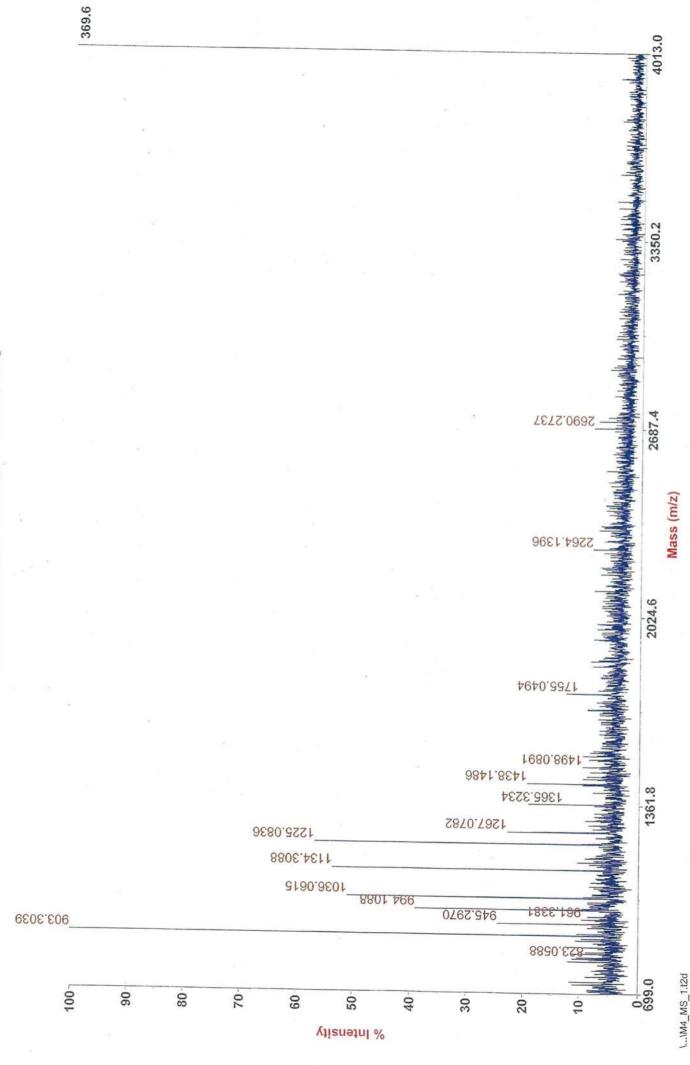
Database : SwissProt 2013 (539829 sequences; 191670831 residues)

Taxonomy: Other mammalia (13034 sequences)

Taxonomy : Bacteria (Eubacteria) (328828 sequences)

Type of search : MS/MS Ion Search
Enzyme : None
Variable modifications : Oxidation (M)
Mass values : Monoisotopic
Protein Mass : Unrestricted
Peptide Mass Tolerance : ± 300 ppm
Fragment Mass Tolerance: ± 0.6 Da
Max Missed Cleavages : 1
Instrument type : ESI-QUAD-TOF

Results:

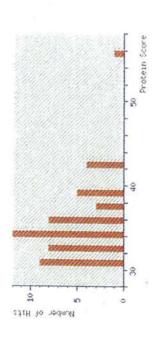

Following files are attached: Peak list in MGF format Mascot search results in PDF

Acknowledgment

Any publication that arises from this work should be acknowledged the contribution of APAF with the words "This work was undertaken at APAF the infrastructure provided by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS)."

We welcome your feedback on our services. To go into our quarterly draw to win a prepaid \$200 debit card follow the link and complete a 5min questionaire.

https://www.surveymonkey.com/s/APAFSURVEY


Science, Mascot Search Results

\\apaf-hpv-file\projects\External\e 15328 VictoriaUni FatahAhtesh 20130607\1 MassSpec\4800\Run1\RawData\Run1\MF170613\04 MF170613.txt Project: Users\2013.06, Spot Set: Users\2013.06\MF170613, Label: 04, Spot Id: 871775, Peak List Id: 666430, MS Job Run Id: 26909 A Peptide summary report will usually give a much clearer picture of MS/MS search results. 56 for RL23_CHLPN, 50S ribosomal protein L23 OS=Chlamydia pneumoniae GN=rplW PE=3 SV=1 SwissProt 2013 (539829 sequences; 191670831 residues) Bacteria (Eubacteria) (328828 sequences) 27 Jun 2013 at 05:45:26 GMT Search title MS data file Timestamp Top Score Database Taxonomy Warning Email.

Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 68 are significant (p<0.05).

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein Summary Report

Format As Protein Summary (deprecated)
Significance threshold p < 0.05 Max. number of hits AUTO

Help

Re-Search All Search Unmatched

Index

508 ribosomal protein L23 OS=Chlamydia pneumoniae GN=rplW PE=3 SV=1 Description Score 56 Mass 12417 1. RL23 CHLPN Accession

Results List

RL23 CHLPN Mass: 12417 Score: 56 Expect: 0.89 Matches: 22

																							_	
3 SV=1		R.MFRGRRKGK.T + Oxidation (M)	I.VSHDATKPLIA.Q	G.RRKGKTSGFKKA.I	K.RHYVTEKAKML.E	K.RHYVTEKAKML.E	Q.ALEAIYVDKNVKVK.S	A.QALEAIYVDKNVKV.K	P.KEVEIVSHDATKPL.I	T.SGFKKAIVTFYQGHS.V	K.PQPARMFRGRRKGK.T + Oxidation (M)	K. DPKFVFIVSHDATKP. L	A.QALEAIYVDKNVKVK.S	Y. DVIKRHYVTEKAKM. L	K.VKSVNTINVKPQPARM.F	P.YDVIKRHYVTEKAKM.L	P.YDVIKRHYVTEKAKM.L	P.YDVIKRHYVTEKAKML.E	Y.VDKNVKVKSVNTINVKPQP.A	D.PYDVIKRHYVTEKAKML.E + Oxidation (M)	C.KDPKFVFIVSHDATKPLIAQ.A	K.KKGSFCKDPKFVFIVSHDAT.K	E.KAKMLEHLSAGTGEGKKKGSFCKDPKF.V + Oxidation (M)	
M PE=	Ions	1	1	1	1		1	1	1	1	1	! !	1 1	1 1 1	1	1	1	1	****	1	 	t I	1	
=rb]	End Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ae GN	End	93	26	100	20	20	7.7	10	54	109	93	53	71	19	85	19	19	20	82	20	57	51	4.2	
neumonia	Start	85.	46 -	- 68	10 -	10 -	58 -	57 -	41 -	95 -	80 -	39	57 -	1	70 -	5	5	5	64 -	4	38	32 -	16 -	
amydía po	s wdd	5.72	19.6	-1.57	-16.68	-16.68	-2.51	20.4	-1.50	11.5	-0.67	34.3	-2.25	22.7	-17.93	23.1	23.1	17.6	-3.02	38.1	9.58	49.8	3.30	
50s ribosomal protein L23 OS=Chlamydía pneumoniae GN=rplW PE=3 SV=1	Mr (calc)	1150.6505	1150.6346	1362.8208	1374.7442	1374.7442	1588.9188	1588.8824	1600.8977	1668.8624	1699.9529	1699.8934	1716.9774	1716.9345	1780.9982	1879.9978	1879.9978	1993.0819	2106.2161	2106.1295	2253.2521	2253.1616	2937.5204	
mal protein	Mr (expt)	1150.6571	1150.6571	1362.8186	1374.7212	1374.7212	1588.9148	1588.9148	1600.8953	1668.8815	1699.9517	1699.9517	1716.9735	1716.9735	1780.9662	1880.0413	1880.0413	1993.1170	2106.2097	2106.2097	2253.2737	2253.2737	2937.5301	No match to: 906.6738
50S riboso	Observed	1151.6644	1151.6644	1363.8259	1375.7285	1375.7285	1589.9221	1589.9221	1601.9026	1669.8888	1700.9590	1700.9590	1717.9808	1717.9808	1781.9735	1881.0486	1881,0486	1994.1243	2107.2170	2107.2170	2254.2810	2254.2810	2938.5374	No match t

Search Parameters

	r :	nt:	at:	at:
	Comme	Comme	Comme	Comme
	26910,	26910,	26910,	26910,
	un_Id:	un_Id:	un_Id:	un_Id:
	Job R	Job_R	Job_R	Job R
	MSMS	MSMS	MSMS	MSMS
	666432,	666433,	666435,	666439,
	st Id:	st_Id:	at Id:	st_Id:
	Peak_Li	Peak_Li	Peak_Lis	Peak_Li:
	871775,	871775,	871775,	871775,
earch C c d	Spot_Id:	Spot_Id:	Spot_Id:	Spot_Id:
Type of search : MS/MS Ion Search Enzyme : None Variable modifications : Oxidation (M) Mass values : Monoisotopic Protein Mass Tolerance : # 50 ppm Fragment Mass Tolerance : # 50 ppm Max Missed Cleavages : 1 Instrument type : MALDI-TOF-TOF Queryl (906.6738,14) : An Lile>	Query2 (1151.1644,1+): And citle/ Query3 (1151.6644,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666432, MSMS Job_Run_Id: 26910, Comment: Query4 (1363.8259,1+): And title>	weigh (1707-1708).1+:	Query9 (1589.9221,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666435, MSMS Job_Run_Id: 26910, Comment: Query9 (1601.9026,1+): <no title=""> Ouery10 (1669.8888,1+): <no title=""></no></no>	Query11 (1700.9590,1+): <no title=""> Query12 (1700.9590,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666439, MSMS Job_Run_Id: 26910, Comment:</no>
	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	5,1+):	(,1+): (,1+): (,1+):),1+):),1+):
Type of search Enzyme Variable modification Mass values Protein Mass Toleranc Fragment Mass Toleranc Max Missed Cleavages Instrument type Queryl (906.6738,1	51.664	75.728	89.922: 01.9026: 69.8888	00.959 00.959
f sear le mod alues n Mass e Mass ont Mas ssed C ment t	y2 (11 y3 (11 y4 (13	y6 (13 y7 (15	78 (15 79 (16 10 (16	11 (17
Type of search Enzyme Variable modific Mass values Protein Mass Tol Fragment Mass Tol Max Missed Cleav Instrument type Queryl (906 (Quer Quer Quer	Quer	Quer	Query

28/06/2013 3:06 PM

```
Queryl3 (1717.9808,1+): chotitle>
Queryl4 (1717.9808,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666438, MSMS Job_Run_Id: 26910, Comment:
Queryl5 (1781.9735,1+): chotitle>
Queryl6 (1881.0486,1+): Chotitle>
Queryl7 (1881.0486,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666436, MSMS Job_Run_Id: 26910, Comment:
Queryl8 (1994.1243,1+): chotitle>
                                                                                                                                                                                                                                      (2107.2170,1+): Label: O4, Spot_Id: 871775, Peak_List_Id: 666437, MSMS Job_Run_Id: 26910, Comment:
                                                                                                                                                                                                                                                                         (2254.2810,1+): Label: 04, Spot_Id: 871775, Peak_List_Id: 666434, MSMS Job_Run_Id: 26910, Comment:
                                                                                                                                                                                                      (2107.2170,1+): <no title>
                                                                                                                                                                                                                                                                                                                                            (2938.5374,1+): <no title>
                                                                                                                                                                                                                                                                         Query21
Query22
Query23
                                                                                                                                                                                                                                         Query20
                                                                                                                                                                                                            Query19
```

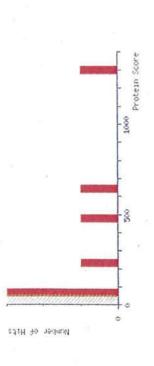
Mascot: http://www.matrixscience.com/

(MATHUX) Mascot Search Results

\\apaf-hpv-file\projects\External\e_15328_VictoriaUni_Fatahahtesh_20130607\\1_MassSpec\QStarElite\Run1\Results\F6.mgf Alpha-lactalbumin OS=Bos mutus grunniens GN=LALBA PE=2 SV=1 CASA1 BUBBU Alpha-S1-casein OS=Bubalus bubalis GN=CSN1S1 PE=2 SV=2 CASA1 BOVIN Alpha-S1-casein OS=Bos taurus GN=CSN1S1 PE=1 SV=2 Beta-Lactoglobulin OS=Bos taurus GN=LGB PE=1 SV=3 Alpha-S2-casein OS=Bos taurus GN=CSN1S2 PE=1 SV=2 Submitted from VU-Bovine by Mascot Daemon on APAF-WS-08 Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2 SwissProt 2013 (539829 sequences; 191670831 residues) Other mammalia (13034 sequences) 21 Jun 2013 at 03:46:07 GMT LALBA BOSMU CASB BOVIN LACE BOVIN Search title MS data file Protein hits Timestamp Database Taxonomy Email

SwissProt Decov False discovery rate

Kappa-casein (Fragment) OS=Bison bonasus GN=CSN3 PE=2 SV=1,


CASA2 BOVIN

CASK BISBO

	OWISSI IOU	1000	Swissi for Decot Land discovery land
Peptide matches above identity threshold	103	0	0.00 %
Peptide matches above homology or identity threshold	144	0	0.00 %

Mascot Score Histogram

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Individual ions scores > 54 indicate identity or extensive homology (p<0.01).

Peptide Summary Report

Show Percolator scores Show sub-sets 0 Help Standard scoring MudPIT scoring • Ions score or expect cut-off 54 Max, number of hits AUTO Significance threshold p< 0.01 Peptide Summary Format As

Sort unassigned Decreasing Score

Require bold red

Show pop-ups . Suppress pop-ups

Error tolerant Archive Report

Search Selected

Select None

Select All

Score: 1299 Matches: 53(53) Sequences: 51(51) emPAI: 1135.85 Check to include this hit in error tolerant search or archive report Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2 Mass: 25091

102 450, 450, 450, 450, 450, 450, 450, 450,
458.3023 914.6041 914.5953 9.65 0 60 0.00029 1 0 0 N.HINDENLO, C. S.
Observed Mr(capt) Mr(calca) ppm Miss Score Expect Rank 458.3093 914.6041 914.5953 9.65 0 60 0.0029 1 522.336 1042.6526 1042.6539 -1.22 0 66 0.00072 1 576.328 1150.6519 1153.6179 1153.6179 17.3 0 54 0.00072 1 578.3098 1154.6050 1154.5331 10.3 0 58 0.0007 1 602.8169 1203.6192 1203.598 16.1 0 57 0.0053 1 602.8169 1228.7091 1258.6921 13.5 0 60 0.0023 1 655.346 1202.448.654 1202.148.654 14.0 0 57 0.0017 1 655.348 1391.7561 1.2.2 0.0017 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Observed Mr.(expt) Mr.(calc) ppm Miss Score Expect 458.3093 914.6041 914.5953 9.65 0 0 0 552.3336 1042.6326 1042.6539 -1.22 0 66 0.00029 576.3528 1150.6370 1155.6633 4.06 0 54 0.00029 576.3528 1150.6370 1153.5079 17.4 0 71 0.0002 578.3928 1154.6550 1154.5321 16.1 0 57 0.0003 602.8169 1281.7472 1203.5998 16.1 0 57 0.0003 641.8809 1281.7472 1281.7222 14.0 6 0.0003 642.8800 1281.7472 1281.7222 14.0 6 0.0003 642.8800 1391.7634 1391.7561 5.2 0.0003 0.0003 718.4723 1489.8816 1489.8857 11.2 0 57 0.0004 718.4723 1566.8863 1499.8348
Observed Mr (expt) Mr (calc) ppm Miss Score 458.3093 914.6041 914.5953 9.65 0 60 522.3336 1042.6526 1042.6539 -1.22 0 66 0 576.3528 1150.6910 1150.6863 4.06 0 54 577.3162 1153.6179 1153.5979 17.4 0 71 578.308 1203.6192 1203.5988 16.1 0 58 602.3163 1288.7091 1258.6979 17.4 0 71 641.8809 1281.7472 1281.7292 14.0 0 60 692.4111 1382.8077 1382.7922 11.2 0 66 692.4111 1382.8077 1382.7922 11.2 0 67 718.4270 1449.8985 1434.8135 11.2 0 68 0 750.9352 1499.8166 1499.8345 14.0 0 77 5. 794.4532 156.88018 1586.8
Observed NHT (earpt) MHT (calc) ppm Miss 458.3093 314.6041 314.5953 9.65 0 522.3336 1042.6526 1042.6539 -1.22 0 576.3528 1150.6910 1150.6863 4.06 0 577.8162 1153.6179 1153.539 17.4 0 578.3098 1154.6050 1154.5331 10.3 0 602.8169 1203.6192 1203.5998 16.1 0 630.3618 1258.7091 1258.6921 13.5 0 641.8809 1281.7472 1281.7292 14.0 0 642.818 1258.7091 1258.7922 11.2 0 692.4111 1382.8077 1382.7922 11.2 0 692.4121 1382.8077 1382.7922 11.2 0 745.9481 1489.8816 1499.8857 144.0 0 778.4254 1388.9345 144.0 0 1 794.4854 1588.9341 1554.819
458.3093 914.6041 914.5953 9.655 522.3336 1042.6526 1042.6539 -1.22 576.3528 1150.6910 1150.6863 4.06 577.8162 1153.6179 1153.5979 17.4 578.3098 1154.6050 1154.5931 10.3 602.8169 1203.6192 1203.5998 16.1 630.3618 1258.7091 1258.6921 13.5 641.8809 1281.7472 1281.7292 14.0 675.3345 1348.6545 1348.6373 12.7 745.9481 1489.8816 1499.8348 140.7 778.4273 1354.8095 1391.7634 1391.7561 13.5 795.4854 1489.8816 1489.8857 10.7 778.4273 1554.8401 1554.8195 13.3 787.9526 1637.8917 136.9 8658 15.7 795.4854 1588.9565 1588.9341 13.9 819.9557 1657.9896 1657.9035 1584.9452 1662.8307 1662.7989 19.1 828.4180 1654.8215 1654.7879 20.3 819.9557 1667.9166 1667.9035 1713.9665 1657.9035 1713.9965 1657.9035 1713.9965 1713.99
458.3093 914.6041 914.5953 9.655 522.3336 1042.6526 1042.6539 -1.22 576.3528 1150.6910 1150.6863 4.06 577.8162 1153.6179 1153.5979 17.4 578.3098 1154.6050 1154.5931 10.3 602.8169 1203.6192 1203.5998 16.1 630.3618 1258.7091 1258.6921 13.5 641.8809 1281.7472 1281.7292 14.0 675.3345 1348.6545 1348.6373 12.7 745.9481 1489.8816 1499.8348 140.7 778.4273 1354.8095 1391.7634 1391.7561 13.5 795.4854 1489.8816 1489.8857 10.7 778.4273 1554.8401 1554.8195 13.3 787.9526 1637.8917 136.9 8658 15.7 795.4854 1588.9565 1588.9341 13.9 819.9557 1657.9896 1657.9035 1584.9452 1662.8307 1662.7989 19.1 828.4180 1654.8215 1654.7879 20.3 819.9557 1667.9166 1667.9035 1713.9665 1657.9035 1713.9965 1657.9035 1713.9965 1713.99
0bserved Mr (expt) 458.3093 914.6041 522.3336 1042.6526 576.3528 1150.6910 577.8162 1153.6179 578.3098 1154.6050 602.8169 1203.6192 630.3618 1258.7091 641.8809 1281.7472 675.3345 1348.6545 692.4111 1382.8077 696.8890 1391.8077 696.8890 1392.8077 78.4273 1554.8401 778.4273 1554.8918 778.4273 1554.8918 778.4273 1554.8918 778.4273 1554.8918 795.4854 1588.9562 819.9557 1637.8968 828.4180 1654.8215 832.4226 1662.8307 834.9656 1667.9166 844.4942 1686.9739 844.5080 1687.0014 858.0044 1713.9943 859.5263 1717.0381 574.0205 1719.0396 863.4663 1724.9181 876.9755 1751.9365 887.4898 1772.9650 891.5102 1781.0341 908.5265 1815.0365 1941.0501 1880.0856
0bserved 458.3093 522.336 576.3528 577.8162 577.8162 577.8162 578.3098 602.8169 641.8809 675.3345 695.8890 718.4270 745.9481 750.9352 778.4273 787.9526 894.4654 819.9557 828.4180 832.4226 834.965 844.5080 858.0044 859.5263 876.9755 863.4663 876.9755 881.5102 891.5243 998.5263 891.5243 891.5243 891.5243 891.5243 891.5243 891.5243 891.5243 891.5102 891.5243 891.5243 891.5243 891.5243
Ouexy 102 1122 1223 2223 2223 2224 2224 2224 222
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

L. LYQEPVLGPVRGPFPII. V	N. SLPQNIPPLTQTPVVVPP. F	Q.SKVLPVPQKAVPYPQRD.M	S. LTLTDVENLHLPLPLLQ.S	S. LSQSKVLPVPQKAVPYPQ.R	L. LYQEPVIGPVRGPFPIIV	F. LLYQEPVLGPVRGPFPII. V	S.LTLTDVENLHLPLPLLQS.W	Q.SLTLTDVENLHIPLPLLQ.S	N. SLPQNIPPLTQTPVVVPPF. L	L. SLSQSKVLPVPQKAVPYPQ. R	A. FILYQEPVIGPVRGPFPII. V	W.MHQPHQPLPPTVMFPPQSVL.S + 2 Oxidation (M)	P. IQAFILYQEPVLGPVRGPFPIIV	D.MPIQAFILYQEPVLGPVRGPFPIIV	D. MPIQAFILIYQEPVLGPVRGPFPIIV + Oxidation (M)	K.AVPYPQRDMPIQAFILYQEPVLGPVRGPFPIIV
D	D	D	D	D	D	D	D	D	D	D	D	ח	D	D	5	D
Н	H	Н	ri	7	H	Н	Н	н	Н	н	н	н	-	1	н	н
0.00085	0.004	0.0046	2.10-005	9,0000	0.00079	0.0014	5e-005	4.48-007	0.00075	0.0034	0.0015	0.0012	4.80-006	2.1e-005	5.2e-005	0.0037
65	59	58	81	26	99	64	78	86	99	53	63	64	88	84	(80)	63
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.4	22.7	9.54	4.93	19.4	15.0	19.9	9.38	18.3	7.31	13.7	13.2	13.6	4.14	13.5	9.33	281
1894.0717	1896.0721	1921.0785	1928.0983	1978.1251	1993.1401	2007.1557	2015.1303	2015.1303	2043.1405	2065.1572	2154.2241	2312,1446	2565.4723	2793,5656	2809.5605	3720.0266
1894.0990	1896.1151	1921.0968	1928,1078	1978.1634	1993.1700	2007.1957	2015.1492	2015.1672	2043.1554	2065.1854	2154.2527	2312.1761	2565.4829	2793.6032	2809.5867	3721.0736
948.0568	949.0648	641,3729	965.0612	660,3951	997.5923	1004.6051	1008.5819	1008.5909	1022.5850	689.4024	719.0915	771.7326	856.1683	932.2084	937.5362	931.2757
555	556	561	563	568	571	575	578	579	583	587	605	629	658	672	674	700

Matches: 25(25) Sequences: 21(21) emPAI: 35.42 Alpha-S1-casein OS=Bos taurus GN=CSN1S1 PE=1 SV=2 Score: 634 Mass: 24513 CASA1 BOVIN

