

Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance

This is the Accepted version of the following publication

Cust, Emily, Sweeting, Alice, Ball, Kevin and Robertson, Samuel (2019) Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance. Journal of Sports Sciences, 37 (5). pp. 568-600. ISSN 0264-0414 (In Press)

The publisher's official version can be found at https://www.tandfonline.com/doi/full/10.1080/02640414.2018.1521769 Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/37960/

Journal of Sports Sciences

Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance --Manuscript Draft--

Full Title:	Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance
Manuscript Number:	RJSP-2018-0332R2
Article Type:	Original Manuscript
Keywords:	Sport movement classification; inertial sensors; computer vision; Machine learning; performance analysis.
Abstract:	Objective assessment of an athlete's performance is of importance in elite sports to facilitate detailed analysis. The implementation of automated detection and recognition of sport-specific movements overcomes the limitations associated with manual performance analysis methods. The object of this study was to systematically review the literature on machine and deep learning for sport-specific movement recognition using inertial measurement unit (IMU) and, or computer vision data inputs. A search of multiple databases was undertaken. Included studies must have investigated a sport-specific movement and analysed via machine or deep learning methods for model development. A total of 52 studies met the inclusion and exclusion criteria. Data pre-processing, processing, model development and evaluation methods varied across the studies. Model development for movement recognition were predominantly undertaken using supervised classification approaches. A kernel form of the Support Vector Machine algorithm was used in 53% of IMU and 50% of vision-based studies. Twelve studies used a deep learning method as a form of Convolutional Neural Network algorithm and one study also adopted a Long Short Term Memory architecture in their model. The adaptation of experimental set-up, data pre-processing, and model development methods are best considered in relation to the characteristics of the targeted sports movement(s).
Order of Authors:	Emily Elizabeth Cust
	Alice J Sweeting
	Kevin Ball
	Sam Robertson
Response to Reviewers:	Sam Robertson The authorship team have read and responded to the comments of reviewer #3. The red coloured text in the revised manuscript highlights the new alterations and additions. Reviewer #1: The authors replied to my previous comments in a satisfactory way, then, I would approve the publication of this systematic review. Author's response: The authorship team thank Reviewer #1 for their previous constructive comments. Reviewer #3: I think two important datasets are missing here. oThe Volleyball dataset proposed by [1]. This dataset is for group activity recognition in sport footage. I think most of the team sport datasets contains multiple people, so group activity recognition is an important task in the team sport analysis. oNCAA Basketball dataset, this is a multi-person action video dataset in team sport context. [5] Author's response: We thank the reviewer for alerting us to these two papers. Given that they meet the requirements for inclusion, both these articles have now been included in the review. Tables 4, 7, 8 have been amended to include the relevant information. Also, these articles have been cited in the discussion section on lines 543 - 545. The Prisma flow diagram (Figure 1) has been updated and the study result numbers throughout this review have also been updated to reflect the additional articles. Reviewer #3:

One resource is missed here, MIT SLOAN SPORTS ANALYTICS Conference [2] is a one important source for recent works on sport analytics. Author's response:

The papers mentioned by the reviewer did not meet the whole inclusion and exclusion criteria for this review paper.

Reviewer #3:

Table 2 shows the inclusion and exclusion criteria for the search. In the Exclusion criteria, it has been mentioned that works with this condition are excluded: "Solely investigated player field positional tracking methods using data such as X, Y coordinates or displacement without any form of sport-specific skill detection and classification associated to it" and "Used ball trajectory and audio cue data as the

major determinant for event detection". I don't understand why these works are excludes. I think that trajectories (Players X,Y coordinates) are a valuable source for activity recognition.[3][4]

Author's response:

The papers mentioned by the reviewer did not meet the whole inclusion and exclusion criteria for this review paper.

Reviewer #3:

Missing reference: [6]

Author's response:

This article has now been included in the review. Tables 4, 7, 8 have been amended to include the relevant information. Also, this article has been cited in the discussion section on lines 543 -545. The Prisma flow diagram (Figure 1) has been updated and the study result numbers throughout this review have also been updated to reflect the additional article.

Reviewer #3 references provided:

[1] Mostafa S. Ibrahim, Srikanth Muralidharan, Zhiwei Deng, Arash Vahdat, Greg Mori. A Hierarchical Deep Temporal Model for Group Activity Recognition. CVPR 2016.

[2] www.sloansportsconference.com

[3] N Mehrasa, Y Zhong, F Tung, L Bornn, G Mori. Deep Learning of Player Trajectory Representations for Team Activity Analysis. SLOAN 2018.

[4] Kuan-Chieh Wang and Richard Zemel. Classifying nba offensive plays using neural networks. In MIT SLOAN Sports Analytics Conference, 2016.

[5] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban, Kevin Murphy, and Li Fei-Fei. Detecting events and key actors in multi-person videos. CVPR 2016.

[6] Moumita Roy Tora, Jianhui Chen, James J. Little.Classification of Puck Possession Events in Ice Hockey. CVPR Workshop. 2017

 $\begin{array}{c} 16\\ 17\\ 18\\ 19\\ 20\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 30\\ 31\\ 2\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 40\\ 41\\ 42\\ 44\\ 45\\ 46\\ 47\\ 48 \end{array}$

1	Machine and deep learning for sport-specific movement recognition: a systematic review of
2	model development and performance
3	
4	Emily E. Cust ^{7,2} , Alice J. Sweeting ^{7,2} , Kevin Ball ² and Sam Robertson ^{7,2}
5	
0 7	Author details:
/	² Western Dullders Feetbell Club, Feetserey, Melbourne, Australia
0	western Bundogs Footban Club, Footscray, Melbourne, Austrana
9 10	Author ORCID
11	Sam Robertson 0000-0002-8330-0011
12	Alice Sweeting 0000-0002-9185-6773
13	Emily Cust 0000-0001-6927-6329
14	
15	Author contact details:
16	* Corresponding author:
17	Emily E. Cust
18	Email: emily.cust1@live.vu.edu.au
19	Institute for Health and Sport (IHES), Victoria University, P.O. Box 14428, Melbourne, VIC 8001,
20	Australia. Western Bulldogs Football Club, Footscray, Melbourne, Australia
21	
22	Alice J. Sweeting
23	Email: <u>Alice.Sweeting@vu.edu.au</u>
24	Institute for Health and Sport (IHES), Victoria University, P.O. Box 14428, Melbourne, VIC 8001,
25	Australia. Western Bulldogs Football Club, Footscray, Melbourne, Australia
26	
27	Kevin Ball
28	Email: <u>Kevin.Ball@vu.edu.au</u>
29	Institute for Health and Sport (IHES), Victoria University, P.O. Box 14428, Melbourne, VIC 8001,
30	Australia.
31	
32	Sam Robertson
33	Email: <u>Sam.Robertson@vu.edu.au</u>
34 25	Australia, Wasterr Bulldage Factball Club, Factorian Malhourne, Australia
35	Austrana. western Bundogs Footban Club, Footscray, Meldourne, Austrana
36 37	Running title:
38	Machine and deep learning for sport movement recognition review
39	
40	
	1

41 Abstract

Objective assessment of an athlete's performance is of importance in elite sports to facilitate detailed analysis. The implementation of automated detection and recognition of sport-specific movements overcomes the limitations associated with manual performance analysis methods. The object of this study was to systematically review the literature on machine and deep learning for sport-specific movement recognition using inertial measurement unit (IMU) and, or computer vision data inputs. A search of multiple databases was undertaken. Included studies must have investigated a sport-specific movement and analysed via machine or deep learning methods for model development. A total of 52 studies met the inclusion and exclusion criteria. Data pre-processing, processing, model development and evaluation methods varied across the studies. Model development for movement recognition were predominantly undertaken using supervised classification approaches. A kernel form of the Support Vector Machine algorithm was used in 53% of IMU and 50% of vision-based studies. Twelve studies used a deep learning method as a form of Convolutional Neural Network algorithm and one study also adopted a Long Short Term Memory architecture in their model. The adaptation of experimental set-up, data pre-processing. and model development methods are best considered in relation to the characteristics of the targeted sports movement(s).

61 Key Words:

62 Sport movement classification; inertial sensors; computer vision; machine learning; performance63 analysis.

65 1. Introduction

Performance analysis in sport science has experienced considerable recent changes, due largely to access to improved technology and increased applications from computer science. Manual notational analysis or coding in sports, even when performed by trained analysts, has limitations. Such methods are typically time intensive, subjective in nature, and prone to human error and bias. Automating sport movement recognition and its application towards coding has the potential to enhance both the efficiency and accuracy of sport performance analysis. The potential automation of recognising human movements, commonly referred to as human activity recognition (HAR), can be achieved through machine or deep learning model approaches. Common data inputs are obtained from inertial measurement units (IMUs) or vision. Detection refers to the identification of a targeted instance, i.e., tennis strokes within a continuous data input signal (Bulling, Blanke, & Schiele, 2014). Recognition or classification of movements involves further interpretations and labelled predictions of the identified instance (Bulling et al., 2014; Bux, Angelov, & Habib, 2017), i.e., differentiating tennis strokes as a forehand or backhand. In machine and deep learning, a model represents the statistical operations involved in the development of an automated prediction task (LeCun, Yoshua, & Geoffrey, 2015; Shalev-Shwartz & Ben-David, 2014).

Human activities detected by inertial sensing devices and computer vision are represented as wave signal features corresponding to specific actions, which can be logged and extracted. Human movement activities are considered hierarchically structured and can be broken down to basic movements. Therefore, the context of signal use, intra-class variability, and inter-class similarity between activities require consideration during experimental set-up and model development. Wearable IMUs contain a combination of accelerometer, gyroscope, and magnetometer sensors measuring along one to three axes. These sensors quantify acceleration, angular velocity, and the direction and orientation of travel respectively (Gastin, McLean, Breed, & Spittle, 2014). These sensors can capture repeated movement patterns during sport training and competitions (Camomilla, Bergamini, Fantozzi, & Vannozzi, 2018; Chambers, Gabbett, Cole, & Beard, 2015; J. F. Wagner, 2018). Advantages include being wireless, lightweight and self-contained in operation. Inertial measurement units have been utilised in quantifying physical output

and tackling impacts in Australian Rules football (Gastin et al., 2014; Gastin, McLean, Spittle, & Breed, 2013) and rugby (Gabbett, Jenkins, & Abernethy, 2012, 2011; Howe, Aughey, Hopkins, Stewart, & Cavanagh, 2017; Hulin, Gabbett, Johnston, & Jenkins, 2017). Other applications include swimming analysis (Mooney, Corley, Godfrey, Ouinlan, & ÓLaighin, 2015), golf swing kinematics (Lai, Hetchl, Wei, Ball, & McLaughlin, 2011), over-ground running speeds (Wixted, Billing, & James, 2010), full motions in alpine skiing (Yu et al., 2016); and the detection and evaluation of cricket bowling (McNamara, Gabbett, Blanch, & Kelly, 2017; McNamara, Gabbett, Chapman, Naughton, & Farhart, 2015; Wixted, Portus, Spratford, & James, 2011).

Computer vision has applications for performance analysis including player tracking, semantic analysis, and movement analysis (Stein et al., 2018; Thomas, Gade, Moeslund, Carr, & Hilton, 2017). Automated movement recognition approaches require several pre-processing steps including athlete detection and tracking, temporal cropping and targeted action recognition, which are dependent upon the sport and footage type (Barris & Button, 2008; Saba & Altameem, 2013; Thomas et al., 2017). Several challenges including occlusion, viewpoint variations, and environmental conditions may impact results, depending on the camera set-up (Poppe, 2010; Zhang et al., 2017). Developing models to automate sports-vision coding may improve resource efficiency and reduce feedback times. For example, coaches and athletes involved in time-intensive notational tasks, including post-swim race analysis, may benefit from rapid objective feedback before the next race in the event program (Liao, Liao, & Liu, 2003; Victor, He, Morgan, & Miniutti, 2017). For detecting and recognising movements, body worn sensor signals do not suffer from the same environmental constraints and stationary set-up of video cameras. Furthermore, multiple sensors located on different body segments have been argued to provide more specific signal representations of targeted movements (J. B. Yang, Nguyen, San, Li, & Shonali, 2015). But it is not clear if this is solely conclusive, and the use of body worn sensors in some sport competitions may be impractical or not possible.

119 Machine learning algorithms learn from data input for automated model building and 120 perform tasks without being explicitly programmed. The algorithm goal is to output a response 121 function $\lim_{\overline{h\sigma(x)}}$ that will predict a ground truth variable $\lim_{\overline{\nu}}$ from an input vector of variables $\lim_{\overline{\nu}}$. Models 122 are run for classification techniques to predict a target class (Kotsiantis, Zaharakis, & Pintelas, 123 2007), or regression to predict discrete or continuous values. Models are aimed at finding an

optimal set of parameters _b to describe the response function, and then make predictions on unseen
unlabelled data input. Within these, model training approaches can generally run as supervised
learning, unsupervised learning or semi-supervised learning (Mohammed, Khan, & Bashier, 2016;
Sze, Chen, Yang, & Emer, 2017).

Processing raw data is limited for conventional machine learning algorithms, as they are unable to effectively be trained on abstract and high-dimensional data that is inconsistent, contains missing values or noisy artefacts (Bux et al., 2017; Kautz, 2017). Consequently, several pre-processing stages are required to create a suitable data form for input into the classifier algorithm (Figo, Diniz, Ferreira, & Cardoso, 2010). Filtering (Figo et al., 2010; Wundersitz, Gastin, Robertson, Davey, & Netto, 2015), window capture durations (Mitchell, Monaghan, & O'Connor, 2013; Preece, Goulermas, Kenney, & Howard, 2009; Wundersitz, Josman, et al., 2015), and signal frequency cut-offs (Wundersitz, Gastin, Richter, Robertson, & Netto, 2015; Wundersitz, Gastin, Robertson, et al., 2015) are common techniques applied prior to data prior to dynamic human movement recognition. Well-established filters for processing motion signal data include the Kalman filter (Kautz, 2017; Titterton & Weston, 2009; D. Wagner, Kalischewski, Velten, & Kummert, 2017) and a Fourier transform filter (Preece, Goulermas, Kenney, Howard, et al., 2009) such as a fast Fourier transform (Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015; Preece, Goulermas, Kenney, & Howard, 2009). Near real-time processing benefits from reducing memory requirements, computational demands, and essential bandwidth during whole model implementation. Signal feature extraction and selection favours faster processing by reducing the signals to the critical features that can discriminate the targeted activities (Bulling et al., 2014). Feature extraction involves identifying the key features that help maximise classifier success, and removing features that have minimal impact in the model (Mannini & Sabatini, 2010). Thus, feature selection involves constructing data representations in subspaces with reduced dimensions. These identified variables are represented in a compact feature variable (Mannini & Sabatini, 2010). Common methods include principal component analysis (PCA) (Gløersen, Myklebust, Hallén, & Federolf, 2018; Young & Reinkensmeyer, 2014), vector coding techniques (Hafer & Boyer, 2017) and empirical cumulative distribution functions (ECDF) (Plötz, Hammerla, & Olivier, 2011). An ECDF approach has been shown to be advantageous over PCA as it derives representations of raw input independent of the absolute data ranges, whereas PCA is known to

have reduced performance when the input data is not properly normalised (Plötz et al., 2011). For
further detailed information on the acquisition, filtering and analysis of IMU data for sports
application and vision-based human activity recognition, see (Kautz, 2017) and (Bux et al., 2017),
respectively.

Deep learning is a division of machine learning, characterised by deeper neural network model architectures and are inspired by the biological neural networks of the human brain (Bengio, 2013; LeCun et al., 2015; Sze et al., 2017). The deeper hierarchical models create a profound architecture of multiple hidden layers based on representative learning with several processing and abstraction layers (Bux et al., 2017; J. B. Yang et al., 2015). These computational models allow data input features to be automatically extracted from raw data and transformed to handle unstructured data, including vision (LeCun et al., 2015; Ravi, Wong, Lo, & Yang, 2016). This direct input avoids several processing steps required in machine learning during training and testing, therefore reducing overall computational times. A current key element within deep learning is backpropagation (Hecht-Nielsen, 1989; LeCun, Bottou, Orr, & Müller, 1998). Backpropagation is a fast and computationally efficient algorithm, using gradient descent, that allows training deep neural networks to be tractable (Sze et al., 2017). Human activity recognition has mainly been performed using conventional machine learning classifiers. Recently, deep learning techniques have enhanced the bench mark and applications for IMUs (Kautz et al., 2017; Ravi et al., 2016; Ronao & Cho, 2016; J. B. Yang et al., 2015; Zebin, Scully, & Ozanyan, 2016; Zeng et al., 2014) and vision (Ji, Yang, Yu, & Xu, 2013; Karpathy et al., 2014a; Krizhevsky, Sutskever, & Hinton, 2012; Nibali, He, Morgan, & Greenwood, 2017) in human movement recognition producing more superior model performance accuracy.

The objective of this study was to systematically review the literature investigating sport-specific automated movement detection and recognition. The review focusses on the various technologies, analysis techniques and performance outcome measures utilised. There are several reviews within this field that are sensor-based including wearable IMUs for lower limb biomechanics and exercises (Fong & Chan, 2010; M. O'Reilly, Caulfield, Ward, Johnston, & Doherty, 2018), swimming analysis (Magalhaes, Vannozzi, Gatta, & Fantozzi, 2015; Mooney et al., 2015), quantifying sporting movements (Chambers et al., 2015) and physical activity monitoring (C. C. Yang & Hsu, 2010). A recent systematic review has provided an evaluation on

the in-field use of inertial-based sensors for various performance evaluation applications (Camomilla et al., 2018). Vision-based methods for human activity recognition (Aggarwal & Xia, 2014; Bux et al., 2017; Ke et al., 2013; Zhang et al., 2017), semantic human activity recognition (Ziaeefard & Bergevin, 2015) and motion analysis in sport (Barris & Button, 2008) have also been reviewed. However, to date, there is no systematic review across sport-specific movement detection and recognition via machine or deep learning. Specifically, incorporating IMUs and vision-based data input, focussing on in-field applications as opposed to laboratory-based protocols and detailing the analysis and machine learning methods used.

192 Considering the growth in research and potential field applications, such a review is 193 required to understand the research area. This review aims to characterise the evolving techniques 194 and inform researchers of possible improvements in sports analysis applications. Specifically: 1) 195 What is the current scope for IMUs and computer vision in sport movement detection and 196 recognition? 2) Which methodologies, inclusive of signal processing and model learning 197 techniques, have been used to achieve sport movement recognition? 3) Which evaluation methods 198 have been used in assessing the performance of these developed models?

2. Methods

202 2.1 Search strategy

The preferred PRISMA recommendations (Moher, Liberati, Tetzlaff, Altman, & Group, 2009) for systematic reviews were used. A literature search was undertaken by the first author on the following databases; IEEE Xplore, PubMed, ScienceDirect, Scopus, Academic Search Premier, and Computer and Applied Science Complete. The searched terms were categorised in order to define the specific participants, methodology and evaluated outcome measure in-line with the review aims. Searches used a combination of key words with AND/OR phrases which are detailed in Table 1. Searches were filtered for studies from January 2000 to May 2018 as no relevant studies were identified prior to this. Further studies were manually identified from the bibliographies of database-searched studies identified from the abstract screen phase, known as snowballing. Table 2 provides the inclusion and exclusion criteria of this review.

216 ***Table 2 near here: Inclusion and exclusion criteria***

218 2.2 Data extraction

The first author extracted and collated the relevant information from the full manuscripts identified for final review. A total of 18 parameters were extracted from the 52 research studies, including the title, author, year of publication, sport, participant details, sport movement target(s), device specifications, device sample frequency, pre-processing methods, processing methods, feature selected, feature extraction, machine learning model used, model evaluation, model performance accuracy, validation method, samples collected, and computational information. A customised Microsoft ExcelTM spreadsheet was developed to categorise the relevant extracted information from each study. Participant characteristics of number of participants, gender, and competition level, then if applicable a further descriptor specific to a sport, for example, 'medium-paced cricket bowler'. Athlete and participant experience level was categorised as written in the corresponding study to avoid misrepresentations. The age of participants was not considered an important characteristic required for model development. The individual ability in which the movement is performed accounts for the discriminative signal features associated with the movements. For the purposes of this review, a sport-specific movement was defined from a team or individual sport, and training activities associated with a particular sport. For example, weight-lifting as strength training, recognised under the Global Association of International Sports Federations. The targeted sports and specific movements were defined for either detection or recognition. Model development techniques used included pre-processing methods to transform data to a more suitable form for analysis, processing stages to segment data for identified target activities, feature extraction and selections techniques, and the learning algorithm(s). Model evaluation measures extracted were the model performance assessment techniques used, ground-truth validation comparison, number of data samples collected, and the model performance outcomes results reported. If studies ran multiple experiments using several algorithms, only the superior algorithm and relevant results were reported as the best method. This was done so in the interest of concise reporting to highlight favourable method approaches (Sprager & Juric, 2015). Any further relevant

- author. 3. Results sections. **3.1 Experimental design**
- results or information identified from the studies was included as a special remark (Sprager & Juric, 2015). Hardware and specification information extracted included the IMU or video equipment used, number of units, attachment of sensors (IMUs), sample frequency, and sensor data types used in analysis (IMUs). Studies identified and full data extracted were reviewed by a second

An outline of the search results and study exclusions has been provided in Fig 1. Of the initial database search which identified 4885 results, a final 52 studies met criteria for inclusion in this review. Of these, 29 used IMUs and 22 were vision-based. One study (Ó Conaire et al., 2010) used both sensors and vision for model development separately then together via data fusion. Tables 3 -8 provide a description of the characteristics of the reviewed studies, detailed in the following

*** Fig 1 near here: PRISMA flow diagram ***

A variety of sports and their associated sport-specific movements were investigated, implementing various experimental designs as presented in Tables 5 and 7. Across the studies, sports reported were tennis (n = 10), cricket (n = 3), weightlifting or strength training (n = 6), swimming (n = 4), skateboarding (n = 2), ski jumping (n = 2), snowboarding (n = 1), golf (n = 4), volleyball (n = 2), rugby (n = 2), ice hockey (n = 2), gymnastics (n = 2), karate (n = 1), basketball (n = 3), Gaelic football (n = 1), hurling (n = 1), boxing (n = 2), running (n = 2), diving (n = 1), squash (n = 1), badminton (n = 1), cross-country skiing (n = 2) and soccer (n = 4). The Sports 1-M dataset (Karpathy et al., 2014b) was also reported, which consists of 1,133,158 video URLs annotated automatically with 487 sport labels using the YouTube Topic API. A dominant approach was the classification of main characterising actions for each sport. For example, serve, forehand, backhand strokes in tennis (Connaghan et al., 2011; Kos & Kramberger, 2017; Ó Conaire et al., 2010; Shah, Chokalingam, Paluri, & Pradeep, 2007; Srivastava et al., 2015), and the four competition strokes in

swimming (Jensen, Blank, Kugler, & Eskofier, 2016; Jensen, Prade, & Eskofier, 2013; Liao et al., 2003; Victor et al., 2017). Several studies further classified sub-categories of actions. For example, three further classes of the two main classified snowboarding trick types Grinds and Airs (Groh, Fleckenstein, & Eskofier, 2016), and further classifying the main tennis stroke types as either flat, topspin or slice (Srivastava et al., 2015). Semantic descriptors were reported for classification models that predicted athlete training background, experience and fatigue level. These included running (Buckley et al., 2017; Kobsar, Osis, Hettinga, & Ferber, 2014), rating of gymnastic routines (Reily, Zhang, & Hoff, 2017), soccer pass classification based on its quality (Horton, Gudmundsson, Chawla, & Estephan, 2014), cricket bowling legality (Qaisar et al., 2013; Salman, Oaisar, & Oamar, 2017), ski jump error analysis (Brock & Ohgi, 2017; Brock, Ohgi, & Lee, 2017) and strength training technique deviations (M. A. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a; M. O'Reilly et al., 2015; M. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017). One approach (Yao & Fei-Fei, 2010), encoded the mutual context of human pose and sporting equipment using semantics, to facilitate the detection and classification of movements including a cricket bat and batsman coupled movements.

Total participant numbers for IMU-based studies ranged from one (Qaisar et al., 2013) to 30 (Kautz et al., 2017). Reported data individual instance sample sizes for sensor studies ranged from 150 (Salman et al., 2017) to 416, 737 (Rassem, El-Beltagy, & Saleh, 2017). Vision-based studies that explicitly reported total participant details ranged from five (Ó Conaire et al., 2010) to 40 (Victor et al., 2017). Vision dataset sample sizes varied across studies, from 50 individual action clips (Liao et al., 2003) to 15, 000 (Victor et al., 2017). One study (Karpathy et al., 2014a) used the publicly available Sports-1M, as previously described. Vision-based studies also reported datasets in total time, 10.3 hours (Bertasius, Park, Yu, & Shi, 2017), 3 hours (Montoliu, Martín-Félez, Torres-Sospedra, & Martínez-Usó, 2015), 1, 500 minutes (Shah et al., 2007), and 50 hours (Kapela et al., 2015), and by frame numbers, 6, 035 frames (Zhu, Xu, Gao, & Huang, 2006) and 10, 115 frames (Reily et al., 2017).

3.2 Inertial measurement unit specifications

302 A range of commercially available and custom-built IMUs were used in the IMU-based studies (n=

303 30), as presented in Table 3. Of these, 23% reported using a custom-built sensor. Of the IMU-based

studies, the number of sensors mounted or attached to each participant or sporting equipment piece ranged from one to nine. The majority of studies (n=22) provided adequate details of sensor specifications including sensor type, axes, measurement range, and sample rate used. At least one characteristic of sensor measurement range or sample rate used in data collection was missing from eight studies. All studies used triaxial sensors and collected accelerometer data. For analysis and model development, individual sensor data consisted of only accelerometer data (n = 8), both accelerometer and gyroscope data (n = 15), and accelerometer, gyroscope and magnetometer data (n = 7). The individual sensor measurement ranges reported for accelerometer were ± 1.5 g to ± 16 g, gyroscope \pm 500 °/s to \pm 2000 °/s, magnetometer \pm 1200 µT or 1.2 to 4 Ga. Individual sensor sample rates ranged from 10 Hz to 1000 Hz for accelerometers, 10 Hz to 500 Hz for gyroscopes and 50 Hz to 500 Hz for magnetometers.

316 *** Table 3 near here***

3.3 Vision capture specification

Several experimental set-ups and specifications were reported in the total 23 vision-based studies (Table 4). Modality was predominately red, green, blue (RGB) cameras. Depth cameras were utilised (Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015; Kasiri, Fookes, Sridharan, & Morgan, 2017; Reily et al., 2017), which add depth perception for 3-dimensional image mapping. Seven studies clearly reported the use of a single camera set-up (Couceiro, Dias, Mendes, & Araújo, 2013; Díaz-Pereira, Gómez-Conde, Escalona, & Olivieri, 2014; Hachaj, Ogiela, & Koptvra, 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Nibali et al., 2017; Reily et al., 2017). One study reported 16 stationary positioned cameras at a 'bird's eve view' (Montoliu et al., 2015), and Ó Conaire et al. (2010) reported the use of one overhead and 8 stationary cameras around a tennis court baseline, although data from two cameras were only used in final analysis due to occlusion issues. Sample frequency and, or pixel resolution were reported in seven of the studies (Couceiro et al., 2013; Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Montoliu et al., 2015; Victor et al., 2017; Zhu et al., 2006), with sample frequencies ranging from 30 Hz to 210 Hz.

334 *** Table 4 near here***

3.4 Inertial measurement unit recognition model development methods

Key stages of model development from data pre-processing to recognition techniques for IMU-based studies are presented in Table 5. Data pre-processing filters were reported as either a low-pass filter (n = 7) (Adelsberger & Tröster, 2013; Buckley et al., 2017; Kelly, Coughlan, Green, & Caulfield, 2012; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2015, 2017; Rindal, Seeberg, Tjønnås, Haugnes, & Sandbakk, 2018), high-pass filter (n = 2) (Kautz et al., 2017; Schuldhaus et al., 2015), or calibration with a filter (Salman et al., 2017). Processing methods were reported in 67% of the IMU-based studies (Adelsberger & Tröster, 2013; Anand, Sharma, Srivastava, Kaligounder, & Prakash, 2017; Brock et al., 2017; Buckley et al., 2017; Buthe, Blanke, Capkevics, & Tröster, 2016; Groh et al., 2016; Groh, Fleckenstein, Kautz, & Eskofier, 2017; Groh, Kautz, & Schuldhaus, 2015; Jensen et al., 2016, 2015; Jiao, Wu, Bie, Umek, & Kos, 2018; Kautz et al., 2017; Kobsar et al., 2014; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Ó Conaire et al., 2010; Pernek, Kurillo, Stiglic, & Bajcsy, 2015; Qaisar et al., 2013; Salman et al., 2017; Schuldhaus et al., 2015). Methods included, calibration of data (Groh et al., 2016, 2017; Jensen et al., 2015; Qaisar et al., 2013), a one-second window centred around identified activity peaks in the signal (Adelsberger & Tröster, 2013; Schuldhaus et al., 2015), temporal alignment (Pernek et al., 2015), normalisation (Ó Conaire et al., 2010), outlier adjustment (Kobsar et al., 2014) or removal (Salman et al., 2017), and sliding windows ranging from one to 3.5 seconds across the data (Jensen et al., 2016). The three studies that investigated trick classification in skateboarding (Groh et al., 2017, 2015) and snowboarding (Groh et al., 2016) corrected data for different rider board stance styles, termed Regular or Goofy, by inverting signal axes.

Movement detection methods were specifically reported in 16 studies (Adelsberger & Tröster, 2013; Anand et al., 2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015, Jensen et al., 2013, 2015; Kautz et al., 2017; Kelly et al., 2012; Kos & Kramberger, 2017; Ó Conaire et al., 2010; Rindal et al., 2018; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside, Cant, Connolly, & Reid, 2017). Detection methods included thresholding (n = 5), windowing segmenting (n = 4), and a combination of threshold and windowing techniques (n = 5).

- 363 Signal feature extraction techniques were reported in 80% of the studies, with the number 364 of feature parameters in a vector ranging from a vector of normalised X, Y, Z accelerometer signals 365 (Ó Conaire et al., 2010) to 240 features (M. A. O'Reilly et al., 2017a). Further feature selection to 366 reduce the dimensionality of the feature vector was used in 11 studies. Both feature extraction and 367 selection methods varied considerably across the literature (Table 5).
- Algorithms trialled for movement recognition were diverse across the literature (Table 5). Supervised classification using a kernel form of Support Vector Machine (SVM) was most prevalent (n = 16) (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Brock et al., 2017; Buckley et al., 2017; Buthe et al., 2016; Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Kautz et al., 2017; Kelly et al., 2012; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside et al., 2017). The next highest tested were Naïve Bayesian (NB) (n = 8) (Buckley et al., 2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015; Kautz et al., 2017; Salman et al., 2017; Schuldhaus et al., 2015) and k-Nearest Neighbour (kNN) (n = 8)(Buckley et al., 2017; Groh et al., 2016, 2017, 2015; Kautz et al., 2017; Ó Conaire et al., 2010; Salman et al., 2017; Whiteside et al., 2017), followed by Random Forests (RF) (n = 7) (Buckley et al., 2017; Groh et al., 2017; Kautz et al., 2017; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Salman et al., 2017; Whiteside et al., 2017). Supervised learning algorithms were the most common (n = 29). One study used an unsupervised discriminative analysis approach for detection and classification of tennis strokes (Kos & Kramberger, 2017). Five IMU-based study investigated a deep learning approach including using Convolutional Neural Networks (CNN) (Anand et al., 2017; Brock et al., 2017; Jiao et al., 2018; Kautz et al., 2017; Rassem et al., 2017) and Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) architectures (Rassem et al., 2017; Sharma, Srivastava, Anand, Prakash, & Kaligounder, 2017). In order to assess the effectiveness of the various classifiers from each study, model performance measures quantify and visualise the predictive performance as reported in the following section.

 - 389 *** Table 5 near here***

3.5 Inertial measurement unit recognition model evaluation

392	Reported performance evaluations of developed models across the IMU-based studies are shown in
393	Table 6. Classification accuracy, as a percentage score for the number of correct predictions by
394	total number of predictions made, was the main model evaluation measure ($n = 24$). Classification
395	accuracies across studies ranged between 52% (Brock & Ohgi, 2017) to 100% (Buckley et al.,
396	2017). Generally, the reported highest accuracy for a specific movement was \ge 90% (n = 17)
397	(Adelsberger & Tröster, 2013; Anand et al., 2017; Buckley et al., 2017; Connaghan et al., 2011;
398	Groh et al., 2015; Jensen et al., 2013; Jiao et al., 2018; Kobsar et al., 2014; Kos & Kramberger,
399	2017; M. A. O'Reilly et al., 2017a; Ó Conaire et al., 2010; Pernek et al., 2015; Qaisar et al., 2013;
400	Rindal et al., 2018; Schuldhaus et al., 2015; Srivastava et al., 2015; Whiteside et al., 2017) and \geq
401	80% to 90% (n = 7) (Brock & Ohgi, 2017; Brock et al., 2017; Groh et al., 2017; Jensen et al., 2016;
402	M. O'Reilly et al., 2015, 2017; Salman et al., 2017). As an estimate of the generalised performance
403	of a trained model on $\frac{1}{n-x}$ samples, a form of leave-one-out cross validation (LOO-CV) was used in
404	47% of studies (Buthe et al., 2016; Groh et al., 2016, 2017, 2015, Jensen et al., 2016, 2013; Kobsar
405	et al., 2014; M. O'Reilly et al., 2015, 2017; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et
406	al., 2017; Schuldhaus et al., 2015). Precision, specificity and sensitivity (also referred to as recall)
407	evaluations were derived for detection $(n = 6)$ and classification models $(n = 10)$. Visualisation of
408	prediction results in the form of a confusion matrix featured in six studies (Buthe et al., 2016; Groh
409	et al., 2017; Kautz et al., 2017; Pernek et al., 2015; Rindal et al., 2018; Whiteside et al., 2017).
410	

- 411 *** Table 6 near here***

3.6 Vision recognition model development methods

414 Numerous processing and recognition methods featured across the vision-based studies to 415 transform and isolated relevant input data (Table 7). Pre-processing stages were reported in 14 of 416 studies, and another varied 13 studies also provided details of processing techniques. Signal feature 417 extraction and feature selection methods used were reported in 78% of studies.

Both machine (n = 16) and deep learning (n = 7) algorithms were used to recognise
movements from vision data. Of these, a kernel form of the SVM algorithm was most common in
the studies (n = 10) (Couceiro et al., 2013; Horton et al., 2014; Kasiri-Bidhendi et al., 2015; Kasiri

et al., 2017; Li et al., 2018; Montoliu et al., 2015; M. A. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017b; Ó Conaire et al., 2010; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Other algorithms included kNN (n = 3) (Díaz-Pereira et al., 2014; Montoliu et al., 2015; Ó Conaire et al., 2010), decision tree (DT) (n = 2) (Kapela et al., 2015; Liao et al., 2003), RF (n = 2) (Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017), and Multilayer Perceptron (MLP) (n = 2) (Kapela et al., 2015; Montoliu et al., 2015). Deep learning was investigated in seven studies (Bertasius et al., 2017: Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016: Karpathy et al., 2014a: Nibali et al., 2017; Ramanathan et al., 2015; Tora, Chen, & Little, 2017; Victor et al., 2017) of which used CNNs or LSTM RNNs as the core model structure.

- *** Table 7 near here***

3.7 Vision recognition model evaluation

Performance evaluation methods and results for vision-based studies are reported in Table 8. As with IMU-based studies, classification accuracy was the common method for model evaluations, featured in 61%. Classification accuracies were reported between 60.9% (Karpathy et al., 2014a) and 100% (Hachaj et al., 2015; Nibali et al., 2017). In grouping the reported highest accuracies for a specific movement that were $\geq 90\%$ (n = 9) (Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Li et al., 2018; Montoliu et al., 2015; Nibali et al., 2017; Ó Conaire et al., 2010; Reily et al., 2017; Shah et al., 2007), and $\ge 80\%$ to 90% (n = 2) (Horton et al., 2014; Yao & Fei-Fei, 2010). A confusion matrix as a visualisation of model prediction results was used in nine studies (Couceiro et al., 2013; Hachaj et al., 2015; Ibrahim et al., 2016; Karpathy et al., 2014a; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Lu, Okuma, & Little, 2009; Shah et al., 2007; Tora et al., 2017). Two studies assessed and reported their model computational average speed (Lu et al., 2009) and time (Reily et al., 2017). *** Table 8 near here***

Discussion

The aim of this systematic review was to evaluate the use of machine and deep learning for sport-specific movement recognition from IMUs and, or computer vision data inputs. Overall, the search yielded 52 studies, categorised as 29 which used IMUs, 22 vision-based and one study using both IMUs and vision. Automation or semi-automated sport movement recognition models working in near-real time is of particular interest to avoid the error, cost and time associated with manual methods. Evident in the literature, models are trending towards the potential to provide optimised objective assessments of athletic movement for technical and tactical evaluations. The majority of studies achieved favourable movement recognition results for the main characterising actions of a sport, with several studies exploring further applications such as an automated skill quality evaluation or judgement scoring, for example automated ski jump error evaluation (Brock et al., 2017).

