Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres

Full text for this resource is not available from the Research Repository.

Pape, Paul C, Fénelon, Karine, Lamboley, Cedric ORCID: 0000-0002-4008-4929 and Stachura, Dorothy (2007) Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres. Journal of Physiology, 581 (1). pp. 319-367. ISSN 0022-3751

Abstract

Calsequestrin is a large-capacity Ca-binding protein located in the terminal cisternae of sarcoplasmic reticulum (SR) suggesting a role as a buffer of the concentration of free Ca in the SR ([Ca2+]SR) serving to maintain the driving force for SR Ca2+ release. Essentially all of the functional studies on calsequestrin to date have been carried out on purified calsequestrin or on disrupted muscle preparations such as terminal cisternae vesicles. To obtain information about calsequestrin's properties during physiological SR Ca2+ release, experiments were carried out on frog cut skeletal muscle fibres using two optical methods. One – the EGTA–phenol red method – monitored the content of total Ca in the SR ([CaT]SR) and the other used the low affinity Ca indicator tetramethylmurexide (TMX) to monitor the concentration of free Ca in the SR. Both methods relied on a large concentration of the Ca buffer EGTA (20 mm), in the latter case to greatly reduce the increase in myoplasmic [Ca2+] caused by SR Ca2+ release thereby almost eliminating the myoplasmic component of the TMX signal. By releasing almost all of the SR Ca, these optical signals provided information about [CaT]SR versus [Ca2+]SR as [Ca2+]SR varied from its resting level ([Ca2+]SR,R) to near zero. Since almost all of the Ca in the SR is bound to calsequestrin, this information closely resembles the binding curve of the Ca–calsequestrin reaction. Calcium binding to calsequestrin was found to be cooperative (estimated Hill coefficient = 2.95) and to have a very high capacity (at the start of Ca2+ release, 23 times more Ca was estimated to initiate from calsequestrin as opposed to the pool of free Ca in the SR). The latter result contrasts with an earlier report that only ∼25% of released Ca2+ comes from calsequestrin and ∼75% comes from the free pool. The value of [Ca2+]SR,R was close to the KD for calsequestrin, which has a value near 1 mm in in vitro studies. Other evidence indicates that [Ca2+]SR,R is near 1 mm in cut fibres. These results along with the known rapid kinetics of the Ca–calsequestrin binding reaction indicate that calsequestrin's properties are optimized to buffer [Ca2+]SR during rapid, physiological SR Ca2+ release. Although the results do not entirely rule out a more active role in the excitation–contraction coupling process, they do indicate that passive buffering of [Ca2+]SR is a very important function of calsequestrin.

Additional Information

Online ISSN: 1469-7793

Item type Article
URI http://vuir.vu.edu.au/id/eprint/8039
Identification Number https://doi.org/10.1113/jphysiol.2006.126474
Official URL http://dx.doi.org/10.1113/jphysiol.2006.126474
Subjects Current > FOR Classification > 0601 Biochemistry and Cell Biology
Current > FOR Classification > 0606 Physiology
Historical > Faculty/School/Research Centre/Department > Institute of Sport, Exercise and Active Living (ISEAL)
Keywords ResPubID22084, ResPubID22281. proteins, calsequestrin, frogs, muscle fibres, muscles, calcium concentration
Citations in Scopus 25 - View on Scopus
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login