Check to include this hit in error tolerant search or archive report

Peptide	Y.LGYLEQLIR.L	E. VLNENLIRF. F	F.SDIPNPIGSEN.S	Y. LGYLEQLIRL. K	F. VAPFPEVFGKE. K	Q. GLPQEVINENLL. R	F. FVAPFPEVFGKE. K	Y. YVPLGTQYTDAPS.F	H. QGLPQEVINENLL. R	F. SDIPNPIGSENSEK. T	W.YYVPIGTOYTDAPS.F	D. VPSERYLGYLEQLL. R	D. IPNPIGSENSEKTIMP. L + Oxidation (M)	S.DIPNPIGSENSEKTIMP.L + Oxidation (M)	G. IHAQQKEPMIGVNOELA.Y	F. SDIPNPIGSENSEKTTMP. L	F. SDIPNPIGSENSEKTIMP. L + Oxidation (M)	S. FSDIPNPIGSENSEKTTMP. L	S. FSDIPNPIGSENSEKTIMP. L + Oxidation (M)	D.APSFSDIPNPIGSENSEKTTMPLW	G. IHAQQKEPMIGVNQELAYFYPEL.F
Jnique	•					D		D	D	D	D		ם	D		D	D	D	D	D	n
Rank [Н	1	1	ď	Н	н	H	н	H	H	ri	н	Н	н	1	H	1	Н	н	1	1
Expect Rank Unique	0.0016	0.00038	1.5e-005	0.00062	0.0046	0.00014	0.00048	0.0011	1.78-005	9.46-005	5.2e-005	0.0092	4.5e-005	50-005	0.0018	0.00084	4.2e-006	0.00039	1.3e-005	0.0041	900000
Miss Score	62	69	82	99	58	73	89	64	82	75	77	52	78	77	62	(65)	88	(69)	83	59	(89)
Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mdd	-3.56	9.39	11.9	3.06	-0.46	17.1	27.6	10.5	9.32	6.39	17.7	4.97	13.0	13.6	16.7	12.8	14.6	20.1	23.1	21.2	27.8
Mr (calc)	1103.6339	1116.6291	1141.5251	1216.7179	1218.6285	1337,7191	1365.6969	1410.6667	1465.7776	1485.6947	1573.7300	1678.8930	1729.8192	1844.8462	1904.9778	1915.8833	1931.8782	2062.9517	2078.9466	2617.2370	2717.3523
Mr (expt)	1103.6299	1116.6396	1141.5387	1216.7216	1218.6279	1337.7419	1365.7347	1410.6816	1465.7913	1485.7042	1573.7579	1678.9013	1729.8417	1844.8712	1905.0097	1915.9078	1931.9065	2062.9932	2078.9947	2617.2925	2717.4278
Observed	552.8222	559,3271	571.7766	1898.609	610.3212	669.8782	683.8746	706.3481	733.9029	743.8594	787.8862	840.4579	865.9281	923.4429	636.0105	958.9612	966.9605	1032,5039	1040.5046	873.4381	906,8165
Query	192	200	217	261	263	325	353	372	387	398	426	458	482	537	557	558	564	586	290	662	667
5	7	5	>	S	4	,	5	>	•	5	5	5	5	5	5	>	5	5	>	5	5

G.IHAQQKEPMIGVNQELAYFYPELF.R + Oxidation (M)
G.IHAQQKEPMIGVNQELAYFYPELFR.Q + Oxidation (M)

G. IHAQQKEPMIGVNQELAYFYPEL.F + Oxidation (M)

G. IHAQQKEPMIGVNQELAYFYPELF. R

5 5 5 5

0.0003

2864.4207 2880.4156 3036.5167

2864.4834 2880.4303 3036.5306

2733.3472

2733.4066

912.1428

0.00041

71 88 (70)

0.0085

57

5.11

760.1399

676

m m

955.8351

Beta-lactoglobulin OS=Bos taurus GN=LGB PE=1 SV=3 Check to include this hit in error tolerant search or archive report

			0							\mathfrak{S}								
		*	Oxidation (M)							+ Oxidation			u2	0	0	1	V. V	0.0
Peptide	G. LDIQKVAGTW. Y	Y VEELKPTPEGD L	A.LIVTQTMKGLD.I + Oxidation	L.KPTPEGDLEILL.Q	Y. VEELKPTPEGDL. E	A.SDISLLDAQSAPL.R	L. VRIPEVDDEALE. K	D. ISLLDAQSAPLRV. Y	Y.VEELKPTPEGDLE.I	A.LIVTQTMKGLDIQ.K + Oxidation (M)	L. VRTPEVDDEALEK.F	D. ISLLDAQSAPLRVY.V	L. RVYVEELKPTPEGD. L	L. VRTPEVDDEALEKF.D	L. VRTPEVDDEALEKF. I	Y.VEELKPTPEGDLEIL.L	A. SDISLLDAQSAPLRVY.V	Y.VEELKPTPEGDLEILL.Q
Unique			D							D								
Rank	H	H	н	rel	H	H	H	н	H	H	el.	H	Н	H	н	Н	Н	1
Expect Rank Unique	9.4e-006	0.0057	0.00016	0.0052	5.1e-006	0.00055	0.00015	0.00013	3.19-006	8.1e-006	0.00025	0.00028	0.00044	1.2e-005	2.5e-005	3.79-005	1.2e-005	0.00033
Miss Score	85	57	72	57	87	67	73	73	68	85	71	20	89	84	(81)	4	84	69
Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mdd	7.70	11.4	-99.33	19.3	13.0	8.19	15.7	3.12	8.12	2.73	3.26	4.84	4.84	8.04	20.5	13.0	18.8	18.7
Mr (calc)	1129.6132	1212.5874	1233.6639	1323.7286	1325.6714	1328.6823	1371.6518	1381.7929	1454.7140	1474.8065	1499.7467	1544.8562	1630.8202	1646.8152	1646.8152	1680.8822	1746.9152	1793.9662
Mr (expt)	1129.6219	1212.6012	1233.5413	1323.7541	1325,6887	1328.6932	1371.6734	1381.7972	1454.7258	1474.8105	1499.7516	1544.8637	1630,8281	1646.8284	1646.8484	1680,9039	1746.9480	1793.9997
Observed	565.8182	607,3079	617.7779	662.8843	663.8516	665,3539	686.8440	691,9059	728.3702	738.4126	500.9245	773.4391	544.6167	549,9501	549.9567	841.4592	874.4813	898.0071
Ouery	209	249	269	317	318	319	354	361	384	393	402	417	441	444	445	459	488	507
0	7	5	3	>	5	5	,	>	5	5	>	5	5	5	5	>	5	,

CASAL BUBBU Mass: 24311 Score: 251 Matches: 10(10) Sequences: 9(9) emPAI: 3.27
Alpha-S1-casein OS=Bubalus bubalis GN=CSNIS1 PE=2 SV=2
Check to include this hit in error tolerant search or archive report

F. FVAPFPEVFGKE. K F. SDIPNPIGSEN.S E. VAPFPEVFGKE. K Y. LGYLEQLIRL. R T. LGYLEQLIR. L G. VLNENLLRF. F Peptide Expect Rank Unique 0.0046 0.0016 0.00038 0.00048 5e-005 0.00062 Miss Score 94.0-1103.6339 Mr (calc) 1116.6291 1216.7179 1218.6285 1365.6969 1141.5251 Mr (expt) 1103.6299 1116.6396 1216.7216 1218.6279 1141.5387 1365.7347 Observed 571,7766 610.3212 583,8746 552,8222 559.3271 609.3681 263 Query 261

Peptide matches not assigned to protein hits: (no details means no match)

Kappa-casein OS=Bos taurus GN=CSN3 PE=1 SV=1

Proteins matching the same set of peptides:

Mass: 21256

Score: 67

E.SPPEINTVQVTSTAV. -

D

0.00052

67

0

9.36

1541.7937

771,9113 1541,8081

413

Matches: 1(1) Sequences: 1(1)

		SKVLPVPQKAVPYPQ			FLLYQEPVLGPV		FHVGKTPIV
anhtuo							
Kank	-	rel	-1	-	-	-4	-
Expect	0.011	0.012	0.013	0.012	0.012 1	0.013	0.012
Score	24	24	54	54	6 0 53	53	53
MISS	0	0	0	0	0	0	0
mdd	9.43	8.52	10.1	8.56	19.6	18.2	30.5
Mr (calc)	1590.9246	1649.9505	1835.9458	1624.8308	1373.7595	1267,6561	996.5757
Mr (expt)	1590.9396	1649.9645	1835.9643	1624.8447	1373.7865	1267.6791	1909.966
							499.3103
Yvery	431	448	534	439	356	296	157
O	,	7	S	5	>	>	>

																												60																
THIPLPLIOS	MHQPHQPLPPTVMFPPQSVL	FFVAPFPEVEGKE	NEHEPEPEEQ	LGPVRGPFPIIV	VAPFPEVFGKEKVNE	SLFSHAFEVVKT	HOGLPQEVLNENLL	KVLPVPQKAVPYPQ	NIHLPLPLL	DVENLHLPLPLL	LSQSKVLPVPQ	LDAQSAPLRVY	FVAPEPEVE	PVLGPVRGPFPIIV	LKPTPEGDL	EMPFPKYPVEP	EPVLGPVRGPFPI	AVPYPQRDMPIQAF + Oxidation (M)	AVPYPORDMPIQAF	IPPLIQIPVVVPPF	LLYQEPUL	YQGPIVLNPWDQVKRN	RVYVEELKPTPEGDLEILL	FYQKFPQY	FLLYQEPUL	LLYQEPVIGEVRGPFPIIV	FVAPFPE	LKPTPEGDLEILL	SAPLRVY	IPNPIGSENSEKTTMPLW	RGPFFILV	VLPVPQKAVPYPQRD	ELAYFYPELF	VLPVPQKAVPYPQRDMPIQAF	AFLLYQEPVLGPVRGPFPIIV	KAVPYPQRDMPIQA + Oxidation (M)	LSQSKVLPVPQK	(M)	MHQPHQPLPPTVMFPPQSVL + 2 Oxidation (M)	(M) uot:	IHAQQKEPMIGVNQELAY + Oxidation (M)	IGUNGELATFYPELF	SLILIDVENI	FVAPFPEVFGKEK
-	ı 	H	1	н	1	-	1	1	1	H	1	H	1	7	-1	1	-	1	1	T	1	7	1	-	7	1	1	-	1	1	1	г	н.	rt	7	-	-	н	H	-1	ri	F	н	н
0.016	0.018	0.017	0.016	0.017	0.02	0.02	0.023	0.024	0.023	0.028	0.031	0.035	0.035	0.038	0.032	0.041	0.044	0.046	0.047	0.046	0.049	0.061	0.063	90.0	0.063	0.073	0.069	0.071	0.073	0.084	0.072	960.0	0.1	0.12	0.13	0.11	0.1	0.11	0.13	0.12	0.13	0.14	0.14	0.14
62	52	52	52	52	52	51	51	51	51	20	49	49	49	49	48	48	48	48	48	48	47	47	47	46	46	46	46	46	46	45	45	45	44	44	44	44	44	44	44	44	44	43	43	43
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30 6	19.8	15.0	5.74	13.5	6.48	2.09	1.58	6.34	12.5	22.6	0.97	7.86	18.5	25.3	10.00	8.74	6.26	7.69	9.96	7.69	12.3	17.5	18.0	17.8	3.71	12.8	14.6	3.69	-2.33	38.3	8.42	10.2	10.1	12.1	11.7	8.61	1.84	8.41	20.4	-0.71	10.6	16.9	0.99	13.7
0303 0011	2280.1548	1512.7653	1156.6968	1263.7703	1688.8774	1363.7136	1602.8365	1562.9184	1028.6382	1371.7762	1194.6972	1231.6561	1051.5379	1459.8915	968.5179	1332.6424	1376.7816	1647.8079	1631.8130	1503,8701	973.5484	1926.0112	2212.1991	1119.5389	1120.6168	2106.2241	805.4010	1436.8126	804.4494	2012.9877	897.5436	1705.9515	1290.6172	2393.2930	2324.3297	1628.8344	1322.7922	1219.5947	2312.1446	1118.6369	2084.0360	1801.8927	1103.5710	1493.7919
4000 0004	2280.2000	1512.7879	1156.7035	1263.7874	1688.8883	1363.7165	1602.8391				1194.6984	1231.6658	1051.5574	1459.9285	968.5275	1332.6540	1376.7903	1647.8206	1631.8292	1503.8817	973.5604	1926.0448	2212.2390	1119.5589	1120,6210	2106.2511	805.4128	1436.8179	804.4475	2013.0648	897.5512	1705.9689	1290,6303	2393,3218	2324.3569	1628.8485	1322.7946	1219.6050	2312.1919	1118.6361	2084.0581	1801.9232	1103.5721	1493.8123
0000	761 0739	757.4012	579.3590	632.9010	563.9700	455.5794	802.4268	521.9834	515.3328	686.9109	598.3565	616.8402	526.7860	730.9715	485.2710	667.3343	689.4024	824.9176	816.9219	752.9481	487.7875	643.0222	738.4203	560.7867	561.3178	703.0910	403.7137	719.4162	403.2310	-	449.7829	569.6636	646.3224	798.7812	775.7929	543,9568	441.9388	610.8098	771.7379	560.3253			552.7933	498.9447
	017	407	225	293	462	352	433	422	168	355	238	268	178	385	140	320	359	446	442	406	145	562	809	203	204	595	16	380	12		87	467	307	637	632	440	315	264	630	202	165	510	191	401
33			6533 8 - 8	4.00								000	5.55 S	totil Mga		1 20							· **							3000 Q							-					10751		

																																				100								
KEMPFPKYPVEP	VRTPEVDDEAL	INHOGLPQEVLNENLLRF	VLGPVRGPFPIIV	FLLYQEPVLGPVRGPFPIIV	ELKPTPEGDL	FVAPFPEVFG	EDPESIGFEHMG + Oxidation (M)	RFFVAPFPEVFGKE	SLESHAFEVV	RFFVAPFPEVF	LVYPFPGPIPN	AVPYPORDMPIQA + Oxidation (M)	LIDVENLHLPLP	NIPPLTQTPVVVPP	FVAPFPEVFGK	LLYQEPVLGPVRGPFPIIV		KEMPFPKYPVEP + Oxidation (M)	KPTPEGDLEIL	TEVVVEPE	SLVYPEPGPIPN		AVPYPORDMPIQAFL + Oxidation (M)	MSPRLRAFL	FLLYQEPVLGPVRGPFPIIV	XQKFPQY	SNHWLMANMGLEINT + Oxidation (M)	LKALPMHIRL + Oxidation (M)	VPYPQRDMP	VLPVPQKAVPYPQRDMPIQA	RDMPIQAF	NIPPLIQIPVVVPPF		VLPVPQRAVPYPQRDMPIQA + Oxidation (M)	FFVAPFPEVFGKEKVNE	DPLPDKLV	KAVPYPQRDMPIQA	MADDICLEKLL + Oxidation (M)	AVPYPORDMP	SENPIGE		IIPLLIMLICNAKI + Oxidation (M)	QEPVLGPVRGPFPII	AVPYPQRDMPIQA
0.15 1	0.15 1	0.19	0.19	0.22 1	0.2 1	0.2 1	0.24 1	0.24	0.25 1	0.26 1	0.27	0.28 1	0.29 1	0.29 1	0.32 1	0.38	0.37	0.37	0.33 1	0.32 1	0.38 1	0.41 1	0.42 1	0.4	0.51 1	0.41 1	0.46 1	0.43 1	0.46 1	0.55 1	0.47 1	0.56 1	0.49	0.6	0.61	0.5 1	0.72 1	0.67	0.68 1	0.71 1	0.75 1	0.81 1	0.9	0.89
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
43	42	42	42	42	41	41	41	41	40	40	40	40	40	40	39	39	39	39	39	38	38	38	38	38	38	38	38	38	38	37	37	37	37	37	37	36	36	36	36	36	35	35	35	32
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7.32	8.46	5.16	9.48	20.6	-6.91	0.43	22.1	-1.49	13.9	15.6	13.9	8.89	14.4	10.2	5.47	12.8	-2.30	13.2	18.6	1.32	1.87	18.1	8.48	-31.11	20.6	21.1	147	0.98	3.23	64.6	7.76	16.5	12.7	14.2	23.1	-48.70	14.8	112	15.0	0.69	7.85	-31.57	12.9	3.46
1460 7374	1242.6092	2147.1851	1362.8388	2253.2926	1097.5604	1108.5594	1362.5398	1668.8664	1134.5710	1354.7074	1212.6543	1500.7395	1359.7398	1470.8446	1236.6543	2106.2241	1362.6779	1476.7323	1210.6445	854.4902	1299.6863	1654.8242	1760.8920	7119.6801	2253.2926	972.4705	1817.8229	1206.7271	1101.5277	2246.2245	976.4800	1617.9131	1051.6179	2262.2195	1983.0142	895.5015	1612.8395	1266.5836	1172.5648	805.3970	1255.6278	1582.9554	1617.9243	1484.7446
		39.550		50.70									5000								710			1000																			***	
1460 7480		2147.1962	1362.8517	2253.3391	1097.5529	1108.5598	1362.5700	1668.8639	1134.5867	1354.7285	1212.6711	1500.7528	1359.7594	1470.8596	1236.6611	2106.2511	1362.6748	1476.7518	1210.6670	854.4914	1299,6888	1654.8542	1760.9069	1089.5778	2253.3391	972.4910	1818.0906	1206.7282	1101.5313	2246.2465	976.4876	1617.9397	1051.6312	2262.2516	1983.0601	895.4579	1612.8634	1266.7259	1172.5824	805.3976	1255.6376	1582.9054	1617.9451	1484.7497
1 2500 404				1			682.2923				607.3428	751.3837				703.0910	455.2322	493.2579	606.3408	428.2530	650.8517	828.4344	881.4607	545.7962	752.1203 2	487.2528	607.0375	403.2500			489.2511	1779.908	526.8229	755.0912	662.0273 1	448.7362		634.3702	587.2985	403.7061	628.8261	792.4600	809 9798	743.3821
200	273	604	350	613	187	198	348	456	214	337	250	404	346	390	271	594	349	394	244	54	313	451	494	185	614	142	515	241	190	612	147	437	179	619	569	86	436	295	230	14	290	428	438	397
						-																																						

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082908.dat&REPTYPE=pe...

															•																													
KUTPYURYL	TRHOGLEOEVINENLI	KVLPVPOKAVPYPORDMPIQAFL	APFPEVF	VI. DVDOKAVDYDORDMPIOAF + Oxidation (M)		YOGPIVINPWDQ	SLSQSKVLPVPQK	RVYVEELKPIPEG	VPYPQRDMPIQ	INPIPEGDLEIL	LDESVSLETMIERI + Oxidation (M)	VAPFPEVFG	VNQELAYFYPEL	KAVPYPORDMPIQAE	GALKIKEITYMHSEGILAGELKHGP + Oxidation (M)	FLFPEFEI	IPPLIQIPVVVPP	LIDVENLHIPLPL	FYPELFROF	REFVAPEPEVEG	MNPAGNPVAM + Oxidation (M)	SENPTOLE	OELTKNSSVALP	AVPYPORDMPIQAFLL	FEVAPEPEVE	MTQVVLRGGGFLPM + Oxidation (M)	IDISKNSFHSMPE + Oxidation (M)	QETDPLPVV	LIADIFLALCIG	PLDPLPDKLV	MHQPHQPLPPTVMFPPQSVL + Oxidation (M)	NPAIENWGSDFICPEQ	PVRGPFPIIV	DVGLDTLTPA	KEFANRCLSP	QSHAADAAP	QDYSGTM + Oxidation (M)	FEVAPFPEVEGK	IQKEDVPSERYLGYLEQLL	AVPYPQRDMPIQAFL	AVPYPQRDMPIQAFLL + Oxidation (M)	HOSLSLIFGIVHLLNKICS	SQFIIMYSLDGRNWQ + Oxidation (M)	PELLOPLN
	1) 4 Se		Dr. Oes	Chie		S et	el		-	H	n-4	ri	H	H	rl	H	н	-	н	-	et	н	-	1	н	н	-	H	-	-	H	e	1	-	н	ret	н		н	1	H	н	H	H
0 05	6 -	8	2 -	1 -	1 1	1.4	7	1.5	1.6	1.6	1.8	1.7	1.8	2.1	3.4	2	2.2	2.2	2.2	1.0	2.2	2.3	2.4	2.6	2.5	5.9	2.8	2.5	2.7	2.8	3.4	3.7	m	3.1	3.2	2.8	3.8	4.2	4.7	4.5	4.5	4.9	4.7	2.9
***	7 6	3 6	, 6	7 6	0 6	33	, e	33	32	32	32	32	32	31	31	31	31	31	31	31	31	31	31	30	30	30	30	30	30	30	29	29	29	29	29	53	28	28	28	28	28	28	28	28
C	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	70 0	17.6	2 4 0	1	23.0	4 35	5 90	17 4	8 96	8.29	-11.53	10.4	6.98	14.2	-78.25	-8.23	5.22	15.9	34.4	20.5	278	13.1	-10.80	11.8	8.81	73.0	-39.60	0.32	85.4	31.1	25.1	-280.47	8.97	21.3	-50.42	159	205	8.00	11.2	15.0	35.6	-129.80	158	188
0 100	1149.6910	2634 4720	0000	805.4010	1775 9000	1428 7038	1409 8242	1515.7933	1342 6703	1323.7286	1649.8182	961.4909	1484.7187	1759.9079	2707.4367	1040.5219	1356.8017	1472.8239	1245.6182	1411.7289	1016.4419	934.4396	1345,6911	1857.9811	1198.6063	1520.7844	1519.6977	996.5128	1248.6788	1105.6383	2296.1497	1818.7883	1093.6648	1000.5077	1163.5757	866.3882	816.2960	1383.7227	2292.2001	1744.8970	1873.9760	2234.2609	1872.8829	922.5124
	1149.7010	1844.0465	2016.9502		2409.3340	1428 7100	1428.7100 1409 8325	1515 8197	1342 6824	739	1649.7992	961.5009	1484.7291	1759.9330	2707.2248	1040.5133	1356.8088	1472.8473	1245.6611	1411,7579	1016.7244	934.4519	1345.6766	1858.0030	1198.6169	1520.8955	1519,6375	996.5131	1248.7854	1105.6727	2296.2074	1818.2782	1093.6746	1000.5290	1163.5170	866,5259	816.4632	1383.7338	2292.2258	1744.9232	1874.0427	2233.9709	1873.1782	922.6861
	575.8578				804.1186	715 2623				662 8770				587,6516	903.4156	521.2639	679.4117	737.4309	623.8378	706.8862	509.3695	468.2332	673.8456	930.0088	600.3157	761.4550	760.8260	499.2638	625,4000	553.8436	766.4097	607,1000	547.8446	501.2718	582,7658	434.2702	409.2389	692.8742	765.0825	873.4689	938.0286	559.5000	625.4000	462.3503
	220	536	663	1.5	639	4 C	371	700	200	316	447	135	396	493	999	173	340	392	274	373	164	119	329	538	239	411	410	156	284	195	627	516	186	159	228	89	19	364	626	487	550	610	547	108