Experimental set-up of IMU placement and numbers assigned per participant varied between sporting actions. The sensor attachment locations set by researchers appeared dependent upon the specific sporting conditions and movements, presumably to gain optimal signal data. Proper fixation and alignment of the sensor axes with limb anatomical axes is important in reducing signal error (Fong & Chan, 2010). The attachment site hence requires a biomechanical basis for accuracy of the movement being targeted to obtain reliable data. Single or multiple sensor use per person also impacts model development trade-off between accuracy, analysis complexity, and computational speed or demands. In tennis studies, specificity whilst using a single sensor was demonstrated by mounting the IMU on the wrist or forearm of the racquet arm (Connaghan et al., 2011; Kos & Kramberger, 2017; Srivastava et al., 2015; Whiteside et al., 2017). A single sensor may also be mounted in a low-profile manner on sporting equipment (Groh et al., 2016, 2017, 2015; Jensen et al., 2015). Unobtrusive use of a single IMU to capture generalised movements across the whole body was demonstrated, with an IMU mounted on the posterior head in swimming (Jensen et al., 2016, 2013), lower back during running (Kobsar et al., 2014), and between the shoulder blades in rugby union (Kelly et al., 2012).

477 The majority of vision-based studies opted for a single camera set-up of RGB modality.
478 Data output from a single camera as opposed to multiple minimises the volume of data to process,
479 therefore reducing computational effort. However, detailed features may go uncaptured,

particularly in team sport competition which consists of multiple individuals participating in the capture space at one time. In contrast, a multiple camera set-up reduces limitations including occlusion and viewpoint variations. However, this may also increase the complexity of the processing and model computational stages. Therefore, a trade-off between computational demands and movement recording accuracy often needs to be made. As stated earlier, the placement of cameras needs to suit the biomechanical nature of the targeted movement and the environment situated in. Common camera capture systems used in sports science research such as Vicon Nexus (Oxford, UK) and OptiTrack (Oregon, USA) were not present in this review. As this review targeted studies investigating during on-field or in-situation sporting contexts, efficiency in data collection is key for routine applications in training and competition. A simple portable RGB camera is easy to set-up in a dynamic and changing environment, such as different soccer pitches, rather than a multiple capture system such as Vicon that requires calibrated precision and are substantially more expensive.

Data acquisition and type from an IMU during analysis appears to influence model trade-off between accuracy and computational effort of performance. The use of accelerometer, gyroscope or magnetometer data may depend upon the movement properties analysed. Within tennis studies, gyroscope signals were the most efficient at discriminating between stroke types (Buthe et al., 2016; Kos & Kramberger, 2017) and detecting an athlete's fast feet court actions (Buthe et al., 2016). In contrast, accelerometer signals produced higher classification accuracies in classifying tennis stroke skills levels (Connaghan et al., 2011). The authors expected lower gyroscope classification accuracies as temporal orientation measures between skill levels of tennis strokes will differ (Connaghan et al., 2011). Conversely, data fusion from all three individual sensors resulted in a more superior model for classifying advanced, intermediate and novices tennis player strokes (Connaghan et al., 2011). Fusion of accelerometer and vision data also resulted in a higher classification accuracy for tennis stroke recognition (Ó Conaire et al., 2010).

505 Supervised learning approaches were dominant across IMU and vision-based studies. This 506 is a method which involves a labelled ground truth training dataset typically manually annotated by 507 sport analysts. Labelled data instances were recorded as up to 15, 000 for vision-based (Victor et 508 al., 2017) and 416, 737 for sensor-based (Rassem et al., 2017) studies. Generation of a training data 509 set for supervised learning can be a tedious and labour-intensive task. It is further complicated if

510 multiple sensors or cameras are incorporated for several targeted movements. A semi-supervised or 511 unsupervised learning approach may be advantageous as data labelling is minimal or not required, 512 potentially reducing human errors in annotation. An unsupervised approach could suit specific 513 problems to explain key data features, via clustering (Mohammed et al., 2016; Sze et al., 2017). 514 Results computed by an unsupervised model (Kos, Ženko, Vlaj, & Kramberger, 2016) for tennis 515 serve, forehand and backhand stroke classification compared favourbaly well against a proposed 516 supervised approach (Connaghan et al., 2011).

Recognition of sport-specific movements was primarily achieved using conventional machine learning approaches, however nine studies implemented deep learning algorithms. It is expected that future model developments will progressively feature deep learning approaches due to development of better hardware, and the advantages of more efficient model learning on large data inputs (Sze et al., 2017). Convolutional Neural networks (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998) were the core structure of five of the seven deep learning study models. Briefly, convolution applies several filters, known as kernels, to automatically extract features from raw data inputs. This process works under four key ideas to achieve optimised results: local connection, shared weights, pooling and applying several layers (LeCun et al., 2015; J. B. Yang et al., 2015). Machine learning classifiers modelled with generic hand-crafted features, were compared against a CNN for classifying nine beach volleyball actions using IMUs (Kautz et al., 2017). Unsatisfactory results were obtained from the machine learning model, and the CNN markedly achieved higher classification accuracies (Kautz et al., 2017). The CNN model produced the shortest overall computation times, requiring less computational effort on the same hardware (Kautz et al., 2017). Vision-based CNN models have also shown favourable results when compared to a machine learning study baseline (Karpathy et al., 2014a; Nibali et al., 2017; Victor et al., 2017). Specifically, consistency between a swim stroke detection model for continuous videos in swimming which was then applied to tennis strokes with no domain-specific settings introduced (Victor et al., 2017). The authors of this training approach (Victor et al., 2017) anticipate that this could be applied to train separate models for other sports movement detection as the CNN model demonstrated the ability to learn to process continuous videos into a 1-D signal with the signal peaks corresponding to arbitrary events. General human activity recognition using CNN have shown to be a superior approach over conventional machine learning algorithms using both IMUs

(Ravi et al., 2016; J. B. Yang et al., 2015; Zebin et al., 2016; Zeng et al., 2014; Zheng, Liu, Chen,
Ge, & Zhao, 2014) and computer vision (Ji et al., 2013; Krizhevsky et al., 2012; LeCun et al.,
2015). As machine learning algorithms extract heuristic features requiring domain knowledge, this
creates shallower features which can make it harder to infer high-level and context aware activities
(J. B. Yang et al., 2015). Given the previously described advantages of deep learning algorithms
which apply to CNN, and the recent results of deep learning, future model developments may
benefit from exploring these methods in comparison to current bench mark models.

Model performance outcome metrics quantify and visualise the error rate between the predicted outcome and true measure. Comparatively, a kernel form of an SVM was the most common classifier implemented and produced the strongest machine learning approach model prediction accuracies across both IMU (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Buthe et al., 2016; Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Pernek et al., 2015; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside et al., 2017) and vision-based study designs (Horton et al., 2014; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Li et al., 2018; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Classification accuracy was the most common reported measure followed by confusion matrices, as ways to clearly present prediction results and derive further measures of performance. Further measures included sensitivity (also called recall), specificity and precision, whereby results closer to 1.0 indicate superior model performance, compared to 0.0 or poor model performance. The F1-score (also called a F-measure or F-score) conveys the balances between the precision and sensitivity of a model. An in-depth analysis performance metrics specific to human activity recognition is located elsewhere (Minnen, Westeyn, Starner, Ward, & Lukowicz, 2006; Ward, Lukowicz, & Gellersen, 2011). Use of specific evaluation methods depends upon the data type. Conventional performance measures of error rate are generally unsuitable for models developed from skewed training data (Provost & Fawcett, 2001). Using conventional performance measures in this context will only take the default decision threshold on a model trained, if there is an uneven class distribution this may lead to imprecision (Provost & Fawcett, 2001; Seiffert, Khoshgoftaar, Van Hulse, & Napolitano, 2008). Alternative evaluators including Receiver Operating Characteristics (ROC) curves and its single numeric measure, Area Under ROC Curve (AUC), report model performances across all decision thresholds (Seiffert et al., 2008). Making evaluations between study methodology have inherent complications due to each

formulating their own experimental parameter settings, feature vectors and training algorithms for movement recognition. The No-Free-Lunch theorems are important deductions in the formation of models for supervised machine learning (David H. Wolpert, 1996), and search and optimisation algorithms (D H Wolpert & Macready, 1997). The theorems broadly reference that there is no 'one model' that will perform optimally across all recognition problems. Therefore, experiments with multiple model development methods for a particular problem is recommended. The use of prior knowledge about the task should be implemented to adapt the model input and model parameters in order to improve overall model success (Shalev-Shwartz & Ben-David, 2014).

Acquisition of athlete specific information, including statistics on number, type and intensity of actions, may be of use in the monitoring of athlete load. Other potential applications include personalised movement technique analysis (M. O'Reilly et al., 2017), automated performance evaluation scoring (Reily et al., 2017) and team ball sports pass quality rating (Horton et al., 2014). However, one challenge lies in delivering consistent, individualised models across team field sports that are dynamic in nature. For example, classification of soccer shots and passes showed a decline in model performance accuracy from a closed environment to a dynamic match setting (Schuldhaus et al., 2015). A method to overcome accuracy limitations in dynamic team field sports associated with solely using IMUs or vision may be to implement data fusion (Ó Conaire et al., 2010). Furthermore, vision and deep learning approaches have demonstrated the ability to track and classify team sport collective court activities and individual player specific movements in volleyball (Ibrahim et al., 2016), basketball (Ramanathan et al., 2015) and ice hockey (Tora et al., 2017). Accounting for methods from experimental set-up to model evaluation, previous reported models should be considered and adapted based on the current problem. Furthermore, the balance between model computational efficiency, results accuracy and complexity trade-offs calculations are an important factor.

In the present study, meta-analysis was considered however variability across developed model parameter reporting and evaluation methods did not allow for this to be undertaken. As this field expands and further methodological approaches are investigated, it would be practical to review analysis approaches both within and between sports. This review was delimited to machine and deep learning approaches to sport movement detection and recognition. However, statistical or parametric approaches not considered here such as discriminative functional analysis may also

600 show efficacy for sport-specific movement recognition. However, as the field of machine learning 601 is a rapidly developing area shown to produce superior results, a review encompassing all possible 602 other methods may have complicated the reporting. Since sport-specific movements and their 603 environments alter the data acquisition and analysis, the sports and movements reported in the 604 present study provide an overview of the current field implementations.

606 5 Conclusions

This systematic review reported on the literature using machine and deep learning methods to automate sport-specific movement recognition. In addressing the research questions, both IMUs and computer vision have demonstrated capacity in improving the information gained from sport movement and skill recognition for performance analysis. A range of methods for model development were used across the reviewed studies producing varying results. Conventional machine learning algorithms such as Support Vector Machines and Neural Networks were most commonly implemented. Yet in those studies which applied deep learning algorithms such as Convolutional Neural Networks, these methods outperformed the machine learning algorithms in comparison. Typically, the models were evaluated using a leave-one-out cross validation method and reported model performances as a classification accuracy score. Intuitively, the adaptation of experimental set-up, data processing, and recognition methods used are best considered in relation to the characteristics of the sport and targeted movement(s). Consulting current models within or similar to the targeted sport and movement is of benefit to address bench mark model performances and identify areas for improvement. The application within the sporting domain of machine learning and automated sport analysis coding for consistent uniform usage appears currently a challenging prospect, considering the dynamic nature, equipment restrictions and varying environments arising in different sports.

Future work may look to adopt, adapt and expand on current models associated with a specific sports movement to work towards flexible models for mainstream analysis implementation. Investigation of deep learning methods in comparison to conventional machine learning algorithms would be of particular interest to evaluate if the trend of superior performances is beneficial for sport-specific movement recognition. Analysis as to whether IMUs and vision

630	alone or together yield enhanced results in relation to a specific sport and its implementation
631	efficiency would also be of value. In consideration of the reported study information, this review
632	can assist future researchers in broadening investigative approaches for sports performance analysis
633	as a potential to enhancing upon current methods.
634	
635	Acknowledgements
636	Not applicable.
637	
638	Disclosure statement
639	No potential conflict of interest was reported by the authors. However, the last author is co-author
640	of three studies included in this systematic review.
641	
642	Funding
643	The authors received no specific funding for this work.
644	
645	Author ORCID
646	Sam Robertson 0000-0002-8330-0011
647	Alice Sweeting 0000-0002-9185-6773
648	Emily Cust 0000-0001-6927-6329
649	
650	References
651	
652	Adelsberger, R., & Tröster, G. (2013). Experts lift differently: Classification of weight-lifting
653	athletes. In 2013 IEEE International Conference on Body Sensor Networks (pp. 1–6).
654	Cambridge, MA: Body Sensor Networks (BSN). https://doi.org/10.1109/BSN.2013.65/5458
655	Aggarwal, J. K., & Xia, L. (2014). Human activity recognition from 3D data: A review. Pattern
656	<i>Recognition Letters</i> , 48, 70–80. https://doi.org/10.1016/j.patrec.2014.04.011
657	Anand, A., Sharma, M., Srivastava, R., Kaligounder, L., & Prakash, D. (2017). Wearable motion
658	sensor based analysis of swing sports. In 2017 16th IEEE International Conference on
659	Machine Learning and Applications (ICMLA) (pp. 261–267).
660	https://doi.org/10.1109/ICMLA.2017.0-149
661	Barris, S., & Button, C. (2008). A review of vision-based motion analysis in sport. Sports
662	<i>Medicine</i> , 38(12), 1025–1043. https://doi.org/10.2165/00007256-200838120-00006
663	Bengio, Y. (2013). Deep learning of representations: Looking forward. <i>Lecture Notes in Computer</i>
664	Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
665	Bioinformatics), 7978 LNAI, 1-37. https://doi.org/10.1007/978-3-642-39593-2_1
666	Bertasius, G., Park, H. S., Yu, S. X., & Shi, J. (2017). Am I a baller? Basketball performance
667	assessment from first-person videos. Proceedings of the IEEE International Conference on
668	<i>Computer Vision</i> , 2196–2204. https://doi.org/10.1109/ICCV.2017.239
669	Brock, H., & Ohgi, Y. (2017). Assessing motion style errors in ski jumning using inertial sensor
670	devices. <i>IEEE Sensors Journal</i> (99) 1–11 https://doi.org/10.1109/ISEN 2017.2699162
671	Brock H Ohgi Y & Lee J (2017) Learning to judge like a human convolutional networks for
672	classification of ski jumping errors. <i>Proceedings of the 2017 ACM International Symposium</i>
072	encontouron of one jumping or or of a roccounty of the 2017 from international symposium
	22

6	73 <i>on Wearable Computers - ISWC '17</i> , 106–113. https://doi.org/10.1145/3123021.3123038
6	Buckley, C., O'Reilly, M. A., Whelan, D., Vallely Farrell, A., Clark, L., Longo, V., Caulfield,
6	B. (2017). Binary classification of running fatigue using a single inertial measurement unit. In
6	76 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor
6	77 <i>Networks</i> (pp. 197–201). IEEE. https://doi.org/10.1109/BSN.2017.7936040
6	Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-
6	worn inertial sensors. ACM Computing Surveys, 46(3), 1–33.
68	80 https://doi.org/http://dx.doi.org/10.1145/2499621
6	Buthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016). A wearable sensing system for timing
68	analysis in tennis. In BSN 2016 - 13th Annual Body Sensor Networks Conference (pp. 43–48).
68	33 San Francisco, CA. https://doi.org/10.1109/BSN.2016.7516230
68	Bux, A., Angelov, P., & Habib, Z. (2017). Vision based human activity recognition: A review. In
68	P. Angelov, A. Gegov, C. Jayne, & Q. Shen (Eds.), <i>Advances in Computational Intelligence</i>
68	36 Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence
68	(pp. 341–371). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-
6	38 46562-3_23
6	Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field
69	use of wearable inertial sensors for sport performance evaluation: a systematic review.
69	91 Sensors, 18(3), 873. https://doi.org/10.3390/s18030873
69	Chambers, R., Gabbett, T., Cole, M. H., & Beard, A. (2015). The use of wearable microsensors to
6	93 guantify sport-specific movements. <i>Sports Medicine</i> , 45(7), 1065–1081.
6	https://doi.org/10.1007/s40279-015-0332-9
6	Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., Walsh, M., & O'Mathuna, C. (2011).
6	Multi-sensor classification of tennis strokes. <i>Journal of IEEE Sensors</i> , 1437–1440.
6	27 Couceiro, M. S., Dias, G., Mendes, R., & Araúio, D. (2013). Accuracy of pattern detection
6	methods in the performance of golf putting. <i>Journal of Motor Behavior</i> , 45(1), 37–53.
6	https://doi.org/10.1080/00222895.2012.740100
7	Díaz-Pereira, M. P., Gómez-Conde, I., Escalona, M., & Olivieri, D. N. (2014). Automatic
7(The recognition and scoring of olympic rhythmic gymnastic movements. <i>Human Movement</i>
7(2 Science, 34(1), 63–80, https://doi.org/10.1016/i.humoy.2014.01.001
7	D3 Figo D Diniz P C Ferreira D R & Cardoso J M P (2010) Preprocessing techniques for
7(Context recognition from accelerometer data <i>Personal and Ubiauitous Computing</i> 14(7)
7(5 645–662. https://doi.org/10.1007/s00779-010-0293-9
7	Forg D T -P & Chan Y -Y (2010) The use of wearable inertial motion sensors in human lower
7(10 limb biomechanics studies: A systematic review <i>Sensors</i> 10(12) 11556–11565
7(https://doi.org/10.3390/s101211556
7	Og Gabbett T Jenkins D & Abernethy B (2012) Physical demands of professional rugby league
7	training and competition using microtechnology <i>Journal of Science and Medicine in Sport</i>
7	11 15 80–86 https://doi.org/10.1016/j.isams.2011.07.004
7	12 Gabbett T Jenkins D G & Abernethy B (2011) Physical collisions and injury in professional
7	rughy league match-play <i>Journal of Science and Medicine in Sport</i> 14, 210–215
7	$14 \qquad https://doi org/10.1016/j isams 2011.01.002$
7	15 Gastin P. B. McLean O. C. Breed R. V. & Snittle M (2014) Tackle and impact detection in
7	elite Australian football using wearable microsensor technology <i>Journal of Sports Sciences</i>
7	17 32(10) 947–953 https://doi.org/10.1080/02640414.2013.868920
7	18 Gastin P. B. McLean O. C. Spittle M. & Breed R. V. (2013). Quantification of tackling
7	demands in professional Australian football using integrated wearable athlete tracking
7	technology <i>Journal of Science and Medicine in Sport</i> 16(6) 589–593
7	21 https://doi.org/10.1016/j.isams 2013.01.007
7	22 Gløersen Ø Myklebust Η Hallén I & Federolf P (2018) Technique analysis in elite athletes
7	using principal component analysis <i>Journal of Sports Sciences</i> 36(2) 229–237
7	24 https://doi.org/10.1080/02640414.2017.1298826
7	25 Grob B H Eleckenstein M & Eskofier B M (2016) Wearable trick classification in freestyle
7	snowboarding. In 13th International Conference on Wearable and Implantable Body Sensor
י איז די	Networks (RSN) (np. 89–93) IEEE https://doi.org/10.1100/PSN 2016 7516229
י ג ז יר	Crob B H Eleckenstein M Kautz T & Eskofier B M (2017) Classification and visualization
י איז די	of skateboard tricks using wearable sensors <i>Dervesive and Mobile Computing</i> 40, 42, 55
ייי דר	$\frac{1}{2}$ bit skale of and the stand we are able sensors. The value and would be comparing, 40, 42–33.
/: 7	Grob B H Kautz T & Schuldhaus D (2015) MII based trick classification in skataboarding
7.	
	23

 $\begin{array}{c} 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\end{array}$

732	In KDD Workshop on Large-Scale Sports Analytics.
733	Hachaj, T., Ogiela, M. R., & Koptyra, K. (2015). Application of assistive computer vision methods
734	to Oyama karate techniques recognition. Symmetry, 7(4), 1670–1698.
735	https://doi.org/10.3390/sym7041670
736	Hafer, J. F., & Boyer, K. A. (2017). Variability of segment coordination using a vector coding
737	technique: reliability analysis for treadmill walking and running. Gait and Posture, 51, 222-
738	227. https://doi.org/10.1016/i.gaitpost.2016.11.004
739	Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. <i>Proceedings Of The</i>
740	International Joint Conference On Neural Networks 1 593–605
740	https://doi.org/10.1109/IJCNN.1989.118638
741	Hochreiter S & Schmidhuber I I (1007) Long short term memory Neural Computation 0(8)
742	1 32 https://doi.org/10.1162/page 1007.0.8.1725
745	I-52. https://doi.org/10.1102/http://997.9.6.1755
744	fortion, M., Guumunusson, J., Chawia, S., & Estephan, J. (2014). Classification of passes in
745	football matches using spatiotemporal data. ArXiv Preprint ArXiv:1407.3093.
746	https://doi.org/10.1145/31055/6
/4/	Howe, S. T., Aughey, R. J., Hopkins, W. G., Stewart, A. M., & Cavanagh, B. P. (2017).
748	Quantifying important differences in athlete movement during collision-based team sports:
749	Accelerometers outperform global positioning systems. In 2017 IEEE International
750	Symposium on Inertial Sensors and Systems (pp. 1–4). Kauai, HI, USA: IEEE.
751	https://doi.org/10.1109/ISISS.2017.7935655
752	Hulin, B. T., Gabbett, T., Johnston, R. D., & Jenkins, D. G. (2017). Wearable microtechnology can
753	accurately identify collision events during professional rugby league match-play. Journal of
754	Science and Medicine in Sport, 20(7), 638–642.
755	https://doi.org/http://dx.doi.org/10.1016/j.jsams.2016.11.006
756	Ibrahim, M., Muralidharan, S., Deng, Z., Vahdat, A., & Mori, G. (2016). A Hierarchical Deep
757	Temporal Model for Group Activity Recognition Cypr 1971–1980
758	https://doi.org/10.1109/CVPR 2016.217
759	Jensen II Blank P Kugler P & Eskofier B M (2016) Unobtrusive and energy-efficient
760	swimming exercise tracking using on-node processing IEEE Sensors Journal 16(10) 3072_
700	2020 https://doi.org/10.1100/JSEN 2016 2520010
701	5900. https://doi.org/10.1109/JSEIN.2010.2550019
762	Jensen, U., Prade, F., & Eskoher, B. M. (2013). Classification of kinematic swimming data with
763	emphasis on resource consumption. In 2013 IEEE International Conference on Body Sensor
764	<i>Networks, BSN 2013</i> . https://doi.org/10.1109/BSN.2013.65/5501
/65	Jensen, U., Schmidt, M., Hennig, M., Dassler, F. A., Jaitner, T., & Eskofier, B. M. (2015). An
766	IMU-based mobile system for golf putt analysis. <i>Sports Engineering</i> , 18(2), 123–133.
767	https://doi.org/10.1007/s12283-015-0171-9
768	Ji, S., Yang, M., Yu, K., & Xu, W. (2013). 3D convolutional neural networks for human action
769	recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 221–
770	231. https://doi.org/10.1109/TPAMI.2012.59
771	Jiao, L., Wu, H., Bie, R., Umek, A., & Kos, A. (2018). Multi-sensor Golf Swing Classification
772	Using Deep CNN. Procedia Computer Science, 129, 59–65.
773	https://doi.org/10.1016/j.procs.2018.03.046
774	Kapela, R., Świetlicka, A., Rybarczyk, A., Kolanowski, K., & O'Connor, N. E. (2015). Real-time
775	event classification in field sport videos. Signal Processing: Image Communication, 35, 35–
776	45 https://doi.org/10.1016/j.jmage 2015.04.005
770	Karpathy A Toderici G Shetty S Leung T Sukthankar R & Fei-Fei I (2014a) Large-
778	scale video classification with convolutional neural networks. Computer Vision and Pattern
770	Bacomition (CVDP) 2014 IEEE Conference On 1725 1722
779	Kecognillon (CVFR), 2014 IEEE Conjetence On, 1723–1752.
780	$\frac{1}{1000000} = \frac{1}{10000000} = \frac{1}{10000000000000000000000000000000000$
781	Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014b). Large-
/82	scale video classification with convolutional nural networks. Retrieved December 18, 2017,
/83	from http://cs.stanford.edu/people/karpathy/deepvideo/
784	Kasırı-Bıdhendi, S., Fookes, C., Morgan, S., Martin, D. T., & Sridharan, S. (2015). Combat sports
785	analytics: Boxing punch classification using overhead depth imagery. In 2015 IEEE
786	International Conference on Image Processing (ICIP) (pp. 4545–4549). Quebec City,
787	Canada: IEEE. https://doi.org/10.1109/ICIP.2015.7351667
788	Kasiri, S., Fookes, C., Sridharan, S., & Morgan, S. (2017). Fine-grained action recognition of
789	boxing punches from depth imagery. Computer Vision and Image Understanding, 159, 143-
790	153. https://doi.org/10.1016/j.cviu.2017.04.007
	24
	24

791	Kautz, T. (2017). Acquisition, filtering and analysis of positional and inertial data in sports. FAU
792	Studies in Computer Science, 2.
793	Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity
794	recognition in beach volleyball using a deep convolutional neural network. Data Mining and
795	Knowledge Discovery, 1–28. https://doi.org/10.1007/s10618-017-0495-0
796	Ke, S. R., Thuc, H., Lee, Y. J., Hwang, J. N., Yoo, J. H., & Choi, K. H. (2013). A review on video-
797	based human activity recognition. Computers, 2, 88–131.
798	https://doi.org/10.3390/computers2020088
799	Kelly, D., Coughlan, G. F., Green, B. S., & Caulfield, B. (2012). Automatic detection of collisions
800	in elite level rugby union using a wearable sensing device. <i>Sports Engineering</i> , 15(2), 81–92.
801	Retrieved from https://0-link-springer-com.library.vu.edu.au/article/10.1007%2Fs12283-012-
802	0088-5
803	Kobsar, D., Osis, S. T., Hettinga, B. A., & Ferber, R. (2014). Classification accuracy of a single tri-
804	axial accelerometer for training background and experience level in runners. Journal of
805	Biomechanics, 47(10), 2508–2511. https://doi.org/10.1016/j.jbiomech.2014.04.017
806	Kos, M., & Kramberger, I. (2017). A wearable device and system for movement and biometric data
807	Acquisition for sports applications. <i>IEEE Access</i> , 1–1.
808	https://doi.org/10.1109/ACCESS.2017.2675538
809	Kos, M., Ženko, J., Vlaj, D., & Kramberger, I. (2016). Tennis stroke detection and classification
810	using miniature wearable IMU device. In International Conference on Systems, Signals, and
811	Image Processing. https://doi.org/10.1109/IWSSIP.2016.7502764
812	Kotsiantis, S., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of
813	classification techniques. Informatica, 31, 501-520. https://doi.org/10.1115/1.1559160
814	Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
815	convolutional neural networks. Advances In Neural Information Processing Systems, 1097–
816	1105. https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
817	Lai, D. T. H., Hetchl, M., Wei, X., Ball, K., & McLaughlin, P. (2011). On the difference in swing
818	arm kinematics between low handicap golfers and non-golfers using wireless inertial sensors.
819	Procedia Engineering, 13, 219–225. https://doi.org/10.1016/j.proeng.2011.05.076
820	LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
821	document recognition. IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
822	LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural Networks:
823	Tricks of the Trade (Vol. 1524, pp. 9–50).
 824	LeCun, Y., Yoshua, B., & Geoffrey, H. (2015). Deep learning. Nature, 521(7553), 436-444.
825	https://doi.org/10.1038/nature14539
826	Li, J., Tian, Q., Zhang, G., Zheng, F., Lv, C., & Wang, J. (2018). Research on hybrid information
827	recognition algorithm and quality of golf swing. Computers and Electrical Engineering, 1–
828	13. https://doi.org/10.1016/j.compeleceng.2018.02.013
829	Liao, W. H., Liao, Z. X., & Liu, M. J. (2003). Swimming style classification from video sequences.
830	In Kinmen (Ed.), 16th IPPR Conference on Computer Vision, Graphics and Image
831	Processing (pp. 226–233). ROC.
832	Lu, W. L., Okuma, K., & Little, J. J. (2009). Tracking and recognizing actions of multiple hockey
833	players using the boosted particle filter. Image and Vision Computing, 27(1-2), 189-205.
834	https://doi.org/10.1016/j.imavis.2008.02.008
835	Magalhaes, F. A. de, Vannozzi, G., Gatta, G., & Fantozzi, S. (2015). Wearable inertial sensors in
836	swimming motion analysis: A systematic review. Journal of Sports Sciences, 33(7), 732-745.
837	https://doi.org/10.1080/02640414.2014.962574
838	Mannini, A., & Sabatini, A. M. (2010). Machine learning methods for classifying human physical
839	activity from on-body accelerometers. Sensors, 10(2), 1154–1175.
840	https://doi.org/10.3390/s100201154
841	McNamara, D. J., Gabbett, T., Blanch, P., & Kelly, L. (2017). The relationship between wearable
842	microtechnology device variables and cricket fast bowling intensity. International Journal of
843	Sports Physiology and Performance, 1-20. https://doi.org/https://doi.org/10.1123/ijspp.2016-
844	0540
845	McNamara, D. J., Gabbett, T., Chapman, P., Naughton, G., & Farhart, P. (2015). The validity of
846	microsensors to automatically detect bowling events and counts in cricket fast bowlers.
847	International Journal of Sports Physiology and Performance, 10(1), 71–75.
848	https://doi.org/10.1123/ijspp.2014-0062
849	Minnen, D., Westeyn, T. L., Starner, T., Ward, J. a, & Lukowicz, P. (2006). Performance metrics
	25

 https://doi.org/10.1145/18968/1.189687 Mitchell, E., Monaghan, D., & O'Connor, N. E. (2013). Classification of sporting activities using smartphore accelerometers. <i>Sensors (Basel, Switzerland), 13</i>(4), 5317–5337. https://doi.org/10.13908/130405317 Moher, D., Liberati, A., 'Tezlaff, J., Athnan, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PHSIMA statement. <i>PLoS Med</i>, 607, e1000097. https://doi.org/10.1371/journal.pmed.10000971 Monotin, M., Martin-Filez, R., Torres-Sospedra, O., & Martinez-Liso, A. (2015). Team activity recognition in Association football using a bag of words-based method. <i>Human Movement Science</i>, 41, 165–178. https://doi.org/10.13701/journal.pmed.10000971 Monote, M., Martin-Filez, B., Unszi-Kolarog, J.O. (2017). Extraction and classification of diving clips from continuous video footuge. <i>AcXiv</i>, pre-prim. Retrieved from technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, 16(1), 18 https://doi.org/10.13900-16010018 Moal, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footuge. <i>AcXiv</i>, pre-prim. Retrieved from times video footuge. <i>AcXiv</i>, pre-prim. Retrieved from funge biomechanics with multiple and individual incritil messurement units. <i>Sports Biomechanics</i>, 16(3), 182–306. https://doi.org/10.1000/1761314.1207.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. F., Delahunt, F., & Caulfield, B. (2017a). Chechology in strength and conditioning Research, 31(6), 1726–1736. O'Reilly, M. Caulfield, B., Ward, T. J. Ohnston, W., & Doheny, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercises Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/v140279-018-0878-4 O'Reilly, M., Wuhelan, D. F., Ward, T. F., Delahunt, F., & Caulfield, B. (2017). Castification of desdift biomechanics,		850 851	and evaluation issues for continuous activity recognition. In <i>Proc. Int. Workshop on Performance Metrics for Intelligent Systems</i> (pp. 141–148).
 853 Mitchell, E., Monaghan, D., & O'Connor, N. E. (2013). Classification of sporting activities using simple structure of the set structure of structure structure of the set structure of the set structure o		852	https://doi.org/10.1145/1889681.1889687
 smartphone accelerometers. <i>Sensors</i> (<i>Basel</i>, <i>Svitzerland</i>), <i>13</i>(4), 5317–5337. https://doi.org/10.3309/s130403517 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <i>PLoS Med.</i>, 6(7), e1000097. https://doi.org/10.1317/jurnal.pnet.1000097 Montoliu, R., Martin-Felez, R., Tortes-Sospedra, O., & Martinez-Usó, A. (2015). Team activity recognition in Association forball using a bag-d-words-based method. <i>Human Movement Science</i>, <i>41</i>, 165–178. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1317/1616. https://doi.org/10.1309/oi16101018 Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & Olaighin, G. (2015). Itertial sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, <i>16</i>(1), 18. https://doi.org/10.3390/s1610018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving elips/marxiv.org/p01705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahum, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, <i>16</i>(3), 342–360. https://doi.org/10.1080/4176141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahum, E., & Caulfield, B. (2017b). Technology in strength and conditioning <i>Research</i>, <i>31</i>(6), 172–1736. O'Reilly, M., A., Mielan, D. F., Ward, T., E., Delahum, E., & Caulfied, B. (2017). Technology in Strength and Conditioning <i>Research</i>, <i>31</i>(6), 172–1736. O'Reilly, M., Whelan, D. Chawi, T., Folahum, E., & Caulfied, B. (2017). Classification of datalifi biomechanics with wearable inertial measurement units. <i>Nourol of Strengt and Condition</i>	1	853	Mitchell, E., Monaghan, D., & O'Connor, N. E. (2013). Classification of sporting activities using
 https://doi.org/10.3390/s1300/s17 Mohammed, M., Khan, M., & Bashier, E. (2016). <i>Machine Learning: Algorithms and Applications.</i> Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Perferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <i>PLoS Med</i>, 6(7), e100097. https://doi.org/10.1371/journaped.100097 Monotoin, R., Martin-Felez, R., Torres-Sospedra, O., & Martinez-Usó, A. (2015). Teran activity recognition in Association football using a bag-of-words-based method. <i>Human Movement Science</i>, 41, 165-178. https://doi.org/10.1016/j.humov.2015.03.001 Monotoj, R., Corley, G., Godfrey, A., Quinlan, L. R., & OLuighin, G. (2015). Iterrita sensor technology for chite swimming performance analysis: A systematic review. <i>Jensors</i>, 16(1), 18. https://doi.org/10.3390/s11001018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print</i>. Retrieved from https://arxiv.org/pdf/1705.09002, pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Technology in strength and conditioning thexerises with wurable sensors. <i>Journal of Strength and conditioning thexerises</i>, 16(1), 143-544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning thexerise with a strength and conditioning thexerises with avarable sensors. <i>Journal of Strength and Conditioning thexerises</i>, 16(1), 143-544 O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Line Exercise Detection and Evaluation: A Systematic Review. <i>Sport Medicine</i>. https://doi.org/10.1007/s40279-0140878-4 O'Reilly, M., Whelan, D., Chanita, T., Johnston, W., & Caulfied, B. (2017). Classification of strength and conditioning thexerine with a single ine	2	854	smartphone accelerometers. Sensors (Basel, Switzerland), 13(4), 5317–5337.
 856 Mohammed, M., Khan, M., & Bashier, E. (2016). <i>Machine Learning: Algorithms and Applications.</i> Milon: CRC Press. 858 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <i>PLoS Med</i>, 6(7), e1000097. https://doi.org/10.1371/journal.pned.1000097 861 Montoliu, R., Martin-Felez, R., Torres-Sospedra, O., & Martínez Usó, A. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement Science</i>, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 863 Montoliu, R., Martin-Felez, R., Torres-Sospedra, O., & Martínez Usó, A. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement Science</i>, 41, 165–178. https://doi.org/10.1061/j.humov.2015.03.007 866 Montoliu, R., Mertan, D. G. (2017). Extraction and classification of diving ellips from continuous video footage. <i>ArXiv, pre-print.</i> Retrieved from https://arxiv.org/pdf/1705.09003.pdf 97 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahum, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics, 16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 97 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahum, E., & Caulfield, B. (2017b). Technology in strength and conditioning Research, 31(6), 1722–1736. 97 O'Reilly, M., Culfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable herrial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine.</i> https://doi.org/10.1007/s40279-018-0878-4 97 O'Reilly, M., Whelan, D., F., Ward, T., E., Delahum, E., & Caulfield, B. (2017). Classification of deadlift hiomechanics with wearable inertial measurement unit. In <i>2015 IEEE</i> https://doi.org/10.1109/BN.2015.72	3	855	https://doi.org/10.3390/s130405317
 Milion: CRC Press. Moher, D., Liberati, A., Tctalaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <i>PLoS Med</i>, 6(7), e1000097. https://doi.org/10.1371/journal.pned.1000097 Montolu, R., Martin-Felez, R., Torres-Sospedra, O., & Martínez-Us, A. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement</i> <i>Science</i>, 41, 165–118. https://doi.org/10.1016/j.humav.2015.03.007 Mono, R., Corley, G., Godfrey, A., Quinlan, L. R., & OLaighin, G. (2015). Inertial sensor technology for cities winning performance analysis: A systematic review. <i>Sensors</i>, 16(1), 18. https://doi.org/10.3309/s16010018 Nibali, A., He, Z., Morgon, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv. pre-print.</i> Retrieved from https://arxiv.org.pdf/170503403. O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports</i> <i>Biomechanics</i>, 16(3), 342–360. https://doi.org/10.1080/1476/3141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Chenology in strength and conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>Strength</i> and Conditioning tracking lower-linb scretcises with wearable sensors. <i>Journal of</i> <i>S</i>	4	856	Mohammed, M., Khan, M., & Bashier, F. (2016), Machine Learning: Algorithms and Applications.
 Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. <i>PLoS Med</i>, 6(7), e1000097. https://doi.org/10.1371/jumal.pned.1000097 Montolu, R., Martin-Felez, R., Torres-Sospedra, O., & Martinz-Usó, A. (2015). Team activity recognition in Association forball using a bag-of-works-based method. <i>Human Movement Science</i>, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Mooney, R., Corley, G., Goffey, A., Quinlan, L. R., & Olaighin, G. (2015). Inertial sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, 16(1), 18, https://doi.org/10.3390/s16010018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print</i>. Retrieved from https://arxiv.org/pdf/105.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Cauffield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, 10(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Cauffield, B. (2017b). Technology in strength and conditioning tracking lower-limb excreises with wearable sensors. <i>Journal of Strength and Conditioning tracking lower-limb excreises vith</i> wearable lnertial Sensor Systems for Lower Limb Excreise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/40279-018-08784 O'Reilly, M., Whelan, D., Chanialdis, C., Friel, N., Delahunt, E., Ward, T., & Cauffield, B. (2015). Evaluating squat performance with a single-inertial measurement units. <i>Journal of Biomechanics</i>, 55, 155–161. https://doi.org/10.1007/40279-018-08784 O'Reilly, M., Whelan, D. F., Ward, T., Delahunt, E., & Cauffield, B. (2017). Classification d	5	857	Milton: CRC Press
 Biolar, F., Teurani, Y., Imian, Y., Imian, Y., The RISMA Attament. PLoS Med., 6(7), e1000097, https://doi.org/10.1371/journal.pmed.1000097 Montolin, R., Martín-Felez, R., Torres-Sospedra, O., & Martínez-Usó, A. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement</i> <i>Science</i>, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Monoey, R., Corley, G., Godfrey, A., Quinlan, L. R., & Otaigbin, G. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement</i> <i>Science</i>, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Monoey, R., Corley, G., Godfrey, A., Quinlan, L. R., & Otaigbin, G. (2015). Teatina sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, 16(1), 18. https://doi.org/10.3390/s16100018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of funge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, 8(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, 8(6), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M., Caulfield, B., Ward, T., Lohanson, W., & Doherty, C. (2018). Wearable Inertial sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1010/1607910-901-90-808-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Fealuating squat performance with a single inertial measurement unit. In 2015 HEFE 12th International Conference on Wearable and Myslans and Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1000/s0407914.1017.1314544	6	858	Moher D Liberati A Tetzlaff I Altman D G & Group T P (2009) Preferred reporting
 actions for systematic regions and indexing sets. The FLOSMEr Matchinet, 100 Meth. (07), e1000097, https://doi.org/10.1371/journal.pmed.1000097 Montoliu, R., Martin-Felez, R., Torres-Sospedra, O., & Martínez-Usó, A. (2015). Team activity recognition in Association forbull using a bag-or-words-based method. Hume Morement <i>Science, 41</i>, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & Claighin, G. (2015). Inertial sensor technology for clite swimming performance analysis: A systematic review. <i>Sensors, 16</i>(1), 18. https://doi.org/10.1030/s101001018 Nibali, A., He, Z., Morgan, S. & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print</i>. Retrieved from https://arxiv.org/pdf/1705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics, 16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning tracking lower-limb exercises with wearable sensors. Journal of Strength and Conditioning Research, 31(6), 1726–1736.</i> O'Reilly, M., Whelan, D., Chanialdis, C., Fricl, N., Delahunt, E., Ward, T., & Cullfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1009/SN2020-018-08784. O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable sensors. <i>Journal of Biomechanics, 58</i>, 155–161. https://doi.org/10.1048/04773141.201	7	850	items for systematic raviews and meta analyses: The PRISMA statement $PLoS Mad 6(7)$
 Biolou, R., Martin-Felez, R., Torres-Sospedra, O., & Martínez-Usó, A. (2015). Team activity recognition in Association football using a bag-of-words-based method. <i>Human Movement Science</i>, <i>41</i>, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Monoey, R., Corley, G., Godfrey, A., Quinlan, L. R., & OLaighin, G. (2015). Inertial sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, <i>16</i>(1), 18. https://doi.org/10.3300/s16010018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print</i>. Retrieved from https://arxiv.org/pdf/1705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, <i>16</i>(3), 342–360. https://doi.org/10.1080/1476114.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning Research, <i>31</i>(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Linb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878.4 O'Reilly, M., Whelan, D. C., Awrad, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadfift biomechanics, <i>ib/oitagi</i> 10.1109/BN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In <i>2015 IEEE 12th International Conference on Wearable and Implantable Body Senso Neworks</i>. IEEE https://doi.org/10.1109/BN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, F., & Caulfield, B. (2017). Classification of deadfift biomechania, systematic assistic	8	860	a1000007 https://doi.org/10.1271/journal.pmad.1000007
 611 Promotin, R., Martin-Felez, K., 10ffes-Soguita, O., & Martinez-Uso, A. (2017). Fedin Ret(NI) 712 recognition in Association forball using a bag-ch-words-based method. <i>Human Movement Science</i>, <i>41</i>, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 713 Mooney, R., Corley, G., Odfrey, A., Quinlan, L. R., & Califield, G. (2015). Iterital sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, <i>16</i>(1), 18. https://doi.org/10.3390/s16010018 713 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv</i>, <i>pre-print</i>. Retrieved from https://arxiv.org/pdf/1705.09003.pdf 710 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of funge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, <i>16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 713 O'Reilly, M., A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Chanology in strength and Conditioning tracking lower-linb cxercises with wearable sensors. <i>Journal of Strength and Conditioning Research</i>, <i>31</i>(6), 1726–1736. 716 O'Reilly, M., Caulfield, B., Ward, T., Fohnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s04279-018-0878-4 716 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Featurating squat performance with a single inertial measurement unit. <i>1: D015 IEEE 12th International Conference on Wearables and Implantable Body Sensor Networks</i>. IEEE https://doi.org/10.1109/ISN2.015.729380 717 O'Reilly, M., Whelan, D., F., Ward, T., E., Delahunt, F., & Caulfield, B. (2017). Classification of deadlift biomechanics, <i>ifs</i>, 155–161. https://doi	9	800	Montalin D. Mortín Edlar, D. Torres Soonadra, O. & Mortínar, Usá, A. (2015). Team activity
 recognition in Association football using a bag-of-words-based method. <i>Human Movement</i> Science, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007 Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & O.Laightin, G. (2015). Incrtial sensor techology for clic swimming performance analysis: A systematic review. <i>Sensors</i>, 16(1), Ita https://doi.org/10.3390/s16010018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv</i>, <i>pre-print</i>. Retrieved from https://arxiv.org/pdt/1705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics. <i>Unps://doi.org/10.1080/14763141.2017.1314544</i> O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning Research</i>, <i>31(6)</i>, 1726–1736. O'Reilly, M., Caulfield, B, Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Senor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialdis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. <i>Journal of these systems of the print ACM international Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of detailt hiomechanics with warable inertial measurement unit. <i>Jouranal of Biomechanics Still warable incrini analysis and retriev</i>	10	801	Montonu, R., Martin-Felez, R., Torres-Sospedra, O., & Martinez-Uso, A. (2015). Team activity
 Science, 47, 165–178. https://doi.org/10.1016/j.humov.2015.03.00/ Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & Ol.aigini, G. (2015). Inertial sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors, 16</i>(1), 18. https://doi.org/10.3309/6100108 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print.</i> Retrieved from https://arxiv.org/101/309/61003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics, 16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning Research, 31</i>(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s042079-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. <i>In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks</i>. EEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. EEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. EEEE 1355 (55, 155–161. https://doi.org/10.1106/1581.2015.12059380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadift biomechanics with wearable inertial measurement units. <i>Joural of Biomechanics, 58</i>, 145–155.	11	862	recognition in Association football using a bag-of-words-based method. <i>Human Movement</i>
 Mooney, R., Corley, G., Godrey, A., Qunian, L. K., & OLanghun, G. (2015). Inertial sensor technology for elite swimming performance analysis: A systematic review. <i>Sensors</i>, 16(1), https://doi.org/10.3390/s16010018 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv</i>, <i>tre-print</i>. Retrieved from https://arxiv.org/pdt/1705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics. <i>bitps://doi.org/10.1080/14763141.2017.1314544</i> O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning Research</i>, 31(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialdis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 <i>IEEE</i>. https://doi.org/10.1096/1476141.2017.1314544 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadiit hiomechanics, with wearable inertial measurement units. <i>Journal of Biomechanics</i>, 58, 155–161. https://doi.org/10.1016/157.29930 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadiit hiomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, 58, 145–155. https://doi.org/10.1108/1475	12	863	<i>Science</i> , 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.00/
 technology for elite swimming performance analysis: A systematic review. Sensors, 16(1), 18. https://doi.org/10.3309/s16010018 867 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. ArXiv, pre-print. Retrieved from https://arxiv.org/pdf/1705.09003.pdf 870 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. Sports Biomechanics, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 872 Biomechanics, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 873 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Technology in strength and conditioning research, 31(6), 1726–1736. 97 O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4 97 O'Reilly, M., Whelan, D., C., Mannace with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE https://doi.org/10.1109/BISN.2015.7299380 97 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift hiomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.114544 986 O'Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international Joint Conference on Artificial Intellist? BT886.1877882 99 Perneet, I., Kurillo, G., Stiglie, G., & Bajesy, R. (2015). Recognizing the intensist of strength	13	864	Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & OLaighin, G. (2015). Inertial sensor
 16 86 18. https://doi.org/10.3390/s16010018 17 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv, pre-print.</i> Retrieved from https://arxiv.org/pdf/1705.09003.pdf 18 07 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics. with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 18 0'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and Conditioning racking lower-limb exercises with warable sensors. <i>Journal of Strength and Conditioning Research</i>, 31(6), 1726–1736. 19 O'Reilly, M., Caulfield, B., Ward, T. Johnston, W., & Doherty, C. (2018). Wearable Inertial Scores Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 19 O'Reilly, M., Whelan, D., Chanialdis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In <i>2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1109/BSN2015.7299380 19 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics, with warable inertial measurement units. <i>Journal of Biomechanics</i>, <i>s8</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 10 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics, s68, 155–161. https://doi.org/10.1080/14763141.2017.1314544 10 Combining inertial and visual sensing for norecognition in tensis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of </i>	14	865	technology for elite swimming performance analysis: A systematic review. Sensors, 16(1),
 867 Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving clips from continuous video footage. <i>ArXiv</i>, pre-print. Retrieved from https://arxiv.org/pdf/1705.09003.pdf 870 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, <i>16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 873 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning Tracking Iower-limb exercises</i> with wearable sensors. <i>Journal of Strength and Conditioning (11, 1007)</i>40279-018-0878-4 876 O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 978 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 121th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 978 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 90 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, <i>58</i>, 155–161. https://doi.org/10.1080/17781452 90 Prenek, I., Kurillo, G., Stiglie, G., & Bajesy, R. (2015). Recogniz	15	866	18. https://doi.org/10.3390/s16010018
 clips from continuous video footage. <i>ArXiv</i>, pre-print. Retrieved from https://arxiv.org/pdf/1705.09003.pdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports</i> <i>Biomechanics</i>, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of</i> <i>Strength and Conditioning Research</i>, 31(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE <i>12th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE, https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. In <i>Proceedings</i> <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 O Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> <i>61</i> ff first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recogniting in tennsity of strength training exercises with wearable sensors. Journal of Biomed	10	867	Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving
 https://arxiv.org/pdf/1705.09003.jdf O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports</i> <i>Biomechanics</i>, <i>16</i>(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of</i> <i>Strength and Conditioning Research</i>, <i>31</i>(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>, https://doi.org/10.1007/80729-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In <i>2015 IEEE</i> <i>121th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 O'Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, <i>58</i>, 145–155. https://doi.org/10.1016/j.tbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning fo	10	868	clips from continuous video footage. ArXiv, pre-print. Retrieved from
 870 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports Biomechanics</i>, 16(3), 342–300. https://doi.org/10.1080/14763141.2017.1314544 873 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning <i>Research</i>, <i>31</i>(6), 1726–1736. 876 O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 978 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In <i>2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1007/840279-018-0878-4 97 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, 58, 155–161. https://doi.org/10.1007/10.134544 90 C'Reilly, M., Whelan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognizion in tensis. <i>In Proceedings of the first ACM international workhop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–50). ACM. https://doi.org/10.1145/1877868.1877882 90 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomechanics</i>, <i>58</i>, 145–155. https://doi.org/10.1016/j.bi.2015.09.020 91 Piotz, T., Hammerfa, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>JRecogne </i>	10	869	https://arxiv.org/pdf/1705.09003.pdf
 af lunge biomechanics with multiple and individual inertial measurement units. Sports Biomechanics, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 G'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning reacking lower-limb exercises with wearable sensors. Journal of Strength and Conditioning Research, 31(6), 1726–1736. G'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE Inth International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D., F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–50). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Piötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Art	19	870	O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification
 Biomechanics, 16(3), 342–360. https://doi.org/10.1080/14763141.2017.1314544 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning <i>Research</i>, 31(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 <i>IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1008/SN2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tensis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in iningery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcey, N. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, 58, 145–155. https://doi.org/10.1016/j.ib.2015.09.020 Piotz, T., Hammerfa, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Pioty, C., T., Hammerfa, N. Y., & Olivier, P. (2001). Feature learning for activity recognition in ubiquitous comput	20 21	871	of lunge biomechanics with multiple and individual inertial measurement units <i>Sports</i>
 O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017b). Technology in strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of Strength and Conditioning Research</i>, <i>31</i>(6), 1726-1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/k40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In <i>2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks</i>. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 O'Comaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/18778861.877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, <i>58</i>, 145–155. https://doi.org/10.1106/j.inavis.2009.11014 Piotz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>Jeternational Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing</i>, <i>28</i>(6	22	872	<i>Biomechanics</i> 16(3) 342–360 https://doi.org/10.1080/14763141.2017.1314544
 6 Felny, M. K., Walk, D. F., Walk, F. E., Wer-limbar, E., & Cauffield, D. Felninday, J. M. K., Walk, D. F., Walk, T. E., Werker, C. & Wilh wearable sensors. Journal of Strength and Conditioning Research, 31(6), 1726–1736. 6 'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4 7 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable enertial measurement units. Journal of Biomechanics, 58, 155-161. https://doi.org/10.1080/14763141.2017.1314544 O'Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Piötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–900. https://doi.org/10.1016/j.imavi	22	873	Ω^{2} Reilly M A Whelen D E Ward T E Delahunt E & Caulfield B (2017b) Technology in
 Sitength and Conditioning Research, 31(6), 1726-1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in inagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajesy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Precce, S. J., Goulermas, J. Y., Kenney, L., & Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted s	24	075	of Kenny, W. A., Whetan, D. T., Ward, T. L., Defandin, L., & Cauffeld, B. (20170). Technology in
 Stelly, M., Culfield, B., Ward, T., Johnson, W., & Doherty, C. (2018). Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/ISN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., P. Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE 900 Protvost, F.,	25	074	Strength and Conditioning tracking lower-initio exercises with wearable sensors. <i>Journal of</i>
 O' Relliy, M., Caulfield, B., Ward, T., Jonnston, W., & Donery, C. (2018). Wearable inertial sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. <i>Sports Medicine</i>. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, <i>58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 O' Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffhey, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, <i>58</i>, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Precee, S. J., Goulermas, J. Y., Kenney, L., & Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiolo</i>	26	875	Strength and Conditioning Research, $31(6)$, $1/26-1/36$.
 Sensor Systems for Lower Limb Exercise Defection and Evaluation: A Systematic Review. Sports Medicine. https://doi.org/10.1007/s4027-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE Ith International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of dealift biomechanics with wearable inertial measurement units. Journal of Biomechanics, S81 55 -161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision <i>Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods f	27	876	O Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Donerty, C. (2018). Wearable Inertial
 Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE Izh International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/ISN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 6 Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/187868.187782 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. Physiological	28	8//	Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review.
 O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B. (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE Izh International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Precec, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering, 56(3), 871–879. https://doi.org	29	878	Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4
 880 (2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE. https://doi.org/10.1109/BSN.2015.7299380 883 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 886 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Faw	30	879	O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B.
 881 <i>I2th International Conference on Wearable and Implantable Body Sensor Networks.</i> IEEE. https://doi.org/10.1109/BSN.2015.7299380 0'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics, 58</i>, 155–161. https://doi.org/10.1080/14763141.2017.1314544 0'Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics, 58</i>, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing, 28</i>(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Prece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE Transactions on Biomedical Engineering, 56</i>(3), 871–879. Prece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement, 30</i>(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Mac</i>	31	880	(2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE
 882 https://doi.org/10.1109/BSN.2015.7299380 O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 886 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. Physiological Measurement, 30(4), R1-R33. https://doi.0rg/10.1088/0967-3334/30/4/R01 Provost, F., & Favcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3), 203–231. https://doi.org/10.102	32	881	12th International Conference on Wearable and Implantable Body Sensor Networks. IEEE.
 883 O'Reillý, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of deadlift biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i>, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 886 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 890 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 893 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. 896 Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 897 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE Transactions on Biomedical Engineering</i>, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-333/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854	33	882	https://doi.org/10.1109/BSN.2015.7299380
 884 deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics, 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 6 Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action	34	883	O'Reilly, M., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017). Classification of
 ³⁶ 885 58, 155–161. https://doi.org/10.1080/14763141.2017.1314544 ³⁷ 886 Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). ³⁸ Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> ⁴⁰ 61 <i>https://doi.org/10.108/14763141.2017.1314544</i> ⁴¹ 889 <i>of the first ACM international workshop on Analysis and retrieval of tracked events and</i> ⁴¹ <i>motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 ⁴² 890 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength ⁴³ training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, <i>58</i>, 145–155. ⁴⁴ https://doi.org/10.1016/j.jbi.2015.09.020 ⁴⁵ Piötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ⁴⁶ ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, ⁴⁷ 1729. ⁴⁸ Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision</i> ⁴⁹ <i>computing</i>, <i>28</i>(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 ⁴⁹ Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature ⁴⁰ extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> ⁴⁰ <i>Transactions on Biomedical Engineering</i>, <i>56</i>(3), 871–879. ⁴¹ https://doi.org/10.1109/TBME.2008.2006190 ⁴⁰ Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). ⁴¹ Activity identification using body-mounted sensors: A review of classification techniques. ⁴¹ <i>Physiological Measurement</i>, <i>30</i>(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 ⁴⁰ Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine</i> ⁴² <i>Learning</i>, <i>42</i>(3), 203–231. https://doi.org/10.1023/A:1007601015854	35	884	deadlift biomechanics with wearable inertial measurement units. Journal of Biomechanics,
 Ó Conare, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010). Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> <i>of the first ACM international workshop on Analysis and retrieval of tracked events and</i> <i>motion in imagery streams</i> (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, <i>58</i>, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision</i> <i>Computing</i>, <i>28</i>(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> <i>Transactions on Biomedical Engineering</i>, <i>56</i>(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, <i>30</i>(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine</i> <i>Learning</i>, <i>42</i>(3), 203–231. https://doi.org/10.1023/A:1007601015854 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	36	885	58, 155–161, https://doi.org/10.1080/14763141.2017.1314544
 887 887 Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i> 988 988 989 980 980 981 982 983 984 985 985 986 987 988 989 989 980 980 981 981 981 981 982 988 988 988 988 988 988 989 989 988 <li< td=""><td>37</td><td>886</td><td>Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010).</td></li<>	37	886	Ó Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010).
 ³⁹ of the first ACM international workshop on Analysis and retrieval of tracked events and motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882 ⁴¹ 89 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics, 58</i>, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 ⁴⁵ Piötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. ⁴⁶ Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing, 28</i>(6), 976–990. https://doi.org/10.1016/j.jimavis.2009.11.014 ⁵⁷ Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE Transactions on Biomedical Engineering, 56</i>(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 ⁵⁶ 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement, 30</i>(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 ⁵⁹ 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine Learning, 42</i>(3), 203–231. https://doi.org/10.1023/A:1007601015854 ⁶⁰ Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	38	887	Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i>
 and the first field international workshows (p. 51-56). ACM. https://doi.org/10.1145/1877868.1877882 and the first field international workshows (p. 51-56). ACM. https://doi.org/10.1145/1877868.1877882 brenek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 brizz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE Transactions on Biomedical Engineering</i>, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine Learning</i>, 42(3), 203–231. https://doi.org/10.102/3/A:1007601015854 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	39	888	of the first ACM international workshop on Analysis and retrieval of tracked events and
 Biolon in integery streams (pp. 51–50, ACM, https://doi.org/10.114/j.167/306/1877862 Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i>, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Piötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. <i>International Joint Conference on Artificial Intelligence (IJCAI)</i>, 1729. Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE Transactions on Biomedical Engineering</i>, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 Quisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	40	880	motion in imagany streams (np. 51, 56) ACM https://doi.org/10.1145/1877868.1877882
 Petriek, T., Kullilo, G., Stigle, G., & Bajesy, K. (2013). Recognizing the intensity of strength training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision <i>Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE 900 <i>Transactions on Biomedical Engineering</i>, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine <i>Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 907 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	41 40	800	Demoly J. Kywillo, C. Stielie, C. & Deiegy, D. (2015). Decognizing the intensity of strength
 By training exercises with wearable sensors. Journal of Biomedical Informatics, 38, 145–155. https://doi.org/10.1016/j.jbi.2015.09.020 Biotz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering, 56(3), 871–879. https://doi.org/10.1109/TBME.2008.2006190 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	42 // 2	890	remer, I., Kurmo, G., Sugne, G., & Dajesy, R. (2013). Recognizing the intensity of strength
11892https://doi.org/10.1016/j.jbi.2015.09.02015893Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729.148951729.15896Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.01416897Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.01417898Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE17900Transactions on Biomedical Engineering, 56(3), 871–879.17901https://doi.org/10.1109/TBME.2008.200619017902Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).17903Activity identification using body-mounted sensors: A review of classification techniques.17904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0117905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585417908Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In171626	43	891	training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i> , 58, 145–155.
 Plotz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), 1729. Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision <i>Computing</i>, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 Prece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> <i>Transactions on Biomedical Engineering</i>, 56(3), 871–879. Potece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors: A review of classification techniques. <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine</i> <i>Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In 	45	892	https://doi.org/10.1016/j.jbi.2015.09.020
 ⁴⁷ ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI), ⁴⁷ 1729. ⁴⁹ 896 Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision ⁵⁰ Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014 ⁵¹ 898 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature ⁵³ extraction methods for the classification of dynamic activities from accelerometer data. IEEE ⁵³ 900 Transactions on Biomedical Engineering, 56(3), 871–879. ⁵⁴ 901 https://doi.org/10.1109/TBME.2008.2006190 ⁵⁵ 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). ⁵⁶ Activity identification using body-mounted sensors: A review of classification techniques. ⁵⁸ 904 Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 ⁵⁹ 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine ⁶⁰ Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 ⁶¹ 908 Cricket bowling action classification and analysis using a system of inertial sensors. In ⁶² 26 	46	893	Plotz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in
488951729.49896Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision50897Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.01451898Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature52899extraction methods for the classification of dynamic activities from accelerometer data. IEEE53900Transactions on Biomedical Engineering, 56(3), 871–879.54901https://doi.org/10.1109/TBME.2008.200619055902Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).56903Activity identification using body-mounted sensors: A review of classification techniques.58904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0159905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine60906Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585461907Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for6326	47	894	ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI),
49896Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision50897Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.01451898Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature52899extraction methods for the classification of dynamic activities from accelerometer data. IEEE53900Transactions on Biomedical Engineering, 56(3), 871–879.54901https://doi.org/10.1109/TBME.2008.200619055902Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).56903Activity identification using body-mounted sensors: A review of classification techniques.58904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0159905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine60906Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585461907Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for cricket bowling action classification and analysis using a system of inertial sensors. In6326	48	895	1729.
50897Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.01451898Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature52899extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> 53900 <i>Transactions on Biomedical Engineering</i> , 56(3), 871–879.54901https://doi.org/10.1109/TBME.2008.200619055902Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).56903Activity identification using body-mounted sensors: A review of classification techniques.58904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0159905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine60906Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585461907Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for6326	49	896	Poppe, R. (2010). A survey on vision-based human action recognition. Image and Vision
 898 Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature 899 extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> 900 <i>Transactions on Biomedical Engineering</i>, 56(3), 871–879. 901 https://doi.org/10.1109/TBME.2008.2006190 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). 903 Activity identification using body-mounted sensors: A review of classification techniques. 904 <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine</i> 906 <i>Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 908 cricket bowling action classification and analysis using a system of inertial sensors. In 26 	50	897	Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014
 899 extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i> 900 <i>Transactions on Biomedical Engineering</i>, 56(3), 871–879. 901 https://doi.org/10.1109/TBME.2008.2006190 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). 903 Activity identification using body-mounted sensors: A review of classification techniques. 904 <i>Physiological Measurement</i>, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. <i>Machine</i> 906 <i>Learning</i>, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 908 cricket bowling action classification and analysis using a system of inertial sensors. In 26 	51	898	Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature
 900 Transactions on Biomedical Engineering, 56(3), 871–879. 901 https://doi.org/10.1109/TBME.2008.2006190 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). 903 Activity identification using body-mounted sensors: A review of classification techniques. 904 Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine 906 Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 907 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for 908 cricket bowling action classification and analysis using a system of inertial sensors. In 	52	899	extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i>
 https://doi.org/10.1109/TBME.2008.2006190 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). 903 Activity identification using body-mounted sensors: A review of classification techniques. 904 Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine 906 Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 907 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for 908 cricket bowling action classification and analysis using a system of inertial sensors. In 	53	900	Transactions on Biomedical Engineering, 56(3), 871–879.
 902 Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009). 903 Activity identification using body-mounted sensors: A review of classification techniques. 904 Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R01 905 Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine 906 Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854 907 Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for 908 cricket bowling action classification and analysis using a system of inertial sensors. In 	54	901	https://doi.org/10.1109/TBME.2008.2006190
56903Activity identification using body-mounted sensors: A review of classification techniques.57904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0159905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine60906Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585461907Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for62908cricket bowling action classification and analysis using a system of inertial sensors. In6326	55	902	Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).
57904Physiological Measurement, 30(4), R1–R33. https://doi.org/10.1088/0967-3334/30/4/R0159905Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine60906Learning, 42(3), 203–231. https://doi.org/10.1023/A:100760101585461907Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for62908cricket bowling action classification and analysis using a system of inertial sensors. In6326	56	903	Activity identification using body-mounted sensors: A review of classification techniques
 905 905 906 906 907 908 908	57	904	Physiological Measurement 30(4) R1-R33 https://doi.org/10.1088/0967-3334/30/4/R01
 906 906 907 908 908	58	904 905	Provost F & Fawcett T (2001) Robust classification for imprecise environments Machine
 61 907 62 908 63 cricket bowling action classification and analysis using a system of inertial sensors. In 26 	59 C 0	202	Learning $A_2(3)$ 203 231 https://doi.org/10.1022/A.1007601015954
 907 Qaisar, S., Initiaz, S., Giazier, P., Farooq, F., Jamai, A., Iqbai, W., & Lee, S. (2013). A method for 62 908 cricket bowling action classification and analysis using a system of inertial sensors. In 63 26 65 	0U 61	500	Coiser S Intiez S Clarier D Eeroeg E Ionel A Ishel W & I as S (2012) A multiplication
 508 cricket bowling action classification and analysis using a system of inertial sensors. In 63 26 65 	0⊥ 62	907	Qaisai, S., Illuiaz, S., Olazier, F., Farooq, F., Jamai, A., Iqdai, W., & Lee, S. (2013). A method for
64 26 65	63	908	cricket downing action classification and analysis using a system of inertial sensors. In
65	64		26
	65		

909	International Conference on Computational Science and its Applications (pp. 396–412).
910	Berlin, Heidelberg: Springer. https://doi.org/10.100//9/8-3-642-39649-6
911	Ramanathan, V., Huang, J., Abu-El-Haija, S., Gorban, A., Murphy, K., & Fei-Fei, L. (2015).
912	Detecting events and key actors in multi-person videos.
913	https://doi.org/10.1109/CVPR.2016.332
914	Rassem, A., El-Beltagy, M., & Saleh, M. (2017). Cross-country skiing gears classification using
915	deep learning. ArXiv Preprint ArXiv:1706.08924. Retrieved from
916	https://arxiv.org/pdf/1706.08924v1.pdf
917	Ravi, D., Wong, C., Lo, B., & Yang, GZ. (2016). A deep learning approach to on-node sensor
918	data analytics for mobile or wearable devices. IEEE Journal of Biomedical and Health
919	Informatics, 21(1), 1-1. https://doi.org/10.1109/JBHI.2016.2633287
920	Reily, B., Zhang, H., & Hoff, W. (2017). Real-time gymnast detection and performance analysis
921	with a portable 3D camera. Computer Vision and Image Understanding, 159, 154–163.
922	https://doi.org/10.1016/j.cviu.2016.11.006
923	Rindal, O. M. H., Seeberg, T. M., Tjønnås, J., Haugnes, P., & Sandbakk, Ø. (2018). Automatic
924	classification of sub-techniques in classical cross-country skiing using a machine learning
925	algorithm on micro-sensor data. Sensors (Switzerland), 18(1), 75.
926	https://doi.org/10.3390/s18010075
927	Ronao, C. A., & Cho, SB. (2016). Human activity recognition with smartphone sensors using
928	deep learning neural networks. Expert Systems with Applications, 59, 235–244.
929	https://doi.org/10.1016/i.eswa.2016.04.032
930	Saba T & Altameem A (2013) Analysis of vision based systems to detect real time goal events
931	in soccer videos Applied Artificial Intelligence 27(7) 656-667
932	https://doi.org/10.1080/08839514.2013.787779
932	Salman M Oaisar S & Oamar A M (2017) Classification and legality analysis of bowling
031	action in the game of cricket Data Mining and Knowladge Discovery 31(6) 1706-1734
032	https://doi.org/10.1007/s10618.017.0511.4
036	Schuldhaus D. Zwick C. Körger H. Dorschky F. Kirk P. & Eskofier B. M. (2015) Inertial
930	songer based enpreses for shot/ ness elessification during a songer match. In Proc. 21st ACM
957	KDD Workshop on Lange Soule Sports Aughstics (np. 1. 4) Sydney, Australia
950	KDD workshop on Large-Scale Sports Analytics (pp. 1–4). Sydney, Australia.
939	Sentert, C., Knosngottaar, I. M., Van Huise, J., & Napolitano, A. (2008). RUSBoost: Improving
940	classification performance when training data is skewed. In 9th International Conference on
941	Pattern Recognition (pp. 1–4). https://doi.org/10.1109/ICPR.2008.4/6129/
942	Shah, H., Chokalingam, P., Paluri, B., & Pradeep, N. (2007). Automated stroke classification in
943	tennis. Image Analysis and Recognition, 1128–1137.
944	Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: from theory to
945	algorithms. New York, USA: Cambridge University Press.
946	Sharma, M., Srivastava, R., Anand, A., Prakash, D., & Kaligounder, L. (2017). Wearable motion
947	sensor based phasic analysis of tennis serve for performance feedback. In 2017 IEEE
948	International Conference on Acoustics, Speech and Siginal Processing (pp. 5945–5949). New
949	Orleans, LA: IEEE.
950	Sprager, S., & Juric, M. B. (2015). Inertial sensor-based gait recognition: A review. Sensors
951	(Switzerland) (Vol. 15). https://doi.org/10.3390/s150922089
952	Srivastava, R., Patwari, A., Kumar, S., Mishra, G., Kaligounder, L., & Sinha, P. (2015). Efficient
953	characterization of tennis shots and game analysis using wearable sensors data. In 2015 IEEE
954	Sensors- Proceedings (pp. 1-4). Busan. https://doi.org/10.1109/ICSENS.2015.7370311
955	Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, T., Zimmermann, P., Goldlücke, B., Keim,
956	D. A. (2018). Bring it to the pitch: combining video and movement data to enhance team
957	sport analysis. IEEE Transactions on Visualization and Computer Graphics, 24(1), 13–22.
958	https://doi.org/10.1109/TVCG.2017.2745181
959	Sze, V., Chen, YH., Yang, TJ., & Emer, J. (2017). Efficient processing of deep neural networks:
960	A tutorial and survey. <i>IEEE</i> , 105(2), 2295–2329. Retrieved from
961	http://arxiv.org/abs/1703.09039
962	Thomas, G., Gade, R., Moeslund, T. B. Carr, P. & Hilton, A. (2017). Computer vision for sports:
963	Current applications and research tonics Computer Vision and Image Understanding 150 3_
964	18 https://doi org/10.1016/i cyin 2017.04.011
065	Titterton D H & Weston I L (2009) Strandown inertial navigation technology (2nd ed)
065 065	Reston VA: AIAA
900 Q67	Tora M R Chen I & Little I I (2017) Classification of nucl possession events in ice backey
507	Tora, IVI. IX., Chen, J., & Liute, J. J. (2017). Classification of puck possession events in ice nockey.
	27

968	In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
969	Workshops (pp. 147–154). https://doi.org/10.1109/CVPRW.2017.24
970	Victor, B., He, Z., Morgan, S., & Miniutti, D. (2017). Continuous video to simple signals for
971	swimming stroke detection with convolutional neural networks. ArXiv Preprint
972	ArXiv:1705.09894. https://doi.org/10.1111/j.1467-8330.1974.tb00606.x
973	Wagner, D., Kalischewski, K., Velten, J., & Kummert, A. (2017). Activity recognition using
974	inertial sensors and a 2-D convolutional neural network. In IEEE (Ed.), 2017 10th
975	International Workshop on Multidimensional (nD) Systems (nDS) (pp. 1–6).
976	https://doi.org/10.1109/NDS.2017.8070615
977	Wagner I F (2018) About motion measurement in sports based on gyroscopes and
978	accelerometers - an engineering point of view Gyroscopy and Navigation 9(1) 1–18
970	https://doi.org/10.1134/\$2075108718010091
080	Ward I A Lukowicz D & Collerson H W (2011) Performance matrice for activity
0.001	recognition In ACM Trans, on Intelligent Systems and Technology (Vol. 2, pp. 111–122)
981	Whiteside D. Cont. O. Connolly, M. & Poid M. (2017). Monitoring hitting load in tennis using
902	inertial sensors and machine learning. International Journal of Sports Dhusialoon and
905	Definition of the second
984	Performance, 1–20. https://doi.org/https://doi.org/10.1123/ijspp.2016-0683
985	Wixted, A., Billing, D. C., & James, D. A. (2010). Validation of trunk mounted inertial sensors for
986	analysing running biomechanics under field conditions, using synchronously collected foot
987	contact data. Sports Engineering, 12(4), 207–212. https://doi.org/10.1007/s12283-010-0043-2
988	Wixted, A., Portus, M., Spratford, W., & James, D. A. (2011). Detection of throwing in cricket
989	using wearable sensors. Sports Technology, 4(3–4), 134–140.
990	https://doi.org/10.1080/19346182.2012.725409
991	Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. <i>Neural</i>
992	Computation, 8(7), 1341–1390. https://doi.org/10.1162/neco.1996.8.7.1391
993	Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimisation. IEEE
994	Transactions on Evolutionary Computation, $1(1)$, 67–82.
995	https://doi.org/10.1023/A:1021251113462
996	Wundersitz, D. W., Gastin, P. B., Richter, C., Robertson, S., & Netto, K. J. (2015). Validity of a
997	trunk-mounted accelerometer to assess peak accelerations during walking, jogging and
998	running. European Journal of Sport Science, 15(5), 382–390.
999	https://doi.org/10.1080/17461391.2014.955131
1000	Wundersitz, D. W., Gastin, P. B., Robertson, S., Davey, P. C., & Netto, K. J. (2015). Validation of
1001	a trunk-mounted accelerometer to measure peak impacts during team sport movements.
1002	International Journal of Sports Medicine, 36(9), 742–746. https://doi.org/10.1055/s-0035-
1003	1547265
1004	Wundersitz, D. W., Josman, C., Gupta, R., Netto, K. J., Gastin, P. B., & Robertson, S. (2015).
1005	Classification of team sport activities using a single wearable tracking device. <i>Journal of</i>
1006	<i>Biomechanics</i> , 48(15), 3975–3981, https://doi.org/10.1016/i.jbiomech.2015.09.015
1007	Yang C. C. & Hsu Y. L. (2010). A review of accelerometry-based wearable motion detectors for
1008	physical activity monitoring Sensors 10(8) 7772–7788 https://doi.org/10.3390/s100807772
1009	Yang L B. Nguyen M N. San P. P. Li X L. & Shonali K. (2015) Deep convolutional neural
1005	networks on multichannel time series for human activity recognition. In <i>Proceedings of the</i>
1010	24th International Conference on Artificial Intelligence (np. 3995-4001)
1011	Vao B & Fai Fai I (2010) Modeling mutual context of object and human pose in human object
1012	interaction activities. In Computer Vision and Pattern Pagagnition (pp. 17, 24) IEEE
1013	Voung C & Poinkonsmourer D L (2014) Judging complex movement performances for
1014	availleneed a principal components analysis based technique applied to competitive diving
1015	<i>Universe Management</i> Science, 26, 107, 122, https://doi.org/10.1016/j.human.2014.05.000
1010	Human Movement Science, 50, 107–122. https://doi.org/10.1010/j.humov.2014.05.009
1017	Yu, G., Jang, Y. J., Kim, J., Kim, J. H., Kim, H. Y., Kim, K., & Panday, S. B. (2016). Potential of
1018	IMU sensors in performance analysis of professional alpine skiers. Sensors (Switzerland),
1019	<i>16</i> (4), 1–21. https://doi.org/10.3390/s16040463
1020	Zebin, T., Scully, P. J., & Ozanyan, K. B. (2016). Human Activity Recognition with Inertial
1021	Sensors Using a Deep Learning Approach. Proc. of IEEE Sensors 2016, (1), 1–3.
1022	https://doi.org/10.1109/ICSENS.2016.7808590
1023	Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, P., & Zhang, J. (2014).
1024	Convolutional neural networks for human activity recognition using mobile sensors. In
1025	Proceedings of the 6th International Conference on Mobile Computing, Applications and
1026	Services (pp. 197-205). https://doi.org/10.4108/icst.mobicase.2014.257786
	28

/ity
31.
multi-
ge
-08010-
ю.
view.
1

Figure 1 PRISMA flow diagram for study search, screen and selection process.