	LOCOLEMAKOAPPFOFMGF1	Targette and the second	A CONTRACTOR DESIGNATION OF	IQGPEDKQIPHMQGNMINLET + 2 Oxidation (M)	NHLRKVPDGLPSALEQLYLE	WEPPGLH	LPLHINGFTFFCPECPHAP	FKKYIDNPKLRELLII	KAVPYPQRDMPIQAFL	QDLCEMLGKFGSSLEF + Oxidation (M)	LSQSKVLPVPQKAVPYPQRDMPIQAF + Oxidation (M)	IQGPEDRQIPHMQGNMINLET + 2 Oxidation (M)	LPSSITMSQGGMVTVIPAT + 2 Oxidation (M)	CEENLFSDYISEVERTFGNLQ	IDPVVKALVGLFSL	LPMLLGNSILVDLL + Oxidation (M)	PLGKRPCEMQAFRIWDVN	KPENVKMLGGEVDALL	DIMGALLL + Oxidation (M)	LSQSKVLPVPQKAVPYPQRDMPIQA	KPPESDDEEMKEAAGSLLHLA	AAPELPVPTSGPLAGSREQALAVSRNYLSQ	YAAAGGGGAGGVSGGSGGGLAAMG + Oxidation (M)	KVDPAAKYLEN	PTFQECHG	VEDPVNQNGYTLV	VLRLEEGEVLK	LPVTEPIVM + Oxidation (M)	VIPYVRYL	FTGMIQGGLQDGHKI	OPENKEEQVIEQO		LAPMHLGHG + Oxidation (M)	YFYPELFR	PMIPPPPICPDSL		MNINISVVVGAKSDRL + Oxidation (M)	VLYDEIKKFV		COMENETTYGMT	RTASEPYHMDNFQDKTC + Oxidation (M)	NIHLPLPL	FQIISMDDVXG + Oxidation (M)	FYPELFRQ	LIQPGAVK
(5)	H +	4	Н	H	н	-	1	Н	rH	1	1	H	H	1	н	-	H	Н	H	+	Н	1	H	-	Н	Н	7	H	н	н	rl.	-	rt	rł .	н	+4	Н	H	H	H	-	Н	ri	=1	ret
50	5.1	4.6	5.7	5.8	5.4	4	9.6	S	5.2	9.9	7.6	5.6	5.2	9	50	4.9	5.7	5.8	5.1	9.5	7.1	12	6.2	5.8	9	6.4	6.3	6.2	6.4	7	8.9	6.2	9.9	7	7.4	7.3	8.1	7	7.3	19	8 4	7.6	7.9	7.7	5.9
	28	22	28	28	28	28	28	28	28	28	28	28	27	. 27	27	27	27	27	27	27	27	27	27	27	26	26	26	26	26	26	26	26	26	26	26	26	26	26	26	25	25	25	25	25	25
	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-92.11	0.00	-2.57	7.76	35.0	9.80	-221.02	-46.19	39.7	297	22.2	3.06	70.8	102	5.97	-16.34	43.9	265	53.0	13.4	-63.85	259	163	30.8	77.8	81.5	-130.41	57.9	10.3	60.2	-42.02	252	67.1	7.57	-35.81	10.6	6.07	-29.78	10.3	-201.55	55.3	2.23	27.0	9.36	56.9
	2339.2822	800.4466	2521.3879	2424.1413	2291.2273	926.4684	2298.0788	2002.1979	1872.9920	1818.8168	2952.5895	2424.1413	1920.9537	2492.1165	1469.8858	1525.8789	2159.0768	1711.9178	848.4314	2789.5262	2266.0787	3078,6098	1824,8061	1264.6815	917.3702	1446.6991	1354.7820	1013.5467	1021 5960	1600.8032	1611.8104	575.2551	947.4647	1133.5546	1472.7407	1031,6015	1730.9349	1252.7067	802.4800	3326.5720	2057,8571	915.5542	1302,5802	1098.5498	824.5120
	2339.0667	800.4519	2521.3814	2424.3709	2291.3075	926.4775	2297.5709	2002.1054	1873.0664	1819.3564	2952.6552	2424.1487	1921.0897	2492.3709	1469.8945	1525.8540	2159.1717	1712.3709	848.4763	2789.5635	2265.9340	3079.4071	1825.1035	1264.7205	917.4416	1446.8170	1354.6053	1013.6054	1021.6066	1600.8996	1611.7426	575.4000	947.5283	1133.5631	1472.6880	1031.6124	1730.9454	1252.6694	802.4883	3325.9015	2057.9709	915.5562	1302.6154	1098.5601	824.5589
	780.6962	401.2332	631.3526	607.1000	764.7764	464.2460	575.4000	668.3757	625.3627	607.4594	739 1711	607 0445	641.3705	624.1000	735.9545	763.9343	720.7312	429.1000	425.2454	698.3982	756.3186	1027,4763	609.3751	633.3675	459.7281	724.4158	678.3099	507.8100	511.8106	801.4571	806.8786	576.4073	474.7714	567.7888	737.3513	516.8135	577.9891	627.3420	402.2514	832,4827	515,5000	458.7854	652,3150	550.2873	413.2867
	634	7	656	641	625	113	628	573	546	520	27.0	640	2,60	648	389	412	909	469	48	671	620	688	528	294	105	381	336	162	167	432	435	3	128	213	391	171	483	287	10	698	585	103	314	188	26
		7 4																																											

S-08)
≥
A.F.
AP.
=
t Daemon
Mascot
Š
VU-Bovine b
from
(Submitted
Report
Peptide Summary

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082908.dat&REPTYPE=pe...

																																									(%)				
VSSENFDEYMK + Oxidation (M)	YPEPGPIP	LYKERLSQVDAKLQEVI	YETOPVPNPVA	ALLAVLAF	ELDSYPVVNLINE	EHFRQQCFFIKPTVFGGVQDD	NKVRVKISTVM	YQSVCEPGAAPK	DKIAKYIPIQY	EKELORKSOAAVAOAAKEVEPEVVAEGA	DPKSYLILY	LCRDSGGETESMILNET + Oxidation (M)	PGQMLLSGGPRGPVPQ + Oxidation (M)		PKKPGLSQTPSPPHPQLKVIMDSSRASSAG + Oxidation (M)	NNPSFIMGSMT + Oxidation (M)	KMVTSEALDGVPILV	AASRNARLPMCASSIWA + Oxidation (M)	KVLPVPQKAVPYPQRDMPIQAF + Oxidation (M)	THSAGPPPDT	HPKLLMSGGGYLLSGFTVAMDNL + Oxidation (M)	YTSPHWGST	FAATELILLYIMFEATLIPTM + 2 Oxidation (M)	SNHWIMAWMGLEINT + Oxidation (M)	LQLFMGNL + Oxidation (M)	NLDLENLI	FLLYQEPVIGPVRGPFPIIV		REMPEVEGLYSAP + Oxidation (M)	2000 CONTRACTOR OF THE PERSON	GSGPGAGQQQAAPGALLQAGPPRCSSLQAPIM + Oxidation (M)	KIHLVPCSLRDR	CLNTHFTLAS		LSQSKVLPVPQKAVPYPQRDMPIQA + Oxidation (M)	FPIDISSV	SVGCHMTKP + Oxidation (M)	LVVVIGLENVLVL	EQSGLIQAGDIILAVNGRPLVDLS	SPLEYMMKCYPEIKEKEEM + 3 Oxidation (M)	LSQSKVLPVPQKAVPYPQRDMPIQAFL	EMYVAKFAAKGEGQLGPAERAKK + Oxidation (M)	INIIMMERALITIELGA + 2 Oxidation (M)	FIVAKAIRDGVIE	
																			9																								U		
H	Н	-	Н	ri	Н	Н	rd	Н	rí	г	H	Н	Н	1	Н	н	Н	H	Н	н	Н	H	Н	Н	Н	-	Н	Н	н	H	Н	н	1	H	H	н	H	Н	H	н	-	Н	mi	Н	
7.5	7.8	8.9	8.1	8.2	8.3	17	8 3	8.3	8.5	17	7.8	10	9.5	9.5	20	9.8	11	12	14	9.3	21	4.6	14	12	10	11	14	2.6	13	11	. 56	12	24	12	22	12	11	13	16	26	31	27	15	14	
25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	23	23	23	23	23	23	23	23	23	23	23	23	23	23	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
43.5	0.05	1.44	8.72	21.2	49.1	155	-102.92	36.0	7.30	-61.10	-10.13	198	14.2	23.8	20.6	42.1	41.1	215	21.4	122	133	282	44.7	105	74.9	42.9	27.6	-281.44	54.2	1.41	-40.75	-67.07	-284.21	-127.80	19.7	48.5	294	-55.89	13.5	212	20.8	-292.38	98.3	-85.50	
1363.5602	886.4589	2031.1364	1213.5979	816.5109	1503.7457	2497.1849	1335.7697	1248.5809	1350.7547	2964.5516	1110.5961	1869.8084	1605.8297	1413.6816	3113.6292	1213.5107	1570.8640	1819.8821	2537.3828	978.4407	2493.2396	1034.4458	2432.2623	1817.8229	950.4895	942.5022	2253.2926	1212.5267	1487.7555	1207.6390	3031,4968	1435.8082	2498.2809	1350.7945	2805.5211	876.4593	974.4314	1378.8799	2477.3489	2425.0561	3049.6787	2494.3002	1869.9944	1429.8293	
1363.6195	886.4589	2031.1393	1213,6085	816.5282	1503.8195	2497.5709	1335.6322	1248.6257	1350.7646	2964.3704	1110.5848	1870.1782	1605.8525	1413,7153	3113.6934	1213.5618	1570.9286	1820.2728	2537.4370	978.5602	2493.5709	1034.7374	2432.3709	1818.0137	950.5608	942.5426	2253.3546	1212.1854	1487.8361	1207,6407	3031.3732	1435.7119	2497.5709	1350.6219	2805.5762	876.5018	974.7182	1378.8029	2477,3825	2425.5709	3049.7421	2493.5709	1870.1782	1429.7070	
455.5471	444.2367	678.0537	607,8115	409.2714	502.2804	625.4000	668.8234	625.3202.	676.3896	989.1308	556.2997	624.4000	803.9335	707,8649	779.4306	607.7882	786.4716	607.7649	635.3665	490.2874	624.4000	518.3760	609.1000	607.0118	476.2877	472.2786	752.1255	607.1000	744.9253	604.8276	1011.4650	718.8632	625.4000	676.3182	702.4013	439.2582	488.3664	690.4087	620.3529	607.4000	763.4428	624.4000	624.4000	715.8608	
351	80	581	256	2.1	405	652	323	283	334	679	199	544	434	374	689	255	425	522	657	151	651	172	644	514	132	123	615	247	399	242	682	379	653	333	673	7.5	146	360	646	643	989	650	543	377	
5	3	,	1	4	5	3		1	3	,	4	5		4		5		,		5			-	4			4	4	5	*	1	5			,	~	-	~				4		4	

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082908.dat&REPTYPE=pc...

																														N.														
																					(F																							
KLDMLVASA	VNGKLFLPKYA	MAEYTNIIMMNALTAT + 2 Oxidation (M)	GWTTGGAMV + Oxidation (M)	PLMFAASIANV + Oxidation (M)	RNSGNHCGIASYP	KGEQGEAGQKGDAGAPGPQGPPT	YNAITLPEEFHDFDQPLPD	MTEEFPILPQ + Oxidation (M)	AHSDWGYDSPNGPQEWVK	PLPPVAPEVLR	NLLLYILMTTSMFMMFNN + 3 Oxidation (M)	GPEGIGKPGAPGIPGQPGIPGM + Oxidation (M)	VENGSIIFSLSGVAFLL	ASAFGKQLN	RSSEKSLALLKTVIIV	KITKIVEQETRKEK	AGYAHULT	VVITGMSGKLPES + Oxidation (M)	TGPQGPQGIP	EPGLPVVAPMLDSQ	QESNKMHSMNGFMYGNQPGLSMCQGDSVM + 2 Oxidation (M)	MMPMTFYFG + Oxidation (M)	MQGMPMLN + 3 Oxidation (M)	PIKNGKKNKVIGVCQLVNKMEENTGK + Oxidation (M)	FWILAANL	ATLASPGSTS	SGPAGQELGPGERRACCI	MNPLLILAFLGAA + Oxidation (M)	MYSPOPE	WMHQPHQPLPPT + Oxidation (M)	IVHYGFPNMSLTLV	SKULPVPQKAVPYPQR	LNLAADLAHN	PLSPPPAGWFCVLAGVL	VKKPHRY	KINQVFHGSCITEGNELTKTLIK	SVEVSLDE		MATTWGAAFFMLVASCV + Oxidation (M)	YLATFILL		VQISLPSTMSMTTSDGTQYLAK + 2 Oxidation (M)	ALALALGPAATLAGPAKSPYQL	MHKAGFGPL + Oxidation (M)
1	н	1	1	1	1	1	1	-	Т	-	H	1	1	1	1	1	1	1	H	1	1	1	1	prof.	н	7	rel	-	+	1	1		-	-	1	1	1	1	1	1	н	1	H	г
20	21	24	17	21	23	32	28	21	43	15	53	56	25	23	25	28	23	25	23	22	63	24	21	43	23	56	27	16	23	27	28	29	25	30	23	36	27	33	39	26	28	36	35	27
21	21	21	21	21	21	21	21	21	21	21	21	21	21	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
164	50.0	197	266	170	101	11.9	137	100	293	185	114	2.67	-16.71	107	-93.75	235	198	137	65.3	-244.02	-128.28	115	276	-71.72	160	113	30.5	232	120	18.9	-5.35	10.2	74.4	152	116	-62.86	98.4	252	-275.27	49.1	4.30	90.2	-0.58	216
946.5157	1248.7230	1818.8202	894.3906	1148.5900	1374.6099	2784.3063	2260.0324	1207.5431	2071.9024	1186.7074	2424.0948	1999.0197	1764.9662	934.4872	1756.0822	1704.9370	830.4286	1332,6959	950.4822	1451.7330	3239,2909	1139.4490	968.3766	2884.5626	946.5276	890.4345	1771,8345	1358.7632	850.3531	1483.7031	1752.8909	1806.0516	1050.5458	1722.9167	926.5450	2572.3683	876.4076	1823.8189	1820.8300	964.5997	1247,6034	2390.1345	2277.3096	972.4851
946.6710	1248.7854	1819,1782	894.6284	1148.7854	1374.7493	2784.3395	2260.3414	1207,6640	2072.5085	1186.9267	2424.3709	1999,0250	1764.9367	934.5870	1755.9176	1705.3377	830.5931	1332.8782	950.5442	1451.3788	3238.8753	1139.5806	968.6442	2884.3557	946, 6793	890.5350	1771.8886	1359.0782	850.4555	1483.7310	1752.8815	1806.0699	1050.6240	1723.1782	926.6528	2572,2066	876.4939	1824.2782	1820.3288	964.6470	1247.6088	2390.3502	2277.3083	972.6956
474.3428	625.4000	607.4000	448.3215	575.4000	688.3819	929.1204	754.4544	604.8393	519.1344	594.4706	607.1000	667.3490	883.4756	468.3008	586.3131	853.6761	416.3038	445.3000	476.2794	484.8002	1080.6324	570.7976	485.3294	962.4592	474.3469	446.2748	886.9516	680.5464	426.2350	495.5843	585.3011	603.0306	526.3193	575.4000	464.3337	644.0589	439.2542	609.1000	607,7835	483.3308	624.8117	598.5948	570.3343	487.3551
125	285	519	85	218	357	670	618	243	588	233	642	572	495	120	492	466	32	321	131	383		216	141	677	126	83	497	345	51	395	490	511	177	477	114	659	74	527	523	139	280	636	623	144

No action 1	THE POWER OF THE P	IDESTIGATION	LLVVHEHRGTPVGLIV	AVSFPGRAS	ATDLPDVLG	FSDVDLIPMADHNTYRCFSQP	AACLCLVAR	APAPAASPPA	MRHALLQEVDIVVAPCQGL + Oxidation (M)	FSPNFMWAA + Oxidation (M)	KCGIQMYY + Oxidation (M)	NOLREERTDS	GPDAKIRGALSWPSIAAAIHA	PSKAKIKSHPQCVF	QIEGGREERAVVNÆGGRVV	SIGDCPFIVCMSYAF + Oxidation (M)		TLEGFADPVTGIADASQSSMHNA + Oxidation (M)	TKNSRPKVASRFPKLA	IVIMIQEID + Oxidation (M)	LMIMASQN + 2 Oxidation (M)	APGESEFRNGRA	DGAPAAAGDGPGPGEPSEC	AFLWTAVHVWYSYY		YPVVVKMGHAHSGMGKV + 2 Oxidation (M)	SEFSMNSKEALGGGKFGAVCTCTEKSTGLKL	RIFGETIDIAVG	WVGRLFLHPKLQEL	QEPVLGPVRGPFPIIV	KTTEETASL	LEPTTGPGCEDEP	SGGKETEEWKAQF	GDPDNYTPANPLNTPPHG	CLSLTMVA	PAGPPGLRGGPGSRGLPGAD		QRMIAEMQSAMNI + 3 Oxidation (M)	HVIVGTLIPLVDGQME	LINRWGPLMPF	ALPGEDSSAS	AAGKAMGVV	TKSMQTVPN	QSSGTWISLSKIIALCNRAEFKPGEESVPIMKRVVVG + Oxidation (M)	PPCPPKPCVKSCPPKCP	
	1 1	- 1	1	-	н	1	Н	1	ч	т	1	н	1	1	1	н	ы	н	н	-	7	н	1	1	1	н	н	1	1	н	н	1	н	-1	1	1		-	1	7	1	1	н	н	1	
0	7	53	33	31	21	63	32	30	35	33	31	31	37	34	39	34	38	43	37	34	29	36	37	39	26	38	88	37	40	40	35	38	39	41	32	40	38	39	43	25	38	39	36	1.30+002	55	
,	T A	51	13	19	19	19	19	19	19	19	19	13	19	13	19	13	13	19	19	13	19	19	13	19	19	18	13	13	19	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	181	-61.76	-61.50	140	252	-211,60	122	80.5	68.89	182	169	157	37.4	-3.58	60.4	272	69.4	-10.74	-93.60	48.7	244	24.1	84.3	178	218	54.8	-223.45	-47.66	-58.05	20.0	74.9	80.4	24.1	17.0	175	-36.61	30.1	18.7	188	252	265	144	226	59.1	-226.28	
4	962.5073	1126.6962	1738.0254	890.4610	899.4600	2498.0995	918.4779	848.4392	2107.0918	1216.5045	1020.4409	1246.5902	2101.1432	1568.8497	2123.1561	1655.6670	2144.0473	2334,0434	1799.0529	1138.5580	938.4201	1289.6112	1653.6577	1776.8545	1028.5688	1827.9124	3179.5301	1289.6980	1834.0618	1716.9927	978.4869	1361.5809	1513.7201	1875.8388	836.4136	1784.9282	1295.6074	1569.6949	1719.9230	1342,7220	932.4087	802.4371	1004.4961	4033.1129	1776.8547	
THE PERSON NAMED IN	962.6972	1126.6266	1737.9185	890.5854	899.6871	2497.5709	918.5900	848.5075	2107.2370	1216.7263	1020.6138	1246.7854	2101.2219	1568.8441	2123.2845	1656.1177	2144.1961	2334.0183	1798.8846	1138.6135	938.6488	1289.6424	1653.7972	1777.1709	1028.7928	1828.0125	3178.8196	1289.6365	1833,9553	1717.0270	978.5602	1361.6904	1513.7566	1875.8707	836.5602	1784.8628	1295.6464	1569.7243	1720.2459	1343.0602	932.6555	802.5528	1004.7227	4033.3513	1776.4527	
CAMPAGATA COMMA	482.3559	564.3206	580.3134	446.3000	450.8508	625.4000	460.3023	425.2610	703.4196	609.3704	511.3142	624.4000	526.3127	785.4293	708.7688	415.0367	715,7393	779.0134	900.4496	570.3140	470.3317	430.8881	552,2730	445.3000	515.4037	915.0135	795.7122	430,8861	612.3257	859.5208	490.2874	681.8525	757.8856	626.2975	419.2874	595.9616	432,8894	524.2487	431.0687	672.5374	467.3350	402.2837	503.3686	1009.3451	445.1204	
	137	208	484	84	0.6	654	106	50	596	262	166	278	593	423	599	452	603	633	508	215	122	306	449	501	169	530	693	304	532	471	150	347	408	551	36	505	310	424	475	328	118	11	160	702	500	

																			59																										
TDSSIGLSAS	OVVKPHTPLI	DILGALIMIST + Oxidation (M)	LGPKELSCTEL	LESPEINGPMVTMALAVVLLALLK + Oxidation (M)	MVALNEQTUDIANQINM	VPASVNLSEYF	EYAAGPFAMFFMAEYANIIMM + Oxidation (M)	KTVGYPQGVAAW	LLPDFCHKFLPGYVGGVQ	KEPVLENSTMVVYTD + Oxidation (M)	ALLSDDSK	OPAILSOTIV	LEANRYCALLIPLIK	NCLMRAIEIYTDMGR + Oxidation (M)	MTAVSSQMATRA + 2 Oxidation (M)	CLEFFLDETL	TVCGKGDS	SSRKSPASIL	SMOELPPPVHLSKPGEHMDV + 2 Oxidation (M)	TFLLFDLEIAIL	E	QFDAKGGGPGPMGPMGPRGPPGAS + 2 Oxidation (M)	ENVSDISMEEQ + Oxidation (M)	KISYGKGA	VEMHPAYT + Oxidation (M)	IMIKPIN + Oxidation (M)	CIMQLFGKKVDDGSELS		KTFGGGGGARSNINMH + Oxidation (M)		FVMGFVGFSSKPSPIYGG + Oxidation (M)	KNGVITGVYPASPSSWLIVVVGVMSTMYAK	QNALERGIEILTDMS + Oxidation (M)	CAPRLEE	NVEPLPDFSQYIEMHIV + Oxidation (M)	NPTDEYLDAMMNEAP + Oxidation (M)	GIVVLTMKASVIE	DDDAGGTEN	INMIMKOMMN + 2 Oxidation (M)	KVLPVPQKAVPYPQRDMPIQAFL + Oxidation (M)	WASGCPSGTLSD	AGSFLLALYMM + 2 Oxidation (M)	HKIVLEWASPR	VVLGDHNLSQNDGTEQYISV	
TDS	MO	DII	TOI	TSI	MVA	VPA	EX	KTY	LLI	KEI	ALI	OPP	LED	NCI	ETM	CIT	YVC	SSI	SMS	TEI	VSI	OFT	EN	KIS	VE	IM	CID	НОСН	KTI	KKE	EV	KNC	ONO	CA	N	NP	GI	Idd	INI	KVI	WA	AG	HK	7	
-		-	-	H	H	-	7	1	1	1	7	7	1	Н	1	-	-	-	н	1	H	7	-		н	н	-	H	-	н.	H	н	н	н	-	н	н	н	-	H.	н	H	et	p-l	
a c	36	42	44	55	19	40	58	46	49	48	40	45	49	51	26	46	43	44	10	49	1.10+002	09	47	45	48	52	59	56	22	49	57	.2e+002	52	23	29	57	25	53	57	96	57	58	28	99	
						a															H											1													
0	2 0	18	18	1 8	18	18	18	18	18	18	18	18	18	18	18	18	18	18	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	
0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
200	150	-15 72	-34 50	-131.22	-191.13	27.9	-281.30	8.20	75.9	105	224	-16.53	2.99	16.0	-235.13	153	193	155	150	-159.68	-57.68	117	94.0	0.68	36.7	-174.16	202	241	-183.03	67.5	-17.53	26.1	-43.10	144	61.0	-66.80	-81.52	214	169	16.2	1.55	12.6	-200.78	-33.85	
0000	1120 6012	1161 6315	CTCO. TOTT	2408.3786	1937.9413	1224.6026	2433.0553	1275.6612	1989.0183	1739.8288	847.4287	1068.6179	1728.9960	1800.8321	1284.5802	1246.5944	827.3484	1044.5927	2259.0664	1406.8061	3141.6564	2270.0573	1295.5187	822,4599	962.4168	843.4888	1868.9012	1659.7787	1675.7849	1254.6754	1891,9179	3153.6607	1690.8811	816.3800	2045.9768	1725.6862	1358.7843	876.3461	1284.5698	2650.4669	1179.4866	1247.5930	1334.7459	2187.0444	
0000	936.5369	1150.6506	1180 5640			1224.6368	2432.3709	1275.6716	1989.1693	1740.0111	847.6182	1068.6002	1729.0012	1800.8608	1284.2782	1246.7854	827.5077	1044.7551	2259.4061	1406.5815	3141.4752	2270.3224	1295.6404	822.5331	962.4521	843.3419	1869.2782	1660.1782	1675.4782	1254.7601	1891.8847	3153.7429	1690.8082	816.4976	2046.1017	1725.5709	1358.6735	876.5335	1284.7869	2650.5098	1179.4885	1247.6088	1334.4779	2186.9704	
	- 1	- 0		393.269							424.8164		865.5079		429.1000	624.4000	414.7612	523.3848	754.1427	704.2980	786.3761	757.7814	432.8874	412.2738	482.2333	422.6782	624.1000	554,4000	559,5000	628.3873	631,6355	789.4430	846.4114	409.2561	683.0412	432.4000	680.3441	439.2740	429.2696	663.6347			445.8332	729.9974	
10000	121	211	177	230	566	266	645	298	570	485	47	181	481	509	302	276	28	175	617	369	069	621	309	53	136	14	541	453	457	288	554	169	464	20	584	480	344	16	303	665	232	281	322	607	

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082908.dat&REPTYPE=pe...

																					9			Œ																					
	(W																							CTOU																					
	+ Oxidation																						A CONTRACTOR	4 Oxidation (M)																					
	OXTO													(M)																															
TSIPSAYGGOV	NSGPUVAMVWEGLNVVKTGRVMLGETNPA +	SKINSNAMYQ + 2 Oxidation (M)	SIMSGLIL	VLMIMPLEHTA	AGSFLLALYMM + 2 Oxidation (M)	EPPLELTIEPPLSQ	FOLFSTEGSPATWDK	ATLTGLTRG	MLAPLQTGAARFSS	PRPCTPAMTPSPS + Oxidation (M)	CEARSALSK	THMGSLFGAAGLS	N.	M + Oxidation		LSNAGAVMGN + Oxidation (M)	DGQSGFFPLSY	ACRILACN	APEFSIEV	NTTGNGANV	PYGLSENK	AGNYYNQGEIR	YFSIFILLM + Oxidation (M)	PILIIIMATIMIGIMIVMLSSHWLLIWIGFEM +	KQALWLTKTK	PAPSSLOR	PNCDMKR	CLFFFLDETL	YNGEQAPYASCHMFELYQEDS	DKKCPGSLHIIKWIQGCF	APIGSGKIL	PISMVLPQVIGYRLV + Oxidation (M)	RPGPVGGPGSSGAKGE	AAPSFROV	VSISELAQP	KAAQAGSAK	ASGESPICE	KPLYTSAPP	WMLQGDKR	VGTMASIM + 2 Oxidation (M)	VGFHLLAFVPL	SIHGGGAPGP	ILFPTTGPGCEDEPEAR	RSLTLDT	
1		1	-		-	1	-	1	1	п	-	1, 1	П	-	1	1	1	П	-	_	1	-	1	-	1	н	1	1	7	-	7	-	7	1	1	7	7	1	-	1	1	1	1	1	
-	0	00	O)	0	-	9	-	1	4	e	0	3	2	1	7	2	п	9	89	9	0	н	0	N	2	N	н	0	N	2	m	7	4	75	74	69	80	91	66	99	13	75	87	18	
51	1.10+002	8	5.0	9	61	99	7	67	64	53	50	63	1.30+002	67	67	62	11	99	58	99	09	7	70	2e+002	75	62	7	10	10+002	1.50+002	73	77	74	7	7	9	8	7	O	9	1	7	8	7	
17	17	16	16	91	1.6	91	16	16	16	16	16	16	16	16	16	16	16	16	1.6	16	16	16	16	16	91	16	16	16	16	16	16	16	15	15	15	15	15	15	15	15	15	15	15	1.5	
0		0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
236	-20 25	-278 16	a a	7.00	8.84	-66.19	-287.42	92.9	16.2	298	244	17.1	-296.44	8.15	21.2	-63.11	-291.50	76.7	162	239	-72.27	39.8	-24.57	-206.90	-117.00	58.4	1.96	153	170	237	145	15.8	3.74	171	134	168	80.5	52.1	-109.91	93.1	288	73.4	95.7	21.3	
1078 5295	2040 5474	1946 5322	8028 659	1037 4007	1247 5930	1561.8239	1712.8046	888.5029	1448.7446	1356.6166	963.4807	1247.5969	2214.2273	1743.9804	1769.8988	948.4335	1216.5401	862.4153	908.4644	846.3832	924.4705	1283.5894	1161.6144	3737.9383	1215.7339	854.4610	862.3789	1246.5944	2480.9889	2072.0699	830.4498	1699.9691	1408.7059	874.4661	942.5022	830.4610	860.3876	972.5280	2238.1467	840.3721	1211.7067	848,4141	1830.8458	804.4341	
2 407 0701	2040 4050	1246 1854	12.00.100.100.100.100.100.100.100.100.10	832.3431	1247 6040	1561 7205	1712.3123	888.5854	1448.7680	1357.0209	963.7155	1247.6182	2213.5709	1743.9947	1769.9363	948.3736	1216.1854	862.4814	908.6113	846.5851	924.4037	1283.6406	1161.5859	3737.1649	1215.5917	854.5109	862.4618	1246.7854	2481.4096	2072.5602	830.5700	1699.9964	1408.7112	874.6153	942.6289	830.6008	860.4569	972.5787	2237.9007	840.4504	1212.0557	848.4763	1831.0210	804,4513	
1000 013	540.3994	161.1287	2000	411.2791	624 8093	781 8675	429.0854	445.3000	725.3913	679.5177	482.8650	624.8164	554.4000	582.3388	590,9861	475.1941	609.1000	432.2480	455.3129	424.2998	463,2091	428.8875	581,8002	935.2985	608.8031	428.2627	432.2382	624.4000	1241.7121	519.1473	416.2923	851.0055	705.3629	438.3149	472.3217	416.3077	431.2357	487.2966	746.9742	421,2325	607.0351	425.2454	611.3476	403.2329	
000	787	084	6/7	34	212	101	468	82	382	342	138	282	609	486	496	129	259	65	101	46	110	301	226	701	258	55	64	277		589	31	465	370	73	124	33	61	143	611	42	245	49	531	13	
					211	2 4			: 5	-	G.S									-					-	0.0									16	36		- 2		74.0		20			

																																		3										
IILTWIGG	SEEGCIENV	GAQVCELAQALRDGVLL	LECLGEGEDVP	LYNRIGDVGFIMAMAW + Oxidation (M)	GFHVCAAGWMAKGRVGYPIV	MMASQNIMCGHQ	VAMVGDGVN + Oxidation (M)	KTPLLIALAWS	HCLEKVDVFEEQHKS	LDKMLQDV + Oxidation (M)	NPPFYGFLGKKFK	YGKNTLSSDPSN	KMLSKMVNNKDLKLPRMLT + Oxidation (M)	SFGSRMPGTSGRQRATPDAPPAD + Oxidation (M)	LHSSGNNPAFSAAVNNPKMPVSQKE + Oxidation (M)	KTLKICANHYITPPMEL	KICIMILPSVQT + Oxidation (M)	QLCGRDPTLTDELLNILT	INIESES	DNYDEVIDESDYEGLMDYGDQLPEAKVT + Oxidation (M)	CALMGS + Oxidation (M)	NKKRIERFYNCLQL	HISEKII	MRSTVKSSVSLGGI	KSVAMHTN + Oxidation (M)	LIGILMYRSHMMSSLICLEGMM + 5 Oxidation (M)	NINYQLEN	ATDLEDVLG	RPFMLLL + Oxidation (M)	GTLTVRENLOFSAALRLPTIM	PKVTSGMDA	VVYEAQDVYTGD	MSCTCLGNGKGEFKCDP	HOSPVFDS	VPALPSSLVSLSHTSILVL	MNSLSLFAA	QCENGECV	FETMENVN	KVSGEVHTARPLQGARPGDSYTVLVEAQDADA	LEKAMKKGG	AGHTAPMRPSYS + Oxidation (M)	KGPNGELTIDTVN	TMSLDRS + Oxidation (M)	SOMPTVAPEDVAL + Oxidation (M)
-	-1	rt	-1	Н	н	-	1	rt	н	-	-	-1	rt	7	н	н	н	Н	-	H	н	Н	ert.	H	H.	H	-	+	-	H	H	н	H	н	H	H	Н	H	rel	H	-	H	1	-
78	72	85	80	1.20+002	06	83	82	12	16	75	16	83	1.10+002	1.10+002	1.50+002	86	87	26	74	2.10+002	52	1.1e+002	74	16	06	1.2e+002	. 92	70	66	1.2e+002	75	10+002	1,10+002	10+002	1.30+002	06	92	68	2.7e+002	1.10+002	1.18+002	1.10+002	87	1.10+002
15	15	15	15	15	15	15	1.5	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27.1	293	15.7	-22.27	-286.16	82.6	-3.12	178	278	-18.66	220	-6.08	135	15.8	94.7	-46.57	98.6	-26.18	68.3	83.8	-282.50	147	162	13.1	-38.73	255	83.6	157	248	28.8	-98.27	273	-84.24	149	179	22.0	87.4	243	264	-34.48	-9.07	42.1	77.8	28.7	61.1
871.5167	946.4066	1754.9349	1213.5842	1871.9062	2118.0656	1349.5349	876.4011	1211.7278	1826.8621	976.4899	1541,8395	1281.5837	2275.2578	2374,1084	2639.2762	2005.0199	1348.7094	2014.0405	808.3967	3222.4074	596.2298	1823.9828	838.4912	1420.7708	902.4280	2596.1537	1006.4719	899.4600	904.5204	2318.2416	904.4324	1357.6038	1788.7303	915.4087	2132.2457	952.4688	880,3055	982.4066	3336.6698	1088.6376	1289.5823	1356.6885	824.3698	1354.6803
871.5403	946.6834	1754.9625	1213.5572	1871.3706	2118.2405	1349.5306	876.5573	1212.0650	1826.8280	976.7052	1541.8301	1281.7568	2275.2937	2374.3332	2639.1533	2005.2175	1348.6741	2014.1781	808.4644	3221.4971	596.3176	1824.2782	838.5022	1420.7158	902.6583	2596.3709	1006.6295	899,6831	904.5465	2318.0138	904.6794	1357.4894	1788.9969	915.5724	2132.2925	952,5520	880.5192	982.6658	3336.5548	1088.6277	1289,6365	1356.7940	824.3935	1354.7630
436.7774	474.3490	585.9948	607.7859	624.7975	707.0874	450.8508	439.2859	607.0398	914.4213	489.3599	514.9506	641.8857	759.4385	594.5906	880.7250	669.4131	675.3443	672.4000	405.2395	806.3816	597.3249	609,1000	420.2584	711.3652	452.3364	650,1000	504.3220	450.8488	453.2805	773,6785	453.3470	679.7520	895.5057	458.7935	711.7714	477.2833	441.2669	492.3402	835.1460	545.3211	430,8861	679.4043	413.2040	678.3888
72	127	491	254	545	598	332	77	246	529	149	414	300	622	635	664	574	331	577	17	694	4	526	39	375	92	661	161	89	96	631	100	343	506	104	601	133	78	152	669	184	305	339	25	338

http://apaf-sv-mascov/mascov/egi/master_results.pl?file=../data/20130621/F082908.dat&REPTYPE=pe...

					4											tion (M)																												ton (M)
LIQSPORMGY	SEPSFEAT	ALWIGHGRUP	IEDFTAYGGVFGNKQDSA	LYLGRRQLV	EKRAETSRPEDIK	SSVSISVISSSA	RNNGFFSYHMPNWFG	QVELEGESSA	LMTYVGAV + Oxidation (M)	QGATPLHYAAQSN	APAPAEHGR	PTLAVVVL	HIGWAGKFCDK	WR + Oxidati		SLGDPDKNCSRAASVMINCLLKERGNML + 2 Oxidation	MSIPSTISSIPSE	AACTEASCSG	VKLTQAAVETHLQHLGLSGE	EDVETIIS	LETPTWIGG	IVSGGAGCGMVIN + Oxidation (M)	FPSNISAW	NPMMILLN	AHVVVSSRKQEN	SIMGGMII + 2 Oxidation (M)	MIGSIVSKRTAPAPRIL	YDAKKKAAHAAKKVKHGAGAEISTVNPEQ	NDLLKLNNELN	GGVGIIEESKHT	QLLLTPNAVVIVEDAR	RSSCFGGR	ALSQDEAGP	SSLAAKHMS	HOSSLTE	NKAAHPLS	VGAAAWWFMY + Oxidation (M)	ILMEGTELIA + Oxidation (M)	GISDSIRSC	NTIMILIN + Oxidation (M)	LTHGNSAMN + Oxidation (M)	ALSLDPDS	ELQSMCAS + Oxidation (M)	RKVVGEFFDALRNSGGDGLGQMSLEFYQK + Oxidation
7	H	1	1	-	-	1	1	7	-		1	-	1	Н	н	H	н	1.	-		7	-	Ţ	-	1	1	-	H	1	-	1	1	1	1	-	н		-	1	1	+4	1	1	-
1.20+002	96	1.10+002	1.3e+002	11	1.20+002	1.10+002	1.30+002	1.20+002	16+002	1.20+002	1.10+002	92	1.2e+002	1.40+002	1.18+002	2.80+002	1.20+002	1,20+002	1.5e+002	1.30+002	1.30+002	1.30+002	1.30+002	1.40+002	1.30+002	1.20+002	1.50+002	2.50+002	1.40+002	1.40+002	1.50+002	1.30+002	1.40+002	1.30+002	1.40+002	1.30+002	25	1.40+002	1.30+002	1.10+002	1.8e+002	1.88+002	1.50+002	4.40+002
14	14	14	14	14	14	14	14	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13		12	12	12	12	12	12	12	12	12	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-75.80	208	148	84.4	276	-0.48	187	194	156	38.8	174	194	-107.10	172	215	253	-245.96	191	257	35.3	38.7	189	224	166	155	27.5	65.6	58.1	287	75.8	26.8	-18.03	130	165	171	168	29.3	-289.43	131	232	272	190	174	268	-34.81
1213.6165	866.3658	1104.6192	1917.8745	1116.6767	1557.8110	1122.5768	1872.8155	1047.4720	868.4364	1356.6422	904.4515	810,5215	1248.5710	1780.7873	1166.5311	3066.4718	1335.6228	898.3161	2130.1433	904.4389	990.5175	1192.5580	920.4392	932.4459	1352.7160	852,4085	1809.0658	3046.6311	1298,6830	1225.6303	1721.9927	868.3974	904.4290	924.4408	800.3664	836.4504	1216.5376	1106.6409	924.3971	922.4430	959.4131	816.3865	883.3415	3272.6360
1213.5245	866.5456	1104.7824	1918.0363	1116.9854	1557.8103	1122,7871	1873.1782	1047,6355	868.5220	1356.8782	904.6270	810.4347	1248.7854	1781.1709	1166.8261	3065.7176	1335.8782	898.5466	2130.2184	904.4740	990.7046	1192.8248	920,5922	932.5900	1352,7532	852.4644	1809.1709	3047.5051	1298.7815	1225.6631	1721.9617	868.5102	904.5787	924.5992	800.5012	836.4750	1216.1854	1106.7854	924.6114	922.6943	959.5958	816.5282	883.5782	3272.5221
607,7695	434.2801	553.3985	640,3527	559.5000	520.2774	562.4008	625.4000	524.8250	435.2683	453.3000	453.3208	406.2246	625.4000	446.3000	584.4203	767.4367	446.3000	450.2806	711.0801	453.2443	496.3596	597.4197	461.3034	467.3023	677.3839	427.2395	453.3000	762.8836	650.3980	613.8388	1886.198	435.2624	453.2966	463.3069	401,2579	419.2448	609.1000	554.4000	463.3130	462.3544	480,8052	409.2714	442.7964	819.1378
080	69	194	559	201	420	206	549	176	71	341	66	18	286	504	229	687	324	88	009	93	155	236	107	117	335	53	512	685	312	267	476	70	67	111	00	35	260	196	112	109	134	22	79	969

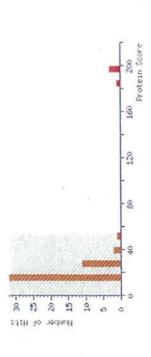
																										85																			
WETT COUT NUMBER	TO DE DE MANAGEMENT DE LA COMPANION DE LA COMP	DINING NO.	IDMVGGDIFLEALRSLA	MIQAGALDS	YLKGMAAA	KNLDVMKEAM + Oxidation (M)	QESSEYIISCH	VGAALTNVLSVFGLPT	AAQHSVEA	ATKDSLII	GKSSSYSSS	MPYPSPGP + Oxidation (M)	MDISCUYSGSYPMAITPN	ILLGWGGCS	AFGSFSQP	IIAAMVMQHLL + Oxidation (M)	APSRNGMI + Oxidation (M)	SGEPGSPYSP	LAAELPKVSYV	ATAATAAGGTGG	KGFMSNK + Oxidation (M)	PPDTEAVDCKUPD	KEVYRLEEMEN + Oxidation (M)	APTAASDQP	AADDSKRIVI	SEFQPVMVM + 2 Oxidation (M)	GGNMKEVFRFCV	PGQEMQWD	TOLMOTISSPGPPMVQNT + Oxidation (M)	AMKMETV + 2 Oxidation (M)	CFAGCLPE	ISNIQSYIGASED	CPSPGPAAAS	LRKYKR	SAQQMSNERG + Oxidation (M)	LSGSQHPN	HVKPRAPQNLT	VHLKKSGYVF	MEFCMVYYALKEEEVEI + Oxidation (M)	EMNELIS + Oxidation (M)	AHILALRA	KSRMGPSGGEGA	DRIAGWNIPMGLIANQIGS + Oxidation (M)	DVNHG	LAGSHSLR
r	٠,	4	ets	et	p-t	+	-	н	н	-	d	-	H	-	н	1	1	-	н	н	н	н	H	1	1	H	7	н	1	Н	H	H	н	7	н	7	н	1	1	н	1	.н		H	н
0000000	2.28+002	T. 86+007	20+005	1.80+002	1.50+002	26+002	33	2.20+002	1.10+002	26	2.4e+002	2.48+002	2.76+002	2.20+002	1.8e+002	2.28+002	2.5e+002	2.3e+002	2.60+002	2.40+002	2.3e+002	2.7e+002	2.76+002	1.30+002	2.38+002	2.8e+002	30+002	30+002	3.2e+002	2.68+002	2.50+002	1.90+002	1.20+002	9.1	3.40+002	2.90+002	1.80+002	3.8e+002	60+002	3.8e+002	40	4.60+002	6.5e+002	1.7e+002	5.1e+002
0	77	77	12	11	11	11	11	11	11	11	11	11	11	11	11	11	10	10	10	10	10	10	10	10	10	10	10	10	10	ON.	0	01	01	0	on	O	OI.	œ	8	00	8	00	7	9	9
(O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-4.45	34.0	-17.71	169	185	113	-287.18	-46.76	-274.17	298	206	252	-289.28	55.8	-44.42	137	123	127	-34.72	116	-63.34	15.1	60.3	-241.95	232	6.66	55.4	216	57.3	153	167	-257.92	-250.84	273	188	79.0	247	16.6	-251.15	123	262	113	1.06	295	133
	2254.2910	1220.6626	1818.9550	904.4324	823.4262	1193.5784	1294.5499	1557.8767	829.4082	859,5015	888.3825	860.3738	1947.8416	904.4477	839.3814	1254.6828	860.4174	976.4138	1188.6754	904.4250	826.4007	1400.5766	1468.7231	856.3927	1062,5305	1098.4726	1541.7595	989.3913	1932.8921	840.3721	838.3353	1395.6518	856.3749	862.5501	1122.4724	838.3933	1259.7098	1176.6655	2140.9407	850.3742	863.5341	1132.5295	2016.9687	540.2292	839.4613
1	2254.2809	1220.7041	1818.9227	904.5854	823.5784	1193.7128	1294.1782	1557,8038	829.1808	859.7577	888.5657	860.5904	1947.2782	904.4981	839.3441	1254.8549	860.5237	976.5378	1188.6341	904.5304	826.3484	1400.5977	1468.8117	856.1854	1062.7775	1098.5823	1541.8449	989,6047	1933.0029	840.5009	838.4751	1395.2918	856.1601	862.7854	1122.6839	838.4596	1260.0205	1176.6851	2140.4030	850.4790	863.7603	1132.6572	2017.1505	540.3888	839.5731
	752.4342	611.3593	607.3149	453,3000	412.7965	597.8637	432.4000	520.2752	415.5977	430.8861	445.2901	431.3025	650.1000	453.2563	420.6793	628,4347	431.2691	489.2762	595.3243	453.2725	414.1815	701.3061	735.4131	429.1000	532.3960	550.2984	771.9297	495.8096	645.3416	421.2577	420.2448	698,6532	429.0873	432.4000	562.3492	420.2371	631.0175	589.3498	1071.2088	426.2468	432.8874	567.3359	1009.5825	541,3961	420.7938
	616	265	518	85	2.4	237	308	419	30	59	81	63	567	9.4	40	289	62	148	235	95	27	368	388	58	180	189	415	153	565	43	38	367	57	99	205	37	292	231	602	52	67	212	580	7	41

(M)						
ion			(M)			
ASNRSGNSSCGL + Oxidation			ASMISSDC + Oxidation (
ISSCG		**	0 +			
MASNRSGR	CCFWLAG	VPKVTVI	ASMISSDO	THCCSG		
-1	p=4	н	1	- 1		
1.40+002	8.50+002	1.40+002	38	20+003		
2	4	m	2	-1		
0	0	0	0	0		
-268.66	14.7	272	-285.71	26.4		
1298.5343	798.3193	855.5430	828,2993	606.1890		
1298.1854	798.3310	855.7760	828.0627	606.2050 6	426.2987	1028.9854
650.1000	400.1728	428.8953	415.0386	607.2123	427.3060	515.5000
311	9	26	50	5	-1	170

Search Parameters

MS/MS Ion Search		Oxidation (M)	Monoisotopic	Unrestricted	mdd	Da		ESI-QUAD-TOF	
MS/MS	None	Oxidat	Monoi	Unrest	± 300 ppm	± 0.6 Da	1	ESI-OI	702
**	**	**	**	••	12		**	**	•
Type of search	Enzyme	Variable modifications	Mass values	Protein Mass	Peptide Mass Tolerance :	Fragment Mass Tolerance:	Max Missed Cleavages	Instrument type	Number of queries

Mascot: http://www.matrixscience.com/


Science Mascot Search Results

Project: Users\2013.06, Spot Set: Users\2013.06\MF170613, Label: O4, Spot Id: 871775, Peak List Id: 666430, MS Job Run Id: 26909 \\appaf-hpv-file\projects\External\e 15328 VictoriaUni_FatahAhtesh_20130607\1_MassSpec\4800\Run1\RawData\Run1\MF170613\04_MF170613.txt SwissProt 2013 (539829 sequences: 191670831 residues) 27 Jun 2013 at 05:44:48 GMT A Peptide summary report will usually give a much clearer picture of MS/MS search results. 197 for CASE_CAPHI, Beta-casein OS=Capra hircus GN=CSN2 PE=2 SV=1 Other mammalia (13034 sequences) Search title MS data file Timestamp Top Score Database Taxonomy Warning Email.

Mascot Score Histogram

Protein score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores greater than 54 are significant (p<0.05).

Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits.