Table 1. Key word search term strings per database.

Database key word searches

IEEE Xplore:

((((inertial sensor OR accelerometer OR gyroscope OR IMU OR microsensor)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

((((sport OR athlete* OR player*)) AND (video OR vision)) AND movement classification)

PubMed:

((((inertial sensor OR accelerometer OR gyroscope OR IMU OR microsensor)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

((((((Vision OR video OR camera OR footage OR computer vision)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill))) AND human) NOT clinical)) NOT review

ScienceDirect:

((sport OR athlete* OR player*)) and ((inertial sensor OR accelerometer)

((sport OR athlete* OR player*)) and TITLE-ABSTR-KEY((vision OR video OR camera) AND (detection OR classification)).

Scopus:

((((inertial sensor OR accelerometer OR gyroscope OR IMU OR microsensor)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

((((sport OR athlete* OR player*)) AND (video OR vision)) AND movement classification) Academic Search Premier:

((((inertial sensor OR accelerometer OR gyroscope OR IMU OR microsensor)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

((((sport OR athlete* OR player*)) AND (video OR vision)) AND movement classification) Computer and Applied Science Complete:

((((inertial sensor OR accelerometer OR gyroscope OR IMU OR microsensor)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

((((Vision OR video OR camera OR footage OR computer vision)) AND (sport OR athlete* OR match OR game OR training)) AND (detection OR recognition OR classification)) AND (movement OR skill)

* Entails truncation, i.e., finding all terms that begin with the string of text written before it.

Table 2 Study inclusion and exclusion criteria.

Inclusion criteria		Exclusion criteria	
٠	Original peer reviewed published	•	Solely investigated gait analysis for clinical
	manuscripts		purposes
•	Aimed at a sport-specific movement or	•	Solely investigated every day or non-sport-
	skill,		specific locomotion i.e., walking
•	Used IMUs and/or computer vision input		downstairs
	datasets for model development	•	Solely investigated player field positional
•	Investigated as an in-field application of the		tracking methods using data such as X, Y
	technology to the sporting movement		coordinates or displacement without any
•	Defined clear data processing and model		form of sport-specific skill detection and
	development methods inclusive of machine		classification associated to it
	or deep learning algorithms for semi-	٠	Used ball trajectory and audio cue data as
	automated or automated movement		the major determinant for event detection
	recognition	•	Data collection conducted within a
•	Published as full-length studies written in		laboratory setting under controlled protocol
	English	•	Data processing pipelines or recognition
			model development methodology not
			clearly defined
		•	Review studies
Table 3 Inertial measurement unit specifications.

Reference	Sensor model	Sensor	Sensor placement	A	cceleromete	er		Gyroscope		N	/lagnetomete	er
		No.		Axes	Range	Sample rate	Axes	Range	Sample rate	Axes	Range (1 Ga = 100 μT)	Sample rate
(Adelsberger & Tröster, 2013)	Ethos	3	Left ankle, wrist, lower back	3	± 6 g	NR	3	± 2000 °/s	NR	3	4 Ga	NR
(Anand, Sharma, Srivastava, Kaligounder, & Prakash, 2017)	Samsun Gear 2 smart watch	1	Wrist of hitting hand	3	± 8 g	100 Hz	3	± 2000 °/s	100 Hz			
(Brock & Ohgi, 2017)	Logical Product SS- WS1215/SS- WS1216, Fukuoka, Japan	9	Pelvis, right and left thighs, right and left shanks, right and left upper arms, both ski blades above the boot	3	± 5 g (body) ± 16 g (ski)	500 Hz	3	± 1500 °/s	500 Hz	3	± 1.2 Gauss full-scale	500 Hz
(Brock, Ohgi, & Lee, 2017)	Logical Product SS- WS1215/SS- WS1216, Fukuoka, Japan	9	Pelvis, right and left thighs, right and left shanks, right and left ski anterior to ski binding, right and left upper arm	3	± 5 g (body) ± 16 g (ski)	500 Hz	3	± 1500 °/s	500 Hz	3	± 1.2 Gauss full-scale	500 Hz
(Buckley et al., 2017)	Shimmer3 (Realtime Technologies Ltb. Dublin, Ireland)	3	Right and left shanks 2cm above lateral malleolus, 5th lumbar spinous process	3	± 8 g	256 Hz	3	± 1000 °/s	256 Hz	3	± 4 Gauss full-scale	256 Hz
(Buthe, Blanke, Capkevics, & Tröster, 2016)	EXLs33 IMU	3	Tennis racquet, on each shoe	3	± 16 g	200 Hz	3	± 500 °/s	200 Hz	3	NR	200 Hz
(Connaghan et al., 2011)	Custom Tyndall developed TennisSense WIMU system	1	Forearm of racquet arm	3	NR	NR	3	NR	NR	3	NR	NR

inued.

Reference	Sensor model	Sensor	Sensor placement	А	cceleromet	er		Gyroscope		Ν	lagnetomete	er
		No.		Axes	Range	Sample rate	Axes	Range	Sample rate	Axes	Range (1 Ga = 100 μT)	Sample rate
(Groh, Kautz, & Schuldhaus, 2015)	miPod sensor system	1	Underside of skateboard on the right side of front axis.	3	± 16g	200 Hz	3	± 2000 °/s	200 Hz	3	± 1200 µT	200 Hz
(Groh, Fleckenstein, & Eskofier, 2016)	miPod sensor system	1	Top of snowboard behind the front binding	3	± 16 g	200 Hz	3	± 2000 °/s	200 Hz	3	± 1200 µT	200 Hz
(Groh, Fleckenstein, Kautz, & Eskofier, 2017)	miPod sensor system	1	Underside of skateboard on the right side of front axis.	3	± 16 g	200 Hz	3	± 2000 °/s	200 Hz	3	± 1200 µT	200 Hz
(Jiao, Wu, Bie, Umek, & Kos, 2018)	NR	2	Golf club (location not specified)	3	NR	NR	3	NR	NR			
(Jensen et al., 2015)	Shimmer™ 2R sensor nodes (Realtime	1	Golf club head	3	± 1.5 g	256 Hz	3	± 500 °/s	256 Hz	NR	NR	NR
(Jensen, Blank, Kugler, & Eskofier, 2016)	Shimmer™ 2R sensor nodes (Realtime Technologies Ltb. Dublin, Ireland)	1	Back of head under a swim cap	3	± 1.5 g	10.24 Hz to 204.8 Hz	3	± 500 °/s	10.24 Hz to 204.8 Hz	NR	NR	NR
(Jensen, Prade, & Eskofier, 2013)	Shimmer™ (Realtime Technologies Ltb. Dublin, Ireland)	1	Back of head above swim cap	3	± 1.5 g	200 Hz	3	± 500 °/s	200 Hz	NR	NR	NR
(Kautz et al., 2017)	Bosch BMA280	1	Wrist of dominant hand	3	± 16 g	39 Hz	NR	NR	NR	NR	NR	NR
(Kelly, Coughlan, Green, & Caulfield, 2012)	SPI Pro	1	Between the shoulder blades	3	NR	39 Hz	NR	NR	NR	NR	NR	NR

Table 3 c	ontinued.
-----------	-----------

Reference	Sensor model	Sensor	Sensor placement	A	Acceleromete	er		Gyroscope		Magnetometer		
		No.		Axes	Range	Sample rate	Axes	Range	Sample rate	Axes	Range (1 Ga = 100 μT)	Sample rate
(Kobsar, Osis, Hettinga, & Ferber, 2014)	G-Link wireless accelerometer node (Microstrain Inc., VT)	1	Lower back on the L3 vertebra region	3	± 10 g	617 Hz	NR	NR	NR	NR	NR	NR
(Kos & Kramberger, 2017)	Custom sensor	1	Wrist of racquet arm	3	± 16 g	NR	3	± 2000 °/s	NR	NR	NR	NR
(Ó Conaire et al., 2010)	Custom sensor	6	Left and right wrists, left and right ankles, chest, lower back	3	± 12 g	120 Hz	NR	NR	NR	NR	NR	NR
(O'Reilly et al., 2015)	Shimmer [™] sensor (Realtime Technologies Ltb. Dublin, Ireland)	1	5 th lumbar vertebra	3	± 16 g	51.2 Hz	3	± 500 °/s	51.2 Hz	3	±1 Ga	51.2 Hz
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a)	Shimmer [™] sensor (Realtime Technologies Ltb. Dublin, Ireland)	5	5th lumbar vertebra, mid-point on right and left thighs, right and left shanks 2cm above lateral malleolus	3	± 2 g	51.2 Hz	3	± 500 °/s	51.2 Hz	3	± 1.9 Ga	51.2 Hz
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017b)	Shimmer [™] sensor (Realtime Technologies Ltb. Dublin, Ireland)	5	Spinous process of the fifth lumbar vertebra, mid-point of both femurs, right and left shanks 2 cm above the lateral malleolus	3	± 2 g	51.2 Hz	3	± 500 °/s	51.2 Hz	3	± 1.9 Ga	51.2 Hz
(Pernek, Kurillo, Stiglic, & Bajcsy, 2015)	Custom sensor	5	Chest, left and right wrists, left and right upper arms	3	NR	30 Hz	NR	NR	NR	NR	NR	NR
(Qaisar et al., 2013)	Custom sensor	3	Bowling arm: upper arm, elbow joint, wrist	3	NR	150 Hz	3	NR	150 Hz	NR	NR	NR

Table 3	continued.
---------	------------

Reference	Sensor model	Sensor	Sensor placement	A	Acceleromete	er		Gyroscope		Magnetometer			
		No.		Axes	Range	Sample rate	Axes	Range	Sample rate	Axes	Range (1 Ga = 100 μT)	Sample rate	
(Rassem, El- Beltagy, & Saleh, 2017)	NR	1	NR	3	NR	50 Hz							
(Rindal, Seeberg, Tjønnås, Haugnes, & Sandbakk, 2018)	IsenseU Move+	2	Chest, Lower arm	3	NR	20 Hz	3	NR	20 Hz				
(Salman, Qaisar, & Qamar, 2017)	Custom sensor	3	Bowling arm: upper arm, forearm, wrist	3	NR	150 Hz	3	NR	150 Hz	NR	NR	NR	
(Schuldhaus et al., 2015)	Custom sensor	2	Cavity of each shoe	3	± 16g	1000 Hz	NR	NR	NR	NR	NR	NR	
(Srivastava et al., 2015)	Samsung Gear S smart watch	1	Wrist of racquet arm	3	± 8 g	25 Hz	3	± 2000 °/s	25 Hz	NR	NR	NR	
(Whiteside, Cant, Connolly, & Reid, 2017)	IMeasureU IMU (Auckland, New Zealand)	1	Wrist of racquet arm	3	± 16 g	500 Hz	3	± 2000 °/s	500 Hz	3	± 1200 μT	500 Hz	
g G-forces, Ge NR not reported	a gauss, <i>Hz</i> Hertz, <i>II</i> I: study either did not o	MU inertia	al measurement unit, μ port the specification or t	<i>T</i> micro Te he device di	esla d not include	the sensor ty	pe						

Table 4 Vision-based camera specifications.

Reference	Camera model	Modality	Camera No.	Data collection setting
(Bertasius, Park, Yu, & Shi, 2017)	GoPro Hero 3 Black Edition	RGB	1	100 fps 1280 x 960 pixels
(Couceiro, Dias, Mendes, & Araújo, 2013)	Casio Exilim - High Speed EX-FH25. Focal length lens of 26 mm	RGB	1	Resolution 480 x 360 pixels 210 Hz
(Díaz-Pereira, Gómez- Conde, Escalona, & Olivieri, 2014)	Sony Handycam DCR-SR78	RGB	1	
(Hachaj, Ogiela, & Koptyra, 2015)	Kinetic 2 SDK system	3 Dimensional	1	30 Hz
(Horton, Gudmundsson, Chawla, & Estephan, 2014)	NR	NR	NR	NR
(Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016)	NR	NR	NR	NR
(Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015)	NR	NR	NR	NR
(Karpathy et al., 2014)	NR	NR	NR	NR
(Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015)	Swisse-range SR4000 time-of-flight (MESA Imaging AG, Switzerland)	Depth Camera at 5 m overhead height	1	25 fps 176 x 144 pixels
(Kasiri, Fookes, Sridharan, & Morgan, 2017)	Swisse-range SR4000 time-of-flight (MESA Imaging AG, Switzerland)	Depth Camera at 5 m overhead height	1	25 fps 176 x 144 pixels
(Li et al., 2018)	iPhone5s, 6, 6plus, 6s, 7	RGB	1	30 fps
(Liao, Liao, & Liu, 2003)	NR	RGB	NR	NR
(Lu, Okuma, & Little, 2009)	NR	RGB	NR	NR

Reference	Camera model	Modality	Camera No.	Data collection setting
(Montoliu, Martín-	NR	NR	16 synchronized and	25 fps
Félez, Torres-			stationary with a 'bird's	
Sospedra, & Martínez-			eye view' positioned	
Usó, 2015)			along a soccer pitch	
(Nibali, He, Morgan,	NR	RGB	One fixed	NR
& Greenwood, 2017)				
(Ó Conaire et al.,	IP camera	RGB	One overhead and eight	NR
2010)			around court baseline	
			positioned	
(Ramanathan et al.,	NR	NR	NR	NR
2015)				
(Reily, Zhang, & Hoff,	Kinetic 2	Depth Camera	1	NR
2017)				
(Shah, Chokalingam,	NR	RGB	NR	NR
Paluri, & Pradeep,				
2007)				
(Tora, Chen, & Little,	NR	NR	NR	NR
2017)				
(Victor, He, Morgan,	NR	RGB	NR	Swimming: 50 fps
& Miniutti, 2017)				Tennis: 30 fps
(Yao & Fei-Fei, 2010)	NR	RGB	NR	NR
(Zhu, Xu, Gao, &	Live Broadcast vision	RGB	NR	Video compressed in MPEG-
Huang, 2006)				2 standard with a frame
-				resolution 352 x 288 pixels
fps frames per second, H	z hertz, MPEG Moving Picture Experts	Group, <i>RGB</i> red green blue		
NR not reported: study eith	er did not directly report the specification or	the device did not include the sen	sor type	

Participants Dataset Data pre-processing **Feature extraction** Feature selection Recogniti Reference Sport: target movement(s) Number: sample on Filter Processing Detection No. algorithm gender, level Weight-lifting: 1.5 s window SVM (Adelsberger 16: four Low-pass filter 1 s window Heuristically Accelerometer & Tröster. females and 12 found threshold magnitude modelled on around detected thruster (squat 2013) males. value to derive sum of six Gaussian signal peaks. press) beginner to start and end functions with four Nelder Mead indices of each parameters each: scale simplex direct expert αi , amplitude offset βi , search MATLAB thruster episode standard deviation σi , and mean value μi LR. (Anand. Tennis: forehand 31 tennis Total Detection shot: Seven shot windows Pearson correlation Sharma. coefficient bitopspin, players, training 3 cues to developed for each forehand slice. stage of a shot. 34 badminton minimum directional Srivastava, set: identify shot Kaligounder, regions across Three feature set types redundancy LSTM backhand players, ~8500. generated from all shot & Prakash. topspin, 5 squash Total the three sports: maximum 2017) backhand slice, players testing 1) threshold, windows resulting in relevance serve set: ~ 2) jerk based ~2000 features (MRMR) technique including: Badminton: 7100 detection, 3) shot shape-1) statistical features, serve, clear, drop, smash 2) pairwise correlation based detection. Squash: coefficients between Once shot swing forehand, detected a fixed elements of the window backhand, serve number or set. sample before 3) shape-based features and after impact point assigned as shot region Ski Jumping: SVM. (Brock & Four: male. Set 1: discrete feature Ohgi, 2017) junior athletes values based on one-DTW error jump, nonerror jump dimensional data points built from the raw and processed data of every sensor Set 2: different timeseries features based on the estimated positions and orientations of every sensor

Table 5 Inertial measurement unit study description and model characteristics.

Reference	Sport: target	Participants	Dataset		Data pre-processing		Feature extraction	Feature	Recogniti
	movement(s)	Number: gender, level	sample No.	Filter	Processing	Detection	•	selection	on algorithm
(Brock, Ohgi, & Lee, 2017)	Ski jumping: nine motion style errors in flight and landing (5 errors during aerial phase/ 4 error during landing phase)	Three: ski jump athletes	85 measure d jump motions		 removal of internal noise sensor alignment to bone direction of mounted segment using standardised calibration measurement neutralisation segmentation of motion streams into jump phases all sensor streams down- sampled by factor of 2 along temporal domain 		CNN model - transformed every pre-processed data segment into a multi-channel motion image of size [R, C, D] with D = 3		CNN, SVM
(Buckley et al., 2017)	Running: classification of running form as a non-fatigued or fatigued state	21: 11 females, 10 males, recreationally active	584 extracted stride repetitio ns labelled as 292 non- fatigued and 292 fatigued	Low-pass Butterworth filter with a frequency cut- off of 5 Hz od order $n = 5$	Additional signals computed: Euler, pitch, roll, yaw and Quaternion W, X, Y, Z using algorithms on board the Shimmer IMUs. Stride segmentation by an adaptive algorithm		16 time-domain and frequency-domain features computed to describe the 16 IMU signals over each stride repetition.	Wilcoxon Rank Sum Test, the top 20 signal features extracted	RF, SVM, kNN, NB
(Buthe, Blanke, Capkevics, & Tröster, 2016)	Tennis: forehand topspin, forehand slice, backhand topspin, backhand slice, smash, shot steps, side steps	Four: male athletes, three intermediate and 1 advanced	Shots n = 200 Steps n = 640		Shots: discretize data using kMeans algorithm Steps: deadreckoning technique				Shots: LCS Steps: SVM

Reference	Sport: target	Participants	Dataset	I	Data pre-processin	g	Feature extraction	Feature selection	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection			on
		gender, level	No.						algorithm
(Connaghan et al., 2011)	Tennis: serve, forehand, backhand	Eight: two novices, three intermediate, three advanced athletes	2543			Compute length 3D acceleration vector with a W s window around largest absolute magnitude			NB
(Groh, Kautz, & Schuldhaus, 2015)	Skateboarding: ollie, nollie, kickflip, heelflip, pop shove-it, 360-flip	Seven: male, advanced skateboarders as three regular and four goofy stance directions	210		Rider stance correction: x- axes and z-axes for all goofy rider stance data inverted	Accelerometer signal segmented into window lengths 1 s with 0.5 s overlap. Energy of window calculated as sum of squares of all axes. Threshold- based detection defined	Total 54 features calculated: mean, variance, skewness, kurtosis, dominant frequency, bandwidth, x-y-correlation, x-z-correlation, y-z-correlation	Embedded Classification Software Toolbox using the best-first forward selection method	NB, PART, SVM (radial bases kernel), kNN
(Groh, Fleckenstein, & Eskofier, 2016)	Snowboarding: two trick categories (Grinds and Airs) with three trick classes each category	Part A Four: male snowboarders, as two regular and two goofy stance directions. Part B Seven: male snowboarders, as four regular and three goofy stance directions	275 tricks total (119 Grinds and 156 Airs)		Calibration of accelerometer and gyroscope data using static measurements and rotations about all axes. Rider stance correction: x- axes and z-axes of all goofy rider stance data inverted	Peak detected in accelerometer signal landing after trick. L^1 -norm $S\alpha$, t computed for all times t. Window-based threshold of length 50 samples (0.25s), overlap 49 samples. Threshold determined by LOOCV	Trick category: defined threshold approaches from magnetometer signals Trick class: nine gyroscope signal features of total rotation, rotation for first half of trick, and rotation from s half of trick for each axis		Trick category: NB Trick class: NB, kNN, SVM, C4.5

Reference	Sport: target	Participants	Dataset	Ι	Data pre-processin	g	Feature extraction	Feature selection	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection			on
		gender, level	No.						algorithm
(Groh, Fleckenstein, Kautz, & Eskofier, 2017)	Skateboarding: 11 trick types, trick fail, resting period	11: skateboard athletes	905 trick events		Calibration. Signal y-axes and z-axes inverted	Accelerometer peaks and gyroscope landing impact signals	Accelerometer: x–z- axes correlation after a landing impact Gyroscope: correlation of the x– y-, x–z- and y–z- axes, and specified rotation features	Trick event interval defined as 1 s before and 0.5 s after landing impact	NB, RF, LSVM, SVM (radial- basis kernel), kNN
(Jensen et al., 2015)	Golf: putt phases, putt event, no-putt event	15: inexperienced golfers	272		Sensor data calibration using the 9DOF Calibration Software (version 2.3). Sensor data transformation using a Direction Cosine Matrix	HMM with sliding windows (500 samples, 1.95 s) with a 50% overlap	31 kinematic parameters from 6D IMU data: (1) phase length and ratios of phase lengths (2) angles and ratios of angles (3) velocity at impact (4) summed acceleration around impact (5) velocity and acceleration profiles in fore-swing		AB
(Jensen, Blank, Kugler, & Eskofier, 2016)	Swimming: rest period, turn, butterfly, backstroke, breaststroke, freestyle	11: high level junior swimmers			Sliding windows between 1 s to 3.5 s with 0.5 s increments. Feature normalization		48D feature vectors per window, computed on each axis: signal energy, min, max, mean, STD, kurtosis, skewness, variance	Best First Search wrapper algorithm	AB, LR, PART, SVM

Reference	Sport: target	Participants	Dataset]	Data pre-processin	g	Feature extraction	Feature	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection		selection	on
		gender, level	No.						algorithm
(Jensen, Prade, & Eskofier, 2013)	Swimming: butterfly, backstroke, breaststroke, freestyle, turns	12: five females and 7 males, high-level swimmers				Spatial energy and head position	48 features total (8 features x 6 axes): mean, STD, variance, energy, kurtosis, skewness, min, max		DT
(Jiao, Wu, Bie, Umek, & Kos, 2018)	Golf: nine swing types	Four: amateur to professional ranked golfers	213 raw samples, 917 samples after augment ation		Dataset augmented to balance swing counts in each class				Vanilla CNN
(Kautz et al., 2017) Machine learning approach	Volleyball: nine shot skill types, one null class	30: 11 females and 19 males, novice to professional	4284	High-pass Butterworth filter with an 8 Hz cut-off frequency	L1-norm of the high-passed signal was computed. Signal was smoothed using a low-pass Butterworth filter with a 3 Hz cut-off frequency	Threshold based approach with calculated indicators. C4.5 with LOOCV	39 features: median, mean, STD, skewness, kurtosis, dominant frequency, amplitude of spectrum at dominant frequency, max, min, position of the max, position of the max, position of the max, position of the max, position of the minimum, energy. Pearson correlation coefficients for the correlations between x- axis and y-axis, between x-axis and z- axis, and between y- axis and z-axis	Filter based on the Adjusted Rand Index	SVM, (radial basis kernel function), kNN, Gaussian NB, CART, RF, VOTE

Reference	Sport: target	Participants	Dataset		Data pre-processii	ng	Feature	Feature selection	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection	extraction		on
		gender, level	No.						algorithm
(Kautz et al.,	Volleyball: nine	30: 11 females	4284		Resampling of				Deep
2017)	shot skill types,	and 19 males,			raw data				CNN
Deep	one null class	novice to							defined as
learning		professional							two conv
approach									layers
									with
									ReLUs
									and max-
									pooling,
									followed
									by two FC
									layers
									with soft-
(77.11	D 1 V 1			X CII.		× 1 ·	<u>a</u>		max
(Kelly,	Rugby Union:	Nine:		Low-pass filter		Local maxima	Static window		SVM,
Coughlan,	tackle and non-	professional		on magnitude		with an amplitude	features:		HCRF,
Green, &	tackle impacts	athletes		signals		cut-off of 0.25 Hz	max,		Learning
Caulfield,							min,		Grid
2012)							mean,		approach
							variance,		with
							skownoss		fusion by
							Impact region		
							features:		AD
							calculated from a		
							window with		
							dynamically		
							calculated start		
							and end points.		
							Impact region		
							signal features:		
							temporal changes		
							in each		
							accelerometer raw		
							data signals		

Reference	Sport: target	Participants	Dataset		Data pre-processing		Feature extraction	Feature	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection		selection	on
		gender, level	No.						algorithm
(Kobsar, Osis, Hettinga, & Ferber, 2014)	Running: motion patterns to predict training background and experience level	14, soccer athletes. 16, first time marathon runners. 12, experienced marathon runners	Per participa nt: 15 s accelero meter data equating to ~20 – 25 footfalls		RMS of accelerations in the vertical, medio- lateral, anteroposterior, and resultant direction calculated. The economy of accelerations determined as the RMS in each axis divided by the gait speed. Outliers adjusted using a Winsorizing technique. All variables standardized to a mean		DWT procedure of 5-level wavelet decomposition using Daubechies 5- mother wavelet	PCA	LDA (binary classificati on)
(Kos & Kramberger, 2017)	Tennis: forehand, backhand, serve	Seven: junior to senior athletes	446		of 0 and a STD of 1	Defined threshold based on two- point derivative of acceleration curves			Unsupervi sed discrimina tive analysis
(Ó Conaire et al., 2010)	Tennis: serve, backhand, forehand	Five: elite nationally ranked	300		Normalization of stroke data by rescaling for variance to equal 1	1 s window over accelerometer peaks detected from a threshold approach	Normalized signal x, y, z vectors		SVM (radial basis function kernel), kNN
(O'Reilly et al., 2015)	Squat: correct or incorrect technique and specific technique deviations	22: 4 females and 18 males, with prior experience and regular squat training in regime	682	Low-pass Butterworth filter with a frequency cut-off of 20 Hz			30 features: min and max range accelerometer and gyroscope x, y, z signals, pitch, roll, yaw		Back- propagatio n NN

Reference	Sport: target	Participants	Dataset		Data pre-processing		Feature extraction	Feature	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection		selection	on
		gender, level	No.						algorithm
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a)	Lunge: discriminate between different levels of lunge performance and identify aberrant techniques	80: 23 females, 57 males, with prior experience and regular lunge training in regime	3440	Low-pass Butterworth filter with frequency cut- off of 20 Hz of order n = 8	3D orientation of IMU computed from all axes using a gradient descent algorithm. Acceleration and gyroscope magnitude calculated. Each exercise repetition resampled to length of 250 samples.		240 features per IMU calculated and extracted including: signal peak, valley, range, mean, standard deviation, skewness, kurtosis, signal energy, level crossing rate, variance, 25 th and 75 th percentile, median, variance of both the approximate and detailed wavelet coefficients using the Daubechies 5 mother wavelet to level 6		RF
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017b)	Deadlifting: technique deviations	135: 41 females and 94 males, with prior lifting experience	2245	Low-pass Butterworth filter with a frequency cut- off of 20 Hz	Rotation quaternions were converted to pitch, roll and yaw signals. Magnitude of acceleration and rotational velocity computed. Time- normalization by exercise repetitions resampled to a length of 250 samples		17 time and frequency domain features each signal: mean, RMS, STD, kurtosis, median, skewness, range, variance, max, min, energy, 25th percentile, fractal dimension, level crossing-rate, variance of approximate and detailed wavelet coefficients		RF

Reference	Sport: target	Participants	Dataset		Data pre-processing		Feature	Feature selection	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection	extraction		on
		gender, level	No.						algorithm
(Pernek,	Weightlifting:	11: three	~ 2904		Temporal		Min,	Sliding window	SVM
Kurillo,	six dumbbell	females and 8			alignment.		max,	approach	(Gaussian
Stiglic, &	lifting exercises	males			Uniform		range,		radial
Bajcsy,					resampling of		arithmetic mean,		basis
2015)					sample rate to 25		STD,		function
					Hz		RMS,		kernel)
		_					correlation		
(Qaisar et al.,	Cricket: correct	One:	40		Calibration by		Mean,	K-means clustering	K-means
2013)	and incorrect	medium paced			filter using signal		mode,		clustering,
	medium paced	cricket bowler			processing		STD,		Markov
	bowls				techniques and		peak to peak		Model,
					interpolated to		value,		HMM.
					smooth out the		min,		
					filtered data		max,		
							first deviation,		
		ND	416 707				second deviation		D (
(Rassem, El-	Cross-country	NK	416,737		Data segmented				Recurrent
Beltagy, & $S_{a1ab} = 2017$	skiing: gears				into training,				LSTM,
Salen, 2017)	variations				validation, testing				CININ,
					set applied with a				MLP
					willdow size 1 sec				
(Dindal	Cross country	10:0 malo 1	9616	Chast	with 50% overlap		Samplas wara		NN with
(Killual,	closs-coulid y	fomale, trained	8010	cilest			decimated or		three
Tignnås	tochniquo sub	amataurs to		data filtarad			internolated into		hiddon
Haugnes &	classes	professional		with Gaussian			30 samples per		lavers of
Sandbakk	classes	world cup		low pass filter			cycle and then		50 10 20
2018)		skiers		0.0875 s (1.75)			appended into one		10, 10, 20
2018)		SKICIS		(1.75)			feature vector of		ach laver
				standard			94 samples		respectivel
				deviation in the			J+ samples		v
				time domain					3

Reference	Sport: target	Participants	Dataset		Data pre-processi	ng	Feature	Feature selection	Recogniti
	movement(s)	Number:	sample	Filter	Processing	Detection	extraction		0n olgorithm
(Salman, Qaisar, & Qamar, 2017)	Cricket: detect legal or illegal bowls	14: male cricketers, medium and fast paced	150	Calibration and filter	Outliers removed using IQR method. Missing values	Data divided into tagged windows corresponding to phases of bowling	Seven features per axis of accelerometer and gyroscope signals:	Correlation-based feature selection with Greedy search method resulting in	SVM (redial basis function
		bowlers			in each attribute replaced with corresponding mean values of attribute, conditional of 10% limit of missing values per attribute before discarded	action. Ball release point was the maxima to denote start process of windowing and tagging	mean, median, STD, skewness, kurtosis, min, max	the top 21 features	kernel), kNN, NB, RF, NN (three- layer feed- forward)
(Schuldhaus et al., 2015)	Soccer: shot, pass, event leg, support leg, other soccer events	23: male athletes	64 passes, 12 shots	High-pass Butterworth filter		Accelerometer peak detection using a Signal Magnitude Vector. Segmented windows of 1 s around peaks	Four features from each accelerometer axis: mean, variance, skewness, kurtosis		SVM (linear kernel), CART, NB
(Srivastava et al., 2015)	Tennis: forehand, backhand, serve, sub-shot types (flat, topspin, slice)	14: five professional and nine novices	~1000 shots from professio nal athletes, ~1800 shots from novice athletes			Pan Tomkin's algorithm to isolate shot signal from noise. Accelerometer x- axis differentiated and squared. Moving window integration with window size 3* the sampling rate. Identified potential shot impact region using thresholding			Two Level hierarchic al classifier: (1) DTW, (2) QDTW

Reference	Sport: target	Participants	Dataset	Data pre-processing		Feature	Feature	Recognition	
	movement(s)	Number:	sample	Filter	Processing	Detection	extraction	selection	algorithm
		gender, level	No.		_				
(Whiteside,	Tennis: serve,	19: 8 females	Per		Saturated	Threshold	40 features (5		SVM (linear,
Cant,	forehand (rally,	and 11 males,	athlete:		signals	algorithm with a	features across 8		quadratic, cubic,
Connolly, &	slice, volley),	junior national	mean		reconstructed	window size 0.5 s	waveforms):		Gaussian kernels),
Reid, 2017)	backhand (rally,	development	$1504 \pm$		using a linear	either side of the	min,		CT (10, 25, 50
	slice, volley),	athletes	971		interpolation	detected shot.	med,		splits),
	smash,				method.	Shot instances	integral,		kNN (k of 1, 3, 5),
	false shot				Signals	temporally	discrete value at		NN,
					smoothed with	aligned with	time of impact		RF,
					50-point (0.1	exported coded			DA (linear and
					sec) moving	vision file.			quadratic)
					average.				
3D three dime	nsions, AB Adaptive	e Boosting, C4.5 de	ecision tree a	nalysis type, CART	classification and r	egression tree, CNN c	convolutional neural r	network, CT class	ssification tree, DA
discriminative analysis, DOF degrees of freedom, DT decision tree, DWT dynamic time warp, FC fully-connected, HCRF hidden conditional random field, HMM Hidden Markov									
Model, HZ hertz, IMU inertial measurement unit, IQR interquartile range, kNN k-Nearest Neighbour, LCS Longest Common Subsequence algorithm, LDA linear discriminative									
analysis, LOO	analysis, LOOCV leave-one-out-cross-validation, LR logistic regression, LSTM long short term memory, LSVM linear support vector machine, MLPs multi-layer perceptrons, NB								
Naïve Bayesia	n, NN neural networ	rk, NR not reported	, PART parti	ial decision tree, QL	DTW Quaternions ba	ased Dynamic Time V	Varping, ReLUs rectif	fier linear unit, <i>F</i>	RF random forests,

RMS root mean square, STD standard deviation, SVM Support Vector Machine, VOTE vote classifier.

Table 6 Inertial measurement unit study model performance evaluation characteristics.

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		dataset split approach			
(Anand, Sharma, Srivastava, Kaligounder, & Prakash, 2017)	Detection: precision, recall, F1-score Classification: CA		 Detection of squash: Precision 0.95 Recall 0.96 F1- score 0.96 CA: Tennis: CNN 93.8% Badminton: BLSTM 78.9% Squash: BLSTM 94.6% 	In-house developed tool to align recorded vision and sensor data to tag shot types in which tagged data serves as ground truth for analysis	
(Adelsberger & Tröster, 2013)	Detection accuracy, CA	75% / 25% train-test dataset split	 Detection accuracy: 100% (when athletes did not move between reps) Classification: CA 94.117% (between expert and beginner level) Classification: CA 93.395% (individual thruster instances) 	Video footage with performances labelled by a certified coaching expert	Dataset split details: Tennis: training set ~4500 shots by 15 players testing set ~5000 shots by 16 players Badminton: training set ~3500 shots by 20 players testing set ~2000 shots by 14 players Squash: training set ~500 shots by 3 players testing set ~100 shots by 2 players
(Brock & Ohgi, 2017)	Precision, recall, CA, error rate		SVM: CA 52% - 82%	Video control data	For each classifier algorithm, 72 experiments were conducted varying in factor sampling rate (4 variations), windows size (6 variations) and feature selection strategy (3 variations). Error rate defined as the difference between classification accuracy and 1.0
(Brock, Ohgi, & Lee, 2017)	CA, cross-entropy loss	8-fold cross validation	CNN 1 layer: CA 93 ± 0.08%	Jump style annotated by qualified judge under the judging guidelines of the International Skiing Federation	

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		dataset split approach			
(Buckley et al., 2017)	CA, sensitivity, specificity, F1-score,	LOO-CV 10-K-fold cross validation	 Global Classifier: LIMU lumbar spine CA 75% IMU right shank CA 70% IMU left shank CA 67% Personalised classifier: IMU lumbar spine CA 89% IMU right shank CA 99% 	Manual labelling	Personalised classifiers appear more computationally efficient than global classifiers as they require less training data and memory storage.
(Buthe, Blanke, Capkevics, &	Detection accuracy, confusion matrix,	LOO-CV	 IMU left shank CA 100% Step detection accuracy: Overall 76% 		Gyroscope signals showed to be more suitable than accelerometer
Tröster, 2016)	recall, precision, user-specific dataset comparison for train and test		 Side steps 96% Shot steps 63% LOOCV: Precision 0.49 ± 0.04% Recall 0.49 ± 0.22% User-specific: Precision 98% Recall 87% 		signals to separate shot movements and identify fast foot movements
(Connaghan et al., 2011)	Detection accuracy, CA	10-fold cross validation	 Detection accuracy: Candidate strokes 85% Non-candidate strokes 85% Classification accuracy: 3 sensor fusion overall accuracy 90% Accelerometer 7 player model 97% Gyroscope 7 player model 76% Magnetometer 7 player model 76% 		Accelerometer signals were the most effective at classifying different skill levels
(Groh, Kautz, & Schuldhaus, 2015)	Detection: sensitivity, specificity Classification: CA, computational effort	LOSO-CV	 Detection: Sensitivity 94.2% Specificity 99.9% Classification: CA 97.8% (NB and SVM) Computation effort (lowest): NB (operations 360, time 6.2 s) PART (operations 41, time 10.6 s) 	Video footage and expert analysis of trick quality	Computational effort defined as the time and required operations for one model run without grid search

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		dataset split approach			
(Groh,	Precision,	LOSO-CV	Event detection:	Video footage	
Fleckenstein,	recall,		• Recall 0.99		
& Eskofier,	CA		• Precision 0.368		
2016)			Trick category classification:		
			• Grind recall 0.966		
			Grind precision 0.885		
			• Airs recall 0.974		
			 Airs precision 0.910 		
			Trick class CA:		
			• Grind 90.3% (SVM)		
			• Airs 93.3% (kNN)		
(Groh,	Detection:	Classification: LOSO-	Detection:	Video footage with	
Fleckenstein,	precision,	CV	Precision 0.669	manual annotation	
Kautz, &	recall		• Recall 0.964		
Eskofier,	Classification:		Classification:		
2017)	CA,		Correct trick execution CA		
	confusion matrix		89.1% (SVM)		
			• All tricks modelled 79.8%		
			CA (RF)		
(Jensen et al.,	Detection accuracy,		Overall detection rate 68.2%.	Video footage	Detection rate:
2015)	false positive rate		False positive rate 2.4%		$DR - N_d$
					$DR = \frac{1}{N_p}$
					False positive rate:
					$PPR = \frac{1}{N_m + N_n}$
					N_{\star} number of detected putts
					$N_{\rm m}$ number of performed putts
					$N_{\rm m}$ number of misdetected putts
(Jensen, Blank,	СА	LOSO-CV	Maximum CA 86.5% (SVM)	Video footage	72 methodological experiments were conducted.
Kugler, &			Average CA 82.4% (SVM)	manually labelled	A sampling rate of 10.25 Hz and increased window
Eskofier.				jj	sizes produced higher classification accuracy.
2016)					
(Jensen, Prade,	CA	LOSO-CV	Turn CA 99.8%.		
& Eskofier,			Swim stroke CA 95%		
2013)					

Reference	Evaluation	Cross validation or dataset split	Performance	Ground truth	Special remarks
		approach			
(Jiao, Wu, Bie, Umek, & Kos, 2018)	CA, precision, recall	10-fold cross validation	CA 95% Precision 0.95 average Recall 0.95 average F1-score 0.95 average		
(Kautz et al., 2017) Machine learning approach	Confusion matrix, sample accuracy, balanced accuracy, computational time	Detection: LOSO-CV Classification: leave- three-subjects-out cross validation	 Sample accuracy 67.2% (VOTE) Balanced accuracy 60.3% (VOTE) Training computational time: 18.1 ms (NB with feature selection) Class prediction computational time: 0.53 μs (CART) 	Video footage manually labelled	Sample accuracy: $\lambda_{s} = \frac{\sum_{c=1}^{M} r_{c}}{\sum_{c=1}^{M} N_{c}}$ Balanced accuracy: $\lambda_{b} = \frac{1}{M} \sum_{c=1}^{M} \frac{r_{c}}{N_{c}}$ <i>N_c</i> number of samples from class <i>c</i> <i>r_c</i> number of sample from class <i>c</i> classified correctly <i>M</i> number of classes
(Kautz et al., 2017) Deep learning approach	Sample accuracy, balanced accuracy	Leave-two-out cross- validation	Sample accuracy 83.2% Balanced accuracy 79.5%	Video footage manually labelled	
(Kelly, Coughlan, Green, & Caulfield, 2012)	Recall, precision, TP, TN, FP, FN		Learning Grid approach:Recall 0.933Precision 0.958	Video footage manually labelled by the medical staff of the elite rugby union team involved	
(Kobsar, Osis, Hettinga, & Ferber, 2014)	СА	LOO-CV	Training background CA 96.2% Experience level CA 96.4%		

Reference	Evaluation	Cross validation or dataset split approach	Performance	Ground truth	Special remarks
(Kos & Kramberger, 2017)	СА		Serve CA 98.8%, forehand CA93.5%, backhand CA 98.6%	Video footage	Gyroscope signals were found to be more discriminative between stroke types
(Ó Conaire et al., 2010)	Detection accuracy, CA	LOO-CV	 Detection accuracy: 100% Classification: Right arm data CA 89.41% (kNN) Full-body data CA 93.44% (kNN) 		 Data fusion of accelerometer and vision data improved CA: Vision back viewpoint with full body accelerometer 100% CA (kNN) Data fusion overcame viewpoint sensitivity Vision trained on side viewpoint and tested on back viewpoint fused with full body accelerometer data 96.71% CA (kNN)
(O'Reilly et al., 2015)	CA, sensitivity, specificity	LOSO-CV	 Binary classification: Sensitivity 64.41% Specificity 88.01% CA 80.45% Multi-label classification; Sensitivity 59.65% Specificity 94.84% CA 56.55% 	Chartered Physiotherapist evaluation based on the National Strength and Conditioning Association guidelines	
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a)	CA, sensitivity, specificity, out-of-bag error	LOSO-CV	 Classify acceptable and aberrant technique Five lower limb IMU set-up: CA 90% Sensitivity 80% Specificity 92% Classify specific technique deviations Five lower limb IMU set-up: CA 70% Sensitivity 70% Specificity 97% 	Chartered physiotherapist and strength and conditioning trained practitioner. Correct technique described by the National Strength and Conditioning Association (NSCA) guidelines.	
(O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017b)	CA, sensitivity, specificity	LOSO-CV	 Natural technique deviations binary CA: Global classifier 73% (RF) Personalized classifier 84% (RF) Natural technique deviations multi-class CA: Global classifier 54% (RF) Personalized classifier 78% (RF) 	Video footage labelled by a Chartered Physiotherapist	Personalized classifiers outperformed the global classifiers and were more computationally efficient. kNN, SVM, NB tested during analysis against RF, but did not improve results and some caused increased computational times in some cases.

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		dataset split approach			
(Pernek, Kurillo, Stiglic, & Bajcsy, 2015)	CA, prediction error, confusion matrix	LOSO-CV, 10-fold cross-validation, 75%/ 25% train-test dataset split	 Methodology experiments: CA range 84.2 ± 11.3% to 93.6 ± 0.5% Intensity error: range 1.2% to 6.6 ± 2.5% 	Video footage with manual annotation	A 2 s window size with 50% overlap data processing yielded the best performance results.
(Qaisar et al., 2013)	CA		 Overall CA: 90.2% (HMM) Wrist sensor data 100% Elbow sensor data 88.24% Upper arm sensor data 82.35% 	Video footage	
(Rassem, El- Beltagy, & Saleh, 2017)	Average testing classification error over the model run. MLP model used as performance benchmark for DL models		Standard LSTM: 1.6% class error value CNN: 2.4% class error value		Data was divided into training, validation and testing sets with a segmentation process applied of window size one second with a 50% overlap.
(Rindal, Seeberg, Tjønnås, Haugnes, & Sandbakk, 2018)	CA, sensitivity, precision, confusion matrix	Validation dataset was used to evaluate which of the 20 trained neural networks to use for final model. Test set created from six different athlete data	CA 99.8% on training dataset CA 96.5% on validation dataset CA 93.9% on combined tests sets	Manual video labelling	Artificially expanded training dataset by taking every cycle in the original training data and created a new cycle by keeping the x-axis and z-axis, whereas the y-axis was flipped resulting in 8616 cycles from the original 4308 training cycles.
(Salman, Qaisar, & Qamar, 2017)	Detection accuracy, CA, recall, precision, F1-score	LOSO-CV	Detection of ball release point 100% accuracy. CA 81 ± 3.12% (SVM) Recall 0.80 (SVM) Precision 0.82 (SVM) F1-score 0.81 (SVM)	Video footage evaluated by an expert cricketer	

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		uataset spiit approach			
(Schuldhaus et al., 2015)	СА	LOSO-CV	 Set protocol conditions CA (SVM): Leg type 99.9% Other events 96.7% Pass or shot 88.6% Match conditions CA (SVM): Shot 86.7% Pass 81.7% 	Video footage manually labelled	
(Srivastava et al., 2015)	Detection accuracy, CA		 Shot detection accuracy: Professional 99.58% Novice 98.96% Total 99.41% Shot CA: Class professional player 99.6% Class novice player 99.3% Sub-shot types professional player 90.7% Sub-shot types novice player 86.2% 		
(Whiteside, Cant, Connolly, & Reid, 2017)	CA, confusion matrix, precision, recall	10-fold cross-validation	 Mean CA (SVM – cubic kernel): Condition one 97.43 ± 0.24% Condition two 93.21 ± 0.45% 	Video footage manually labelled by a performance analyst	SVM algorithms were constructed using linear, quadratic, cubic and Gaussian kernels, and a one-versus-one approach. kNN classifiers were built using a k of 1,3 and 5. CT were constructed using a maximum of 10, 25 and 50 splits. NN included a conventional single-layer model and multi-layer deep network
CA classification out cross validation Vector Machine.	accuracy, CART classification, LOSO-CV leave-one-su TN true negative. TP true r	tion and regression tree, <i>CT</i> cla ubject-out cross validation, <i>ML</i> positive, <i>VOTE</i> vote classifier.	assification tree, <i>FN</i> false negative, <i>FP</i> fa <i>P</i> multi-layer perceptrons, <i>NB</i> Naïve Bay	llse positive, <i>Hz</i> hertz, <i>kN</i> vesian, <i>PART</i> partial deci	<i>N</i> k-Nearest Neighbour, <i>LOO-CV</i> leave-one- sion tree, <i>RF</i> random forests, <i>SVM</i> Support

Recognition Reference Sport: target **Participants** Dataset **Pre-processing** Processing **Feature extraction** Number: gender, samples movement(s) and selection level CNN. (Bertasius, Park, Basketball: some-48: male US 10.3 hours of Gaussian mixture Yu, & Shi, 2017) body shooting a Multi-path College players recorded vision function ball, camera convolutional wearer possessing LSTM the ball, camera wearer shooting the ball (Couceiro, Dias, Golf Putting: Six: male, Darwinian particle 180 trial shots LDA. athlete signature expert level (30 trials per swarm optimization Mendes. & ODA. Araújo, 2013) features athlete) method NB with Gaussian distribution, NB with kernel smoothing density estimate, LS-SVM with RBF kernel (Díaz-Pereira, Gymnastics: 10 Eight: 560 video Motion Vector Flow PCA and LDA kNN actions grouped Gómez-Conde. shots (5 - 7 junior gymnasts Instance into three actions per Escalona, & Olivieri, 2014) categories of gymnast) jumps, rotations, pre-acrobatics Oyama Karate: 10 (Hachaj, Ogiela, & 1236 Segmentation: GDL Angle-based features Six: Pre-classification: Continuous advanced Oyama classifier approach Koptyra, 2015) data pre-processed classes of actions Gaussian density karate martial artists training with an forward-only grouped into 4 based on z-scores defence types, 3 unsupervised R-GDL HMM classifiers calculations for each kick types, 3 algorithm. feature value A Baum-Welch stands algorithm to estimate HMM parameters

Table 7 Vision-based study description and model characteristics.

Reference	Sport: target movement(s)	Participants Number: gender, level	Dataset samples	Pre-processing	Processing	Feature extraction and selection	Recognition
(Horton, Gudmundsson, Chawla, & Estephan, 2014)	Soccer: Pass quality	Dataset: English Premiership 2007/2008 season games	2932 passes across four matches			Features: basic geometric prediction variables, sequential predictor variables, physiological predictor variables, strategic predictor variables	Multinomial logistic regression, SVM, RUSBoost algorithm
(Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016)	Volleyball: six team activity classes, seven individual athlete actions	Dataset: 15 YouTube volleyball videos	1525 annotated frames			CNN	CNN, LSTM
(Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015)	Rugby, Basketball, Soccer, Cricket, Gaelic football, Hurling: 8 scene types	Dataset	50 hours	Video de-coding: storage of every 5 th frame in the buffer		FFT	DT, Feed-forward MLP NN, Elman NN
(Karpathy et al., 2014)	Sports-1M dataset	Dataset	1 million YouTube videos containing 487 classes with 1000 -3000 videos per class	Optimization: Downspur Stochastic Gradient Descent	Data augmentation: (1) crop centre region and resize to 200 x 200 pixels, randomly sampling 170 x 170 region, and randomly flipping images horizontally with 50% probability. (2) subtract constant value of 117 from raw pixel values		CNN (several approaches to fusing data across temporal domains)

Reference	Sport: target movement(s)	Participants Number: gender, level	Dataset samples	Pre-processing	Processing	Feature extraction and selection	Recognition
(Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015)	Boxing: 6 punch types of straight, hook, uppercut from both rear and lead hand	Eight: elite orthodox boxers	192 punches (32 for each type)		Detection of body parts: fuzzy inference method based on 2D chamfer distance and geodesic distances	Spatial-temporal features of each punch	RF, Linear SVM, Hierarchical SVM
(Kasiri, Fookes, Sridharan, & Morgan, 2017)	Boxing: 6 punch types of straight, hook, uppercut from both rear and lead hand	14: elite orthodox and southpaw boxers across different weight classes	605 punches		Detection of body parts: fuzzy inference method based on 2D chamfer distance, depth values and geodesic distances	Transition-invariant trajectory features of hand and arm descriptors extracted. Feature ranking for feature reduction experimented using PCA, RF, SVM- reclusive feature eliminator	Multi-class SVM, RF
(Liao, Liao, & Liu, 2003)	Swimming: backstroke, breaststroke, butterfly, freestyle	Dataset	50 clips	Associated limb region detection: RGB images converted to HSV space. Associated skin colour detection: pixels labelled between 0.3 to 1.5 hue values.	Upper body sections isolated using heuristic, threshold approach	LR analysis	DT
(Li et al., 2018)	Golf: key swing gesture detection		Golf front angle swing vision from 553 players, Golf side angle swing vision from 790 players, Baseball swing vision from 3363 players			Multi-scale aggregate channel feature method	AD- DWTAdaBoost Linear SVM

Table 7	continued.
---------	------------

Reference	Sport: target movement(s)	Participants Number: gender, level	Dataset samples	Pre-processing	Processing	Feature extraction and selection	Recognition
(Lu, Okuma, & Little, 2009)	Ice Hockey: skating movement directions of down, up, left, right	Male unspecified athletes	5609 images of 32 x 32 grayscale images	Tracking: HSV, HOG combined with SVM. Template updating: SPPCA	Multi-target tracking by incorporated SPPCA with an action recognizer using an AB algorithm		SMLR
(Montoliu, Martín-Félez, Torres-Sospedra, & Martínez-Usó, 2015)	Soccer: team activities of ball possessions, quick attack, set pieces	Private dataset: professional Spanish soccer team	Two matches of 90 min each	All camera images combined via algorithmic approach for a unique image covering field length		Bag-of-Words Optical Flow	kNN, SVM, MLP
(Nibali, He, Morgan, & Greenwood, 2017)	Diving: 5 dive properties or rotation type, pose type, number of somersaults, number of twists, handstand beginning inclusion	Dataset: high-level divers from the Australian Institute of Sport	Training set: 25 hours with 4716 non- overlapping dives. Test set: day's footage of 612 dives	Temporal action localisation: TALNN - built from volumetric Convolutional layers. Smoothing: Hann Window Function	Spatial Localisation: full regression, partial regression, segmentation, and Global constraints (RANSAC algorithm).		C3D volumetric convolutional network (3x3x3 kernels, ReLUs, dropouts)
(Ó Conaire et al., 2010)	Tennis: serve, forehand, backhand	Five: elite nationally ranked			Contour features: back-ground subtraction and image morphology	Player foreground region divided into 16 pie segments centred on player centroid and normalization	SVM with RBF kernel, kNN
(Ramanathan et al., 2015)	Basketball: 11 match activity classes and frame key player detection	Dataset: 257 NCAA games from YouTube	1143 training clips, 856 validation clips, 2256 testing clips	Each clip subsampled to six fps at four seconds in length		Each video-frame represented by a 1024- dimensional feature vector. Appearance features extracted using the Inception7 (Szegedy & Ibarz, 2015) network and spatially pooling th e response from the lower layer. Features corresponded to a 32x32 spatial histogram combined with a spatial pyramid	LSTM and BLSTM RNNs

Reference	Sport: target	Participants	Dataset samples	Pre-processing	Processing	Feature extraction	Recognition
	movement(s)	Tumber. gender, iever	samples			and selection	
(Reily, Zhang, & Hoff, 2017)	Gymnastics: Pommel horse routine spinning	Unspecified male gymnasts	10115 frames recorded as 16- bit PNG images, organized into 39 routines	DOI segmentation: (1) Parazen window (2) Identified signal peaks padded with neighbourhood 10% max depth		SAD3D: The gymnast in each frame is described by features: (1) width of their silhouette, (2) height of their silhouette, (3–4) depth values at the leftmost and rightmost ends of the silhouette, (5–8) shift in the left-most x, right-most x, upper y, and lower y coordinates compared to the previous frame.	SVM with radial basis function kernel. Smoothing techniques after classification
(Shah, Chokalingam, Paluri, & Pradeep, 2007)	Tennis: forehand, backhand, other	Dataset: male and female unspecified athletes	150 games each clipped to 10 min segments	Optical flow calculated between consecutive frames	Image segmentation and weight calculation by global adaptive thresholding. Player appearance modelling by Expectation Maximization algorithm	Oriented histogram of skeletonized binary images of athletes	SVM with RBF kernel
(Tora, Chen, & Little, 2017)	Ice Hockey: dump in, dump out, pass, shot, loose puck recovery	Dataset: National Hockey League videos	2507 training events, 250 testing events			Features extracted by the fc7 layers of AlexNet (Krizhevsky, Sutskever, & Hinton, 2012). Max-pooling of features of individual players in frames to incorporate player interactions	LSTM

Reference	Sport: target movement(s)	Participants Number: gender, level	Dataset samples	Pre-processing	Processing	Feature extraction and selection	Recognition
(Victor, He, Morgan, & Miniutti, 2017)	Swimming: backstroke, breaststroke, butterfly, freestyle Tennis: stroke detection	Datasets: Swimming: 40 athletes Tennis: 4 athletes	15k swimming strokes labelled in 650k fames. 1.3k tennis strokes labelled in 270 frames	Swimming: pre- processed using Hough transform as in (Sha, Lucey, Morgan, Pease, & Sridharan, 2013) to extract the lanes from colour information. Tennis: excluded unlabelled tennis strokes from input dataset. Input data frames down sampled to 192 x 128 pixels	Model parameters initialized. Adedelta optimizer. MSE loss function. All frame's pixels encoded in YUV colour-space and down sampled to 128 x 48		Regression: CNN with a base architecture based off the VGG-B CNN (Simonyan & Zisserman, 2014)
(Yao & Fei-Fei, 2010)	Human-object interaction sport activities: cricket defensive shot, cricket bowling, croquet shot, tennis forehand, tennis serve, volleyball smash	Dataset	350 images (50 images per 6 classes)	Gaussian over the number of edges and randomization of initialization connectivity to different starting points	Hill-climbing approach with a Tabu list	Parameter estimation with a max-margin learning method	Composition inference method
(Zhu, Xu, Gao, & Huang, 2006)	Tennis: left and right swings	Professional tennis athletes	6035 frames of 1099 left swing strokes and 1071 right swing strokes		Player tracking: SVR particle filter and background subtraction.	Motion descriptor extraction: optical flow computed using Horn- Sckunck algorithm with half-wave rectification and Gaussian smoothing. Feature discrimination: slice-based optical flow histograms	SVM
2D two dimensiona Fourier Transform, Nearest Neighbour network, PCA prin- Under Sampling Bo Support Vector Reg	al, <i>BLSTM</i> bidirection <i>GDL</i> Gesture Descri , <i>LDA</i> linear discrimi- cipal component anal oosting, <i>SAD3D</i> Silho gression.	al LSTM, <i>CNN</i> convolution ption Language, <i>HMM</i> H native analysis, <i>LR</i> logistion ysis, <i>PNG</i> Portable Netwo puette Activity Descriptor	idden Markov Model, <i>L</i> idden Markov Model, <i>L</i> ic regression, <i>LS-SVM</i> ork Graphics, <i>QDA</i> qua in 3 Dimensions, <i>SPP</i>	<i>DOI</i> Depth of interest segmen <i>HOG</i> Histogram of Oriented least squares support vector r adratic discriminative analysi <i>CA</i> Switching Probabilistic F	tation, <i>DT</i> decision tree, <i>E</i> Gradients, <i>HSV</i> Hue-Satu nachine, <i>MLP</i> multi-layer s, <i>RBF</i> radial basis functio Principal Component Anal	<i>ELU</i> Exponential Linear Un ration-Value-Colour-Histog perceptron, <i>NB</i> Naïve Baye on, <i>RF</i> random forests, <i>RUS</i> ysis, <i>SVM</i> Support Vector N	its, FFT Fast gram, kNN k- esian, NN neural Boost Random Machine, SVR

Table 8 Vision-based study model performance evaluation characteristics.

Reference	Evaluation	Cross validation or dataset split approach	Performance	Ground truth	Special remarks
(Bertasius, Park, Yu, & Shi, 2017)	F1-score	24 videos for training dataset, 24 videos for testing dataset	Basketball event detection mean F1-score 0.625. Basketball athlete performance evaluation model F1-score 0.793.	Manual labelling and athlete performance assessment by a former professional basketball player	Compared model's performance to first- person activity recognition baselines and a video activity recognition baseline C3D
(Couceiro, Dias, Mendes, & Araújo, 2013)	Confusion matrix, ROC		LS-SVM overall best performance		 five classifiers evaluated for detecting signature patterns best classifier method applied to extract individual golf putt signatures
(Díaz-Pereira, Gómez- Conde, Escalona, & Olivieri, 2014)	True/ false recognition rates for binary classification, sensitivity, specificity	10-fold cross validation	Specificity 85% overall Sensitivity 90% overall		
(Hachaj, Ogiela, & Koptyra, 2015)	CA, confusion matrix	LOO-CV	Overall CA range across classes 93 ± 7% to 100% (four-state HMM)		Five HMM classifiers tested with number of hidden states ranging from 1 (GMM) to 5
(Horton, Gudmundsson, Chawla, & Estephan, 2014)	CA, precision, recall, F1-score	80%/20% train-test dataset split. Tests set was stratified so per class frequency was consistent with the distribution in training examples	Three-class model 85.5% (SVM)	Labelled data of pass events. Rating of pass quality by observers (6-point Likert Scale) Cohen's Kappa for heuristic measure of agreement between ratings	 Experiments conducted using two labelling schemes: 1) six-class labels assigned by observers. 2) three-class scheme (aggregation of six-classes) Test dataset was stratified so per-class frequency consistent with distribution in training dataset.
(Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016)	CA, confusion matrix	2/3 rd of total data as training set, 1/3 rd as testing set	51.1% CA		Compared model performance to several baseline models

Reference	Evaluation	Cross validation or dataset	Performance	Ground truth	Special remarks
(Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015)	Modified accuracy (focused around detection performance), precision, modified precision	spit approach	Overall precision 0.96	Manual annotation	Modified accuracy = $\frac{(DE - DTE)}{NE}$ Precision = $\frac{DTE}{DE}$ Modified precision = $\frac{DTE}{NE}$
Karpathey et al. (Karpathy et al., 2014)	Prediction classification accuracy %, per-class average precision, confusion matrix	Dataset split: 70% training set, 10% validation set, 20% test set	CNN model average CA 63.9% Slow fusion model CA 60.9%	Labelled data classes	
(Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015)	CA, confusion matrix	LOO-CV Model trained on data from seven participants and tested on withheld data from one participant	Hierarchal SVM CA 92 – 96%	Start and end frames of each punch labelled by expert analysts	
(Kasiri, Fookes, Sridharan, & Morgan, 2017)	CA, feature numbers, confusion matrix		Hierarchical SVM CA 97.3%	Start and end frames of each punch labelled by expert analysts	
(Liao, Liao, & Liu, 2003)	Developed scoring system based on measure of proximity to the prominent feature of a specific style				
(Li et al., 2018)	CA, precision, recall, computational time	Cross-validation (not specified). Dataset split: 80% train/ 10% validation/ 10% test set	CA 97% Average recognition time of 2.38 ms		

Reference	Evaluation	Cross validation or dataset split approach	Performance	Ground truth	Special remarks
(Lu, Okuma, & Little, 2009)	CA, average computing speed, confusion matrix		SMLR and HOG approach CA 76.37% Computing speed: average total time classification image 0.206s (SMLR and HOG approach)	Manual image retrieval and division into the four classes	Compared developed model against benchmark action recognizers.
(Montoliu, Martín-Félez, Torres-Sospedra, & Martínez-Usó, 2015)	CA	5-fold cross-validation, LOO-CV	RF CA 92.89 ± 0.2%	Manual vision annotation by expert	
(Nibali, He, Morgan, & Greenwood, 2017)	CA, precision, recall, F1-score		Dive property CA from 86.89 - 100%	Labelled training data	Segmentation works best (spatial localisation). Dilated convolutions boosted CA.
(Ó Conaire et al., 2010)	CA	LOO-CV	Back viewpoint CA 98.67% (kNN) Side viewpoint CA 95% (kNN)		 Data fusion of accelerometer and vision data improved CA: Vision back viewpoint with full body accelerometer CA 100% (kNN) Data fusion overcame viewpoint sensitivity Vision trained on side viewpoint and tested on back viewpoint fused with full body accelerometer data CA 96.71% (kNN)
(Ramanathan et al., 2015)	Mean average precision	Hyperparameters chosen by cross-validating on the validation dataset	Event classification 0.516 mean average precision Event detection 0.435 mean average precision Key player attention 0.618 mean average precision	Manually labelled videos through an Amazon Mechanical Turk task	Event classification from isolated video clips was compared against different control setting and baseline models

reduces late stage
processing to
lations on 37.8%
l data.
tational
speed was 20 fps
1 1
red to several
els
with how
rmation
nto the model,
le, and three
nctions.
odel tested and
ennis stroke

Reference	Evaluation	Cross validation or	Performance	Ground truth	Special remarks
		dataset split approach			-
(Zhu, Xu, Gao,	Precision,		Tennis stroke classification using		
& Huang,	recall		video frames:		
2006)			• Left recall 84.08%,		
			• Left precision 89.80%		
			• Right recall 90.20%,		
			• Right precision 84.66%.		
			Tennis stroke classification using		
			action clips:		
			• Left recall 87.50%,		
			• Left precision 90.74%		
			• Right recall 89.80%,		
			• Right precision 86.27%		
CA classification accuracy, CNN convolutional neural network, DE detected events, DTE detected true events, GMM Gaussian mixture model, HMM Hidden Markov					
Model, kNN k-Nearest Neighbour, LOO-CV leave-one-out cross validation, LOSO-CV leave-one-subject-out cross validation, LS-SVM least squares support vector					
machine, NE number of events, RF random forests, ROC receiver operation characteristic curve, SVM Support Vector Machine.					

- 1 Machine and deep learning for sport-specific movement recognition: a systematic review of
- 2 model development and performance

3

- 4 **Running title:**
- 5 Machine and deep learning for sport movement recognition review

6
7 Abstract

8

9 Objective assessment of an athlete's performance is of importance in elite sports to facilitate detailed 10 analysis. The implementation of automated detection and recognition of sport-specific movements 11 overcomes the limitations associated with manual performance analysis methods. The object of this 12 study was to systematically review the literature on machine and deep learning for sport-specific 13 movement recognition using inertial measurement unit (IMU) and, or computer vision data inputs. 14 A search of multiple databases was undertaken. Included studies must have investigated a sport-15 specific movement and analysed via machine or deep learning methods for model development. A 16 total of 52 studies met the inclusion and exclusion criteria. Data pre-processing, processing, model 17 development and evaluation methods varied across the studies. Model development for movement 18 recognition were predominantly undertaken using supervised classification approaches. A kernel 19 form of the Support Vector Machine algorithm was used in 53% of IMU and 50% of vision-based 20 studies. Twelve studies used a deep learning method as a form of Convolutional Neural Network 21 algorithm and one study also adopted a Long Short Term Memory architecture in their model. The 22 adaptation of experimental set-up, data pre-processing, and model development methods are best 23 considered in relation to the characteristics of the targeted sports movement(s).

24

25

26 Key Words:

27 Sport movement classification; inertial sensors; computer vision; machine learning; performance28 analysis.

29 1. Introduction

30

31 Performance analysis in sport science has experienced considerable recent changes, due largely to 32 access to improved technology and increased applications from computer science. Manual notational 33 analysis or coding in sports, even when performed by trained analysts, has limitations. Such methods 34 are typically time intensive, subjective in nature, and prone to human error and bias. Automating 35 sport movement recognition and its application towards coding has the potential to enhance both the 36 efficiency and accuracy of sport performance analysis. The potential automation of recognising 37 human movements, commonly referred to as human activity recognition (HAR), can be achieved 38 through machine or deep learning model approaches. Common data inputs are obtained from inertial 39 measurement units (IMUs) or vision. Detection refers to the identification of a targeted instance, i.e., 40 tennis strokes within a continuous data input signal (Bulling, Blanke, & Schiele, 2014). Recognition 41 or classification of movements involves further interpretations and labelled predictions of the 42 identified instance (Bulling et al., 2014; Bux, Angelov, & Habib, 2017), i.e., differentiating tennis 43 strokes as a forehand or backhand. In machine and deep learning, a model represents the statistical 44 operations involved in the development of an automated prediction task (LeCun, Yoshua, & 45 Geoffrey, 2015; Shalev-Shwartz & Ben-David, 2014).

46 Human activities detected by inertial sensing devices and computer vision are represented 47 as wave signal features corresponding to specific actions, which can be logged and extracted. Human 48 movement activities are considered hierarchically structured and can be broken down to basic 49 movements. Therefore, the context of signal use, intra-class variability, and inter-class similarity 50 between activities require consideration during experimental set-up and model development. 51 Wearable IMUs contain a combination of accelerometer, gyroscope, and magnetometer sensors 52 measuring along one to three axes. These sensors quantify acceleration, angular velocity, and the 53 direction and orientation of travel respectively (Gastin, McLean, Breed, & Spittle, 2014). These 54 sensors can capture repeated movement patterns during sport training and competitions (Camomilla, 55 Bergamini, Fantozzi, & Vannozzi, 2018; Chambers, Gabbett, Cole, & Beard, 2015; J. F. Wagner, 56 2018). Advantages include being wireless, lightweight and self-contained in operation. Inertial 57 measurement units have been utilised in quantifying physical output and tackling impacts in 58 Australian Rules football (Gastin et al., 2014; Gastin, McLean, Spittle, & Breed, 2013) and rugby

(Gabbett, Jenkins, & Abernethy, 2012, 2011; Howe, Aughey, Hopkins, Stewart, & Cavanagh, 2017;
Hulin, Gabbett, Johnston, & Jenkins, 2017). Other applications include swimming analysis (Mooney,
Corley, Godfrey, Quinlan, & ÓLaighin, 2015), golf swing kinematics (Lai, Hetchl, Wei, Ball, &
McLaughlin, 2011), over-ground running speeds (Wixted, Billing, & James, 2010), full motions in
alpine skiing (Yu et al., 2016); and the detection and evaluation of cricket bowling (McNamara,
Gabbett, Blanch, & Kelly, 2017; McNamara, Gabbett, Chapman, Naughton, & Farhart, 2015;
Wixted, Portus, Spratford, & James, 2011).

66 Computer vision has applications for performance analysis including player tracking, 67 semantic analysis, and movement analysis (Stein et al., 2018; Thomas, Gade, Moeslund, Carr, & 68 Hilton, 2017). Automated movement recognition approaches require several pre-processing steps 69 including athlete detection and tracking, temporal cropping and targeted action recognition, which 70 are dependent upon the sport and footage type (Barris & Button, 2008; Saba & Altameem, 2013; 71 Thomas et al., 2017). Several challenges including occlusion, viewpoint variations, and 72 environmental conditions may impact results, depending on the camera set-up (Poppe, 2010; Zhang 73 et al., 2017). Developing models to automate sports-vision coding may improve resource efficiency 74 and reduce feedback times. For example, coaches and athletes involved in time-intensive notational 75 tasks, including post-swim race analysis, may benefit from rapid objective feedback before the next 76 race in the event program (Liao, Liao, & Liu, 2003; Victor, He, Morgan, & Miniutti, 2017). For 77 detecting and recognising movements, body worn sensor signals do not suffer from the same 78 environmental constraints and stationary set-up of video cameras. Furthermore, multiple sensors 79 located on different body segments have been argued to provide more specific signal representations 80 of targeted movements (J. B. Yang, Nguyen, San, Li, & Shonali, 2015). But it is not clear if this is 81 solely conclusive, and the use of body worn sensors in some sport competitions may be impractical 82 or not possible.

Machine learning algorithms learn from data input for automated model building and perform tasks without being explicitly programmed. The algorithm goal is to output a response function $h\sigma(\bar{x})$ that will predict a ground truth variable *y* from an input vector of variables \bar{x} . Models are run for classification techniques to predict a target class (Kotsiantis, Zaharakis, & Pintelas, 2007), or regression to predict discrete or continuous values. Models are aimed at finding an optimal set of parameters σ to describe the response function, and then make predictions on unseen unlabelled data

89 input. Within these, model training approaches can generally run as supervised learning,
90 unsupervised learning or semi-supervised learning (Mohammed, Khan, & Bashier, 2016; Sze, Chen,
91 Yang, & Emer, 2017).

92 Processing raw data is limited for conventional machine learning algorithms, as they are 93 unable to effectively be trained on abstract and high-dimensional data that is inconsistent, contains 94 missing values or noisy artefacts (Bux et al., 2017; Kautz, 2017). Consequently, several pre-95 processing stages are required to create a suitable data form for input into the classifier algorithm 96 (Figo, Diniz, Ferreira, & Cardoso, 2010). Filtering (Figo et al., 2010; Wundersitz, Gastin, Robertson, 97 Davey, & Netto, 2015), window capture durations (Mitchell, Monaghan, & O'Connor, 2013; Preece, 98 Goulermas, Kenney, & Howard, 2009; Wundersitz, Josman, et al., 2015), and signal frequency cut-99 offs (Wundersitz, Gastin, Richter, Robertson, & Netto, 2015; Wundersitz, Gastin, Robertson, et al., 100 2015) are common techniques applied prior to data prior to dynamic human movement recognition. 101 Well-established filters for processing motion signal data include the Kalman filter (Kautz, 2017; 102 Titterton & Weston, 2009; D. Wagner, Kalischewski, Velten, & Kummert, 2017) and a Fourier 103 transform filter (Preece, Goulermas, Kenney, Howard, et al., 2009) such as a fast Fourier transform 104 (Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015; Preece, Goulermas, Kenney, & 105 Howard, 2009). Near real-time processing benefits from reducing memory requirements, 106 computational demands, and essential bandwidth during whole model implementation. Signal 107 feature extraction and selection favours faster processing by reducing the signals to the critical 108 features that can discriminate the targeted activities (Bulling et al., 2014). Feature extraction involves 109 identifying the key features that help maximise classifier success, and removing features that have 110 minimal impact in the model (Mannini & Sabatini, 2010). Thus, feature selection involves 111 constructing data representations in subspaces with reduced dimensions. These identified variables 112 are represented in a compact feature variable (Mannini & Sabatini, 2010). Common methods include 113 principal component analysis (PCA) (Gløersen, Myklebust, Hallén, & Federolf, 2018; Young & 114 Reinkensmeyer, 2014), vector coding techniques (Hafer & Boyer, 2017) and empirical cumulative 115 distribution functions (ECDF) (Plötz, Hammerla, & Olivier, 2011). An ECDF approach has been 116 shown to be advantageous over PCA as it derives representations of raw input independent of the 117 absolute data ranges, whereas PCA is known to have reduced performance when the input data is not 118 properly normalised (Plötz et al., 2011). For further detailed information on the acquisition, filtering

and analysis of IMU data for sports application and vision-based human activity recognition, see(Kautz, 2017) and (Bux et al., 2017), respectively.