Protein Summary Report

Format As Protein Summary (deprecated) IIclp
Significance threshold p< 0.05 Max. number of hits AUTO

Re-Search All Search Unmatched

Index

Accession	Mass	Score		
CASB CAPHI				S=Capra hircus GN=CSN2 PE=2 SV=1
CASB SHEEP			Beta-casein 08	S=Ovis aries GN=CSN2 PE=1 SV=3
CASB BOVIN		196	Beta-casein 08	Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2
CASB BUBBU			Beta-casein OS	S=Bubalus bubalis GN=CSN2 PE=2 SV=1
ATPS ORYAF	8057	96	ATP synthase protein 8	orotein 8 OS=Orycteropus afer GN=MT-ATP8 PE=3 SV=1
ATPS HALGR		42	ATP synthase p	protein 8 OS-Halichoerus grypus GN-MT-ATP8 PE=3 SV=1

28/06/2013 2:34 PM

Results List

Beta-casei	n OS=Capra	Beta-casein OS=Capra hircus GN=CSN2 PE=2 SV=1	3SN2 PE=2	SV=1			
Observed	Mr (expt)	Mr (calc)	s wďď	Start End 1	Miss	s Ions	Peptide
1151.6644	1150.6571	1150.6863	-25.34	212 - 222	0	1	L.GPVRGPFPILV
1151.6644	1150.6571	1150.6863	-25.34	212 - 222	0	62	L. GPVRGPFFILV
1363.8259	1362.8186	1362.8388	-14.78	210 - 222	0	! !	P.VLGPVRGPFFILV
1375.7285	1374.7212	1374.6878	24.3	20 - 32	0	1	E.ELNVVGETVESLS.S
1375.7285	1374.7212	1374.6878	24.3	20 - 32	0	i	E.ELNVVGETVESLS.S
1589.9221	1588.9148	1588.9188	-2.53	173 - 187	0	[[F. PPQSVLSLSQPKVLP.V
1589.9221	1588.9148	1588.9341	-12.14	208 - 222	0	21	Q.EPVLGPVRGPFPILV
1601.9026	1600.8953	1600.8977	-1.49	202 - 215	0	*	Q.AFLLYQEPVLGPVR.G
1669,8888	1668.8815	1668.8682	7.97	12 - 26	0	l l	A. LAIAREQEELNVVGE.T
1700.9590	1699.9517	1699.8790	42.8	113 - 126	0	1	K.VKETMVPKHKEMPF.P
1700.9590	1699.9517	1699.8790	42.8	113 - 126	0	! !	K. VKETMVPKHKEMPF. P
1717.9808	1716.9735	1716.9927	-11.16	207 - 222	0	1	Y.QEPVLGPVRGPFPILV
1717.9808	1716.9735	1716.9927	-11.16	207 - 222	0	20	Y.QEPVLGPVRGPFPILV
1781.9735	1780.9662	1780.9876	-12.00	206 - 221	0	 	L.YQEPVLGPVRGPFPIL.V
1881.0486	1880.0413	1880.0560	-7.81	206 - 222	0	1 1	L.YQEPVLGPVRGPFPILV
1881.0486	1880.0413	1880.0560	-7.81	206 - 222	0	42	L.YQEPVLGPVRGPFPILV
1994.1243	1993.1170	1993,1401	-11.57	205 - 222	0	1	L.LYQEPVLGPVRGPFPILV
2107.2170	2106.2097	2106.2241	-6.84	204 - 222	0	10 /10	F. LLYQEPVLGPVRGPFPILV
2107.2170	2106.2097	2106.2241	-6.84	204 - 222	0	41	F.LLYQEPVLGPVRGPFPILV
2254.2810	2253.2737	2253.2926	-8.36	203 - 222	0	1 1	A.FLLYQEPVLGPVRGPFFILV
2254.2810	2253.2737	2253.2926	-8.36	203 - 222	0	7	A.FLLYQEPVLGPVRGPFPILV
2938.5374	2937.5301	2937.5166	4.60	103 - 127	0	1	F.LQPEIMGVPKVKETMVPKHKEMPFP.K + 3 Oxidation (M)

Expect: 2.6e-016 Matches: 22		Peptide	L.GPVRGPFPILV	L.GPVRGPFPILV	P.VLGPVRGPFFILV	E.ELNVVGETVESLS.S	E.ELNVVGETVESLS.S	F. PPQSVLSLSQPKVLP.V	Q.EPVLGPVRGPFPILV	Q.AFLLYQEPVLGPVR.G	A.LALAREQEELNVVGE.T	K.VKETMVPKHKEMPF.P	K.VKETMVPKHKEMPF.P	Y.QEPVLGPVRGPFPILV	Y.QEPVLGPVRGPFPILV	L.YQEPVLGPVRGPFPIL.V
016		End Miss Ions	1	29	1 1	1	1	!!	23	1	!	!	1	1	20] [
6e-		Míss	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ct: 2		End	222	C1 C1 C1	222	32	32	187	222	215	26	126	126	222	222	221
Expe	V=3	Start	212 -	212 -	210 -	20 -	20 -	173 - 187	208 -	202 -	12 -	113 - 126	113 - 126	207 -	207 -	206 - 221
Score: 197	2 PE=1 S	s wďď	-25.34	-25.34	-14.78	24.3	24.3	-2.53	-12.14	-1.49	7.97	42.8	42.8	-11.16	-11.16	-12.00
	ss GN=CSN	Mr (calc)	1150.6863	1150.6863	1362,8388	1374.6878	1374.6878	1588.9188	1588.9341	1600.8977	1668.8682	1699.8790	1699.8790	1716.9927	1716.9927	1780.9876
248	arie															2 17
Mass: 24859	OS=Ovis	Mr (expt)	1150.6571	1150.6571	1362.8186	1374.7212	1374.7212	1588.9148	1588.9148	1600.895	1668.8815	1699.9517	1699.9517	1716.9735	1716.9735	1780.9662
CASB SHEEP	Beta-casein OS=Ovis aries GN=CSN2 PE=1 SV=3	Observed	1151.6644	1151.6644	1363.8259	1375.7285	1375.7285	1589.9221	1589.9221	1601,9026 1600,8953	1669.8888	1700.9590	1700.9590	1717.9808	1717.9808	1781.9735

28/06/2013 2:34 PM

Q.EPVLGPVRGPFPIIV.-Q.EPVLGPVRGPFPIIV.-

. .

 1375.7285
 1374.7212
 1374.7363
 -10.97

 1589.9221
 1588.9148
 1588.9341
 -12.14

 1589.9221
 1588.9148
 1588.9341
 -12.14

I.MGVSKVKEAMAPK.H

P.K + 3 Oxidation (0)			Э. S.	
L. YQEPVLGPYRGPFPILV L. YQEPVLGPYRGPFPILV L. LYQEPVLGPYRGPFPILV F. LLYQEPVLGPVRGPFPILV F. LLYQEPVLGPVRGPFPILV A. FLLYQEPVLGPVRGPFPILV A. FLLYQEPVLGPVRGPFPILV F. LQPEIMGVPKVKGTMYPKHKEMPFP.K	Matches: 22 Peptide L.GPVRGPFPIIV L.GPVRGPFPIIV V.MGVSKVKEAMAPK.H V.MGVSKVKEAMAPK.H	Q.EPULGPVRGPFFIIV Q.EPULGPVRGPFFIIV Q.AFLIYQEPVLGPVR.G R.ELEELNVPGEIVESL.S P.FPGPIPNSLPQNIPPL.T Y.QEPVLGPVRGPFFIIV Y.QEPVLGPVRGPFFIIV L.YQEPVLGPVRGPFFIIV L.YQEPVLGPVRGPFFIIV L.YQEPVLGPVRGPFFIIV L.YQEPVLGPVRGPFFIIV	L.IQEPULGPURGFFFILV L.LYQEPULGPURGPFBIIV F.LLYQEPULGPURGPFPIIV A.FLLYQEPULGPURGPFPIIV A.FLLYQEPULGPURGPFPIIV P.GEIVESLSSEESITRINKKIEKFQS.E	Matches: 20 Peptide L.GPVRGPFPIIV L.GPVRGPFFIIV P.VLGPVRGPFFIIV I.MGVSKVKEAMAPK.H
45	8	1	24 14 7	S .
000000	3.3e-016 Miss Ior 0 29		000000	Miss Ion 0 29 0 29
66	pect:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:t: End 224 224 224 120
206 206 205 204 204 203 203 103	SV=2 SV=2 Start 214 214 212 108	210 210 204 204 17 77 77 77 77 209 209 208 208	208 206 206 206 205 205 25	Expec PE=2 SV=1 Start 214 - 214 - 108 -
-7.81 -7.81 -11.57 -6.84 -6.84 -8.36 -8.36	e: 196 PE=1 ppm -25.34 -14.78 -10.97	-12.14 -12.14 -1.49 -1.49 -1.4 -12.9 -11.16 -11.16 -12.00	- 11.37 - 6.84 - 6.88 - 8.36 - 8.36 - 8.36	s GN=CSN2 E s GN=CSN2 E c) PPm 63 -25.34 63 -25.34 88 -14.78 63 -10.97
1880.0560 1880.0560 1993.1401 2106.2241 2253.2926 2253.2926 2253.2926	GN= Call .68 .68 .83.	1588.9341 1588.9341 1660.8977 1669.9297 1699.9297 1716.9927 1716.9927 1780.9876	1880,0560 1993,1401 2106,2241 2253,2926 2253,2926 2253,2926	cali cal .68 .68 .83
1880.0413 1880.0413 1993.1170 2106.2097 2253.2737 2253.2737 2937.5301 to: 906.6738	08 115 115 33 37	1588.9148 1588.9148 1660.8953 1668.8815 1699.9517 1716.9735 1716.9735 1780.9662	1880.0413 1993.1170 2106.2097 2106.2097 2253.2737 2253.2737 2937.5301 to: 906.6738	n os Mr 115 115 115 136
1881.0486 1881.0486 1994.1243 2107.2170 2254.2810 2254.2810 2938.5374 No match t	CASB BOVIN Beta-casein Observed 1151,6644 1 1151,6644 1 1136,8259 1 1375,7285 1	1589.9221 1589.9221 1601.9026 1669.8888 1700.9590 1700.9590 1717.9808 1717.9808	1881.0486 1994.1243 2107.2170 2107.2170 2254.2810 2254.2810 2938.5374 No match t	CASB BUBBU Beta-casein OS Observed Mr 1151.6644 1151 1151.6644 1151 11363.8259 1365 1375.7285 137
				,

Protein Summary Report (Project: Users\2013.06, Spot Set: Users\2013.06\MF170613, Label: O4, Spot... http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130627/F082959.dat&REPTYPE=pr...

Q.AFLLYQEPVLGPVR.G	R.ELEELNVPGEIVESL.S	Y.QEPVLGPVRGPFPIIV	Y.QEPVLGPVRGPFPIIV	L.YQEPVLGPVRGPFPII.V	L.YQEPVLGPVRGPFPIIV	42 . L.YQEPVLGPVRGPFPIIV	L.LYQEPVLGPVRGPFPIIV	F.LLYQEPVLGPVRGPFPIIV	F.LLYQEPVLGPVRGPFPIIV	A.FLLYQEPVLGPVRGPFFIIV	A.FLLYQEPVLGPVRGPFPIIV	I.LACLVALALARELEELNVPGEIVESLSS.S	
0	1	1	20	1	!!!	42	1	i	41	1	7	0	
0	0	0	0	0	0	0	0	0	0	0	0	0	
217	31	224	1224	223	224	224	224	224	224	224	224	6 - 33	
204 - 217	17 - 31	209 - 224	209 - 224	208 - 223	208 - 224	208 - 224	207 - 224	206 - 224	206 - 224	205 - 224	205 - 224	9	290
-1.49	21.4	-11.16	-11.16	-12.00	-7.81	-7.81	-11.57	-6.84	-6.84	-8.36	-8.36	-14.67	, 1700.9
1600.8977	1668.8458	1716.9927	1716.9927	1780.9876	1880.0560	1880.0560	1993.1401	2106.2241	2106.2241	2253.2926	2253.2926	2938.5374 2937.5301 2937.5732 -14.67	No match to: 906.6738, 1700.9590, 1700.9590
1601.9026 1600.8953 1600.8977	1668.8815 1668.8458	1716.9735	1716.9735	1780.9662	1880.0413	1881.0486 1880.0413	1993.1170 1993.1401	2106.2097	2106.2097	2253.2737	2253.2737 2253.2926	2937.5301	36.6738
1601.9026	1669.8888	1717.9808	1717.9808	1781.9735	1881.0486	1881.0486	1994.1243	2107.2170	2107.2170	2254.2810	2254.2810	2938.5374	No match t

5.

ATP8 ORYAF	YAE	Mass:	Mass: 8057 Sco	Score: 56		ot:	.03/	Mato	Expect: 0.03/ Matches: 19
ATP syn	thase	protein	ATP synthase protein 8 OS=Orycteropus afer GN=MT-ATP8 PE=3 SV=1	ropus a	fer GN=M	T-ATP	8 PE	=3 SV=	
Observed		Mr (expt)	Mr (calc)	wdd	Start	End 1	Miss	End Miss Ions	Peptide
1151.6644		1150.6571	1150.6672	-8.72	12 -	21	0	1	I.TILSMITLF.I
1151.6644		1150.6571	1150.6672	-8.72	10 -	19	0	1	W.FITILSMIIT.L
1375.7285		1374.7212	1374.7547	-24.35	30 -	40	0	1	S.KYLYPLEPQPK.T
1375.7285		1374.7212	1374.7547	-24.35	30 -	40	0	1	S.KYLYPLEPQPK.T
1589,9221		1588.9148	1588.8864	17.9	31 -	43	0	! !	K.YLYPLEPQPKTLK.T
1589.9221		1588.9148	1588.8864	17.9	30 -	42	0	! !	S.KYLYPLEPQPKTL.K
1601.9026		1600.8953	1600.8402	34.4	51 -	62	0	!!!	P.WETKWTKIYLPH.S
1669,8888		1668.8815	1668.8221	35.6	21 -	33	0	.	L.FILFQSNMSKYLY.P + Oxidation (M)
1717.9808		1716.9735	1716.9814	-4.59	30 -	43	0	1	S.KYLYPLEPQPKTLK.T
1717.9808		1716.9735	1716.9814	-4.59	30 -	43	0	1 1	S.KYLYPLEPQPKTLK.T
1781.9735		1780.9662	1781.0413	-42.13	11 -	25	0	1	F.ITILSMITLFILFQ.S + Oxidation (M)
1881.0486		1880.0413	1880.0005	21.7	ۍ ۱	20	0	1	L.DTTPWFITILSMIITL.F + Oxidation (M)
1881,0486		1880.0413	1880.0005	21.7	पा !	19	0	1	Q.LDTTPWFITILSMIIT.L + Oxidation (M)
1994.1243		1993.1170	1993.0846	16.3	4 .	20	0	!	Q.LDTTPWFITILSMIITL.F + Oxidation (M)
2107.2170		2106.2097	2106.1051	49.7	49	65	0	1	N.APWETKWTKIYLPHSLH.L
2107.2170		2106.2097	2106.1051	49.7	49	65	0	1 1	N.APWETKWTKIYLPHSLH.L
2254.2810		2253.2737	2253.2371	16.3	r vo	23	0	1	L.DTTPWFITILSMIITLFIL.F + Oxidation (M)
2254.2810		2253.2737	2253.2371	16.3	177	22	0	1	Q.LDTTPWFITILSMIITLFI.L + Oxidation (M)
2938.5374		2937.5301	2937.5424	-4.19	i ∞	31	0	!!!	T.PWFITILSMITLFILFQSNMSKY.L + 2 Oxidation (M)
No matc	h to:	906.673	No match to: 906.6738, 1363.8259, 1700.9590, 1700.9590	, 1700.	9590, 17	00.95	06		

Expect: 0.75 Matches: 18	V=1	Peptide	E.EKWTKIYSP.L	E.EKWTKIYSP.L	K.NSAPWEEKWTK.I	L.KNSAPWEEKWT.K	F. PTNPEPKHTLLLKN.S
Match	PE=3 8	ppm Start End Miss Ions	47.7 53 - 61 0	53 - 61 0	0	0	0
3.75	ATP8	Miss	0	0	0		
ct:	-MT-	End	61	61	47 - 57	46 - 56	34 - 47
хре	ÖĞ	در	1	ı	- 1	1 50	1
ы	rypus	Start	S				
Score: 42	perus g	шďď	47.7	47.7	46.9	46.9	1.04
	synthase protein 8 OS=Halichoerus grypus GN=MT-ATP8 PE=3 SV=1	Mr (calc)	1150.6022	1150.6022	1374.6568	1374.6568	1,600,8937
Mass: 7878	se protein	Observed Mr (expt) Mr (calc)	1150.6571	1150.6571	1374.7212 1374.6568	1374.7212	1,600,8953
ATP8 HALGR	ATP synthas	Observed	1151.6644	1151.6644	1375.7285	1375.7285	1601.9026

28/06/2013 2:34 PM

H. YEPTNPEPKHTLL.K	S.TWLIMISSMILTLF.1 + 2.Oxidation (M)	S.TWLIMISSMILTLF.I + 2 Oxidation (M)	F. ITFHLKVSKHYFPT.N	F.ITFHLKVSKHYFPT.N	T.WLIMISSMILTLFIT.F	L.TLFITFHLKVSKHYF.P	L.TLFITFHLKVSKHYF.P	I.LTLEITFHLKVSKHYF.P	M.ILTLFITFHLKVSKHYF.P	S.MILTLFITFHLKVSKHY.F + Oxidation (M)	S.MILTLFITFHLKVSKHYF.P + Oxidation (M)	T.STWLIMISSMILTLFITFH.L	74
		-	1		1 1 1								38.53
ì	0	i	ì	0	1	0	0	0	0	0 1	0	1	29
0	0	0	0	0	0	0	0	0	0	0	0	0	221,
32 - 45 0	8 - 21	21	35	35	23	33	33	33	33	16 - 32	16 - 33	ខ្លួ	9.9
1	1	1 &	- 22	22 - 35	9 - 23	19 - 33	19 -	18 33	17 -	t	1	,	158
32	. &	80	C1	22	Q,	13	19	18	1.7	16	16	7	21,
-3.60	34.6	34.6	22.3	22.3	-11.72	3.43	3.43	-0.96	3.19	18.9	15.7	35.3 7 - 25 0	No match to: 906.6738, 1363.8259, 1589.9221, 1589.9221, 2938.5374
	•	•	Ć.	c a		•	σ.	0	0	0	en	01	59,
887	1699.8929	1699.8929	1716.9352	1716.9352	1780.9871	1880.0349	1880.0349	118	2106.2030	2106.1700	2253.2384	194	3.82
668.	699.	699.	716.	716.	780.	880.	880.	993.	106.	106.	253.	253.	136
, , ,	Ä	7				1	~	٦	2			C1	38.
881.5	1699.9517	9517	1716.9735	1716.9735	1780.9662	0413	1880.0413	1170	2106.2097	2106.2097	2253.2737	2737	. 67
.899	599.	599.	716.	716.	780.	380.	380.	993.	.901	.901	253.	253.	906
7	7	ä	7			7	ī	H	2	6		61	101
1669.8888 1668.8815 1668.8875	1700.9590	1700.9590 1699.9517	1717.9808	1717.9808	1781.9735	1881.0486 1880.0413	1881.0486	1994.1243 1993.1170 1993.1189	2107.2170	2107.2170	2254.2810	2254.2810 2253.2737 2253.1942	top.
69	00	,00	117.	117.	181	181	181	. 64	.07.	.07.	.54	54	ر ت
16	17	1,7	17	Н	1,	18	7.8	7	2	C I	22	23	ž

Protein Summary Report (Project: Users\2013.06, Spot Set: Users\2013.06\MF170613, Label: O4. Spot... http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130627/F082959.dat&REPTYPE=pr...