121 Deep learning is a division of machine learning, characterised by deeper neural network 122 model architectures and are inspired by the biological neural networks of the human brain (Bengio, 123 2013; LeCun et al., 2015; Sze et al., 2017). The deeper hierarchical models create a profound 124 architecture of multiple hidden layers based on representative learning with several processing and 125 abstraction layers (Bux et al., 2017; J. B. Yang et al., 2015). These computational models allow data 126 input features to be automatically extracted from raw data and transformed to handle unstructured 127 data, including vision (LeCun et al., 2015; Ravi, Wong, Lo, & Yang, 2016). This direct input avoids 128 several processing steps required in machine learning during training and testing, therefore reducing 129 overall computational times. A current key element within deep learning is backpropagation (Hecht-130 Nielsen, 1989; LeCun, Bottou, Orr, & Müller, 1998). Backpropagation is a fast and computationally 131 efficient algorithm, using gradient descent, that allows training deep neural networks to be tractable 132 (Sze et al., 2017). Human activity recognition has mainly been performed using conventional 133 machine learning classifiers. Recently, deep learning techniques have enhanced the bench mark and 134 applications for IMUs (Kautz et al., 2017; Ravi et al., 2016; Ronao & Cho, 2016; J. B. Yang et al., 135 2015; Zebin, Scully, & Ozanyan, 2016; Zeng et al., 2014) and vision (Ji, Yang, Yu, & Xu, 2013; 136 Karpathy et al., 2014a; Krizhevsky, Sutskever, & Hinton, 2012; Nibali, He, Morgan, & Greenwood, 137 2017) in human movement recognition producing more superior model performance accuracy.

138 The objective of this study was to systematically review the literature investigating sport-139 specific automated movement detection and recognition. The review focusses on the various 140 technologies, analysis techniques and performance outcome measures utilised. There are several 141 reviews within this field that are sensor-based including wearable IMUs for lower limb biomechanics 142 and exercises (Fong & Chan, 2010; M. O'Reilly, Caulfield, Ward, Johnston, & Doherty, 2018), 143 swimming analysis (Magalhaes, Vannozzi, Gatta, & Fantozzi, 2015; Mooney et al., 2015), 144 quantifying sporting movements (Chambers et al., 2015) and physical activity monitoring (C. C. 145 Yang & Hsu, 2010). A recent systematic review has provided an evaluation on the in-field use of 146 inertial-based sensors for various performance evaluation applications (Camomilla et al., 2018). 147 Vision-based methods for human activity recognition (Aggarwal & Xia, 2014; Bux et al., 2017; Ke 148 et al., 2013; Zhang et al., 2017), semantic human activity recognition (Ziaeefard & Bergevin, 2015)

149 and motion analysis in sport (Barris & Button, 2008) have also been reviewed. However, to date, 150 there is no systematic review across sport-specific movement detection and recognition via machine 151 or deep learning. Specifically, incorporating IMUs and vision-based data input, focussing on in-field 152 applications as opposed to laboratory-based protocols and detailing the analysis and machine 153 learning methods used.

154 Considering the growth in research and potential field applications, such a review is required 155 to understand the research area. This review aims to characterise the evolving techniques and inform 156 researchers of possible improvements in sports analysis applications. Specifically: 1) What is the 157 current scope for IMUs and computer vision in sport movement detection and recognition? 2) Which 158 methodologies, inclusive of signal processing and model learning techniques, have been used to 159 achieve sport movement recognition? 3) Which evaluation methods have been used in assessing the 160 performance of these developed models?

161

162 **2. Methods**

163

164 2.1 Search strategy

165 The preferred PRISMA recommendations (Moher, Liberati, Tetzlaff, Altman, & Group, 2009) for 166 systematic reviews were used. A literature search was undertaken by the first author on the following 167 databases; IEEE Xplore, PubMed, ScienceDirect, Scopus, Academic Search Premier, and Computer 168 and Applied Science Complete. The searched terms were categorised in order to define the specific 169 participants, methodology and evaluated outcome measure in-line with the review aims. Searches 170 used a combination of key words with AND/OR phrases which are detailed in Table 1. Searches 171 were filtered for studies from January 2000 to May 2018 as no relevant studies were identified prior 172 to this. Further studies were manually identified from the bibliographies of database-searched studies 173 identified from the abstract screen phase, known as snowballing. Table 2 provides the inclusion and 174 exclusion criteria of this review.

175

176 ***Table 1 near here: Key word search term strings per database ***

177

178 ***Table 2 near here: Inclusion and exclusion criteria***

180 2.2 Data extraction

181 The first author extracted and collated the relevant information from the full manuscripts identified 182 for final review. A total of 18 parameters were extracted from the 52 research studies, including the 183 title, author, year of publication, sport, participant details, sport movement target(s), device specifications, device sample frequency, pre-processing methods, processing methods, feature 184 185 selected, feature extraction, machine learning model used, model evaluation, model performance 186 accuracy, validation method, samples collected, and computational information. A customised 187 Microsoft ExcelTM spreadsheet was developed to categorise the relevant extracted information from 188 each study. Participant characteristics of number of participants, gender, and competition level, then 189 if applicable a further descriptor specific to a sport, for example, 'medium-paced cricket bowler'. 190 Athlete and participant experience level was categorised as written in the corresponding study to 191 avoid misrepresentations. The age of participants was not considered an important characteristic 192 required for model development. The individual ability in which the movement is performed 193 accounts for the discriminative signal features associated with the movements. For the purposes of 194 this review, a sport-specific movement was defined from a team or individual sport, and training 195 activities associated with a particular sport. For example, weight-lifting as strength training, 196 recognised under the Global Association of International Sports Federations. The targeted sports and 197 specific movements were defined for either detection or recognition. Model development techniques 198 used included pre-processing methods to transform data to a more suitable form for analysis, 199 processing stages to segment data for identified target activities, feature extraction and selections 200 techniques, and the learning algorithm(s). Model evaluation measures extracted were the model 201 performance assessment techniques used, ground-truth validation comparison, number of data 202 samples collected, and the model performance outcomes results reported. If studies ran multiple 203 experiments using several algorithms, only the superior algorithm and relevant results were reported 204 as the best method. This was done so in the interest of concise reporting to highlight favourable 205 method approaches (Sprager & Juric, 2015). Any further relevant results or information identified 206 from the studies was included as a special remark (Sprager & Juric, 2015). Hardware and 207 specification information extracted included the IMU or video equipment used, number of units,

attachment of sensors (IMUs), sample frequency, and sensor data types used in analysis (IMUs).

209 Studies identified and full data extracted were reviewed by a second author.

210

211 **3. Results**

212

An outline of the search results and study exclusions has been provided in Fig 1. Of the initial database search which identified 4885 results, a final 52 studies met criteria for inclusion in this review. Of these, 29 used IMUs and 22 were vision-based. One study (Ó Conaire et al., 2010) used both sensors and vision for model development separately then together via data fusion. Tables 3 - 8 provide a description of the characteristics of the reviewed studies, detailed in the following sections.

218

219 *** Fig 1 near here: PRISMA flow diagram ***

220

221 3.1 Experimental design

222 A variety of sports and their associated sport-specific movements were investigated, implementing 223 various experimental designs as presented in Tables 5 and 7. Across the studies, sports reported were tennis (n = 10), cricket (n = 3), weightlifting or strength training (n = 6), swimming (n = 4), 224 225 skateboarding (n = 2), ski jumping (n = 2), snowboarding (n = 1), golf (n = 4), volleyball (n = 2), 226 rugby (n = 2), ice hockey (n = 2), gymnastics (n = 2), karate (n = 1), basketball (n = 3), Gaelic football 227 (n = 1), hurling (n = 1), boxing (n = 2), running (n = 2), diving (n = 1), squash (n = 1), badminton 228 = 1), cross-country skiing (n = 2) and soccer (n = 4). The Sports 1-M dataset (Karpathy et al., 2014b) 229 was also reported, which consists of 1,133,158 video URLs annotated automatically with 487 sport 230 labels using the YouTube Topic API. A dominant approach was the classification of main 231 characterising actions for each sport. For example, serve, forehand, backhand strokes in tennis 232 (Connaghan et al., 2011; Kos & Kramberger, 2017; Ó Conaire et al., 2010; Shah, Chokalingam, 233 Paluri, & Pradeep, 2007; Srivastava et al., 2015), and the four competition strokes in swimming 234 (Jensen, Blank, Kugler, & Eskofier, 2016; Jensen, Prade, & Eskofier, 2013; Liao et al., 2003; Victor 235 et al., 2017). Several studies further classified sub-categories of actions. For example, three further 236 classes of the two main classified snowboarding trick types Grinds and Airs (Groh, Fleckenstein, & 237 Eskofier, 2016), and further classifying the main tennis stroke types as either flat, topspin or slice 238 (Srivastava et al., 2015). Semantic descriptors were reported for classification models that predicted 239 athlete training background, experience and fatigue level. These included running (Buckley et al., 240 2017; Kobsar, Osis, Hettinga, & Ferber, 2014), rating of gymnastic routines (Reily, Zhang, & Hoff, 241 2017), soccer pass classification based on its quality (Horton, Gudmundsson, Chawla, & Estephan, 242 2014), cricket bowling legality (Qaisar et al., 2013; Salman, Qaisar, & Qamar, 2017), ski jump error 243 analysis (Brock & Ohgi, 2017; Brock, Ohgi, & Lee, 2017) and strength training technique deviations 244 (M. A. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a; M. O'Reilly et al., 2015; M. 245 O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017). One approach (Yao & Fei-Fei, 2010), 246 encoded the mutual context of human pose and sporting equipment using semantics, to facilitate the 247 detection and classification of movements including a cricket bat and batsman coupled movements. 248 Total participant numbers for IMU-based studies ranged from one (Qaisar et al., 2013) to 30 249 (Kautz et al., 2017). Reported data individual instance sample sizes for sensor studies ranged from 250 150 (Salman et al., 2017) to 416, 737 (Rassem, El-Beltagy, & Saleh, 2017). Vision-based studies 251 that explicitly reported total participant details ranged from five (Ó Conaire et al., 2010) to 40 (Victor 252 et al., 2017). Vision dataset sample sizes varied across studies, from 50 individual action clips (Liao 253 et al., 2003) to 15, 000 (Victor et al., 2017). One study (Karpathy et al., 2014a) used the publicly 254 available Sports-1M, as previously described. Vision-based studies also reported datasets in total 255 time, 10.3 hours (Bertasius, Park, Yu, & Shi, 2017), 3 hours (Montoliu, Martín-Félez, Torres-256 Sospedra, & Martínez-Usó, 2015), 1, 500 minutes (Shah et al., 2007), and 50 hours (Kapela et al., 257 2015), and by frame numbers, 6, 035 frames (Zhu, Xu, Gao, & Huang, 2006) and 10, 115 frames 258 (Reily et al., 2017).

259

260 **3.2 Inertial measurement unit specifications**

A range of commercially available and custom-built IMUs were used in the IMU-based studies (n= 30), as presented in Table 3. Of these, 23% reported using a custom-built sensor. Of the IMU-based studies, the number of sensors mounted or attached to each participant or sporting equipment piece ranged from one to nine. The majority of studies (n= 22) provided adequate details of sensor specifications including sensor type, axes, measurement range, and sample rate used. At least one characteristic of sensor measurement range or sample rate used in data collection was missing from eight studies. All studies used triaxial sensors and collected accelerometer data. For analysis and model development, individual sensor data consisted of only accelerometer data (n = 8), both accelerometer and gyroscope data (n = 15), and accelerometer, gyroscope and magnetometer data (n = 7). The individual sensor measurement ranges reported for accelerometer were \pm 1.5 g to \pm 16 g, gyroscope \pm 500 °/s to \pm 2000 °/s, magnetometer \pm 1200 µT or 1.2 to 4 Ga. Individual sensor sample rates ranged from 10 Hz to 1000 Hz for accelerometers, 10 Hz to 500 Hz for gyroscopes and 50 Hz to 500 Hz for magnetometers.

- 274
- 275 *** Table 3 near here***
- 276
- 277 3.3 Vision capture specification

278 Several experimental set-ups and specifications were reported in the total 23 vision-based studies 279 (Table 4). Modality was predominately red, green, blue (RGB) cameras. Depth cameras were utilised 280 (Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015; Kasiri, Fookes, Sridharan, & 281 Morgan, 2017; Reily et al., 2017), which add depth perception for 3-dimensional image mapping. 282 Seven studies clearly reported the use of a single camera set-up (Couceiro, Dias, Mendes, & Araújo, 283 2013: Díaz-Pereira, Gómez-Conde, Escalona, & Olivieri, 2014: Hachai, Ogiela, & Koptvra, 2015: 284 Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Nibali et al., 2017; Reily et al., 2017). One study 285 reported 16 stationary positioned cameras at a 'bird's eye view' (Montoliu et al., 2015), and Ó 286 Conaire et al. (2010) reported the use of one overhead and 8 stationary cameras around a tennis court 287 baseline, although data from two cameras were only used in final analysis due to occlusion issues. 288 Sample frequency and, or pixel resolution were reported in seven of the studies (Couceiro et al., 289 2013; Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Montoliu et al., 2015; 290 Victor et al., 2017; Zhu et al., 2006), with sample frequencies ranging from 30 Hz to 210 Hz.

- 291
- 292 *** Table 4 near here***
- 293

294 **3.4 Inertial measurement unit recognition model development methods**

Key stages of model development from data pre-processing to recognition techniques for IMU-based
studies are presented in Table 5. Data pre-processing filters were reported as either a low-pass filter
(n = 7) (Adelsberger & Tröster, 2013; Buckley et al., 2017; Kelly, Coughlan, Green, & Caulfield,

298 2012; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2015, 2017; Rindal, Seeberg, Tjønnås, 299 Haugnes, & Sandbakk, 2018), high-pass filter (n = 2) (Kautz et al., 2017; Schuldhaus et al., 2015), 300 or calibration with a filter (Salman et al., 2017). Processing methods were reported in 67% of the 301 IMU-based studies (Adelsberger & Tröster, 2013; Anand, Sharma, Srivastava, Kaligounder, & 302 Prakash, 2017; Brock et al., 2017; Buckley et al., 2017; Buthe, Blanke, Capkevics, & Tröster, 2016; 303 Groh et al., 2016; Groh, Fleckenstein, Kautz, & Eskofier, 2017; Groh, Kautz, & Schuldhaus, 2015; 304 Jensen et al., 2016, 2015; Jiao, Wu, Bie, Umek, & Kos, 2018; Kautz et al., 2017; Kobsar et al., 2014; 305 M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Ó Conaire et al., 2010; Pernek, Kurillo, Stiglic, 306 & Bajcsy, 2015; Qaisar et al., 2013; Salman et al., 2017; Schuldhaus et al., 2015). Methods included, 307 calibration of data (Groh et al., 2016, 2017; Jensen et al., 2015; Oaisar et al., 2013), a one-second 308 window centred around identified activity peaks in the signal (Adelsberger & Tröster, 2013; 309 Schuldhaus et al., 2015), temporal alignment (Pernek et al., 2015), normalisation (Ó Conaire et al., 310 2010), outlier adjustment (Kobsar et al., 2014) or removal (Salman et al., 2017), and sliding windows 311 ranging from one to 3.5 seconds across the data (Jensen et al., 2016). The three studies that investigated trick classification in skateboarding (Groh et al., 2017, 2015) and snowboarding (Groh 312 313 et al., 2016) corrected data for different rider board stance styles, termed Regular or Goofy, by 314 inverting signal axes.

Movement detection methods were specifically reported in 16 studies (Adelsberger & Tröster, 2013; Anand et al., 2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015, Jensen et al., 2013, 2015; Kautz et al., 2017; Kelly et al., 2012; Kos & Kramberger, 2017; Ó Conaire et al., 2010; Rindal et al., 2018; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside, Cant, Connolly, & Reid, 2017). Detection methods included thresholding (n = 5), windowing segmenting (n = 4), and a combination of threshold and windowing techniques (n = 5).

321 Signal feature extraction techniques were reported in 80% of the studies, with the number of
322 feature parameters in a vector ranging from a vector of normalised X, Y, Z accelerometer signals (Ó
323 Conaire et al., 2010) to 240 features (M. A. O'Reilly et al., 2017a). Further feature selection to reduce
324 the dimensionality of the feature vector was used in 11 studies. Both feature extraction and selection
325 methods varied considerably across the literature (Table 5).

Algorithms trialled for movement recognition were diverse across the literature (Table 5).
Supervised classification using a kernel form of Support Vector Machine (SVM) was most prevalent

328	(n = 16) (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Brock et al., 2017; Buckley et al., 2017;
329	Buthe et al., 2016; Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Kautz et al., 2017; Kelly et al.,
330	2012; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et al., 2017; Schuldhaus et al., 2015;
331	Whiteside et al., 2017). The next highest tested were Naïve Bayesian (NB) $(n = 8)$ (Buckley et al.,
332	2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015; Kautz et al., 2017; Salman et al., 2017;
333	Schuldhaus et al., 2015) and k-Nearest Neighbour (kNN) ($n = 8$) (Buckley et al., 2017; Groh et al.,
334	2016, 2017, 2015; Kautz et al., 2017; Ó Conaire et al., 2010; Salman et al., 2017; Whiteside et al.,
335	2017), followed by Random Forests (RF) ($n = 7$) (Buckley et al., 2017; Groh et al., 2017; Kautz et
336	al., 2017; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Salman et al., 2017; Whiteside et
337	al., 2017). Supervised learning algorithms were the most common ($n = 29$). One study used an
338	unsupervised discriminative analysis approach for detection and classification of tennis strokes (Kos
339	& Kramberger, 2017). Five IMU-based study investigated a deep learning approach including using
340	Convolutional Neural Networks (CNN) (Anand et al., 2017; Brock et al., 2017; Jiao et al., 2018;
341	Kautz et al., 2017; Rassem et al., 2017) and Long Short Term Memory (LSTM) (Hochreiter &
342	Schmidhuber, 1997) architectures (Rassem et al., 2017; Sharma, Srivastava, Anand, Prakash, &
343	Kaligounder, 2017). In order to assess the effectiveness of the various classifiers from each study,
344	model performance measures quantify and visualise the predictive performance as reported in the
345	following section.

346

347 *** Table 5 near here***

348

349 3.5 Inertial measurement unit recognition model evaluation

350 Reported performance evaluations of developed models across the IMU-based studies are shown in 351 Table 6. Classification accuracy, as a percentage score for the number of correct predictions by total 352 number of predictions made, was the main model evaluation measure (n = 24). Classification 353 accuracies across studies ranged between 52% (Brock & Ohgi, 2017) to 100% (Buckley et al., 2017). 354 Generally, the reported highest accuracy for a specific movement was $\ge 90\%$ (n = 17) (Adelsberger 355 & Tröster, 2013; Anand et al., 2017; Buckley et al., 2017; Connaghan et al., 2011; Groh et al., 2015; 356 Jensen et al., 2013; Jiao et al., 2018; Kobsar et al., 2014; Kos & Kramberger, 2017; M. A. O'Reilly 357 et al., 2017a; Ó Conaire et al., 2010; Pernek et al., 2015; Qaisar et al., 2013; Rindal et al., 2018;

358	Schuldhaus et al., 2015; Srivastava et al., 2015; Whiteside et al., 2017) and $\geq 80\%$ to 90% (n = 7)
359	(Brock & Ohgi, 2017; Brock et al., 2017; Groh et al., 2017; Jensen et al., 2016; M. O'Reilly et al.,
360	2015, 2017; Salman et al., 2017). As an estimate of the generalised performance of a trained model
361	on $n - x$ samples, a form of leave-one-out cross validation (LOO-CV) was used in 47% of studies
362	(Buthe et al., 2016; Groh et al., 2016, 2017, 2015, Jensen et al., 2016, 2013; Kobsar et al., 2014; M.
363	O'Reilly et al., 2015, 2017; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et al., 2017;
364	Schuldhaus et al., 2015). Precision, specificity and sensitivity (also referred to as recall) evaluations
365	were derived for detection $(n = 6)$ and classification models $(n = 10)$. Visualisation of prediction
366	results in the form of a confusion matrix featured in six studies (Buthe et al., 2016; Groh et al., 2017;
367	Kautz et al., 2017; Pernek et al., 2015; Rindal et al., 2018; Whiteside et al., 2017).

- 368
- 369 *** Table 6 near here***
- 370

371 **3.6 Vision recognition model development methods**

Numerous processing and recognition methods featured across the vision-based studies to transform
and isolated relevant input data (Table 7). Pre-processing stages were reported in 14 of studies, and
another varied 13 studies also provided details of processing techniques. Signal feature extraction
and feature selection methods used were reported in 78% of studies.

376 Both machine (n = 16) and deep learning (n = 7) algorithms were used to recognise 377 movements from vision data. Of these, a kernel form of the SVM algorithm was most common in 378 the studies (n = 10) (Couceiro et al., 2013; Horton et al., 2014; Kasiri-Bidhendi et al., 2015; Kasiri 379 et al., 2017; Li et al., 2018; Montoliu et al., 2015; M. A. O'Reilly, Whelan, Ward, Delahunt, & 380 Caulfield, 2017b; Ó Conaire et al., 2010; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Other 381 algorithms included kNN (n = 3) (Díaz-Pereira et al., 2014; Montoliu et al., 2015; Ó Conaire et al., 382 2010), decision tree (DT) (n = 2) (Kapela et al., 2015; Liao et al., 2003), RF (n = 2) (Kasiri-Bidhendi 383 et al., 2015; Kasiri et al., 2017), and Multilayer Perceptron (MLP) (n = 2) (Kapela et al., 2015; 384 Montoliu et al., 2015). Deep learning was investigated in seven studies (Bertasius et al., 2017; 385 Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016; Karpathy et al., 2014a; Nibali et al., 2017;

- Ramanathan et al., 2015; Tora, Chen, & Little, 2017; Victor et al., 2017) of which used CNNs or
 LSTM RNNs as the core model structure.
- 388
- 389 *** Table 7 near here***
- 390

391 3.7 Vision recognition model evaluation

392 Performance evaluation methods and results for vision-based studies are reported in Table 8. As with 393 IMU-based studies, classification accuracy was the common method for model evaluations, featured 394 in 61%. Classification accuracies were reported between 60.9% (Karpathy et al., 2014a) and 100% 395 (Hachaj et al., 2015; Nibali et al., 2017). In grouping the reported highest accuracies for a specific 396 movement that were $\geq 90\%$ (n = 9) (Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 397 2017; Li et al., 2018; Montoliu et al., 2015; Nibali et al., 2017; Ó Conaire et al., 2010; Reily et al., 398 2017; Shah et al., 2007), and $\ge 80\%$ to 90% (n = 2) (Horton et al., 2014; Yao & Fei-Fei, 2010). A 399 confusion matrix as a visualisation of model prediction results was used in nine studies (Couceiro et 400 al., 2013; Hachaj et al., 2015; Ibrahim et al., 2016; Karpathy et al., 2014a; Kasiri-Bidhendi et al., 401 2015; Kasiri et al., 2017; Lu, Okuma, & Little, 2009; Shah et al., 2007; Tora et al., 2017). Two 402 studies assessed and reported their model computational average speed (Lu et al., 2009) and time 403 (Reily et al., 2017).

404

405 *** Table 8 near here***

406

407	4	•
407	4 Disc	ussion
107		

408

The aim of this systematic review was to evaluate the use of machine and deep learning for sportspecific movement recognition from IMUs and, or computer vision data inputs. Overall, the search yielded 52 studies, categorised as 29 which used IMUs, 22 vision-based and one study using both IMUs and vision. Automation or semi-automated sport movement recognition models working in near-real time is of particular interest to avoid the error, cost and time associated with manual methods. Evident in the literature, models are trending towards the potential to provide optimised objective assessments of athletic movement for technical and tactical evaluations. The majority of
studies achieved favourable movement recognition results for the main characterising actions of a
sport, with several studies exploring further applications such as an automated skill quality evaluation
or judgement scoring, for example automated ski jump error evaluation (Brock et al., 2017).

419 Experimental set-up of IMU placement and numbers assigned per participant varied between 420 sporting actions. The sensor attachment locations set by researchers appeared dependent upon the 421 specific sporting conditions and movements, presumably to gain optimal signal data. Proper fixation 422 and alignment of the sensor axes with limb anatomical axes is important in reducing signal error 423 (Fong & Chan, 2010). The attachment site hence requires a biomechanical basis for accuracy of the 424 movement being targeted to obtain reliable data. Single or multiple sensor use per person also 425 impacts model development trade-off between accuracy, analysis complexity, and computational 426 speed or demands. In tennis studies, specificity whilst using a single sensor was demonstrated by 427 mounting the IMU on the wrist or forearm of the racquet arm (Connaghan et al., 2011; Kos & 428 Kramberger, 2017; Srivastava et al., 2015; Whiteside et al., 2017). A single sensor may also be 429 mounted in a low-profile manner on sporting equipment (Groh et al., 2016, 2017, 2015; Jensen et 430 al., 2015). Unobtrusive use of a single IMU to capture generalised movements across the whole body 431 was demonstrated, with an IMU mounted on the posterior head in swimming (Jensen et al., 2016, 432 2013), lower back during running (Kobsar et al., 2014), and between the shoulder blades in rugby 433 union (Kelly et al., 2012).

434 The majority of vision-based studies opted for a single camera set-up of RGB modality. Data 435 output from a single camera as opposed to multiple minimises the volume of data to process, 436 therefore reducing computational effort. However, detailed features may go uncaptured, particularly 437 in team sport competition which consists of multiple individuals participating in the capture space at 438 one time. In contrast, a multiple camera set-up reduces limitations including occlusion and viewpoint 439 variations. However, this may also increase the complexity of the processing and model 440 computational stages. Therefore, a trade-off between computational demands and movement 441 recording accuracy often needs to be made. As stated earlier, the placement of cameras needs to suit 442 the biomechanical nature of the targeted movement and the environment situated in. Common 443 camera capture systems used in sports science research such as Vicon Nexus (Oxford, UK) and 444 OptiTrack (Oregon, USA) were not present in this review. As this review targeted studies

investigating during on-field or in-situation sporting contexts, efficiency in data collection is key for
routine applications in training and competition. A simple portable RGB camera is easy to set-up in
a dynamic and changing environment, such as different soccer pitches, rather than a multiple capture
system such as Vicon that requires calibrated precision and are substantially more expensive.

449 Data acquisition and type from an IMU during analysis appears to influence model trade-off 450 between accuracy and computational effort of performance. The use of accelerometer, gyroscope or 451 magnetometer data may depend upon the movement properties analysed. Within tennis studies, 452 gyroscope signals were the most efficient at discriminating between stroke types (Buthe et al., 2016; 453 Kos & Kramberger, 2017) and detecting an athlete's fast feet court actions (Buthe et al., 2016). In 454 contrast, accelerometer signals produced higher classification accuracies in classifying tennis stroke 455 skills levels (Connaghan et al., 2011). The authors expected lower gyroscope classification 456 accuracies as temporal orientation measures between skill levels of tennis strokes will differ 457 (Connaghan et al., 2011). Conversely, data fusion from all three individual sensors resulted in a more 458 superior model for classifying advanced, intermediate and novices tennis player strokes (Connaghan 459 et al., 2011). Fusion of accelerometer and vision data also resulted in a higher classification accuracy 460 for tennis stroke recognition (Ó Conaire et al., 2010).

461 Supervised learning approaches were dominant across IMU and vision-based studies. This 462 is a method which involves a labelled ground truth training dataset typically manually annotated by 463 sport analysts. Labelled data instances were recorded as up to 15, 000 for vision-based (Victor et al., 464 2017) and 416, 737 for sensor-based (Rassem et al., 2017) studies. Generation of a training data set 465 for supervised learning can be a tedious and labour-intensive task. It is further complicated if multiple 466 sensors or cameras are incorporated for several targeted movements. A semi-supervised or 467 unsupervised learning approach may be advantageous as data labelling is minimal or not required, 468 potentially reducing human errors in annotation. An unsupervised approach could suit specific 469 problems to explain key data features, via clustering (Mohammed et al., 2016; Sze et al., 2017). Results computed by an unsupervised model (Kos, Ženko, Vlaj, & Kramberger, 2016) for tennis 470 471 serve, forehand and backhand stroke classification compared favourbaly well against a proposed 472 supervised approach (Connaghan et al., 2011).

473 Recognition of sport-specific movements was primarily achieved using conventional474 machine learning approaches, however nine studies implemented deep learning algorithms. It is

475 expected that future model developments will progressively feature deep learning approaches due to 476 development of better hardware, and the advantages of more efficient model learning on large data 477 inputs (Sze et al., 2017). Convolutional Neural networks (CNN) (LeCun, Bottou, Bengio, & Haffner, 478 1998) were the core structure of five of the seven deep learning study models. Briefly, convolution 479 applies several filters, known as kernels, to automatically extract features from raw data inputs. This 480 process works under four key ideas to achieve optimised results: local connection, shared weights, 481 pooling and applying several layers (LeCun et al., 2015; J. B. Yang et al., 2015). Machine learning 482 classifiers modelled with generic hand-crafted features, were compared against a CNN for 483 classifying nine beach volleyball actions using IMUs (Kautz et al., 2017). Unsatisfactory results were 484 obtained from the machine learning model, and the CNN markedly achieved higher classification 485 accuracies (Kautz et al., 2017). The CNN model produced the shortest overall computation times, 486 requiring less computational effort on the same hardware (Kautz et al., 2017). Vision-based CNN 487 models have also shown favourable results when compared to a machine learning study baseline 488 (Karpathy et al., 2014a; Nibali et al., 2017; Victor et al., 2017). Specifically, consistency between a 489 swim stroke detection model for continuous videos in swimming which was then applied to tennis 490 strokes with no domain-specific settings introduced (Victor et al., 2017). The authors of this training 491 approach (Victor et al., 2017) anticipate that this could be applied to train separate models for other 492 sports movement detection as the CNN model demonstrated the ability to learn to process continuous 493 videos into a 1-D signal with the signal peaks corresponding to arbitrary events. General human 494 activity recognition using CNN have shown to be a superior approach over conventional machine 495 learning algorithms using both IMUs (Ravi et al., 2016; J. B. Yang et al., 2015; Zebin et al., 2016; 496 Zeng et al., 2014; Zheng, Liu, Chen, Ge, & Zhao, 2014) and computer vision (Ji et al., 2013; 497 Krizhevsky et al., 2012; LeCun et al., 2015). As machine learning algorithms extract heuristic 498 features requiring domain knowledge, this creates shallower features which can make it harder to 499 infer high-level and context aware activities (J. B. Yang et al., 2015). Given the previously described 500 advantages of deep learning algorithms which apply to CNN, and the recent results of deep learning, 501 future model developments may benefit from exploring these methods in comparison to current 502 bench mark models.

503 Model performance outcome metrics quantify and visualise the error rate between the 504 predicted outcome and true measure. Comparatively, a kernel form of an SVM was the most common 505 classifier implemented and produced the strongest machine learning approach model prediction 506 accuracies across both IMU (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Buthe et al., 2016; 507 Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Pernek et al., 2015; Salman et al., 2017; Schuldhaus 508 et al., 2015; Whiteside et al., 2017) and vision-based study designs (Horton et al., 2014; Kasiri-509 Bidhendi et al., 2015; Kasiri et al., 2017; Li et al., 2018; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Classification accuracy was the most common reported measure followed by confusion 510 511 matrices, as ways to clearly present prediction results and derive further measures of performance. 512 Further measures included sensitivity (also called recall), specificity and precision, whereby results 513 closer to 1.0 indicate superior model performance, compared to 0.0 or poor model performance. The 514 F1-score (also called a F-measure or F-score) conveys the balances between the precision and 515 sensitivity of a model. An in-depth analysis performance metrics specific to human activity 516 recognition is located elsewhere (Minnen, Westeyn, Starner, Ward, & Lukowicz, 2006; Ward, 517 Lukowicz, & Gellersen, 2011). Use of specific evaluation methods depends upon the data type. 518 Conventional performance measures of error rate are generally unsuitable for models developed from 519 skewed training data (Provost & Fawcett, 2001). Using conventional performance measures in this 520 context will only take the default decision threshold on a model trained, if there is an uneven class 521 distribution this may lead to imprecision (Provost & Fawcett, 2001; Seiffert, Khoshgoftaar, Van 522 Hulse, & Napolitano, 2008). Alternative evaluators including Receiver Operating Characteristics 523 (ROC) curves and its single numeric measure, Area Under ROC Curve (AUC), report model 524 performances across all decision thresholds (Seiffert et al., 2008). Making evaluations between study 525 methodology have inherent complications due to each formulating their own experimental parameter 526 settings, feature vectors and training algorithms for movement recognition. The No-Free-Lunch 527 theorems are important deductions in the formation of models for supervised machine learning 528 (David H. Wolpert, 1996), and search and optimisation algorithms (D H Wolpert & Macready, 1997). 529 The theorems broadly reference that there is no 'one model' that will perform optimally across all 530 recognition problems. Therefore, experiments with multiple model development methods for a 531 particular problem is recommended. The use of prior knowledge about the task should be 532 implemented to adapt the model input and model parameters in order to improve overall model 533 success (Shalev-Shwartz & Ben-David, 2014).

534 Acquisition of athlete specific information, including statistics on number, type and intensity 535 of actions, may be of use in the monitoring of athlete load. Other potential applications include 536 personalised movement technique analysis (M. O'Reilly et al., 2017), automated performance 537 evaluation scoring (Reily et al., 2017) and team ball sports pass quality rating (Horton et al., 2014). 538 However, one challenge lies in delivering consistent, individualised models across team field sports 539 that are dynamic in nature. For example, classification of soccer shots and passes showed a decline 540 in model performance accuracy from a closed environment to a dynamic match setting (Schuldhaus 541 et al., 2015). A method to overcome accuracy limitations in dynamic team field sports associated 542 with solely using IMUs or vision may be to implement data fusion (Ó Conaire et al., 2010). 543 Furthermore, vision and deep learning approaches have demonstrated the ability to track and classify 544 team sport collective court activities and individual player specific movements in volleyball (Ibrahim 545 et al., 2016), basketball (Ramanathan et al., 2015) and ice hockey (Tora et al., 2017). Accounting for 546 methods from experimental set-up to model evaluation, previous reported models should be 547 considered and adapted based on the current problem. Furthermore, the balance between model 548 computational efficiency, results accuracy and complexity trade-offs calculations are an important 549 factor.

550 In the present study, meta-analysis was considered however variability across developed 551 model parameter reporting and evaluation methods did not allow for this to be undertaken. As this 552 field expands and further methodological approaches are investigated, it would be practical to review 553 analysis approaches both within and between sports. This review was delimited to machine and deep 554 learning approaches to sport movement detection and recognition. However, statistical or parametric 555 approaches not considered here such as discriminative functional analysis may also show efficacy 556 for sport-specific movement recognition. However, as the field of machine learning is a rapidly 557 developing area shown to produce superior results, a review encompassing all possible other methods 558 may have complicated the reporting. Since sport-specific movements and their environments alter 559 the data acquisition and analysis, the sports and movements reported in the present study provide an 560 overview of the current field implementations.

561

562 **5** Conclusions

564 This systematic review reported on the literature using machine and deep learning methods to 565 automate sport-specific movement recognition. In addressing the research questions, both IMUs and 566 computer vision have demonstrated capacity in improving the information gained from sport 567 movement and skill recognition for performance analysis. A range of methods for model 568 development were used across the reviewed studies producing varying results. Conventional machine 569 learning algorithms such as Support Vector Machines and Neural Networks were most commonly 570 implemented. Yet in those studies which applied deep learning algorithms such as Convolutional 571 Neural Networks, these methods outperformed the machine learning algorithms in comparison. 572 Typically, the models were evaluated using a leave-one-out cross validation method and reported 573 model performances as a classification accuracy score. Intuitively, the adaptation of experimental 574 set-up, data processing, and recognition methods used are best considered in relation to the 575 characteristics of the sport and targeted movement(s). Consulting current models within or similar to 576 the targeted sport and movement is of benefit to address bench mark model performances and identify 577 areas for improvement. The application within the sporting domain of machine learning and 578 automated sport analysis coding for consistent uniform usage appears currently a challenging 579 prospect, considering the dynamic nature, equipment restrictions and varying environments arising 580 in different sports.