Search Parameters

	Type of search Enzyme	MS/MS Ion Search None	Search		-					
	Variable modifications : Mass values :	Oxidation (M) Monoisotopic	Œ o							
	Protein Mass	Unrestricte	àď							
	Peptide Mass Tolerance :	± 50 ppm								
	Fragment Mass Tolerance:	+1								
6738,1+): 6644,1+): 6644,1+): 8259,1+): 7285,1+): 7285,1+): 9221,1+): 9221,1+): 9221,1+): 9221,1+): 92590,1+): 9590,1+): 9590,1+): 9590,1+): 9590,1+): 9590,1+): 9590,1+): 9510,1+): 9110,1+): 9110,1+): 9110,1+): 9110,1+):	Max Missed Cleavages :	н								
(906.6738,14): (1151.6644,14): (1151.6644,14): (1363.8259,14): (1375.7285,14): (1589.9221,14): (1589.9221,14): (1601.9026,14): (1606.9888,14): (1601.9026,14): (1700.9590,14): (1700.9590,14): (1717.9808,14): (1717.2170,14): (2254.2810,14): (2254.2810,14):	Instrument type :	MALDI-TOF-	OF							
(1151.6644,1+): (1151.6644,1+): (1363.8259,1+): (1375.7285,1+): (1589.9221,1+): (1589.9221,1+): (1660.8888,1+): (1660.9590,1+): (1700.9590,1+): (1700.9590,1+): (1717.9808,1+):	Query1 (906.6738,1+):	<no title=""></no>								
(1151.6644,1+): (1363.8259,1+): (1375.7285,1+): (1589.9221,1+): (1669.8888,1+): (1669.8888,1+): (1700.9590,1+): (1700.9590,1+): (1701.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1717.9808,1+): (1727.9810,1+): (2254.2810,1+): (2254.2810,1+):	Query2 (1151.6644,1+):	<no title=""></no>							6	
(1363 8259,14) (1375,7285,14) (1589,9221,14) (1589,9221,14) (1601,9026,14) (1601,9026,14) (1700,9590,14) (1700,9590,14) (1701,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1717,9808,14) (1881,0486,14) (1881,0486,14) (1881,0486,14) (1894,1243,14) (2254,2810,14) (2254,2810,14)	Query3 (1151.6644,1+):	Label: 04,	Spot_Id:	871775,	Peak_List_Id:	666432,	MSMS	Job_Run_Id	: 26910,	Comment:
(1375.7285,14): (1375.7285,14): (1589.9221,14): (1569.8888,14): (1669.8888,14): (1700.9590,14): (1700.9590,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.9808,14): (1717.981.0486,14): (1881.0486,14): (1994.1243,14): (2254.2810,14): (2254.2810,14): (2254.2810,14):										
(1375,7285,14): (1589,9221,14): (1660,9026,14): (1660,8888,14): (1700,9590,14): (1700,9590,14): (1717,9808,14):										
(1589.9221,1+): <no title=""> (1589.9221,1+): Label: 04, (1661.9026,1+): <no title=""> (1060.9590,1+): <no title=""> (1700.9590,1+): <no title=""> (1700.9590,1+): <no title=""> (1717.9808,1+): <no title=""> (1717.9808,1+): <no title=""> (1717.9808,1+): <no title=""> (1717.9808,1+): <no title=""> (1781.0466,1+): <no title=""> (1881.0486,1+): <no title=""> (1994.1243,1+): <no title=""> (2107.2170,1+): <no title=""> (2107.2170,1+): <no title=""> (2254.2810,1+): <no title=""> (2254.2810,1+): <no title=""> (2254.2810,1+): <no title=""></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no>		Label: 04,	Spot_Id:	871775,	Peak_List_Id:	666433,	MSMS	Job_Run_Id	. 26910,	Comment:
(1589.9221,1+): Label: 04, (1669.8888,1+): Cno title> (1601.926,1+): Cno title> (1700.9590,1+): Cno title> (1770.9590,1+): Label: 04, (1717.9808,1+): Cno title> (1717.9808,1+): Label: 04, (1781.9735,1+): Cno title> (1881.0486,1+): Label: 04, (1981.0486,1+): Label: 04, (1994.1243,1+): Cno title> (2107.2170,1+): Cno title> (2254.2810,1+): Cno ti										
(1601.9026,14): <no title=""> (1669.8888,14): <no title=""> (1700.9590,14): <no title=""> (1700.9590,14): <no title=""> (1717.9808,14): <no title=""> (1717.9808,14): <no title=""> (1717.9808,14): <no title=""> (1717.9808,14): <no title=""> (1781.9735,14): <no title=""> (1781.0486,14): <no title=""> (1881.0486,14): <no title=""> (1881.0486,14): <no title=""> (2107.2170,14): <no title=""> (2107.2170,14): <no title=""> (2107.2170,14): <no title=""> (2254.2810,14): <no title=""> (2254.2810,14): <no title=""></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no></no>	v		Spot_Id:	871775,	Peak_List_Id:	666435,	MSMS	Job_Run_Id	: 26910,	Comment:
(1669.8888,1+): <no title=""> (1700.9590,1+): <no title=""> (1700.9590,1+): Label: O4, (1717.9808,1+): <no title=""> (1717.9808,1+): <no title=""> (1718.9735,1+): <no title=""> (1881.0486,1+): <no title=""> (1881.0486,1+): <no title=""> (1891.0486,1+): <no title=""> (1994.1243,1+): <no title=""> (2107.2170,1+): <no title=""> (2107.2170,1+): <no title=""> (2254.2810,1+): <no title=""> (2254.2810,1+): <no title=""> (2254.2810,1+): <no title=""></no></no></no></no></no></no></no></no></no></no></no></no></no></no>										
(1700.9590,14): cho title> (1700.9590,14): Label: 04, (1717.9808,14): Cho title> (1717.9808,14): Cho title> (1717.9808,14): Cho title> (1718.9735,14): Cho title> (1881.0486,14): Cho title> (1881.0486,14): Cho title> (1994.1243,14): Cho title> (2107.2170,14): Cho title> (2107.2170,14): Cho title> (2254.2810,14): Cho title> (2254.2810,14): Cho title>	-									
(1700.9590,14): Label: O4, (1717.9808,14): Cno title> (1717.9808,14): Cno title> (1781.9135,14): Cno title> (1781.0486,14): Cno title> (1881.0486,14): Label: O4, (1994.1243,14): Cno title> (2107.2170,14): Label: O4, (2254.2810,14): Label: O4, (2254.2810,14): Label: O4, (2938.5374,14): Cno title>	-							1	0	
(1717,9808,1+): <no title=""> (1717,9808,1+): Label: O4, (1781,9735,1+): <no title=""> (1781,0486,1+): <no title=""> (1881,0486,1+): Label: O4, (1994,1243,1+): <no title=""> (2107,2170,1+): <no title=""> (2107,2170,1+): <no title=""> (2254,2810,1+): <no title=""> (2254,2810,1+): Label: O4, (2254,2810,1+): <no title=""> (2938,5374,1+): <no title=""></no></no></no></no></no></no></no></no></no>	_		Spot_Id:	871775,	Peak_List_Id:	666439,	MSMS	Job_Run_Id	. 26910,	Comment:
(1717.9808,1+): Label: O4, (1781.9735,1+): Cno title>(1881.0486,1+): Cno title>(1881.0486,1+): Label: O4, (1994.1243,1+): Cno title>(2107.2170,1+): Label: O4, (2254.2810,1+): Label: O4, (2254.2810,1+): Label: O4, (2938.5374,1+): Cno title>	_							1		
(1781.9735,14): <no title=""> (1881.0486,14): <no title=""> (1881.0486,14): Label: 04, (1994.1243,14): <no title=""> (2107.2170,14): <no title=""> (2207.2170,14): Label: 04, (2254.2810,14): <no title=""> (2254.2810,14): <no title=""> (2254.2810,14): <no title=""> (2254.2810,14): <no title=""></no></no></no></no></no></no></no></no>	_		Spot_Id:	871775,	Peak_List_Id:	666438,	MSMS	Job_Run_Id	. 26910,	Comment:
(1881.0486,14): <pre></pre> (1881.0486,14): Label: 04, (1994.1243,14): <pre></pre> (2107.2170,14): <pre>cape title></pre> (2107.2170,14): <pre>cape title></pre> (2254.2810,14): <pre>cape title></pre> (2254.2810,14): <pre>cape title></pre> (2254.2810,14): <pre>cape title></pre> (2254.2810,14): <pre>cape title></pre>	-									
(1881.0486,1+): Label: O4, (1994.1243,1+): <no title=""> (2107.2170,1+): <no title=""> (2107.2170,1+): Label: O4, (2254.2810,1+): Label: O4, (2254.2810,1+): <no title=""> (2938.5374,1+): <no title=""></no></no></no></no>	_					1	!	1		(
(1994.1243,14): <no title=""> (2107.2170,14): <no title=""> (2107.2170,14): Label: O4, (2254.2810,14): Label: O4, (2254.2810,14): Label: O4, (2938.5374,14): <no title=""></no></no></no>			Spot_Id:	871775,	Peak_List_Id:	666436,	MSMS	Job Run Id	: 26910,	Comment:
(2107.2170,14): <no title=""> (2107.2170,14): Label: 04, (2254.2810,14): Label: 04, (2254.2810,14): Label: 04, (2938.5374,14): <no title=""></no></no>	_									
(2107.2170,1+): Label: O4, (2254.2810,1+): <no title=""> (2254.2810,1+): Label: O4, (2938.5374,1+): <no title=""></no></no>									4	
(2254.2810,1+): <pre>cno title> (2254.2810,1+): Label: O4, (2938.5374,1+): <pre>cno title></pre></pre>		Label: 04,	Spot_Id:	871775,	Peak_List_Id:	666437,	MSMS	Job_Run_Id	: 26910,	Comment:
		<no title=""></no>				,				
		Label: 04,	Spot_Id:	871775,	Peak_List_Id:	666434,	MSMS	Job_Run_Id	: 26910,	Comment:
		<no title=""></no>								

Protein Summary Report (Project: Users\2013.06, Spot Set: Users\2013.06\MF170613, Label: O4, Spot... http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130627/F082959.dat&REPTYPE=pr...

(SCIENCE) MASCOT Search Results

Protein View: CASB_BOVIN

Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2

Score: SwissProt 196
Expect: 3.3e-016
Nominal mass (M_r): 25091

Calculated pT: 5.26

Taxonomy: Bos taurus

Sequence similarity is available as an NCBI BLAST search of CASB_BOVIN against nr.

Search parameters

\\apaf-hpv-file\projects\External\e_15328_VictoriaUni_FatahAhtesh_20130607\!_MassSpec\4800\Runl\RawData\Runl\MF170613\04_MF170613.txt MS data file:

Enzyme: No enzyme cleavage specificity.

Variable modifications: Oxidation (M)

Protein sequence coverage: 37%

Matched peptides shown in bold red.

1 MKULILACLV ALALARELEE LNVPGEIVES LSSSEESITR INKKIEKFOS 51 EEGQQTEDEL QDKIHPFAQT QSLVYPFPCP IPNSLPQNIP PLTQTPVVVP 101 PFLQPEVMGV SKVKEAMAPK HKEMPFPKYP VEPFTESQSL TLTDVENLHL 151 PLPLLQSWMH QPHQPLPPTV MFPPQSVLSL SQSKVLPVPQ KAVPYPQRDM 201 PIQAFLLYQE PVLGPVRGPF PIIV Unformatted sequence string: 224 residues (for pasting into other applications).

Sort peptides by Residue Number Increasing Mass Decreasing Mass

		KKIEKFOS.E						IV	IV.		
ppm M Score Peptide	R. ELEELNVPGEIVESL. S	P. GEIVESLSSSEESITRINKK	P. FPGPIPNSLPONIPPL. T	P. FPGPIPNSLPQNIPPL. T	V. MGVSKVKEAMAPK. H	V. MGVSKVKEAMAPK. H	Q. AFLLYQEPVLGPVR. G	A.FILYQEPVLGPVRGPFPIIV.	A. FILYQEPVIGPVRGPFPIIV	F. LLYQEPVLGPVRGPFPIIV.	
Score				9					1		
bpm M	21.4 0	0.23 0	12.90	12.90	-11.00	-11.00	-1.49 0	-8.36 0	-8.36 0	-6.84 0	
Mr (calc)	1668.8458	2937.5294	1699.9297	1699,9297	1374.7363	1374.7363	1600.8977	2253.2926	2253.2926	2106.2241	
Mr (expt)	1668.8815	2937,5301	1699.9517	1699.9517	1374.7212	1374.7212	1600.8953	2253.2737	2253.2737	2106.2097	
Observed	1669.8888	2938.5374	1700.9590	1700.9590	1375.7285	1375.7285	1601.9026	2254.2810	2254.2810	2107.2170	
End	31	50	92	92	120	120	217	224	224	224	
Start - End	17 - 31	25 -	77 -	- 11		108 -	204 - 217	205 -	205 -	206 -	
Query	0,10	623	11	612	ខ្មាន	19.0	100	021	22	13	

28/06/2013 2:36 PM

Mass (Da)

1500

RTS error 12 nom

NUCLEOTIDE SEQUENCE (MRNA), AND VARIANTS LEU-108; PRO-152 AND LEU-153. Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Laurasiatheria; Cetartlodactyla; Ruminantia; PO2666; ALYQZ8; A6N8V0; Q2TAL3; Q5EEQ6; Q5EEQ7; Q6UM63; Q9BDG5; "Cloning and sequence analysis of bovine beta-casein cDNA."; 21-JUL-1986, integrated into UniProtKB/Swiss-Prot. 224 AA. PubMed=3814153; DOI=10.1016/0006-291X(87)90318-4; Biochem. Biophys. Res. Commun. 142:617-621(1987). NUCLEOTIDE SEQUENCE [MRNA], AND VARIANT HIS-82. Jimenez-Flores R., Kang Y.C., Richardson T.; RecName: Full=Antioxidant peptide; Reviewed; 01-JUL-1989, sequence version 2. 03-APR-2013, entry version 119. RecName: Full=Casohypotensin; Pecora; Bovidae; Bovinae; Bos. RecName: Full=Beta-casein; RecName: Full=Casoparan; Bos taurus (Bovine). Flags: Precursor; NCBI_TaxID=9913; CASB BOVIN Name=CSN2; Contains: Contains: Contains: Q9TSD5;

"Primary structure of bovine beta-casein cDNA.";

Baev A.A., Smirnov I.K., Gorodetsky S.I.;

28/06/2013 2:36 PM

http://apaf-sv-mascot/mascot/cgi/protein_view.pl?file=../data/20130627/F082959.dat&hit=3

```
NUCLECTIDE SEQUENCE (GENOMIC DNA) OF 18-57, PROTEIN SEQUENCE OF 16-224
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    "Invasive potential of bacterial isolates associated with subclinical
                                                                                                                     'Complete nucleotide sequences of bovine alpha S2- and beta-casein
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 "A new strategy for primary structure determination of proteins:
                                                                                                                                                                                                                                     Bonsing J., Ring J.M., Stewart A.F., Mackinlay A.G.; "Complete nucleotide sequence of the bovine beta-casein gene."; Aust. J. Biol. Sci. 41:527-537(1988).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA], AND VARIANTS HIS-82 AND
                                                                                                                                                                                                                                                                                                                                                                             Simons G., van den Heuvel W., Reynen T., Frijters A., Rutten G.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            "Primary structure of bovine beta casein. Complete sequence.";
                                                                                                                                        cDNAs: comparisons with related sequences in other species.";
                                                                                                                                                                                                                                                                                                                                                                                                                   "Overproduction of bovine beta-casein in Escherichia coli and
                                                                           Stewart A.F., Bonsing J., Beattie C.W., Shah F., Willis I.M.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    PROTEIN SEQUENCE OF 16-224 (VARIANT A2), AND VARIANT LEU-108.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       PubMed=4557764; DOI=10.1111/j.1432-1033.1972.tb01722.x;
Ribadeau-Dumas B., Brignon G., Grosclaude F., Mercier J.-C.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Baizabal-Aguirre V.M., Lopez-Meza J.E., Valdez-Alarcon J.J.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Anaya-Lopez J.L., Contreras-Gusman O.E., Carabez-Trejo A.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Submitted (DEC-2005) to the EMBL/GenBank/DDBJ databases.
                                                                                                                                                                                                  NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND VARIANT HIS-82
                                                                                                                                                                                                                                                                                                                                                                                                  Slangen C.J., Groenen M., de Vos W.M., Siezen R.J.;
                                                                                                                                                                                                                                                                                                                 NUCLEOTIDE SEQUENCE [MRNA], AND VARIANT A3 GLN-121.
                                                                                                                                                                                                                                                                                                                                                                                                                                            engineering of its main chymosin cleavage site.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PubMed=3278933; DOI=10.1016/0014-5793(88)81138-4;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          PubMed=16624358; DOI=10.1016/j.rvsc.2006.02.002;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STRAIN-Crossbred X Angus; TISSUE-Liver;
NIH - Mammalian Gene Collection (MGC) project;
                                                                                                                                                                                                                                                                                                                                                           PubMed=8248100; DOI=10.1093/protein/6.7.763;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Carles C., Huet J.-C., Ribadeau-Dumas B.;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         PROTEIN SEQUENCE OF 16-224 (VARIANT A2).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      application to bovine beta-casein.";
Mol. Biol. (Mosk.) 21:214-222(1987).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     NUCLEOTIDE SEQUENCE [MRNA] OF 1-101.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   sur. J. Biochem. 25:505-514(1972).
                                                                                                                                                           Mol. Biol. Evol. 4:231-241(1987).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Res. Vet. Sci. 81:358-361(2006).
                                                                                                                                                                                                                                                                                                                                                                                                                                                             Protein Eng. 6:763-770(1993).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         TEBS Lett. 229:265-272(1988).
                                             NUCLEOTIDE SEQUENCE [MRNA]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          TISSUE=Mammary epithelium;
                                                                                                                                                                                                                                                                                                                                             TISSUE=Mammary gland;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              bovine mastitis.";
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Ochoa-Zarzosa A.;
                                                                                                       Mackinlav A.G.;
                                                                                                                                                                                                                        PubMed=3271384;
                                                                PubMed=2833669;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ARG-137.
```

PubMed=10690361; DOI=10.1046/j.1365-2052.2000.00582.x;

(VARIANT H), AND VARIANT D LYS-33.

STRAIN-Korean; TISSUE-Milk;

Mascot Search Results: CASB_BOVIN

http://apaf-sv-mascot/mascot/cgi/protein_view.pl?file=../data/20130627/F082959.dat&hit=3

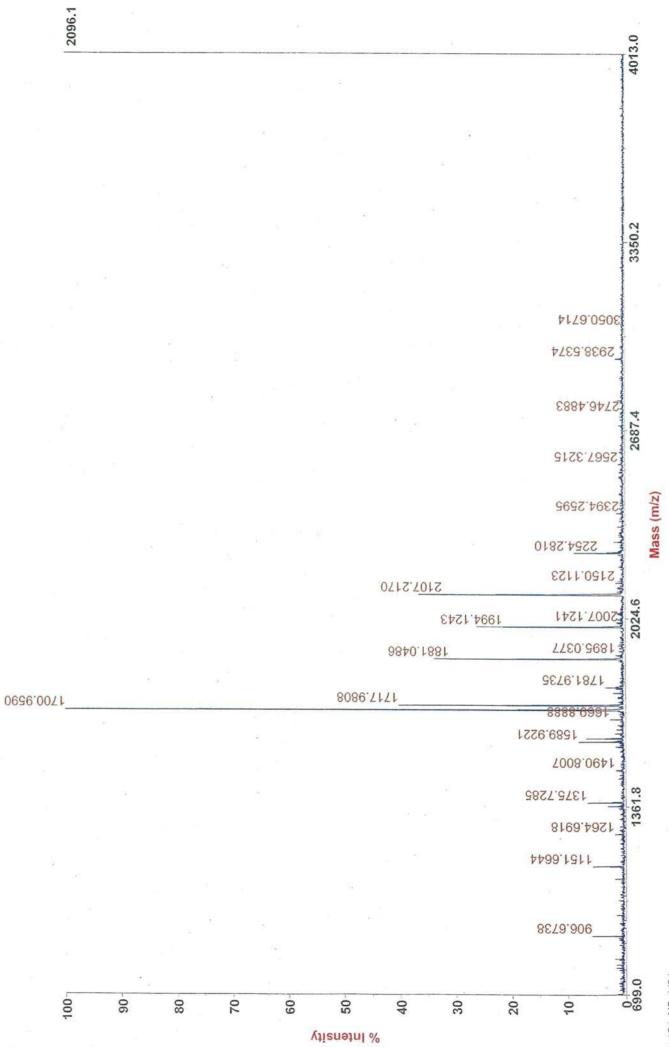
"The beta E variant and the phosphorylation code of bovine caseins."; "identification of bacterial clones encoding bovine caseins by direct immunological screening of the cDNA library."; de Sousa e Silva M.C.C.; "Effects of 'casoparan', a peptide isolated from casein hydrolysates "Biochemical, molecular and physiological characterization of a new beta-casein variant detected in Korean cattle."; PROTEIN SEQUENCE OF 41-71; 113-157 AND 180-224, AND VARIANT GLN-132 "Analysis of bovine beta-casein tryptic digest by continuous-flow 'Identification of bacterial clones that encode cow's caseins by Otaviano A.R., Lima A.L.F., Laureano M.M.M., Albuquerque L.G., "Polymorphisms in beta and kappa casein genes in bubaline and PubMed=6397405; DOI=10.1016/0378-1119(84)90013-1; Ivanov V.N., Kershulite D.R., Bayev A.A., Akhundova A.A., Sulimova G.E., Judinkova E.S., Gorodetsky S.I.; Ivanov V.N., Kershulite D.R., Bayev A.A., Akhundova A.A., Jones D.S., Heerma W., van Wassenaar P.D., Haverkamp J.; "Polymorphism in the cattle beta casein gene."; submitted (MAY-2007) to the EMBL/GenBank/DDBJ databases. Submitted (JAN-2001) to the EMBL/GenBank/DDBJ databases. Submitted (NOV-2006) to the EMBL/GenBank/DDBJ databases. direct immunological screening of the cDNA library."; Shahla M.N., Cheema F.R., Naeem M.K., Riazuddin S.; Lebrun I., Cavallaro V., Juliano L., Juliano M.A., Klotz A., Buchberger J., Krause I., Einspanier R.; PubMed=4411121; DOI=10.1016/0014-5793(74)80796-9; PROTEIN SEQUENCE OF 48-63, AND VARIANT E LYS-51. PubMed=15545057; DOI=10.1080/09629350400003068; Rapid Commun. Mass Spectrom. 5:192-195(1991). NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 58-223. NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 58-223. NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 63-208. PubMed=1804413; DOI=10.1002/rcm.1290050410; fast-atom bombardment mass spectrometry."; Grosclaude F., Mahe M.-F., Voglino G.-F.; PROTEIN SEQUENCE OF 41-45, AND FUNCTION. "Characterization of milk proteins."; NUCLEOTIDE SEQUENCE [MRNA] OF 68-105. Mediators Inflamm. 13:263-268(2004). NUCLEOTIDE SEQUENCE [MRNA] OF 68-95. with mastoparan-like properties."; Han S.K., Shin Y.C., Byun H.D.; Anim. Genet. 31:49-51(2000). FEBS Lett. 45:3-5(1974). Fonhati H., Sena J.A.D.; Sene 32:381-388(1984). IISSUE-Mammary gland; PubMed=3900695; Silimova G.E.; bovine."; [14]

Mascot Search Results: CASB_BOVIN

http://apaf-sv-mascot/mascot/cgi/protein_view.pl?file=../data/20130627/F082959.dat&hit=3

PROTEIN SEQUENCE OF 74-108, VARIANT LEU-108, PHOSPHORYLATION, AND MASS Lebrun I., Lebrun F.L.A.S., Henriques O.B., Carmona A.K., Juliano L., 'A new variant in exon VII of bovine beta-casein gene (CSN2) and its Localization in the peptide chain of bovine beta casein of the His-Identification of a new genetic variant of bovine beta-casein using Characterization of a non-electrophoretic genetic variant of beta-"Biochemical and pharmacological aspects of two bradykinin-potentiating peptides obtained from tryptic hydrolysis of casein."; Gin substitution differentiating the A2 and A3 genetic variants.", C. R. Hebd. Seances Acad. Sci., D, Sci. Nat. $270:2369-2372\,(1970)$. 'Peptic digestion of beta-casein: Time course and fate of possible 'Studies on antioxidative peptides generated in cheddar cheese."; NUCLEOTIDE SEQUENCE [GENOMIC DNA] OF 80-143, AND VARIANT LEU-108. Jann O., Ceriotti G., Caroli A., Erhardt G.; Isolation and characterization of a new bradykinin potentiating reversed-phase high-performance liquid chromatography and mass Schmelzer C.E.H., Schoeps R., Reynell L., Ulbrich-Hofmann R., PROTEIN SEQUENCE OF 113-120, FUNCTION, AND MASS SPECTROMETRY. casein by peptide mapping and mass spectrometric analysis."; PROTEIN SEQUENCE OF 129-136, FUNCTION, AND VARIANT GLN-132 lisser S., Slangen C.J., Lagerwerf F.M., Van Dongen W.D., AGRICOLA=IND22004684; DOI=10.1016/S0958-6946(99)00019-9; eubMed=14714726; DOI=10.1023/B:JOPC.0000008724.98339.ff; PROTEIN SEQUENCE OF 118-124, AND VARIANT A3 GLN-121 PubMed=17720176; DOI=10.1016/j.chroma.2007.08.015; chbMed=7496485; DOI=10.1016/0021-9673(95)00058-U; Gupta A., Mann B., Kumar Bajaj R., Sangwan R.B.; Ribadeau-Dumas B., Grosclaude F., Mercier J.-C.; PROTEIN SEQUENCE OF 125-195 (VARIANTS A1 AND G) contribution among European cattle breeds.". J. Anim. Breed. Genet. 119:65-68(2002). Can. J. Physiol. Pharmacol. 73:85-91(1995). PROTEIN SEQUENCE OF 129-136, AND FUNCTION PROTEIN SEQUENCE OF 160-171 (VARIANT F). Perpetuo E.A., Juliano L., Lebrun I.; J. Chromatogr. A 1166:108-115(2007). dol. Biol. (Mosk.) 19:955-963(1985). Protein Chem. 22:601-606(2003). Submitted (JAN-2008) to UniProtKB. octapeptide from gamma-casein." nt. Dairy J. 8:967-972(1998). Jong C., Ng-Kwai-Hang K.F.; Neubert R.H.H., Raith K.; bioactive peptidés. PubMed=4997616; PubMed=7600458; Camargo A.C.M.; SPECTROMETRY

spectrometric analysis.",


http://apaf-sv-mascot/mascot/cgi/protein_view.pl?file=../data/20130627/F082959.dat&hit=3

http://apaf-sv-mascot/mascot/cgi/protein_view.pl?file=../data/20130627/F082959.dat&hit=3

K K	PIRSE; PIRSF002372	PIRSF002372; ; PS00306; CP	; Beta-casein; 1. CASEIN ALPHA BETA;	in; 1. R BETA; 1.
्रह्म	1: Evidence		protein level;	
×	Antioxidant;	t; Comple	te proteom	ein sequencing;
88	Hypotensive agent; Metalloenz Milk protein; Phosphobrotein;	e agent; l in: Phosp	Metalloenz hoprotein;	Hypotensive agent; Metalloenzyme inhibitor; Metalloprotease inhibitor; Milk profein: Phosphoprotein; Polymorphism; Protease inhibitor;
3	Reference P	proteome;	Secreted;	Signal.
Ę	SIGNAL	e -	15	
Ē- Ē	CHAIN	16	224	Beta-casein. /rrtd=pRO_000004470.
4 <u>F</u> 4 <u>F</u>	PEPTIDE	41	45	Casoparan Caraban 00003031
- <u>[</u> - [PEPTIDE	113	120	t peptide
- F	PEPTIDE	129	136	4 6
Ç- I		ć	C	/FTIG=PRO_UUU3U8464.
- F	MOD RES	32	320	rnosphoserine. Phosphoserine.
٠ <u>-</u>		1 m	. e.	Phosphoserine.
· [H		34	34	
Ę٠		50	50	ariant Al, v
Ę-4	ı			, variant B, variant E,
Ę				, variant G and v
Ę.	VARIANT	33	33	-> K (in variant
Ę٠	VARIANT	40	40	-> C (in variant
Ę- I	VARIANT	51	51	-> K (in variant
Ę+ !	VARIANT	52	52	K (in variant C).
€ → E	VARIANT	85	825	$P \rightarrow P$ (in variants AI, B, C, F and G). I \rightarrow I (in variant U)
- E-	VARTANT	7 00	108	1 \ T.
- E	VARIANT		121	ı
· [-4	VARIANT	32	132	î
Į.	VARIANT		137	-> R (in
Ę	VARIANT	52	152	-> P (in variants A1 and H).
Ę-	VARIANT	53	153	L. (in
E-4	VARIANT	19	191	-> L (in variant F).
E-1 E	VARIANT) y (190	Q -> E (in Variants Al and G).
-4 E-	CONFLICT	0 0	000	-> R (in Ref. 14: ABL
٦ E-	CONFLICT		1.7.5	-> B (in Bef. 14:
- E-	CONFLICT	208	208	-> V (in Ref. 16;
· E-	CONFLICT			E -> EQ (in Ref. 11
- E-4	CONFLICT		10	-> Q (in Ref. 1
E				ucleotide
Ęď	CONFLICT		212	V -> A (in Ref. 15;
α	SEQUENCE	224 AA;	S)	F0BBDD8148A238AE CRC64;
	MKVLILACLV	ALALARELEE		VES LSSSEESITR INKKIEKFQS EEQQQTEDEL
	QDKIHPFAQT HKEMPFPKYP	OSLVYPEPGP VRPFTRSOSI,	SF TENSEPONIF SI, TLTDVENLHI,	PLPLOSWMH OPHOPLPPTV
	COCKVLDVPO			PULCEVRGPF PTIV
	スプラントロルトレス			FVDGEVRGEE

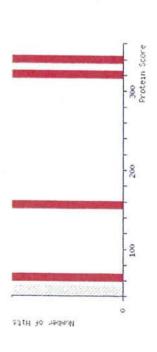
Mascot: http://www.matrixscience.com/

28/06/2013 2:36 PM

\...\04_MS_1.l2d Acquired:

Schwer Mascot Search Results

Submitted from VU-Bovine by Mascot Daemon on APAF-WS-08 |\apaf-hpv-file\projects\External\e_15328_VictoriaUni_FatahAhtesh_20130607\l_MassSpec\QStarElite\Runl\Results\F1.mgf SwissFrot 2013 (539829 sequences; 191670831 residues) CASA1 BOVIN Alpha-S1-casein OS=Bos taurus GN=CSN1S1 PE=1 SV=2 Other mammalia (13034 sequences) 21 Jun 2013 at 03:40:51 GMT Search title MS data file Protein hits Timestamp Database Taxonomy Email.


SwissProt Decov False discovery rate

CASB BOVIN Beta-casein OS=Bos taurus GN=CSN2 PE=1 SV=2
CASAI CAPHI Alpha-S1-casein OS=Capra hircus GN=CSN1S1 PE=1 SV=2
LACB BOVIN Beta-lactoglobulin OS=Bos taurus GN=LGB PE=1 SV=3

	101 1001	1	י מוצר מוצרמורו ז ומנר
Peptide matches above identity threshold	33		0.00 %
Peptide matches above homology or identity threshold	43	-	2.33 %

Mascot Score Histogram

Ions score is -10*Log(P), where P is the probability that the observed match is a random event. Protein scores are derived from ions scores as a non-probabilistic basis for ranking protein hits. Individual ions scores > 54 indicate identity or extensive homology (p<0.01).

Peptide Summary Report

Show Percolator scores Show sub-sets 0 Require bold red Sort unassigned Decreasing Score Standard scoring MudPIT scoring • Ions score or expect cut-off 54 Max. number of hits AUTO Show pop-ups . Suppress pop-ups Significance threshold p< 0.01 Peptide Summary Format As

Error tolerant Archive Report

Search Selected

Select None

Select All

http://apaf-sv-mascov/mascov/egi/master_results.pl?file=../data/20130621/F082906.dat&REPTYPE=pc...

Alpha-S1-casein OS=Bos taurus GN=CSN1S1 PE=1 SV=2 Check to include this hit in error tolerant search or archive teport Query Observed Mr(expt) Mr(calc) ppm Miss Score Expect Rank Unique Peptide Query Observed Mr(expt) Mr(calc) ppm Miss Score Expect Rank Unique Peptide 112 499.7670 997.5195 997.5261 11.50 0 82 1.6e-005 1 F.SDIPNPIGSENS.E. 154 571.7743 1141.5341 1141.5251 7.90 0 82 1.6e-005 1 F.SDIPNPIGSENS.E.T 252 743.8952 1586.7638 1586.7424 13.5 0 60 0.0027 2 U F.SDIPNPIGSENSERT.T. 268 794.3892 1586.7638 1586.7424 13.5 0 60 0.0007 1 U F.SDIPNPIGSENSERT.T. 268 794.3892 173.83243 -4.31 0 68 0.0004 1 U D.IPNPIGSENSERTTMP.L 270 857.915 173.8169 1713.8243 -4.31 0 68 0.0004 1 U S.DIPNPIGSENSERTTMP.L 281 958.9700 1915.9254 1915.8833 22.0 0 (65) 0.00087 1 U F.SDIPNPIGSENSERTTMP.L 282 958.9701 1915.9254 1915.8833 22.0 0 (65) 0.00087 1 U F.SDIPNPIGSENSERTTMP.L 283 968.9701 1915.9254 1915.8833 22.0 0 (65) 0.00087 1 U F.SDIPNPIGSENSERTTMP.L + Oxidation (M) 284 96.9693 1931.9241 1931.8782 23.8 0 94 1.1e-006 1 U F.SDIPNPIGSENSERTTMP.L + Oxidation (M)
SOVIN Mass: 24513 S1-casein OS=Bos Laurus to include this hit in e Observed Mr(expt) M 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
SOVIN Mass: 24513 S1-casein OS=Bos Laurus to include this hit in e Observed Mr(expt) M 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
BOVIN Mass: 24513 S1-casein OS=Bos taurus to include this hit in e Observed Mr(expt) M 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
BOVIN Mass: 24513 S1-casein OS=Bos taurus to include this hit in e 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
BOVIN Mass: 24513 S1-casein OS=Bos taurus to include this hit in e 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
BOVIN Mass: 24513 S1-casein OS=Bos taurus Eo include this hit in e 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 855.9365 1729.8584 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
BOVIN Mass: 24513 S1-casein OS=Bos taurus Ec include this hit in e 499.7670 997.5195 9 571.7743 1141.5341 11 615.2928 1228.5711 12 743.8542 1485.6939 14 794.3892 1586.7638 15 844.9231 1687.8317 16 857.9157 1713.8169 17 915.4428 1828.8711 18 958.9700 1915.9254 19 966.9693 1931.9241 19
CASA1 BOVIN Mass: 24513 Alpha-S1-casein OS=Bos taur Check to include this hit i Query Observed Mr(expt) 112 499.7670 997.5195 154 571.7743 1141.5341 173 615.2928 1228.5711 252 743.89542 1485.6939 268 794.3892 1586.7638 288 794.9231 1687.8317 292 8857.9157 1713.8169 304 865.9365 1729.8584 312 915.4428 1828.8711 319 958.9700 1915.9254
CASA1 BOVIN M Alpha-S1-casein check to include 112 499.7670 112 499.7670 154 571.7743 173 615.2928 252 743.8542 268 794.3892 283 844.9231 292 857.9157 313 915.4428 319 958.9700 320 966,9693
CASA1 Alpha- Check Check 112 112 154 173 255 268 268 268 298 304 313

						dation (M)																L
emPAL: 3.34			Peptide	L. WPFPGPIPN.S	L. GPVRGPFPIIV	E.MPFPKYPVEP.F + Oxidation	T. PVVVPPFLQPE.V	T. DVENLHLPLPL. L	N. SLPQNIPPLTQT. P	T. PUVVPPFLQPEV.M	K. EMPFPKYPVEP. F	A. VPY PORDMPIQ. A	N. IPPLTQTPVVVPP.F	L. TDVENLHLPLPL. L	H. KEMPFPKYPVE. P	W.MHQPHQPLPPTV.M	Y . QEPVLGPVRGPFP . I	N. IPPLTQTPVVVPPF. L	N. IPPLTQTPVVVPPF.L	N. IPPLTQTPVVVPPF.L	Y.QEPVLGPVRGPFPIIV	L. YQEPVLGPVRGPFPIIV
Seguences: I/(I/)			Unique	D	D			D	D	D		n	D	b		D		D	D	D	D	D
nces:		ort	Rank		н	H	H	re	H	Н	H	H	H	H	et	ets	н	н	н	H	н	-
		chive rep	Expect Rank Unique	0.0085	0.0031	0.0046	0.0073	0.0054	0.0048	0.0021	0.00087	0.0072	0.0049	1.16-005	0.0033	0.00011	0.0011	0.0076	0.00057	0.0013	0.00026	0.0068
Matches: 19(19)		or arc	Score	55	59	58	56	57	57	61	65	26	57	84 1	59	74	64	(52)	19	(63)	10	56
tches:		earch	Miss S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ma	SV=2	rant s	wdd	13.9	4.06	19.9	15.5	2.18	11.2	3.12	12.4	1.66	19.8	18.1	23.6	3.84	16.0	4.24	4.24	7.69	7.08	9.54
-4	GN=CSN2 PE=1	in error tolerant search or archive report	Mr (calc)	1099.5702	1150,6863	1219.5947	1220,6805	1258.6921	1307.7085	1319.7489	1332,6424	1342.6703	1356.8017	1359.7398	1363.6846	1380.6972	1391.7561	1503.8701	1503.8701	1503.8701	1716.9927	1880.0560
			Mr (expt)	1099.5856	1150.6910	1219.6190	1220.6994	1258.6949	1307.7232	1319.7531	1332.6589	1342.6726	1356.8285	1359.7644	1363.7167	1380,7026	1391.7784	1503.8765	1503.8765	1503.8817	1717.0048	1880 0740
OVIN	Beta-casein OS-Bos taurus	to include this hit	Observed	550,8001	576.3528	610.8168	611.3570	630.3547	654.8689	660.8838	667.3367	672.3436	679.4215	680.8895	682.8656	691.3586	696.8965	752.9455	752.9455	752.9481	859.5097	047 0443
CASB BOVIN	Beta-c.	Check	Query	136	157	169	170	182	206	208	212	217	223	225	228	233	234	257	258	259	294	010
2.				*		,	7	>	4	*	*	7	>	*	,	>	-	5	,	7	*	1

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082906.dat&REPTYPE=pe...

```
F. SDIPNPIGSENSGKTTMP.L + Oxidation (M)
                                                                                                                                                  F. SDIPNPIGSENSGRITMP. L
                                                                                                                              F. SDIPNPIGSENS.G
                                                                                                        F. SDIPNPIGSEN.S
Matches: 4(4) Sequences: 3(3) emPAI: 0.79
                                                                                                                                                                                                                                                                                                                  emPAI: 0.19
                                                                                        Peptide
                                                                                        Expect Rank Unique
                                                                                                                                                                                                                                                                                                                   Matches: 1(1) Sequences: 1(1)
                                                                                                                                                                                                                                                       Matches: 4(4) Sequences: 3(3)
                                                                                                                                                                                                                                                                                                                                                                Check to include this hit in error tolerant search or archive report
                                              Check to include this hit in error tolerant search or archive report
                                                                                                                                0,0033
                                                                                                                                                  0.00011
                                                                                                                                                                        1.5e-005
                                                                                                           1.6e-005
                                                                                         ppm Miss Score
                                                                                                                                                   (74)
                                                                                                                                                                        83
                                                                                                                                                                                                                                                                           Alpha-SI-casein OS=Bubalus bubalis GN=CSNIS1 PE=2 SV=2
                      Alpha-S1-casein OS=Capra hircus GN=CSN1S1 PE=1 SV=2
                                                                                                                                                                                                                                                                                                                                        Beta-lactoglobulin OS=Bos taurus GN=LGB PE=1 SV=3
                                                                                                                                                      26.6
                                                                                                                                                                        27.1
                                                                                                             7.90
                                                                                                                                                                                                                                    Proteins matching the same set of peptides:
  Score: 160
                                                                                                                                                                                                                                                         Score: 160
                                                                                                                                                                                                                                                                                                                     Score: 64
                                                                                         Mr (calc)
                                                                                                             1141.5251
                                                                                                                                 1228.5571
                                                                                                                                                      1843.8622
                                                                                                                                                                          1859.8571
     Mass: 24274
                                                                                                                                                                                                                                                       Mass: 24311
                                                                                                                                                                        1859.9075
                                                                                                              1141.5341
                                                                                            Mr (expt)
                                                                                                                                   1228.5711
                                                                                                                                                      1843.9112
                                                                                                                                                                                                                                                                                                                     Mass: 19870
                                                                                               Observed
                                                                                                                                                        922.9629
                                                                                                                                                                           930.9610
                                                                                                              571.7743
                                                                                                                                 615.2928
                                                                                                                                                                                                                                                            CASA1 BUBBU
       CASA1 CAPHI
                                                                                                                                                                                                                                                                                                                        LACB BOVIN
          'n
```

Peptide matches not assigned to protein hits: (no details means no match)

Beta-lactoglobulin OS=Bubalus bubalis GN=LGB PE=1 SV=2

Proteins matching the same set of peptides:

Mass: 20010

Y. VEELKPTPEGDL. E

D

Peptide

ppm Miss Score Expect Rank Unique

Mr (calc) 1325.6714

Mr (expt)

Query Observed

663.8492 1325.6838

0.001

0

Sequences: 1(1)

Matches: 1(1)

Score: 64

	W															
							10n (M)									
Peptide	APPMNPLNPLNPLSP + Oxidation	VENLHLPLPL	XVEELKPTPEGDL	SDIPNPIGSE	VPNSAEER	MPFPKYPVEPF	EMPFPKYPVEP + Oxidation	DIKGYGGVSLPE	GPIVLNPWDQ	EPVLGPVRGPFPIIV	KEMPFPKYPVEP	YQEPVLGPVRGPFP	AVPYPORDMPIOA	KEMPFPKYP	TEEEKNR	NIPPLTQTPVVVPPF
Pep	APP	VEN	XVE	SDI	VPN	MPF	EMP	DLK	GPI	EPV	KEM	YOE	AVP	KEM	TEE	NIP
Unique														***		
Rank	r-t	H	Н	н	H	H	Н	Н	H	Н	н	H	н	н	H	H
Expect Rank Unique	99000*0	0.011	0.012	0.012	0.017	0.021	0.025	0.029	0.033	0.046	0.048	0.055	0.066	90.0	0.063	0.071
Miss Score	99	54	23	53	52	21	20	20	49	48	48	47	46	46	46	46
Miss	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
mdd	-30.78	4.64	-0.04	-3.20	13.8	20.3	23.7	13.0	5.45	10.5	-1.26	6.51	13.9	20.9	0.73	-0.16
Mr (calc)	1586.8126	1143.6652	1488.7348	1027.4822	900.4301	1350,6682	1348.6373	1233.6241	1137.5819	1588.9341	1460.7374	1554.8195	1484.7446	1135.5736	904.4250	1617.9131
Mr (expt)	1586,7638	1143.6705	1488.7347	1027.4789	900.4425	1350.6957	1348.6692	1233.6401	1137.5881	1588.9509	1460.7355	1554.8296	1484.7652	1135.5973	904.4256	1617.9128
Observed	794,3892	572.8425	745.3746	514.7467	451.2285	676.3551	675.3419	617.8273	569.8013	795.4827	487.9191	778.4221	743.3899	568.8059	453.2201	809.9637
Query	268	155	255	116	74	221	220	174	152	269	244	266	251	151	77	277
Ö	5	,	>	3	,	5	*	>	>	,	5	>	5	>	5	>

ELNVPGEIVE	VPYPQRDMP	INNOFIPYP	APFPEVFGKEK	NIPPLTQTPVVVPP	DIPNPIGSENSEK	MPFPKYPVEP	KEDVPSER	YQGPIVLNPWDQ	YQGPIVLNPWD	YQEPVLGPV	AVPYPQRDMP	VPEVTQGIPLV	ELKPTPEGDLEIL	KEMPFPKYPVEP + Oxidation (M)	YVEELKPTPE	EPVLGPVRGPFPIIV	AVPYPORDMPIQ + Oxidation (M)	KSLVGKGILVQT	SKVLPVPQ	FLKVLNNMEI + Oxidation (M)	APEPEVEGK	GPVRGPFP	ETEGIMVHPNQ	EPVLGPVRGPFP	GKEKVNE	OTPWWPPF	PVHESLSIENTLWASTVV	YMLPPGLH	AVPYPORDMPIQ	MINTMML + Oxidation (M)	LVIPMENP	ODKTEIPTINT	FVEESSM + Oxidation (M)	MYAARNGHPQVVALLV	FVAPFPEV	GPVRGPFPII	VPKHKEMP + Oxidation (M)	QEPVLGPVRGPF	GPVRGPFPI	MTQVVLRGGGFLPM + Oxidation (M)	INHALKE	EILLKGPDWIL	PISMVLPQVIGYRLV + Oxidation (M)	IIDNFNQQKKKLGGQD
н.	1	7	1	н	1	1	+	1	1	н	1	1	1	1	1	1	1	г	1	1	1	1	1	1	1	H	1	1	1	н	H	т.	-	H	-	H	-	-	1	-	г	-	Т	H
690.0	0.1	0.11	0.12	0.14	0.15	0.16	0.16	0.18	0.21	0.22	0.23	0.23	0.25	0.3	0.3	0.33	0.33	0.39	0.35	0.41	0.45	0.54	99.0	69.0	0.72	99.0	6.0	0.98	1.2	1.3	1.3	1.6	2.1	2.5	2.1	2.3	2.6	2.8	2.4	3.2	2.1	m	3.3	3.8
46	44	44	43	43	43	42	42	42	41	41	41	40	40	40	39	39	39	38	38	38	38	36	36	36	36	35	35	34	34	33	32	32	31	31	31	30	30	30	30	30	29	53	53	29
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
9.26	11.3	3.55	-3.55	24.2	8.41	4.55	8.52	11.4	-0.43	10.3	11.1	7.35	10.3	4.69	. 2.49	20.6	24.5	-125.72	-9.85	-41.89	5.94	2.08	48.3	18.4	-2.80	16.5	82.0	1.00	9.10	102	-78.44	-2.09	20.9	-1.52	9.44	8.55	-109.10	14.3	8.86	8.98	159	-88.26	6.07	-216.51
1097.5604	1101.5277	1104.5604	1247.6550	1470.8446	1398.6627	1203.5998	958.4720	1428.7038	1300.6452	1000.5229	1172.5648	1150.6598	1452.7711	1476.7323	1203.6023	1588.9341	1429.7024	1241.7707	866.5226	1235.6584	990.5175	825.4497	1253.5710	1263.6976	802.4185	982.5488	1981.0157	926.4684	1413.7075	882.4377	895.5201	1258.6405	843.3320	1737.9348	904.4695	1051.6179	980.5113	1294.7034	938.5338	1520.7844	823.4552	1295.7489	1699,9695	1844.9744
1097.5706	1101.5402	1104.5643	1247.6506	1470.8802	1398.6744	1203.6053	958,4801	1428.7201	1300,6446	1000.5332	1172,5779	1150.6682	1452.7862	1476.7392	1203.6053	1588.9669	1429.7374	1241.6146	866.5140	1235.6066	990.5234	825.4515	1253.6316	1263.7208	802.4162	982.5650	1981.1782	926.4693	1413.7203	882.5274	895.4499	1258.6379	843.3497	1737.9322	904.4780	1051.6269	980.4044	1294.7220	938.5421	1520.9163	823.5861	1295,6345	1699.9798	1844.5750
549.7926	551.7774	553.2894	416.8908	736.4474	700.3445	602.8099	480.2473	715.3673	651,3296	501.2739	587.2962	576.3414	727.4004	493.2537	602.8099	795.4907	715.8760	621.8146	434.2643	618.8106	496.2690	413,7330	627.8231	632.8677	402.2154	492.2898	661.4000	464.2419	707.8674	442.2710	448.7322	630.3262	422.6821	580.3180	453.2463	526.8207	491.2095	648.3683	470.2783	761.4654	412.8003	432.8855	850.9972	462.1510
134	137	138	177	247	237	163	93	239	204	114	1.60	156	242	248	162	270	240	176	64	175	110	39	180	184	11	109	324	82	238	69	. 72	181	47	305	7.8	120	96	197	84	262	36	199	286	315

																						(M)																							
	NSEDCEIVSARSSEMNVL + Oxidation (M)	LYQEPULGPV	TPWWDPF	TVIIIMNHG	HAQSVICLRWGGDGLL	YQEPULGPUR	IEPLIPK	APFPEVFGKE	DKTEIPTINT	EPVLGPVRGPF	DEKMGGEDDE + Oxidation (M)	FSPVGMGHLHVT + Oxidation (M)	GKEKVNE	DMNDLDE + Oxidation (M)	APEPEVE	TEQESGASP	IDLRGPPGPPGPP	GDMMTLLMKKDTLT + 2 Oxidation (M)	QEPVLGPVRGPFPIIV	MKFLCILLLA + Oxidation (M)	EDVPNEE	GALKIKEITYMHSEGILAGELKHGP + Oxidation	QGEKVSR	DEEEMLYGDSGS	YPFPGPIPN	KMVREANMKQA + Oxidation (M)	KNIQQLIEL	KPYPMEPMV + Oxidation (M)	DIGGMENP	DCLEVVDVHTCKAP	DKESSFP	PFSGMLHMGQP + Oxidation (M)	DIFGDLRKMNKRQ + Oxidation (M)	SLINAGGVQPT	QPTCSTSSTCQATCVPV	DVPSERYLGYLE	VPEIMPEL + Oxidation (M)	KEMPFPKYPVEPF	QGEKVSR	ETSHRRGPEKRSVIDV	YIISCHPVGIDEEPLO	VPDPQAQNL	MHQPHQPLPPT	LPPTVMFPPQS	KSMGLPTSDEQKKQE
539	- 5	H	٦	-	e	н	1	H	1	Н	-	ed	H	H	-1	-1	Н	1	Н	Н	Н	H	Н	Н	H	H	П	H	rel	rl	-1	-	-1	Н	7	H	H	н	н	-1	Н	٦	7	ref	н
	9 9	3.1	2.9	3.2	3.6	3.5	2.3	3.7	4.1	4.1	4	4.3	4.4	3.7	5.3	5.3	5.5	5.3	6.2	6.3	6.7	10	6.9	7.3	6.9	7.1	7	7.2	7.6	7.8	9.9	8.3	0	8.3	9.4	9.1	9.5	10	6.4	11	11	6.6	10	11	13
0	67	29	29	29	29	52	29	28	28	28	28	28	28	28	27	27	27	27	27	26	26	26	26	26	26	26	26	25	25	25	25	25	25	25	25	25	24	24	24	24	24	24	24	24	24
	3 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	-30.16	4.84	-7.84	-38.12	-160.96	17.5	118	6.97	14.8	10.4	173	193	1.93	151	0.41	40.0	-58.44	-252.61	7.08	-166.71	61.9	-75.10	-35.73	130	5.99	91.8	-63.21	44.6	95.7	6.57	15.8	94.3	-64.07	-58.63	-88.03	2.39	-52.89	14.3	-21.54	-115.73	-1.95	-73.00	6.52	6.48	275
0000	1953.9023	1113.6070	854.4902	996.5426	1711.8464	1156.6241	808.5058	1119.5601	1130.5819	1166.6448	1139,3925	1296.6285	802.4185	866.2964	805.4010	904.3774	1268.6877	1628.7823	1716.9927	1179.6759	830.3294	2707.4367	802.4297	1330.4871	1000.5018	1320.6642	1097.6444	1106,5140	886.3821	1527.7062	808.3603	1216.5369	1635.8515	1126.5982	1711.7216	1439.6932	942.4732	1607.8058	802.4297	1864.9867	1811.8764	980.4927	1281.6288	1212.6213	1704,8352
	1953.8434	1113.6124	854.4835	996.5046	1711.5709	1156.6442	808,6015	1119.5679	1130.5987	1166,6569	1139.5896	1296.8782	802.4200	866.4273	805.4014	904.4136	1268.6136	1628.3709	1717.0048	1179.4793	830.3808	2707.2334	802.4010	1330.6607	1000.5078	1320.7854	1097.5750	1106.5634	886.4669	1527.7162	808.3730	1216.6516	1635.7467	1126.5322	1711.5709	1439.6967	942.4234	1607.8287	802.4124	1864.7709	1811.8728	980.4211	1281.6372	1212.6292	1705.3045
-	652.2884	557.8135	428.2490	499.2596	428.9000	579.3294	405.3081	560.7912	566.3066	584.3357	570,8021	433.3000	402.2173	434,2209	403.7080	453.2141	635.3141	408.1000	859.5097	590.7469	416.1977	903.4184	402.2078	666.3376	501.2612	661.4000	549.7948	554.2890	444.2407	764.8654	405.1938	609.3331	818.8806	564.2734	428.9000	720.8556	472.2190	536.9502	402.2135	467.2000	604.9649	491.2178	428.2197	607.3219	853.6595
6	322	141	20	1111	290	158	32	145	150	159	153	203	12	62	27	76	185	279	293	161	41	332	1-1	211	113	209	135	139	70	264	31	168	280	148	289	241	86	274	01	317	312	107	188	166	88

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082906.dat&REPTYPE=pe...