581 Future work may look to adopt, adapt and expand on current models associated with a specific sports 582 movement to work towards flexible models for mainstream analysis implementation. Investigation 583 of deep learning methods in comparison to conventional machine learning algorithms would be of 584 particular interest to evaluate if the trend of superior performances is beneficial for sport-specific 585 movement recognition. Analysis as to whether IMUs and vision alone or together yield enhanced 586 results in relation to a specific sport and its implementation efficiency would also be of value. In 587 consideration of the reported study information, this review can assist future researchers in 588 broadening investigative approaches for sports performance analysis as a potential to enhancing upon 589 current methods.

590

591 Acknowledgements

592 Not applicable.

593

594 **Disclosure statement**

595 No potential conflict of interest was reported by the authors. However, the last author is co-author of

three studies included in this systematic review.

597

598 Funding

599 The authors received no specific funding for this work.

600

640

601 References

602	
603	Adelsberger, R., & Tröster, G. (2013). Experts lift differently: Classification of weight-lifting
604	athletes. In 2013 IEEE International Conference on Body Sensor Networks (pp. 1–6).
605	Cambridge, MA: Body Sensor Networks (BSN). https://doi.org/10.1109/BSN.2013.6575458
606	Aggarwal, J. K., & Xia, L. (2014). Human activity recognition from 3D data: A review. Pattern
607	Recognition Letters, 48, 70–80. https://doi.org/10.1016/j.patrec.2014.04.011
608	Anand, A., Sharma, M., Srivastava, R., Kaligounder, L., & Prakash, D. (2017). Wearable motion
609	sensor based analysis of swing sports. In 2017 16th IEEE International Conference on
610	Machine Learning and Applications (ICMLA) (pp. 261–267).
611	https://doi.org/10.1109/ICMLA.2017.0-149
612	Barris, S., & Button, C. (2008). A review of vision-based motion analysis in sport. Sports
613	Medicine, 38(12), 1025–1043. https://doi.org/10.2165/00007256-200838120-00006
614	Bengio, Y. (2013). Deep learning of representations: Looking forward. Lecture Notes in Computer
615	Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
616	Bioinformatics), 7978 LNAI, 1-37. https://doi.org/10.1007/978-3-642-39593-2_1
617	Bertasius, G., Park, H. S., Yu, S. X., & Shi, J. (2017). Am I a baller? Basketball performance
618	assessment from first-person videos. Proceedings of the IEEE International Conference on
619	Computer Vision, 2196–2204. https://doi.org/10.1109/ICCV.2017.239
620	Brock, H., & Ohgi, Y. (2017). Assessing motion style errors in ski jumping using inertial sensor
621	devices. IEEE Sensors Journal, (99), 1-11. https://doi.org/10.1109/JSEN.2017.2699162
622	Brock, H., Ohgi, Y., & Lee, J. (2017). Learning to judge like a human: convolutional networks for
623	classification of ski jumping errors. Proceedings of the 2017 ACM International Symposium
624	on Wearable Computers - ISWC '17, 106-113. https://doi.org/10.1145/3123021.3123038
625	Buckley, C., O'Reilly, M. A., Whelan, D., Vallely Farrell, A., Clark, L., Longo, V., Caulfield,
626	B. (2017). Binary classification of running fatigue using a single inertial measurement unit. In
627	2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor
628	Networks (pp. 197–201). IEEE. https://doi.org/10.1109/BSN.2017.7936040
629	Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using body-
630	worn inertial sensors. ACM Computing Surveys, 46(3), 1–33.
631	https://doi.org/http://dx.doi.org/10.1145/2499621
632	Buthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016). A wearable sensing system for timing
633	analysis in tennis. In BSN 2016 - 13th Annual Body Sensor Networks Conference (pp. 43-48).
634	San Francisco, CA. https://doi.org/10.1109/BSN.2016.7516230
635	Bux, A., Angelov, P., & Habib, Z. (2017). Vision based human activity recognition: A review. In
636	P. Angelov, A. Gegov, C. Jayne, & Q. Shen (Eds.), Advances in Computational Intelligence
637	Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence
638	(pp. 341–371). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-
639	46562-3 23

- 641 use of wearable inertial sensors for sport performance evaluation: a systematic review.
- 642 Sensors, 18(3), 873. https://doi.org/10.3390/s18030873
- 643 Chambers, R., Gabbett, T., Cole, M. H., & Beard, A. (2015). The use of wearable microsensors to
 644 quantify sport-specific movements. *Sports Medicine*, 45(7), 1065–1081.
 645 https://doi.org/10.1007/s40279-015-0332-9
- 646 Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., Walsh, M., & O'Mathuna, C. (2011).
 647 Multi-sensor classification of tennis strokes. *Journal of IEEE Sensors*, 1437–1440.
- 648 Couceiro, M. S., Dias, G., Mendes, R., & Araújo, D. (2013). Accuracy of pattern detection

Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field

649	methods in the performance of golf putting. Journal of Motor Behavior, 45(1), 37–53.
650	https://doi.org/10.1080/00222895.2012.740100
651	Díaz-Pereira, M. P., Gómez-Conde, I., Escalona, M., & Olivieri, D. N. (2014). Automatic
652	recognition and scoring of olympic rhythmic gymnastic movements. Human Movement
653	Science, 34(1), 63-80, https://doi.org/10.1016/i.humov.2014.01.001
654	Figo D Diniz P C Ferreira D R & Cardoso I M P (2010) Preprocessing techniques for
655	context recognition from accelerometer data. Personal and Ubiquitous Computing 14(7)
656	645 662 https://doi.org/10.1007/s00770.010.0202.0
	643-602. https://doi.org/10.1007/800779-010-0295-9
657	Fong, D. 1P., & Chan, YY. (2010). The use of wearable inertial motion sensors in numan lower
658	limb biomechanics studies: A systematic review. Sensors, 10(12), 11556–11565.
659	https://doi.org/10.3390/s101211556
660	Gabbett, T., Jenkins, D., & Abernethy, B. (2012). Physical demands of professional rugby league
661	training and competition using microtechnology. Journal of Science and Medicine in Sport,
662	15, 80–86. https://doi.org/10.1016/j.jsams.2011.07.004
663	Gabbett, T., Jenkins, D. G., & Abernethy, B. (2011). Physical collisions and injury in professional
664	rugby league match-play. Journal of Science and Medicine in Sport, 14, 210–215.
665	https://doi.org/10.1016/i.jsams.2011.01.002
666	Gastin P B McLean O C Breed R V & Spittle M (2014) Tackle and impact detection in
667	elite Australian football using wearable microsensor technology. <i>Journal of Sports Sciences</i>
668	32(10) 047 052 https://doi.org/10.1080/02640414.2012.868020
660	$J_2(10), 947-955.$ https://doi.org/10.1080/02040414.2015.808920
609	Gastin, P. B., MicLean, O. C., Spittle, M., & Breed, R. V. (2013). Quantification of tacking
670	demands in professional Australian football using integrated wearable athlete tracking
6/1	technology. Journal of Science and Medicine in Sport, 16(6), 589–593.
672	https://doi.org/10.1016/j.jsams.2013.01.007
673	Gløersen, Ø., Myklebust, H., Hallén, J., & Federolf, P. (2018). Technique analysis in elite athletes
674	using principal component analysis. Journal of Sports Sciences, 36(2), 229–237.
675	https://doi.org/10.1080/02640414.2017.1298826
676	Groh, B. H., Fleckenstein, M., & Eskofier, B. M. (2016). Wearable trick classification in freestyle
677	snowboarding. In 13th International Conference on Wearable and Implantable Body Sensor
678	Networks (BSN) (pp. 89–93). IEEE. https://doi.org/10.1109/BSN.2016.7516238
679	Groh, B. H., Fleckenstein, M., Kautz, T., & Eskofier, B. M. (2017). Classification and visualization
680	of skateboard tricks using wearable sensors. <i>Pervasive and Mobile Computing</i> , 40, 42–55.
681	https://doi.org/10.1016/i.pmci.2017.05.007
682	Grob B H Kautz T & Schuldhaus D (2015) IMU-based trick classification in skateboarding
683	In KDD Workshon on Large-Scale Sports Analytics
684	Hachai T. Ogiala M. P. & Kontura K. (2015). Application of assistive computer vision methods.
004	to Oroma learned to chair and a million of assistive computer vision methods
685	to Oyama karate techniques recognition. Symmetry, 7(4), 1670–1698.
686	https://doi.org/10.3390/sym/0416/0
687	Hafer, J. F., & Boyer, K. A. (2017). Variability of segment coordination using a vector coding
688	technique: reliability analysis for treadmill walking and running. <i>Gait and Posture</i> , 51, 222–
689	227. https://doi.org/10.1016/j.gaitpost.2016.11.004
690	Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. Proceedings Of The
691	International Joint Conference On Neural Networks, 1, 593–605.
692	https://doi.org/10.1109/IJCNN.1989.118638
693	Hochreiter, S., & Schmidhuber, J. J. (1997). Long short-term memory. Neural Computation, 9(8),
694	1–32. https://doi.org/10.1162/neco.1997.9.8.1735
695	Horton M. Gudmundsson J. Chawla S. & Estephan J. (2014). Classification of passes in
696	football matches using spatiotemporal data ArXiv Preprint ArXiv:1407 5093
607	https://doi.org/10.11/15/3105576
6097	Howe S. T. Auchey P. I. Henking W. C. Stewert A. M. & Covenagh P. D. (2017)
600	nowe, S. I., Augney, K. J., nopkins, W. G., Stewart, A. M., & Cavanagn, D. P. (2017).
700	Quantifying important differences in atmete movement during consion-based team sports:
700	Accelerometers outperform global positioning systems. In 2017 IEEE International
/01	Symposium on Inertial Sensors and Systems (pp. 1–4). Kauai, HI, USA: IEEE.
702	https://doi.org/10.1109/ISISS.2017.7935655
703	Hulin, B. T., Gabbett, T., Johnston, R. D., & Jenkins, D. G. (2017). Wearable microtechnology can
704	accurately identify collision events during professional rugby league match-play. Journal of
705	Science and Medicine in Sport, 20(7), 638–642.
706	https://doi.org/http://dx.doi.org/10.1016/j.jsams.2016.11.006
707	Ibrahim, M., Muralidharan, S., Deng, Z., Vahdat, A., & Mori, G. (2016). A Hierarchical Deep

708	Temporal Model for Group Activity Recognition. Cvpr, 1971–1980.
709	https://doi.org/10.1109/CVPR.2016.217
710	Jensen, U., Blank, P., Kugler, P., & Eskofier, B. M. (2016). Unobtrusive and energy-efficient
711	swimming exercise tracking using on-node processing. IEEE Sensors Journal, 16(10), 3972-
712	3980. https://doi.org/10.1109/JSEN.2016.2530019
713	Jensen, U., Prade, F., & Eskofier, B. M. (2013). Classification of kinematic swimming data with
714	emphasis on resource consumption. In 2013 IEEE International Conference on Body Sensor
715	Networks, BSN 2013, https://doi.org/10.1109/BSN.2013.6575501
716	Jensen II. Schmidt M. Hennig M. Dassler F. A. Jaitner T. & Eskofier B. M. (2015). An
717	IML-based mobile system for golf nutt analysis Sports Engineering 18(2) 123–133
718	https://doi.org/10.1007/s12283.015.0171.0
710	If S. Vang, M. Vu, K. & Vu, W. (2012) 3D convolutional neural networks for human action
719	JI, S., Talig, W., Tu, K., & Au, W. (2015). 5D convolutional neural networks for numan action recognition. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 25(1), 221
720	221 https://lei.org/10.1100/TDAMI.2012.50
721	251. nttps://doi.org/10.1109/1PAMI.2012.59
722	Jiao, L., Wu, H., Bie, R., Umek, A., & Kos, A. (2018). Multi-sensor Golf Swing Classification
/23	Using Deep CNN. Procedia Computer Science, 129, 59–65.
724	https://doi.org/10.1016/j.procs.2018.03.046
725	Kapela, R., Swietlicka, A., Rybarczyk, A., Kolanowski, K., & O'Connor, N. E. (2015). Real-time
726	event classification in field sport videos. Signal Processing: Image Communication, 35, 35-
727	45. https://doi.org/10.1016/j.image.2015.04.005
728	Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014a). Large-
729	scale video classification with convolutional neural networks. Computer Vision and Pattern
730	Recognition (CVPR), 2014 IEEE Conference On, 1725–1732.
731	https://doi.org/10.1109/CVPR.2014.223
732	Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014b), Large-
733	scale video classification with convolutional nural networks. Retrieved December 18, 2017
734	from http://cs.stanford.edu/people/karpathy/deepvideo/
735	Kasiri-Bidhendi S. Fookes C. Morgan S. Martin D. T. & Sridharan S. (2015) Combat sports
736	analytics: Boxing punch classification using overhead denth imagery. In 2015 IEEE
730	International Conference on Image Processing (ICIP) (pp. 4545, 4540). Outpool City
737	Conodo: IEEE https://doi.org/10.1100/ICID 2015 7251667
730	Callada. IEEE. https://doi.org/10.1109/ICIF.2013.7531007
739	Kasin, S., Fookes, C., Shuharah, S., & Morgan, S. (2017). Fine-grained action recognition of L_{12}
740	boxing punches from depth imagery. Computer vision and image Understanding, 159, 143–
741	153. https://doi.org/10.1016/j.cviu.2017.04.007
742	Kautz, T. (2017). Acquisition, filtering and analysis of positional and inertial data in sports. FAU
/43	Studies in Computer Science, 2.
744	Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity
745	recognition in beach volleyball using a deep convolutional neural network. Data Mining and
746	Knowledge Discovery, 1–28. https://doi.org/10.1007/s10618-017-0495-0
747	Ke, S. R., Thuc, H., Lee, Y. J., Hwang, J. N., Yoo, J. H., & Choi, K. H. (2013). A review on video-
748	based human activity recognition. Computers, 2, 88–131.
749	https://doi.org/10.3390/computers2020088
750	Kelly, D., Coughlan, G. F., Green, B. S., & Caulfield, B. (2012). Automatic detection of collisions
751	in elite level rugby union using a wearable sensing device. Sports Engineering, 15(2), 81–92.
752	Retrieved from https://0-link-springer-com.library.vu.edu.au/article/10.1007%2Fs12283-012-
753	0088-5
754	Kobsar D Osis S T Hettinga B A & Ferber R (2014) Classification accuracy of a single tri-
755	axial accelerometer for training background and experience level in runners <i>Journal of</i>
756	<i>Biomachanics</i> 47(10) 2508–2511 https://doi.org/10.1016/j.jbiomech.2014.04.017
757	Kos M & Krambargar I (2017) A waarabla davice and system for movement and biometric data
757	Acquisition for sports applications <i>IEEE</i> Access 1, 1
750	https://doi.org/10.1100/ACCESS.2017.2675529
759	$\operatorname{Hups://doi.org/10.1109/ACCESS.2017.2075556}$
760	Kos, M., Zenko, J., Vlaj, D., & Kramberger, I. (2016). Tennis stroke detection and classification
/61	using miniature wearable IMU device. In International Conference on Systems, Signals, and
/62	<i>Image Processing</i> . https://doi.org/10.1109/IWSSIP.2016.7502764
/63	Kotsiantis, S., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of
764	classification techniques. Informatica, 31, 501–520. https://doi.org/10.1115/1.1559160
765	Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
766	convolutional neural networks. Advances In Neural Information Processing Systems, 1097–

767	1105. https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
768	Lai, D. T. H., Hetchl, M., Wei, X., Ball, K., & McLaughlin, P. (2011). On the difference in swing
769	arm kinematics between low handicap golfers and non-golfers using wireless inertial sensors.
770	Procedia Engineering, 13, 219–225. https://doi.org/10.1016/j.proeng.2011.05.076
771	LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
772	document recognition <i>IEEE</i> 86(11) 2278–2324 https://doi.org/10.1109/5.726791
773	LeCun V Bottou I Orr G B & Müller K R (1998) Efficient backpron In Neural Networks
77/	Tricks of the Trade (Vol 1524 pp 9-50)
775	LaCup V. Voshue P. & Coeffrey H (2015) Deep learning Nature $521(7552)$ 426 444
775	Leculi, 1., Toshua, B., & Geoffley, H. (2013). Deep learning. Nature, $321(7333)$, $430-444$.
770	1000000000000000000000000000000000000
///	Li, J., Tian, Q., Zhang, G., Zheng, F., Lv, C., & Wang, J. (2018). Research on hybrid information
//8	recognition algorithm and quality of golf swing. Computers and Electrical Engineering, 1–
779	13. https://doi.org/10.1016/j.compeleceng.2018.02.013
780	Liao, W. H., Liao, Z. X., & Liu, M. J. (2003). Swimming style classification from video sequences.
781	In Kinmen (Ed.), 16th IPPR Conference on Computer Vision, Graphics and Image
782	Processing (pp. 226–233). ROC.
783	Lu, W. L., Okuma, K., & Little, J. J. (2009). Tracking and recognizing actions of multiple hockey
784	players using the boosted particle filter. <i>Image and Vision Computing</i> , 27(1–2), 189–205.
785	https://doi.org/10.1016/j.jmavis.2008.02.008
786	Magalhaes, F. A. de, Vannozzi, G., Gatta, G., & Fantozzi, S. (2015). Wearable inertial sensors in
787	swimming motion analysis: A systematic review. <i>Journal of Sports Sciences</i> , 33(7), 732–745.
788	https://doi org/10.1080/02640414.2014.962574
789	Mannini A & Sahatini A M (2010) Machine learning methods for classifying human physical
790	activity from on-body accelerometers. Sansors 10(2), 1154-1175
701	https://doi.org/10.2200/s100201154
791	MaNamara D. J. Cabbatt T. Dlanah D. & Kally, J. (2017). The relationship between weership
792	microantara, D. J., Gabbell, T., Blanch, P., & Kelly, L. (2017). The relationship between wearable
793	microtechnology device variables and cricket fast bowing intensity. <i>International Journal of</i>
794	Sports Physiology and Performance, 1–20. https://doi.org/https://doi.org/10.1123/ijspp.2016-
795	
796	McNamara, D. J., Gabbett, T., Chapman, P., Naughton, G., & Farhart, P. (2015). The validity of
797	microsensors to automatically detect bowling events and counts in cricket fast bowlers.
798	International Journal of Sports Physiology and Performance, 10(1), 71–75.
799	https://doi.org/10.1123/ijspp.2014-0062
800	Minnen, D., Westeyn, T. L., Starner, T., Ward, J. a, & Lukowicz, P. (2006). Performance metrics
801	and evaluation issues for continuous activity recognition. In Proc. Int. Workshop on
802	Performance Metrics for Intelligent Systems (pp. 141–148).
803	https://doi.org/10.1145/1889681.1889687
804	Mitchell, E., Monaghan, D., & O'Connor, N. E. (2013). Classification of sporting activities using
805	smartphone accelerometers. Sensors (Basel, Switzerland), 13(4), 5317–5337.
806	https://doi.org/10.3390/s130405317
807	Mohammed M Khan M & Bashier F (2016) Machine Learning: Algorithms and Applications
808	Milton: CPC Press
000	Mohor D. Liborati A. Tatzlaff I. Altman D. C. & Crown T. B. (2000). Brafarrad reporting
009	items for systematic reviews and mate analyses: The DDISMA statement, DL oS Mad. 6(7)
010	1000007 https://doi.org/10.1271/jacroschaused.1000007
811	e1000097. https://doi.org/10.13/1/journal.pmed.1000097
812	Montoliu, R., Martin-Félez, R., Torres-Sospedra, O., & Martínez-Usó, A. (2015). Team activity
813	recognition in Association football using a bag-of-words-based method. Human Movement
814	<i>Science</i> , <i>41</i> , 165–178. https://doi.org/10.1016/j.humov.2015.03.007
815	Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & OLaighin, G. (2015). Inertial sensor
816	technology for elite swimming performance analysis: A systematic review. Sensors, 16(1),
817	18. https://doi.org/10.3390/s16010018
818	Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving
819	clips from continuous video footage. ArXiv, pre-print. Retrieved from
820	https://arxiv.org/pdf/1705.09003.pdf
821	O'Reilly, M. A., Whelan, D. F., Ward, T. E., Delahunt, E., & Caulfield, B. (2017a). Classification
822	of lunge biomechanics with multiple and individual inertial measurement units. <i>Sports</i>
823	<i>Biomechanics</i> , 16(3), 342–360, https://doi.org/10.1080/14763141.2017.1314544
824	O'Reilly M A Whelan D F Ward T E Delahunt E & Caulfield B (2017b) Technology in
825	strength and conditioning tracking lower-limb exercises with wearable sensors. <i>Journal of</i>

826 827	Strength and Conditioning Research, 31(6), 1726–1736. O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial
828	Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review.
830	O'Reilly M Whelen D Chanielidis C Friel N Delehunt E Ward T & Caulfield B
830	(2015) Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE
833	12th International Conference on Wearable and Implantable Body Sensor Networks IEEE
833	https://doi.org/10.1109/BSN 2015.7299380
834	O'Reilly M Whelan D F Ward T F Delahunt F & Caulfield B (2017) Classification of
835	deadlift biomechanics with wearable inertial measurement units. <i>Journal of Riomechanics</i>
836	58 155–161 https://doi.org/10.1080/14763141.2017.1314544
837	Ó Conaire C. Connaghan D. Kelly P. O'Connor N. E. Gaffney M. & Buckley I. (2010)
838	Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i>
839	of the first ACM international workshop on Analysis and retrieval of tracked events and
840	motion in imagery streams (pp. 51–56). ACM, https://doi.org/10.1145/1877868.1877882
841	Pernek, L., Kurillo, G., Stiglic, G., & Baicsy, R. (2015), Recognizing the intensity of strength
842	training exercises with wearable sensors. <i>Journal of Biomedical Informatics</i> , 58, 145–155.
843	https://doi.org/10.1016/i.jbi.2015.09.020
844	Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in
845	ubiquitous computing. International Joint Conference on Artificial Intelligence (IJCAI).
846	1729.
847	Poppe, R. (2010). A survey on vision-based human action recognition. <i>Image and Vision</i>
848	Computing, 28(6), 976–990. https://doi.org/10.1016/j.imavis.2009.11.014
849	Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature
850	extraction methods for the classification of dynamic activities from accelerometer data. IEEE
851	Transactions on Biomedical Engineering, 56(3), 871–879.
852	https://doi.org/10.1109/TBME.2008.2006190
853	Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).
854	Activity identification using body-mounted sensors: A review of classification techniques.
855	Physiological Measurement, 30(4), R1-R33. https://doi.org/10.1088/0967-3334/30/4/R01
856	Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine
857	Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854
858	Qaisar, S., Imtiaz, S., Glazier, P., Farooq, F., Jamal, A., Iqbal, W., & Lee, S. (2013). A method for
859	cricket bowling action classification and analysis using a system of inertial sensors. In
860	International Conference on Computational Science and its Applications (pp. 396–412).
861	Berlin, Heidelberg: Springer. https://doi.org/10.100//9/8-3-642-39649-6
862	Ramanathan, V., Huang, J., Abu-El-Haija, S., Gorban, A., Murphy, K., & Fei-Fei, L. (2015).
863	Detecting events and key actors in multi-person videos.
004 065	Rups.//doi.org/10.1109/CVPR.2010.552
003 066	doop loorning ArViv Branning ArViv 1706 08024 Datrioved from
000 967	https://orviv.org/pdf/1706.08024v1.pdf
868	\mathbf{P}_{avi} D Wong C Lo B & Vang G 7 (2016) A deep learning approach to on node sensor
869	data analytics for mobile or wearable devices <i>IFFF Journal of Riomedical and Health</i>
870	Informatics 21(1) 1–1 https://doi.org/10.1109/IBHI 2016.2633287
871	Reily B Zhang H & Hoff W (2017) Real-time gymnast detection and performance analysis
872	with a portable 3D camera. Computer Vision and Image Understanding, 159, 154–163
873	https://doi.org/10.1016/i.cviu.2016.11.006
874	Rindal, O. M. H., Seeberg, T. M., Tjønnås, J., Haugnes, P., & Sandbakk, Ø. (2018). Automatic
875	classification of sub-techniques in classical cross-country skiing using a machine learning
876	algorithm on micro-sensor data. Sensors (Switzerland), 18(1), 75.
877	https://doi.org/10.3390/s18010075
878	Ronao, C. A., & Cho, SB. (2016). Human activity recognition with smartphone sensors using
879	deep learning neural networks. Expert Systems with Applications, 59, 235–244.
880	https://doi.org/10.1016/j.eswa.2016.04.032
881	Saba, T., & Altameem, A. (2013). Analysis of vision based systems to detect real time goal events
882	in soccer videos. Applied Artificial Intelligence, 27(7), 656–667.
883	https://doi.org/10.1080/08839514.2013.787779
884	Salman, M., Qaisar, S., & Qamar, A. M. (2017). Classification and legality analysis of bowling

885	action in the game of cricket. Data Mining and Knowledge Discovery, 31(6), 1706–1734.
886	https://doi.org/10.1007/s10618-017-0511-4
887	Schuldhaus, D., Zwick, C., Körger, H., Dorschky, E., Kirk, R., & Eskofier, B. M. (2015). Inertial
888	sensor-based approach for shot/ pass classification during a soccer match. In Proc. 21st ACM
889	KDD Workshop on Large-Scale Sports Analytics (pp. 1–4). Sydney, Australia.
890	Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2008). RUSBoost: Improving
891	classification performance when training data is skewed. In 9th International Conference on
892	Pattern Recognition (pp 1–4) https://doi.org/10.1109/ICPR 2008 4761297
893	Shah H Chokalingam P Paluri B & Pradeen N (2007) Automated stroke classification in
894	tennis Image Analysis and Recognition 1128–1137
895	Shaley-Shwartz S & Ben-David S (2014) Understanding machine learning: from theory to
896	algorithms New York USA: Cambridge University Press
897	Sharma M Srivastava R Anand A Prakash D & Kaligounder I (2017) Wearable motion
898	sensor based phasic analysis of tennis serve for performance feedback. In 2017 IEEE
200	International Conference on Acoustics Speech and Signal Processing (pp. 5945–5949) New
000 000	Orleans I A: IEEE
001	Sprager S. & Jurie M. B. (2015) Inartial sensor based gait recognition: A review Sensors
002	(Switzerland) (Vol. 15) https://doi.org/10.2200/s150022080
902	(Switzeriana) (Vol. 15). https://doi.org/10.5590/8150922089
903	Srivastava, K., Patwari, A., Kumar, S., Misnra, G., Kangounder, L., & Sinna, P. (2015). Efficient
904	characterization of tennis shots and game analysis using wearable sensors data. In 2013 IEEE $C_{\rm eq} = D_{\rm eq} = 1.4$ Decementations in the sensor of th
905	Sensors- Proceedings (pp. 1–4). Busan. https://doi.org/10.1109/ICSENS.2015.7570511
906	Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, I., Zimmermann, P., Goldiucke, B., Keim,
907	D. A. (2018). Bring it to the pitch: combining video and movement data to enhance team
908	sport analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 24(1), 13–22.
909	https://doi.org/10.1109/TVCG.2017.2745181
910	Sze, V., Chen, YH., Yang, TJ., & Emer, J. (2017). Efficient processing of deep neural networks:
911	A tutorial and survey. <i>IEEE</i> , 105(2), 2295–2329. Retrieved from
912	http://arxiv.org/abs/1703.09039
913	Thomas, G., Gade, R., Moeslund, T. B., Carr, P., & Hilton, A. (2017). Computer vision for sports:
914	Current applications and research topics. <i>Computer Vision and Image Understanding</i> , 159, 3–
915	18. https://doi.org/10.1016/j.cviu.2017.04.011
916	Titterton, D. H., & Weston, J. L. (2009). <i>Strapdown inertial navigation technology</i> (2nd ed.).
917	Reston, VA: AIAA.
918	Tora, M. R., Chen, J., & Little, J. J. (2017). Classification of puck possession events in ice hockey.
919	In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
920	Workshops (pp. 147–154). https://doi.org/10.1109/CVPRW.2017.24
921	Victor, B., He, Z., Morgan, S., & Miniutti, D. (2017). Continuous video to simple signals for
922	swimming stroke detection with convolutional neural networks. ArXiv Preprint
923	<i>ArXiv:1705.09894</i> . https://doi.org/10.1111/j.1467-8330.1974.tb00606.x
924	Wagner, D., Kalischewski, K., Velten, J., & Kummert, A. (2017). Activity recognition using
925	inertial sensors and a 2-D convolutional neural network. In IEEE (Ed.), 2017 10th
926	International Workshop on Multidimensional (nD) Systems (nDS) (pp. 1–6).
927	https://doi.org/10.1109/NDS.2017.8070615
928	Wagner, J. F. (2018). About motion measurement in sports based on gyroscopes and
929	accelerometers - an engineering point of view. Gyroscopy and Navigation, 9(1), 1-18.
930	https://doi.org/10.1134/S2075108718010091
931	Ward, J. A., Lukowicz, P., & Gellersen, HW. (2011). Performance metrics for activity
932	recognition. In ACM Trans. on Intelligent Systems and Technology (Vol. 2, pp. 111–132).
933	Whiteside, D., Cant, O., Connolly, M., & Reid, M. (2017). Monitoring hitting load in tennis using
934	inertial sensors and machine learning. International Journal of Sports Physiology and
935	Performance, 1–20. https://doi.org/https://doi.org/10.1123/ijspp.2016-0683
936	Wixted, A., Billing, D. C., & James, D. A. (2010). Validation of trunk mounted inertial sensors for
937	analysing running biomechanics under field conditions, using synchronously collected foot
938	contact data. Sports Engineering, 12(4), 207–212. https://doi.org/10.1007/s12283-010-0043-2
939	Wixted, A., Portus, M., Spratford, W., & James, D. A. (2011), Detection of throwing in cricket
940	using wearable sensors. Sports Technology. 4(3–4), 134–140.
941	https://doi.org/10.1080/19346182.2012.725409
942	Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. <i>Neural</i>
943	<i>Computation</i> , 8(7), 1341–1390. https://doi.org/10.1162/neco.1996.8.7.1391
-)7
	۷/

944	Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimisation. <i>IEEE</i>
945	Transactions on Evolutionary Computation, 1(1), 67–82.
946	https://doi.org/10.1023/A:1021251113462
947	Wundersitz, D. W., Gastin, P. B., Richter, C., Robertson, S., & Netto, K. J. (2015). Validity of a
948	trunk-mounted accelerometer to assess peak accelerations during walking, jogging and
949	running. European Journal of Sport Science, 15(5), 382–390.
950	https://doi.org/10.1080/17461391.2014.955131
951	Wundersitz, D. W., Gastin, P. B., Robertson, S., Davey, P. C., & Netto, K. J. (2015). Validation of
952	a trunk-mounted accelerometer to measure peak impacts during team sport movements
953	International Journal of Sports Medicine 36(9) 742–746 https://doi.org/10.1055/s-0035-
954	1547265
955	Wundersitz D W Josman C Gunta R Netto K I Gastin P B & Robertson S (2015)
956	Classification of team sport activities using a single wearable tracking device. <i>Journal of</i>
957	<i>Biomechanics</i> 48(15) 3975–3981 https://doi.org/10.1016/j.ibiomech.2015.09.015
958	Vang C C & Hen V I (2010) A review of accelerometry-based wearable motion detectors for
950	nhysical activity monitoring Sensors 10(8) 7772–7788 https://doi.org/10.3390/s100807772
960	Vang L B. Nguyen M N. San P. P. Li X L. & Shonali K. (2015). Deep convolutional neural
961	natworks on multichannel time series for human activity recognition. In Proceedings of the
901	24th International Conference on Artificial Intelligence (pp. 3005, 4001)
963	Vao B & Fei-Fei I (2010) Modeling mutual context of object and human pose in human-object
967	interaction activities. In Computer Vision and Pattern Recognition (pp. 17–24). IEEE
904	Volume C & Reinkensmeyer D I (2014) Judging complex movement performances for
905	avcallance: a principal components analysis based technique applied to compatitive diving
967	Human Movement Science 36, 107, 122, https://doi.org/10.1016/j.humov.2014.05.000
968	Vu G. Jang V. I. Kim I. Kim I. H. Kim H. V. Kim K. & Danday S. B. (2016). Potential of
960	MU sensors in performance analysis of professional alpine skiers. Sansors (Switzerland)
909	16(4) 1–21 https://doi.org/10.3390/s16040463
970	Zehin T. Scully P. J. & Ozanyan K. B. (2016). Human Activity Recognition with Inertial
972	Sensors Using a Deen Learning Approach Proc. of IEEE Sensors 2016 (1) 1-3
072	https://doi.org/10.1100/ICSENS.2016.7808500
07/	Zang M. Nguyan I. T. Yu B. Mangshoal O. I. Zhu I. Wu P. & Zhang I. (2014)
075	Convolutional neural networks for human activity recognition using mobile sensors. In
976	Proceedings of the 6th International Conference on Mobile Computing Applications and
	Samiaas (np. 107, 205) https://doi.org/10.4108/jest.mobiesso.2014.257786
078	Zhang S. Wei Z. Nie I. Huang I. Wang S. & Li Z. (2017). A review on human activity
070	znang, S., Wei, Z., Nie, J., Huang, L., Wang, S., & Li, Z. (2017). A review of furnial activity
000	https://doi.org/10.1155/2017/2000242
900 001	1000000000000000000000000000000000000
901	channels doen convolutional neural networks. In International Conference on Web Ace
30Z 002	Information Management (np. 208, 210). Springer, https://doi.org/10.1007/078.2.210.08010
905	<i>Information Management</i> (pp. 298–310). Springer. https://doi.org/10.1007/978-3-319-08010-
984 095	9_{33}
202	Zhu, G., Au, C., Gao, W., & Huang, Q. (2000). Action recognition in broadcast tennis video.
980 707	Computer Vision in Human-Computer Interaction, 89–98.
70/ 700	1000000000000000000000000000000000000
988	Ziaeerard, M., & Bergevin, K. (2015). Semantic numan activity recognition: A literature review.
989	Pattern Recognition, 48(8), 2329–2345. https://doi.org/10.1016/j.patcog.2015.03.006

1	Machine and deep learning for sport-specific movement recognition: a systematic review of
2	model development and performance
3	
4	Emily E. Cust ^{2, 2} , Alice J. Sweeting ^{2, 2} , Kevin Ball ² and Sam Robertson ^{2, 2}
5	Author details
ס ד	Author details:
, 0	² Western Pullders Football Club Footseray, Melbourne, Australia
o Q	western Bundogs Footban Club, Footseray, Melbourne, Australia
10	Author ORCID
11	Sam Robertson 0000-0002-8330-0011
	Alice Sweeting 0000-0002-9185-6773
	Emily Cust 0000-0001-6927-6329
14	
15	* Corresponding author:
16	Emily Cust
17	Email: emily.cust1@live.vu.edu.au
18	Institute for Health and Sport (IHES), Victoria University,
19	P.O. Box 14428, Melbourne, VIC 8001, Australia.
20	
21	Running title:
22	Machine and deep learning for sport movement recognition review
23	
24	· ·
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
	1

39 Abstract

4	()

Objective assessment of an athlete's performance is of importance in elite sports to facilitate detailed analysis. The implementation of automated detection and recognition of sport-specific movements overcomes the limitations associated with manual performance analysis methods. The object of this study was to systematically review the literature on machine and deep learning for sport-specific movement recognition using inertial measurement unit (IMU) and, or computer vision data inputs. A search of multiple databases was undertaken. Included studies must have investigated a sport-specific movement and analysed via machine or deep learning methods for model development. A total of 52 studies met the inclusion and exclusion criteria. Data pre-processing, processing, model development and evaluation methods varied across the studies. Model development for movement recognition were predominantly undertaken using supervised classification approaches. A kernel form of the Support Vector Machine algorithm was used in 53% of IMU and 50% of vision-based studies. Twelve studies used a deep learning method as a form of Convolutional Neural Network algorithm and one study also adopted a Long Short Term Memory architecture in their model. The adaptation of experimental set-up, data pre-processing, and model development methods are best considered in relation to the characteristics of the targeted sports movement(s).