LARTIEYLOPNPASR	FLFPEFEI	GVSPVIAAIDKSSSME + Oxidation (M)	OTOLLFGAVELP	TLKDIFKDLNVGVVD	QDTDINME + Oxidation (M)	CLKVKEMD + Oxidation (M)	VVRPTPCLP	PGPQGIGGQRGVVGLP	VPREPVER	SSALEDNCKTFSTTLP	ENWGSDFLCPE	RNSGNHCGIASYP	APEICQEHSGIL	TLMTLNVGGY + Oxidation (M)	DIMKMLL + Oxidation (M)	RNSGNHCGIASYP	TINISPNIMVPPGGHVEPD	PNKEAAAGSSDLDPSMM	DKIAKYIPIQY	QELTINISSVALP	PMLEMAVP + Oxidation (M)	RKRKRIRN	RILLHPAIFGLHHM	LVYPFPGFIPN	VIINSGSDMVEAE + Oxidation (M)	VPAQPGQTSP	VVACAVIE	GDMAEIMGVQDQHM + 3 Oxidation (M)	YPCLSPKSDQMMEKNKGLRTKR + 2 Oxidation (M)	EYAMMVSMGA + 2 Oxidation (M)	NNFSGNSLPEYP	LCDCTVLV	ARITAIVSVMVILIS	MDMLFPGSIALKKV + Oxidation (M)	HRNIAYDEGFIIRHFAGAVCYETTQFVEKN	NDTELVACIRTRPAQD	VPINLPESL	LEPEQSTSNLNEKI	RLDSQNA	NEAKDSVNPGVLV	PESACVPE	CLRGMDY + Oxidation (M)	TAALQAASL	VSMSMAPL + 2 Oxidation (M)
H	H	rd	1	H	н	H	H	H	-	-	H	H	н	н	н	н	H.	н	н	1	H	1	7	=	-1	-1	-	1	H	н	н	н	٦	н	H	г	-1	п	-	-	н	H	Н	н
13	11	12	12	1.4	12	12	13	14	. 13	16	14	15	15	14	14	16	17	11	16	17	14	16	19	18	18	18	18	16	35	13	18	18	20	20	51	22	13	22	22	16	23	24	25	20
24	24	24	24	23	23	23	23	23	23	23	23	23	23	23	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21	21	21	21	21	21	21	21	21	21	21	20	20
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-242 KK	4 22	41.0	-62.30	-80.35	42.1	-51.14	-137.67	17.1	-138.66	-266.75	93.9	90.06	75.2	9.94	-3.15	105	35.3	-100.86	18.2	3.80	-213.13	-167.19	-0.22	2.33	144	-81.57	4.64	-156.00	97.3	128	81.5	205	-264.17	4.91	-151.24	-6.13	-161.40	0.69	47.5	250	76.7	94.1	-31.11	100
1727 0318	1040.5219	1605.7920	1314.7184	1674.9192	980.3757	980.4671	980.5477	1487.8209	980.5403	1712.7927	1295.5128	1374.6099	1283.5816	1083.5271	878.4605	1374.6099	2041.0269	1719.7444	1350.7547	1345.6911	902.4241	1125.7319	1754.9766	1212.6543	1378.6286	980.4927	802.4259	1608.6218	2641.3138	1120.4239	1337.5888	864.4085	1597,0000	1564.8357	3527.7044	1800.8788	980.5542	1600.7944	802.3933	1358.7194	830.3480	872,3521	844.4654	866.3878
1013 1011	1040 5263	1605.8578	1314.6364	1674.7847	980.4169	980,4169	980.4127	1487.8464	980.4044	1712.3358	1295.6345	1374.7344	1283.6782	1083.6100	878.4578	1374.7543	2041.0989	1719.5709	1350.7793	1345.6962	902,2318	1125.5437	1754.9762	1212.6571	1378.8277	980.4127	802.4655	1608.3709	2641.5709	1120.5672	1337.6978	864.5854	1596.5782	1564.8434	3527,1709	1800.8678	980.3960	1600.9049	802.4314	1359.0585	830.4117	872.4342	844,4391	866.4746
2200	432.8833	803.9362	658.3255	838.3996	491.2157	491,2157	491.2136	744.9305	491.2095	429 0912	432.8855	688.3745	428.9000	542.8123	440.2362	688.3844	1021.5567	430.9000	676.3969	673.8554	452.1232	563.7791	585.9994	607.3358	690.4211	491.2136	402.2400	403,1000	661.4000	561.2909	669.8562	433.3000	533.2000	783.4290	882.8000	601.2965	491.2053	801.4597	402.2230	680.5365	416.2131	437.2244	423.2268	434.2446
000	1 10	273	207	2000	101	103	00	25.4	47	160	198	229	189	133	67	230		297	222	219	75	147	307	167	232	100	25	275	330	146	216	61	271	267	336	311	95	272	17	224	42	65	18	63

	+ Oxidation	CNMSFTSAVVADSH + Oxidation (M)	VVFSHLSAGNS	PAKFRGQ	LVEXINEW	YLLKMAA + Oxidation (M)	CLNNITNRTAKGQKE	CLRGMDY + Oxidation (M)	RSMFIRGEEILT + Oxidation (M)	IAMTPPNATEASKPQGT + Oxidation (M)	LIDLPDNPPASL	SVLIVSSVGAYHPFPNLGPYNVSKT	ASVIALEL	QSRAVGW	MEQCNVFP	MLAGGGLKVRLLKKALEK + Oxidation (M)	HNDHASTPLLPTP	VSVEHVAEMLRTI + Oxidation (M)	AVMYGGGPIS	NAMDVVVQFAI + Oxidation (M)	VPRNLVGKV	VPDPILLTN	YNIDYITSSIN	QTMSFCIPTEYM + Oxidation (M)	WGAAAVGLG	AAAVGAMEDKS + Oxidation (M)	FVVYTLLPFSMWGAV	MILVGCKSD + Oxidation (M)	KDPETQETVLM	LAMHYTADTSTA + Oxidation (M)	LFPTTGPGCEDEP	GAKLOPLD	RLAPRIGI	FQDTTMIMIGMVSFGSGALLLA + Oxidation (M)	IIVKSSPTP	LNPAGILK	LFVQYETSVNTSRN	MKFPMSHLRK + Oxidation (M)	OPMEVSV + Oxidation (M)	QGEKVSR	IGNKVNIFSRQLV	DENLILS	LLVHPVTDSE	LPLIIMHPRPSNEAAS	APQLPVGIS	
,	el o	н	н	7	Н	1	7	7	-1	1	7	1	1	н	н	Н	Н	7	H	ri	٦	H	Н	rl	г	1	ч	1	н	-	7	r	Н	1	ed	-	H	H	н	-	T	-	н	н	н	
	46	46	47	46	42	37	55	49	48	51	48	63	20	51	48	56	54	53	52	38	55	56	58	09	57	55	64	53	62	19	62	23	54	11	09	51	99	99	45	19	52	89	65	75	62	
	18	18	18	18	18	1.8	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	-72.30	83.5	-57.71	-12.18	-174.42	-41.06	275	108	-7.05	-37.22	-32.17	-2.71	-68.20	23.7	-37.53	-11.85	-79.36	-56.00	52.4	-268.66	-195.77	-135.76	6.83	37.5	-5.09	-89.58	-71.76	-51.15	47.2	69.6	69.5	-56.26	-80.52	-52.74	-145,81	56.9	-17.04	-28.81	-227.89	2.10	193	20.7	-19.01	6.99	-38.85	
	1523.7687	1483.6072	1116.5564	802.4450	1064.5178	824.4466	1688.8628	872.3521	1466.7551	1728.8352	1263.6711	2645.3853	814.4800	802.4086	950.4354	1940.1968	1398.6892	1498.7814	950.4532	1221.6064	1819.086	980,5542	1301,6139	1465.5928	800.4181	1064,4808	1728.8950	980.4671	1289.6173	1296,5656	1361.5809	840.4705	894.5763	2318.1361	940.5593	824.5120	1656.8107	1289.6736	804.3688	802.4297	1486.8620	802.4072	1108.5764	1716.9232	880,5018	
	1523,6586	1483.7310	1116.4920	802.4352	1064,3322	824.4127	1689.3279	872.4460	1466.7448	1728.7709	1263.6304	2645.3782	814.4244	802.4276	950.3997	1940.1738	1398.5782	1498.6974	950.5029	1221.2782	980.4211	980.4211	1301.6228	1465.6478	800.4140	1064.3854	1728.7709	980.4169	1289.6782	1296.5782	1361.6756	840.4232	894.5043	2318.0138	940.4222	824.5589	1656.7825	1289.6365	804.1854	802.4314	1487.1494	802.4238	1108.5554	1717.0381	880.4676	
	508.8935	495.5843	559.2533	402.2249	533.1734	413.2136	845.6712	437.2303	734.3797	433.2000	422.2174	882.8000	408,2195	402.2211	476.2071	486.0507	467.2000	500.5731	476.2587	408.1000	491.2178	491.2178	434.8815	733.8312	401.2143	533.2000	433.2000	491.2157	430.9000	433.2000	681.8451	421.2189	448.2594	773.6785	471.2184	413.2867	829.3985	430.8861	403.1000	402.2230	744.5820	402.2192	555.2850	859,5263	441.2411	
	263	249	142	23	126	37	284	99	246	301	183	331	35	16	88	321	236	256	.61		106	108			9	132	302		194		226	44			85							13		. 562	89	ĵ.

пополого по	
0 16 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	PISPTPVP
0 16 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	
0 16 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	02 1
	1.50+002
	12
21.2 11.8 11.8 11.9	0 0
	-159.24
1533 8014 864 4453 1248 6271 1289 5412 802 3933 1484 6929 1335 6857 1007 4574 802 3933 1064 6342 1295 5486 1116 4724 802 2981 798 3074 1690 7587 1004 4546 910 4695 9104 4546 9104 4546 9104 4546 9104 4535 980 4637 980 3851 1342 8118 840 4130 806 3480 1740 9192 8863 4939 840 5685 1721 8947 3222 5855 1719 9155 1719 9155 1719 9155 1718 9158 1718 9158	802.4953
1533.8338 864.2839 864.2839 802.4086 1007.4880 802.4238 1004.2958 1007.4288 802.4124 1007.4288 802.4124 1007.438 1007.334 1008.3334 1008.3389	802.4238
767.9242 433.1492 625.3320 430.8900 402.2116 743.1552 446.2508 846.3866 523.3870 426.2135 400.1936 846.3866 523.3870 456.2137 401.2178 476.2071 489.2762 614.3217 614.3217 640.2306 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 446.2508 672.2377 672.2375 672.2377 672.2375 672.2375 672.2377 672.2375 672.2377 672.2375 672.2377 673.8815 674.2377	404.1700
265 286 192 192 192 192 192 193 193 193 193 193 193 193 193	28

http://apaf-sv-mascot/mascot/cgi/master_results.pl?file=../data/20130621/F082906.dat&REPTYPE=pe...

	(M) uo		(M) u	(M)		(M)	(W)	Œ			Œ						
	+ Oxidati		+ Oxidatio	+ Oxidatio		Oxidation	Oxidation	Oxidation			Oxidation						
AVCAINEA	TRSLSMCLLLQ + Oxidation	MDLSVETL	ITMNGQVIAC + Oxidation (M)	MENKMSFIVH + Oxidation (M)	AIAQVHAEN	IGNQINMEL + Oxidation (M)	LMSMSASS + Oxidation (M)	LIKLVMAG + Oxidation (M)	RAVCGEDDS	DAREPII	GGGQALMSP + Oxidation (M)	IIISSSIK	KALQGLRA	LLVAAFNL			
-	-		1	H	н	н	-	7	rd	н	н	1	1	1			
20	1.90+002	2e+002	2.16+002	2.20+002	2.20+002	2.50+002	2.70+002	23	2.74+002	1.7e+002	3e+002	14	10+002	1.40+002			
77	11	11	11	11	10	10	10	10	10	10	on	7	4	4			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
-286.10	-71.00	-22.46	-157.15	12.7	-60.53	-179.94	10.1	281	33.3	-297.64	86.7	288	300	280			
814.4185	1279.6628	906.4368	1064.4995	1250.5788	951.4774	1064.5325	828.3357	859,5201	950.3764	812.4392	832,3749	859,5378	855.5290	859.5167			
814.1854	1279.5720	906,4165	1064.3322	1250.5947	951.4198	1064.3409	828.3441	859.7616	950.4080	812.1974	832.4471	859.7854	855.7854	859.7577	445.1096	445.1136	445.1136
408.1000	640.7933	454.2155	533.1734	626.3046	476.7172	533.1777	415.1793	430.8881	476.2113	407.1060	417.2308	430.9000	428,9000	430,8861	446.1169	446.1209	446 1209

Search Parameters

Type of search Enzyme	MS/MS Ion Search None
Variable modifications	Oxidation (M)
Mass values	Monoisotopic
Protein Mass	Unrestricted
Peptide Mass Tolerance	# 300 ppm
Fragment Mass Tolerance:	± 0.6 Da
Max Missed Cleavages	1
Instrument type	ESI-QUAD-TOF
Number of queries	336

Mascot: http://www.matrixscience.com/

APPENDIX-III Animal Ethics

MEMO

TO

A/Professor Michael Mathai

HES School of Biomedical and Health Sciences

DATE

19 July 2013

St Albans Campus Victoria University

FROM

A/Prof Alan Hayes

Deputy Chair

Victoria University AEEC

SUBJECT

Ethics Application AEETH 09/12

Dear Michael

AEETH 09/12

Assessment of antihypertensive activity of fermented milk peptides

(AEEC 12/52)

The revised application was assessed and the Executive Committee resolved to approve the application between 19th July 2013 and 19th July 2015.

Continued approval of the project is conditional upon the following:

- Any variation proposed to the project, and the reasons for that change, must be submitted to the AEEC for approval and must not be implemented until approval is granted.
- Annual and Final Reports should be supplied promptly to the Secretary of the AEEC.
- The project should only be conducted in approved premises nominated on the Licence SPPL 77. Use of other premises would constitute a variation and relevant details are to be notified to the AEEC for approval as "field work".
- The AEEC must be notified in writing of:
 - · Any changes to the following approved personnel listed on the application
 - · Any unexpected incidents or complications that result in deaths, euthanasia or pain and suffering for the animals used in the project. Details of the steps taken to deal with adverse incidents must be included in the notification.
- Should the numbers of animals treated exceed that estimated for the first year of the ethics application, the primary investigator should submit a request for a minor amendment to update the numbers accordingly.

On behalf of the Committee, I wish you all the best for the conduct of the project.

If you have any further queries, please do not hesitate to contact me.

Kind Regards,

A/Professor Alan Hayes Deputy Chair, Animal Experimentation Ethics Committee

Victoria University

Project Title: Assessment of antihypertensive activity of fermented

Clinical Animal Monitoring Sheet AEETH No. 09/12 milk peptides

Animal Species:

Strain:

Sex:

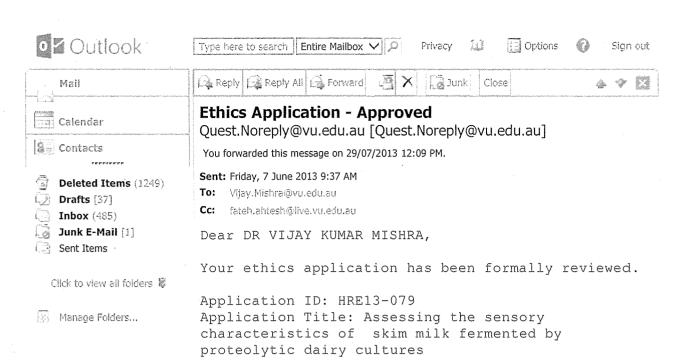
Age:

Office: +61 3 99192211 Mobile: 0414718748 Office AND Mobile: 0469808940 Phone number(s) Michael Mathai Name **Emergency Contacts** Other Primary contacts Chief Investigator

Each animal will be examined and observed for abnormalities daily. As they are in a shared cage there will be a general check for food and water consumption by weighing the food and water. We do not expect these animals to become unwell on the proposed diets. A weekly body weight and measurement of blood pressure will be performed. Animals will also be given plastic tubes and shredded paper for nest-building and cardboard boxes for enrichment.

Observations will be recorded in the table below. Normal clinical signs are recorded as 0 Abnormalities are recorded as a number reflecting the score given see clinical signs severity score below

Intervention Points and Humane endpoints


Clinical symptoms	Action
Intervention Points: Symptoms requiring increased observation OR treatment OR removal from study.	We will indicate on check list if animal is considered Normal or Abnormal by writing, 0 or the score if an abnormality is detected Additionally, comments will be included for any abnormal results and the actions that were taken (e.g. Stopping procedure on animal). Both the cumulative and single score is considered and the intervention relates to the highest score (a single score of 2 or 3 will override a cumulative score of 1-3
Single score 1	Single score 1 Place in a separate box – weigh, review and rescore twice daily. Supportive care such as jelly/mash to be provided Monitor food and water consumption by weighing daily the food and water – this will be compared with the known expected food and water consumption based on other animals within the study as food and water is weighed daily for
Single score 2	each box of animals. If the animal deteriorates it will be euthanased. If the animal improves and no longer requires individual monitoring it will be returned to group housing. Single score 2 Place in a separate box —review and rescore every hour. Weigh twice

Cumulative score 1-3	daily. Supportive care such as jelly/mash to be provided Monitor Tood and water consumption by weighing daily the food and water – this will be compared with the known expected food and water consumption based on other animals within the study as food and water is weighed daily for each box of animals. If the animal deteriorates it will be euthanased. If the animal fails to show improvement after 24 hours it will be be euthanased.
Cumulative score 3-8	Cumulative score 1-3 Place in a separate box – weigh, review and rescore twice daily. Supportive care such as jelly/mash to be provided Monitor food and water consumption by weighing daily the food and water – this will be compared with the known expected food and water consumption based on other animals within the study as food and water is weighed daily for each box of animals. If the animal deteriorates it will be euthanased. If the animal improves and no longer requires individual monitoring it will be returned to group housing.
	Cumulative score 3-8
	Place in a separate box –review and rescore every hour day. Supportive care such as jelly/mash to be provided Weigh twice daily. Monitor food and water consumption by weighing daily the food and water – this will be compared with the known expected food and water consumption based on other animals within the study as food and water is weighed daily for each box of animals. If the animal deteriorates it will be euthanased. If the animal fails to show improvement after 24 hours it will be be euthanased
Humane Endpoints:	animal will be immediately euthanased
Single score 3 Single score 2 for >24 hrs	Anaesthetic overdose with I.P. Pentabarbitone (100 mg/kg) followed by cardiac puncture.
Cumulative score greater than or equal to 9	

Rat Box#	Groups	Starting Weight: V	Week No.	Week No.	
Rat#			Date	Date	
		Λ	Weight	Weight	
Dail	Daily Check	Date			
Clinical Ob Signs	servation Scor	Clinical Observation Score General Clinical Signs			
Coat -,					
Activity -					
Breathing -					
Movement/gait -	/gait -				
Eating & Drinking	inking				
Alertness-					
Body weight loss-	t loss-				
Diarrhoea					
CLINICAL	SIGNS SEVE	CLINICAL SIGNS SEVERITY SCORE			
SIGNS	0	0 - Normal	1 minor change from normal	2 moderate change from normal	3 severe – immediate euthanasia
Coat	N	Normal Smooth Clean	Coat rough	Unkempt; wounds, hair thinning	Severe Hair loss, Bleeding, Infected Wounds
Activity	N	Normal Movement & Response	Isolated, abnormal posture	Huddled/inactive or overactive	Moribund or fitting
Breathing	N	Normal Easy, unhindered	Rapid and shallow	Rapid, abdominal breathing, Noisy	Laboured, irregular, skin blue
Movement/gait		Normal, free to move, stretch	Abnormal gait, limited stretch.	Limited movement, Unable to stretch	Immobile

Eating & Drinking-Water	Diet may result in altered Food	Increased or decreased intake	Increased or decreased intake over 48	Constantly drinking or not drinking over
and food consumption weighed Daily	Consumption	over 24 hrs	hrs	24 nouis, onese of it appetence
Alertness	Normal Eyes Bright, Observant	dull or depressed	Little response to handling	unconscious
Body weight loss –	Normal weight/growth rate			
referenced to highest	-	Less than 10%	10-15%	Greater than 15%
recoded weight				
Diarrhoea	Normal Formed Dry Faeces	Soft, moist faeces	unformed, prolonged over 3days	Liquid with or without blood

APPENDIX-IV Human Ethics

The application has been accepted and deemed to meet the requirements of the National Health and Medical Research Council (NHMRC) 'National Statement on Ethical Conduct in Human Research (2007)' by the Victoria University Human Research Ethics Committee. Approval has been granted for two (2) years from the approval date; 07/06/2013.

Continued approval of this research project by the Victoria University Human Research Ethics Committee (VUHREC) is conditional upon the provision of a report within 12 months of the above approval date or upon the completion of the project (if earlier). A report proforma may be downloaded from the Office for Research website at: http://research.vu.edu.au/hrec.php.

Please note that the Human Research Ethics Committee must be informed of the following: any changes to the approved research protocol, project timelines, any serious events or adverse and/or unforeseen events that may affect continued ethical acceptability of the project. In these unlikely events, researchers must immediately cease all data collection until the Committee has approved the changes. Researchers are also reminded of the need to notify the approving HREC of changes to personnel in research projects via a request for a minor amendment. It should also be noted that it is the Chief Investigators' responsibility to ensure the research project is conducted in line with the recommendations outlined in the National Health and Medical Research Council

On behalf of the Committee, I wish you all the best for the conduct of the project.

(NHMRC) 'National Statement on Ethical Conduct in

Human Research (2007).'