58 Key Words:

59 Sport movement classification; inertial sensors; computer vision; machine learning; performance60 analysis.

61 1. Introduction

Performance analysis in sport science has experienced considerable recent changes, due largely to access to improved technology and increased applications from computer science. Manual notational analysis or coding in sports, even when performed by trained analysts, has limitations. Such methods are typically time intensive, subjective in nature, and prone to human error and bias. Automating sport movement recognition and its application towards coding has the potential to enhance both the efficiency and accuracy of sport performance analysis. The potential automation of recognising human movements, commonly referred to as human activity recognition (HAR), can be achieved through machine or deep learning model approaches. Common data inputs are obtained from inertial measurement units (IMUs) or vision. Detection refers to the identification of a targeted instance, i.e., tennis strokes within a continuous data input signal (Bulling, Blanke, & Schiele, 2014). Recognition or classification of movements involves further interpretations and labelled predictions of the identified instance (Bulling et al., 2014; Bux, Angelov, & Habib, 2017), i.e., differentiating tennis strokes as a forehand or backhand. In machine and deep learning, a model represents the statistical operations involved in the development of an automated prediction task (LeCun, Yoshua, & Geoffrey, 2015; Shalev-Shwartz & Ben-David, 2014).

Human activities detected by inertial sensing devices and computer vision are represented as wave signal features corresponding to specific actions, which can be logged and extracted. Human movement activities are considered hierarchically structured and can be broken down to basic movements. Therefore, the context of signal use, intra-class variability, and inter-class similarity between activities require consideration during experimental set-up and model development. Wearable IMUs contain a combination of accelerometer, gyroscope, and magnetometer sensors measuring along one to three axes. These sensors quantify acceleration, angular velocity, and the direction and orientation of travel respectively (Gastin, McLean, Breed, & Spittle, 2014). These sensors can capture repeated movement patterns during sport training and competitions (Camomilla, Bergamini, Fantozzi, & Vannozzi, 2018; Chambers, Gabbett, Cole, & Beard, 2015; J. F. Wagner, 2018). Advantages include being wireless, lightweight and self-contained in operation. Inertial measurement units have been utilised in quantifying physical output and tackling impacts in Australian Rules football (Gastin et al., 2014; Gastin, McLean, Spittle, & Breed, 2013) and rugby

91 (Gabbett, Jenkins, & Abernethy, 2012, 2011; Howe, Aughey, Hopkins, Stewart, & Cavanagh, 2017;
92 Hulin, Gabbett, Johnston, & Jenkins, 2017). Other applications include swimming analysis (Mooney,
93 Corley, Godfrey, Quinlan, & ÓLaighin, 2015), golf swing kinematics (Lai, Hetchl, Wei, Ball, &
94 McLaughlin, 2011), over-ground running speeds (Wixted, Billing, & James, 2010), full motions in
95 alpine skiing (Yu et al., 2016); and the detection and evaluation of cricket bowling (McNamara,
96 Gabbett, Blanch, & Kelly, 2017; McNamara, Gabbett, Chapman, Naughton, & Farhart, 2015;
97 Wixted, Portus, Spratford, & James, 2011).

Computer vision has applications for performance analysis including player tracking, semantic analysis, and movement analysis (Stein et al., 2018; Thomas, Gade, Moeslund, Carr, & Hilton, 2017). Automated movement recognition approaches require several pre-processing steps including athlete detection and tracking, temporal cropping and targeted action recognition, which are dependent upon the sport and footage type (Barris & Button, 2008; Saba & Altameem, 2013; Thomas et al., 2017). Several challenges including occlusion, viewpoint variations, and environmental conditions may impact results, depending on the camera set-up (Poppe, 2010; Zhang et al., 2017). Developing models to automate sports-vision coding may improve resource efficiency and reduce feedback times. For example, coaches and athletes involved in time-intensive notational tasks, including post-swim race analysis, may benefit from rapid objective feedback before the next race in the event program (Liao, Liao, & Liu, 2003; Victor, He, Morgan, & Miniutti, 2017). For detecting and recognising movements, body worn sensor signals do not suffer from the same environmental constraints and stationary set-up of video cameras. Furthermore, multiple sensors located on different body segments have been argued to provide more specific signal representations of targeted movements (J. B. Yang, Nguyen, San, Li, & Shonali, 2015). But it is not clear if this is solely conclusive, and the use of body worn sensors in some sport competitions may be impractical or not possible.

115 Machine learning algorithms learn from data input for automated model building and 116 perform tasks without being explicitly programmed. The algorithm goal is to output a response 117 function $h\sigma(\bar{x})$ that will predict a ground truth variable *y* from an input vector of variables \bar{x} . Models 118 are run for classification techniques to predict a target class (Kotsiantis, Zaharakis, & Pintelas, 2007), 119 or regression to predict discrete or continuous values. Models are aimed at finding an optimal set of 120 parameters σ to describe the response function, and then make predictions on unseen unlabelled data

input. Within these, model training approaches can generally run as supervised learning,
unsupervised learning or semi-supervised learning (Mohammed, Khan, & Bashier, 2016; Sze, Chen,
Yang, & Emer, 2017).

Processing raw data is limited for conventional machine learning algorithms, as they are unable to effectively be trained on abstract and high-dimensional data that is inconsistent, contains missing values or noisy artefacts (Bux et al., 2017; Kautz, 2017). Consequently, several pre-processing stages are required to create a suitable data form for input into the classifier algorithm (Figo, Diniz, Ferreira, & Cardoso, 2010). Filtering (Figo et al., 2010; Wundersitz, Gastin, Robertson, Davey, & Netto, 2015), window capture durations (Mitchell, Monaghan, & O'Connor, 2013; Preece, Goulermas, Kenney, & Howard, 2009; Wundersitz, Josman, et al., 2015), and signal frequency cut-offs (Wundersitz, Gastin, Richter, Robertson, & Netto, 2015; Wundersitz, Gastin, Robertson, et al., 2015) are common techniques applied prior to data prior to dynamic human movement recognition. Well-established filters for processing motion signal data include the Kalman filter (Kautz, 2017; Titterton & Weston, 2009; D. Wagner, Kalischewski, Velten, & Kummert, 2017) and a Fourier transform filter (Preece, Goulermas, Kenney, Howard, et al., 2009) such as a fast Fourier transform (Kapela, Świetlicka, Rybarczyk, Kolanowski, & O'Connor, 2015; Preece, Goulermas, Kenney, & Howard, 2009). Near real-time processing benefits from reducing memory requirements, computational demands, and essential bandwidth during whole model implementation. Signal feature extraction and selection favours faster processing by reducing the signals to the critical features that can discriminate the targeted activities (Bulling et al., 2014). Feature extraction involves identifying the key features that help maximise classifier success, and removing features that have minimal impact in the model (Mannini & Sabatini, 2010). Thus, feature selection involves constructing data representations in subspaces with reduced dimensions. These identified variables are represented in a compact feature variable (Mannini & Sabatini, 2010). Common methods include principal component analysis (PCA) (Gløersen, Myklebust, Hallén, & Federolf, 2018; Young & Reinkensmeyer, 2014), vector coding techniques (Hafer & Boyer, 2017) and empirical cumulative distribution functions (ECDF) (Plötz, Hammerla, & Olivier, 2011). An ECDF approach has been shown to be advantageous over PCA as it derives representations of raw input independent of the absolute data ranges, whereas PCA is known to have reduced performance when the input data is not properly normalised (Plötz et al., 2011). For further detailed information on the acquisition, filtering

and analysis of IMU data for sports application and vision-based human activity recognition, see(Kautz, 2017) and (Bux et al., 2017), respectively.

Deep learning is a division of machine learning, characterised by deeper neural network model architectures and are inspired by the biological neural networks of the human brain (Bengio, 2013; LeCun et al., 2015; Sze et al., 2017). The deeper hierarchical models create a profound architecture of multiple hidden layers based on representative learning with several processing and abstraction layers (Bux et al., 2017; J. B. Yang et al., 2015). These computational models allow data input features to be automatically extracted from raw data and transformed to handle unstructured data, including vision (LeCun et al., 2015; Ravi, Wong, Lo, & Yang, 2016). This direct input avoids several processing steps required in machine learning during training and testing, therefore reducing overall computational times. A current key element within deep learning is backpropagation (Hecht-Nielsen, 1989; LeCun, Bottou, Orr, & Müller, 1998). Backpropagation is a fast and computationally efficient algorithm, using gradient descent, that allows training deep neural networks to be tractable (Sze et al., 2017). Human activity recognition has mainly been performed using conventional machine learning classifiers. Recently, deep learning techniques have enhanced the bench mark and applications for IMUs (Kautz et al., 2017; Ravi et al., 2016; Ronao & Cho, 2016; J. B. Yang et al., 2015; Zebin, Scully, & Ozanyan, 2016; Zeng et al., 2014) and vision (Ji, Yang, Yu, & Xu, 2013; Karpathy et al., 2014a; Krizhevsky, Sutskever, & Hinton, 2012; Nibali, He, Morgan, & Greenwood, 2017) in human movement recognition producing more superior model performance accuracy.

The objective of this study was to systematically review the literature investigating sport-specific automated movement detection and recognition. The review focusses on the various technologies, analysis techniques and performance outcome measures utilised. There are several reviews within this field that are sensor-based including wearable IMUs for lower limb biomechanics and exercises (Fong & Chan, 2010; M. O'Reilly, Caulfield, Ward, Johnston, & Doherty, 2018), swimming analysis (Magalhaes, Vannozzi, Gatta, & Fantozzi, 2015; Mooney et al., 2015), quantifying sporting movements (Chambers et al., 2015) and physical activity monitoring (C. C. Yang & Hsu, 2010). A recent systematic review has provided an evaluation on the in-field use of inertial-based sensors for various performance evaluation applications (Camomilla et al., 2018). Vision-based methods for human activity recognition (Aggarwal & Xia, 2014; Bux et al., 2017; Ke et al., 2013; Zhang et al., 2017), semantic human activity recognition (Ziaeefard & Bergevin, 2015)

181 and motion analysis in sport (Barris & Button, 2008) have also been reviewed. However, to date, 182 there is no systematic review across sport-specific movement detection and recognition via machine 183 or deep learning. Specifically, incorporating IMUs and vision-based data input, focussing on in-field 184 applications as opposed to laboratory-based protocols and detailing the analysis and machine 185 learning methods used.

Considering the growth in research and potential field applications, such a review is required to understand the research area. This review aims to characterise the evolving techniques and inform researchers of possible improvements in sports analysis applications. Specifically: 1) What is the current scope for IMUs and computer vision in sport movement detection and recognition? 2) Which methodologies, inclusive of signal processing and model learning techniques, have been used to achieve sport movement recognition? 3) Which evaluation methods have been used in assessing the performance of these developed models?

2. Methods

2.1 Search strategy

The preferred PRISMA recommendations (Moher, Liberati, Tetzlaff, Altman, & Group, 2009) for systematic reviews were used. A literature search was undertaken by the first author on the following databases; IEEE Xplore, PubMed, ScienceDirect, Scopus, Academic Search Premier, and Computer and Applied Science Complete. The searched terms were categorised in order to define the specific participants, methodology and evaluated outcome measure in-line with the review aims. Searches used a combination of key words with AND/OR phrases which are detailed in Table 1. Searches were filtered for studies from January 2000 to May 2018 as no relevant studies were identified prior to this. Further studies were manually identified from the bibliographies of database-searched studies identified from the abstract screen phase, known as snowballing. Table 2 provides the inclusion and exclusion criteria of this review.

208 ***Table 1 near here: Key word search term strings per database ***

- 210 ***Table 2 near here: Inclusion and exclusion criteria***

212 2.2 Data extraction

The first author extracted and collated the relevant information from the full manuscripts identified for final review. A total of 18 parameters were extracted from the 52 research studies, including the title, author, year of publication, sport, participant details, sport movement target(s), device specifications, device sample frequency, pre-processing methods, processing methods, feature selected, feature extraction, machine learning model used, model evaluation, model performance accuracy, validation method, samples collected, and computational information. A customised Microsoft ExcelTM spreadsheet was developed to categorise the relevant extracted information from each study. Participant characteristics of number of participants, gender, and competition level, then if applicable a further descriptor specific to a sport, for example, 'medium-paced cricket bowler'. Athlete and participant experience level was categorised as written in the corresponding study to avoid misrepresentations. The age of participants was not considered an important characteristic required for model development. The individual ability in which the movement is performed accounts for the discriminative signal features associated with the movements. For the purposes of this review, a sport-specific movement was defined from a team or individual sport, and training activities associated with a particular sport. For example, weight-lifting as strength training, recognised under the Global Association of International Sports Federations. The targeted sports and specific movements were defined for either detection or recognition. Model development techniques used included pre-processing methods to transform data to a more suitable form for analysis, processing stages to segment data for identified target activities, feature extraction and selections techniques, and the learning algorithm(s). Model evaluation measures extracted were the model performance assessment techniques used, ground-truth validation comparison, number of data samples collected, and the model performance outcomes results reported. If studies ran multiple experiments using several algorithms, only the superior algorithm and relevant results were reported as the best method. This was done so in the interest of concise reporting to highlight favourable method approaches (Sprager & Juric, 2015). Any further relevant results or information identified from the studies was included as a special remark (Sprager & Juric, 2015). Hardware and specification information extracted included the IMU or video equipment used, number of units,
240 attachment of sensors (IMUs), sample frequency, and sensor data types used in analysis (IMUs).

241 Studies identified and full data extracted were reviewed by a second author.

3. Results

An outline of the search results and study exclusions has been provided in Fig 1. Of the initial database search which identified 4885 results, a final 52 studies met criteria for inclusion in this review. Of these, 29 used IMUs and 22 were vision-based. One study (Ó Conaire et al., 2010) used both sensors and vision for model development separately then together via data fusion. Tables 3 - 8 provide a description of the characteristics of the reviewed studies, detailed in the following sections.

251 *** Fig 1 near here: PRISMA flow diagram ***

253 3.1 Experimental design

A variety of sports and their associated sport-specific movements were investigated, implementing various experimental designs as presented in Tables 5 and 7. Across the studies, sports reported were tennis (n = 10), cricket (n = 3), weightlifting or strength training (n = 6), swimming (n = 4), skateboarding (n = 2), ski jumping (n = 2), snowboarding (n = 1), golf (n = 4), volleyball (n = 2), rugby (n = 2), ice hockey (n = 2), gymnastics (n = 2), karate (n = 1), basketball (n = 3), Gaelic football (n = 1), hurling (n = 1), boxing (n = 2), running (n = 2), diving (n = 1), squash (n = 1), badminton = 1), cross-country skiing (n = 2) and soccer (n = 4). The Sports 1-M dataset (Karpathy et al., 2014b) was also reported, which consists of 1,133,158 video URLs annotated automatically with 487 sport labels using the YouTube Topic API. A dominant approach was the classification of main characterising actions for each sport. For example, serve, forehand, backhand strokes in tennis (Connaghan et al., 2011; Kos & Kramberger, 2017; Ó Conaire et al., 2010; Shah, Chokalingam, Paluri, & Pradeep, 2007; Srivastava et al., 2015), and the four competition strokes in swimming (Jensen, Blank, Kugler, & Eskofier, 2016; Jensen, Prade, & Eskofier, 2013; Liao et al., 2003; Victor et al., 2017). Several studies further classified sub-categories of actions. For example, three further classes of the two main classified snowboarding trick types Grinds and Airs (Groh, Fleckenstein, & Eskofier, 2016), and further classifying the main tennis stroke types as either flat, topspin or slice

(Srivastava et al., 2015). Semantic descriptors were reported for classification models that predicted athlete training background, experience and fatigue level. These included running (Buckley et al., 2017; Kobsar, Osis, Hettinga, & Ferber, 2014), rating of gymnastic routines (Reily, Zhang, & Hoff, 2017), soccer pass classification based on its quality (Horton, Gudmundsson, Chawla, & Estephan, 2014), cricket bowling legality (Qaisar et al., 2013; Salman, Qaisar, & Qamar, 2017), ski jump error analysis (Brock & Ohgi, 2017; Brock, Ohgi, & Lee, 2017) and strength training technique deviations (M. A. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017a; M. O'Reilly et al., 2015; M. O'Reilly, Whelan, Ward, Delahunt, & Caulfield, 2017). One approach (Yao & Fei-Fei, 2010), encoded the mutual context of human pose and sporting equipment using semantics, to facilitate the detection and classification of movements including a cricket bat and batsman coupled movements. Total participant numbers for IMU-based studies ranged from one (Qaisar et al., 2013) to 30 (Kautz et al., 2017). Reported data individual instance sample sizes for sensor studies ranged from 150 (Salman et al., 2017) to 416, 737 (Rassem, El-Beltagy, & Saleh, 2017). Vision-based studies that explicitly reported total participant details ranged from five (Ó Conaire et al., 2010) to 40 (Victor et al., 2017). Vision dataset sample sizes varied across studies, from 50 individual action clips (Liao et al., 2003) to 15, 000 (Victor et al., 2017). One study (Karpathy et al., 2014a) used the publicly available Sports-1M, as previously described. Vision-based studies also reported datasets in total time, 10.3 hours (Bertasius, Park, Yu, & Shi, 2017), 3 hours (Montoliu, Martín-Félez, Torres-Sospedra, & Martínez-Usó, 2015), 1, 500 minutes (Shah et al., 2007), and 50 hours (Kapela et al., 2015), and by frame numbers, 6, 035 frames (Zhu, Xu, Gao, & Huang, 2006) and 10, 115 frames (Reily et al., 2017).

3.2 Inertial measurement unit specifications

A range of commercially available and custom-built IMUs were used in the IMU-based studies (n= 30), as presented in Table 3. Of these, 23% reported using a custom-built sensor. Of the IMU-based studies, the number of sensors mounted or attached to each participant or sporting equipment piece ranged from one to nine. The majority of studies (n= 22) provided adequate details of sensor specifications including sensor type, axes, measurement range, and sample rate used. At least one characteristic of sensor measurement range or sample rate used in data collection was missing from eight studies. All studies used triaxial sensors and collected accelerometer data. For analysis and

model development, individual sensor data consisted of only accelerometer data (n = 8), both accelerometer and gyroscope data (n = 15), and accelerometer, gyroscope and magnetometer data (n= 7). The individual sensor measurement ranges reported for accelerometer were ± 1.5 g to ± 16 g, gyroscope \pm 500 °/s to \pm 2000 °/s, magnetometer \pm 1200 µT or 1.2 to 4 Ga. Individual sensor sample rates ranged from 10 Hz to 1000 Hz for accelerometers, 10 Hz to 500 Hz for gyroscopes and 50 Hz to 500 Hz for magnetometers. *** Table 3 near here*** **3.3 Vision capture specification** Several experimental set-ups and specifications were reported in the total 23 vision-based studies (Table 4). Modality was predominately red, green, blue (RGB) cameras. Depth cameras were utilised (Kasiri-Bidhendi, Fookes, Morgan, Martin, & Sridharan, 2015; Kasiri, Fookes, Sridharan, & Morgan, 2017; Reily et al., 2017), which add depth perception for 3-dimensional image mapping. Seven studies clearly reported the use of a single camera set-up (Couceiro, Dias, Mendes, & Araújo, 2013: Díaz-Pereira, Gómez-Conde, Escalona, & Olivieri, 2014: Hachai, Ogiela, & Koptvra, 2015: Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Nibali et al., 2017; Reily et al., 2017). One study reported 16 stationary positioned cameras at a 'bird's eye view' (Montoliu et al., 2015), and Ó Conaire et al. (2010) reported the use of one overhead and 8 stationary cameras around a tennis court baseline, although data from two cameras were only used in final analysis due to occlusion issues. Sample frequency and, or pixel resolution were reported in seven of the studies (Couceiro et al., 2013; Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Montoliu et al., 2015; Victor et al., 2017; Zhu et al., 2006), with sample frequencies ranging from 30 Hz to 210 Hz. *** Table 4 near here*** 3.4 Inertial measurement unit recognition model development methods Key stages of model development from data pre-processing to recognition techniques for IMU-based studies are presented in Table 5. Data pre-processing filters were reported as either a low-pass filter (n = 7) (Adelsberger & Tröster, 2013; Buckley et al., 2017; Kelly, Coughlan, Green, & Caulfield,

	330	2012; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2015, 2017; Rindal, Seeberg, Tjønnås,
	331	Haugnes, & Sandbakk, 2018), high-pass filter (n = 2) (Kautz et al., 2017; Schuldhaus et al., 2015),
1 2	332	or calibration with a filter (Salman et al., 2017). Processing methods were reported in 67% of the
3 4	333	IMU-based studies (Adelsberger & Tröster, 2013; Anand, Sharma, Srivastava, Kaligounder, &
5 6	334	Prakash, 2017; Brock et al., 2017; Buckley et al., 2017; Buthe, Blanke, Capkevics, & Tröster, 2016;
8	335	Groh et al., 2016; Groh, Fleckenstein, Kautz, & Eskofier, 2017; Groh, Kautz, & Schuldhaus, 2015;
10 11	336	Jensen et al., 2016, 2015; Jiao, Wu, Bie, Umek, & Kos, 2018; Kautz et al., 2017; Kobsar et al., 2014;
12 13	337	M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Ó Conaire et al., 2010; Pernek, Kurillo, Stiglic,
14 15	338	& Bajcsy, 2015; Qaisar et al., 2013; Salman et al., 2017; Schuldhaus et al., 2015). Methods included,
16 17	339	calibration of data (Groh et al. 2016, 2017: Jensen et al. 2015: Oaisar et al. 2013), a one-second
18 19	340	window centred around identified activity neaks in the signal (Adelsherger & Tröster 2013:
20 21	2/1	Schuldhaus at al. 2015) temporal alignment (Parnak at al. 2015) normalisation (Ó Consira at al.
22 23 24	242	2010), authier a diversant (Kabaar et al. 2014) an annexed (Salmar et al. 2017), and aliding windows
25 26	342	2010), outher adjustment (Kobsar et al., 2014) or removal (Salman et al., 2017), and shding windows
27	343	ranging from one to 3.5 seconds across the data (Jensen et al., 2016). The three studies that
29	344	investigated trick classification in skateboarding (Groh et al., 2017, 2015) and snowboarding (Groh
31 32	345	et al., 2016) corrected data for different rider board stance styles, termed Regular or Goofy, by
33 34	346	inverting signal axes.
35 36	347	Movement detection methods were specifically reported in 16 studies (Adelsberger &
37 38	348	Tröster, 2013; Anand et al., 2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015, Jensen et
39 40	349	al., 2013, 2015; Kautz et al., 2017; Kelly et al., 2012; Kos & Kramberger, 2017; Ó Conaire et al.,
41 42	350	2010; Rindal et al., 2018; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside, Cant, Connolly,
43 44 45	351	& Reid, 2017). Detection methods included thresholding $(n = 5)$, windowing segmenting $(n = 4)$, and
46 47	352	a combination of threshold and windowing techniques $(n = 5)$.
48 49	353	Signal feature extraction techniques were reported in 80% of the studies, with the number of
50 51	354	feature parameters in a vector ranging from a vector of normalised X, Y, Z accelerometer signals (Ó
52 53	355	Conaire et al., 2010) to 240 features (M. A. O'Reilly et al., 2017a). Further feature selection to reduce
54 55	356	the dimensionality of the feature vector was used in 11 studies. Both feature extraction and selection
56 57	357	methods varied considerably across the literature (Table 5)
58 59	237	

Algorithms trialled for movement recognition were diverse across the literature (Table 5). Supervised classification using a kernel form of Support Vector Machine (SVM) was most prevalent

360	(n = 16) (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Brock et al., 2017; Buckley et al., 2017;
361	Buthe et al., 2016; Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Kautz et al., 2017; Kelly et al.,
362	2012; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et al., 2017; Schuldhaus et al., 2015;
363	Whiteside et al., 2017). The next highest tested were Naïve Bayesian (NB) $(n = 8)$ (Buckley et al.,
364	2017; Connaghan et al., 2011; Groh et al., 2016, 2017, 2015; Kautz et al., 2017; Salman et al., 2017;
365	Schuldhaus et al., 2015) and k-Nearest Neighbour (kNN) (n = 8) (Buckley et al., 2017; Groh et al.,
366	2016, 2017, 2015; Kautz et al., 2017; Ó Conaire et al., 2010; Salman et al., 2017; Whiteside et al.,
367	2017), followed by Random Forests (RF) (n = 7) (Buckley et al., 2017; Groh et al., 2017; Kautz et
368	al., 2017; M. A. O'Reilly et al., 2017a; M. O'Reilly et al., 2017; Salman et al., 2017; Whiteside et
369	al., 2017). Supervised learning algorithms were the most common ($n = 29$). One study used an
370	unsupervised discriminative analysis approach for detection and classification of tennis strokes (Kos
371	& Kramberger, 2017). Five IMU-based study investigated a deep learning approach including using
372	Convolutional Neural Networks (CNN) (Anand et al., 2017; Brock et al., 2017; Jiao et al., 2018;
373	Kautz et al., 2017; Rassem et al., 2017) and Long Short Term Memory (LSTM) (Hochreiter &
374	Schmidhuber, 1997) architectures (Rassem et al., 2017; Sharma, Srivastava, Anand, Prakash, &
375	Kaligounder, 2017). In order to assess the effectiveness of the various classifiers from each study,
376	model performance measures quantify and visualise the predictive performance as reported in the
377	following section.
378	
379	*** Table 5 near here***
380	
381	3.5 Inertial measurement unit recognition model evaluation
382	Reported performance evaluations of developed models across the IMU-based studies are shown in
383	Table 6. Classification accuracy, as a percentage score for the number of correct predictions by total
384	number of predictions made, was the main model evaluation measure ($n = 24$). Classification
385	accuracies across studies ranged between 52% (Brock & Ohgi, 2017) to 100% (Buckley et al., 2017).
386	Generally, the reported highest accuracy for a specific movement was $\ge 90\%$ (n = 17) (Adelsberger
387	& Tröster, 2013; Anand et al., 2017; Buckley et al., 2017; Connaghan et al., 2011; Groh et al., 2015;
388	Jensen et al., 2013; Jiao et al., 2018; Kobsar et al., 2014; Kos & Kramberger, 2017; M. A. O'Reilly
389	et al., 2017a; Ó Conaire et al., 2010; Pernek et al., 2015; Qaisar et al., 2013; Rindal et al., 2018; 13

	390	Schuldhaus et al., 2015; Srivastava et al., 2015; Whiteside et al., 2017) and $\ge 80\%$ to 90% (n = 7)
_	391	(Brock & Ohgi, 2017; Brock et al., 2017; Groh et al., 2017; Jensen et al., 2016; M. O'Reilly et al.,
1 2 3	392	2015, 2017; Salman et al., 2017). As an estimate of the generalised performance of a trained model
5 4 5	393	on $n - x$ samples, a form of leave-one-out cross validation (LOO-CV) was used in 47% of studies
6 7	394	(Buthe et al., 2016; Groh et al., 2016, 2017, 2015, Jensen et al., 2016, 2013; Kobsar et al., 2014; M.
8 9	395	O'Reilly et al., 2015, 2017; Ó Conaire et al., 2010; Pernek et al., 2015; Salman et al., 2017;
10 11	396	Schuldhaus et al., 2015). Precision, specificity and sensitivity (also referred to as recall) evaluations
12 13 14	397	were derived for detection $(n = 6)$ and classification models $(n = 10)$. Visualisation of prediction
15 16	398	results in the form of a confusion matrix featured in six studies (Buthe et al., 2016; Groh et al., 2017;
17 18	399	Kautz et al., 2017; Pernek et al., 2015; Rindal et al., 2018; Whiteside et al., 2017).
19 20	400	
21 22 23	401	*** Table 6 near here***
23 24 25	402	
26 27	403	3.6 Vision recognition model development methods
28 29	404	Numerous processing and recognition methods featured across the vision-based studies to transform
30 31 32	405	and isolated relevant input data (Table 7). Pre-processing stages were reported in 14 of studies, and
33 34	406	another varied 13 studies also provided details of processing techniques. Signal feature extraction
35 36	407	and feature selection methods used were reported in 78% of studies.
37 38	408	Both machine $(n = 16)$ and deep learning $(n = 7)$ algorithms were used to recognise
39 40 41	409	movements from vision data. Of these, a kernel form of the SVM algorithm was most common in
41 42 43	410	the studies (n = 10) (Couceiro et al., 2013; Horton et al., 2014; Kasiri-Bidhendi et al., 2015; Kasiri
44 45	411	et al., 2017; Li et al., 2018; Montoliu et al., 2015; M. A. O'Reilly, Whelan, Ward, Delahunt, &
46 47	412	Caulfield, 2017b; Ó Conaire et al., 2010; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Other
48 49	413	algorithms included kNN (n = 3) (Díaz-Pereira et al., 2014; Montoliu et al., 2015; Ó Conaire et al.,
50 51 52	414	2010), decision tree (DT) ($n = 2$) (Kapela et al., 2015; Liao et al., 2003), RF ($n = 2$) (Kasiri-Bidhendi
53 54	415	et al., 2015; Kasiri et al., 2017), and Multilayer Perceptron (MLP) (n = 2) (Kapela et al., 2015;
55 56	416	Montoliu et al., 2015). Deep learning was investigated in seven studies (Bertasius et al., 2017;
57 58	417	Ibrahim, Muralidharan, Deng, Vahdat, & Mori, 2016; Karpathy et al., 2014a; Nibali et al., 2017;
59 60 61		
62 63		
64		14

419 LSTM RNNs as the core model structure.

- 421 *** Table 7 near here***
- **3.7** Vision recognition model evaluation

Performance evaluation methods and results for vision-based studies are reported in Table 8. As with IMU-based studies, classification accuracy was the common method for model evaluations, featured in 61%. Classification accuracies were reported between 60.9% (Karpathy et al., 2014a) and 100% (Hachaj et al., 2015; Nibali et al., 2017). In grouping the reported highest accuracies for a specific movement that were $\geq 90\%$ (n = 9) (Hachaj et al., 2015; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Li et al., 2018; Montoliu et al., 2015; Nibali et al., 2017; Ó Conaire et al., 2010; Reily et al., 2017; Shah et al., 2007), and $\ge 80\%$ to 90% (n = 2) (Horton et al., 2014; Yao & Fei-Fei, 2010). A confusion matrix as a visualisation of model prediction results was used in nine studies (Couceiro et al., 2013; Hachaj et al., 2015; Ibrahim et al., 2016; Karpathy et al., 2014a; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Lu, Okuma, & Little, 2009; Shah et al., 2007; Tora et al., 2017). Two studies assessed and reported their model computational average speed (Lu et al., 2009) and time (Reily et al., 2017).

- 437 *** Table 8 near here***

```
439 4 Discussion
```

The aim of this systematic review was to evaluate the use of machine and deep learning for sportspecific movement recognition from IMUs and, or computer vision data inputs. Overall, the search yielded 52 studies, categorised as 29 which used IMUs, 22 vision-based and one study using both IMUs and vision. Automation or semi-automated sport movement recognition models working in near-real time is of particular interest to avoid the error, cost and time associated with manual methods. Evident in the literature, models are trending towards the potential to provide optimised objective assessments of athletic movement for technical and tactical evaluations. The majority of
studies achieved favourable movement recognition results for the main characterising actions of a
sport, with several studies exploring further applications such as an automated skill quality evaluation
or judgement scoring, for example automated ski jump error evaluation (Brock et al., 2017).

Experimental set-up of IMU placement and numbers assigned per participant varied between sporting actions. The sensor attachment locations set by researchers appeared dependent upon the specific sporting conditions and movements, presumably to gain optimal signal data. Proper fixation and alignment of the sensor axes with limb anatomical axes is important in reducing signal error (Fong & Chan, 2010). The attachment site hence requires a biomechanical basis for accuracy of the movement being targeted to obtain reliable data. Single or multiple sensor use per person also impacts model development trade-off between accuracy, analysis complexity, and computational speed or demands. In tennis studies, specificity whilst using a single sensor was demonstrated by mounting the IMU on the wrist or forearm of the racquet arm (Connaghan et al., 2011; Kos & Kramberger, 2017; Srivastava et al., 2015; Whiteside et al., 2017). A single sensor may also be mounted in a low-profile manner on sporting equipment (Groh et al., 2016, 2017, 2015; Jensen et al., 2015). Unobtrusive use of a single IMU to capture generalised movements across the whole body was demonstrated, with an IMU mounted on the posterior head in swimming (Jensen et al., 2016, 2013), lower back during running (Kobsar et al., 2014), and between the shoulder blades in rugby union (Kelly et al., 2012).

The majority of vision-based studies opted for a single camera set-up of RGB modality. Data output from a single camera as opposed to multiple minimises the volume of data to process, therefore reducing computational effort. However, detailed features may go uncaptured, particularly in team sport competition which consists of multiple individuals participating in the capture space at one time. In contrast, a multiple camera set-up reduces limitations including occlusion and viewpoint variations. However, this may also increase the complexity of the processing and model computational stages. Therefore, a trade-off between computational demands and movement recording accuracy often needs to be made. As stated earlier, the placement of cameras needs to suit the biomechanical nature of the targeted movement and the environment situated in. Common camera capture systems used in sports science research such as Vicon Nexus (Oxford, UK) and OptiTrack (Oregon, USA) were not present in this review. As this review targeted studies

investigating during on-field or in-situation sporting contexts, efficiency in data collection is key for
routine applications in training and competition. A simple portable RGB camera is easy to set-up in
a dynamic and changing environment, such as different soccer pitches, rather than a multiple capture
system such as Vicon that requires calibrated precision and are substantially more expensive.

Data acquisition and type from an IMU during analysis appears to influence model trade-off between accuracy and computational effort of performance. The use of accelerometer, gyroscope or magnetometer data may depend upon the movement properties analysed. Within tennis studies, gyroscope signals were the most efficient at discriminating between stroke types (Buthe et al., 2016; Kos & Kramberger, 2017) and detecting an athlete's fast feet court actions (Buthe et al., 2016). In contrast, accelerometer signals produced higher classification accuracies in classifying tennis stroke skills levels (Connaghan et al., 2011). The authors expected lower gyroscope classification accuracies as temporal orientation measures between skill levels of tennis strokes will differ (Connaghan et al., 2011). Conversely, data fusion from all three individual sensors resulted in a more superior model for classifying advanced, intermediate and novices tennis player strokes (Connaghan et al., 2011). Fusion of accelerometer and vision data also resulted in a higher classification accuracy for tennis stroke recognition (Ó Conaire et al., 2010).

Supervised learning approaches were dominant across IMU and vision-based studies. This is a method which involves a labelled ground truth training dataset typically manually annotated by sport analysts. Labelled data instances were recorded as up to 15, 000 for vision-based (Victor et al., 2017) and 416, 737 for sensor-based (Rassem et al., 2017) studies. Generation of a training data set for supervised learning can be a tedious and labour-intensive task. It is further complicated if multiple sensors or cameras are incorporated for several targeted movements. A semi-supervised or unsupervised learning approach may be advantageous as data labelling is minimal or not required, potentially reducing human errors in annotation. An unsupervised approach could suit specific problems to explain key data features, via clustering (Mohammed et al., 2016; Sze et al., 2017). Results computed by an unsupervised model (Kos, Ženko, Vlaj, & Kramberger, 2016) for tennis serve, forehand and backhand stroke classification compared favourbaly well against a proposed supervised approach (Connaghan et al., 2011).

Recognition of sport-specific movements was primarily achieved using conventional
machine learning approaches, however nine studies implemented deep learning algorithms. It is

	5	507	expected that future model developments will progressively feature deep learning approaches due to
	5	508	development of better hardware, and the advantages of more efficient model learning on large data
1 2	5	509	inputs (Sze et al., 2017). Convolutional Neural networks (CNN) (LeCun, Bottou, Bengio, & Haffner,
3	5	510	1998) were the core structure of five of the seven deep learning study models. Briefly, convolution
5 6 7	5	511	applies several filters, known as kernels, to automatically extract features from raw data inputs. This
, 8 9	5	512	process works under four key ideas to achieve optimised results: local connection, shared weights,
10 11	5	513	pooling and applying several layers (LeCun et al., 2015; J. B. Yang et al., 2015). Machine learning
12 13	5	514	classifiers modelled with generic hand-crafted features, were compared against a CNN for
14 15	5	515	classifying nine beach volleyball actions using IMUs (Kautz et al., 2017). Unsatisfactory results were
17 17	5	516	obtained from the machine learning model, and the CNN markedly achieved higher classification
19	5	517	accuracies (Kautz et al., 2017). The CNN model produced the shortest overall computation times,
21 22	. 5	518	requiring less computational effort on the same hardware (Kautz et al., 2017). Vision-based CNN
23 24	5	519	models have also shown favourable results when compared to a machine learning study baseline
25 26	5	520	(Karpathy et al., 2014a; Nibali et al., 2017; Victor et al., 2017). Specifically, consistency between a
28	5	521	swim stroke detection model for continuous videos in swimming which was then applied to tennis
30 31	5	522	strokes with no domain-specific settings introduced (Victor et al., 2017). The authors of this training
32 33	5	523	approach (Victor et al., 2017) anticipate that this could be applied to train separate models for other
34 35	5	524	sports movement detection as the CNN model demonstrated the ability to learn to process continuous
36	5	525	videos into a 1-D signal with the signal peaks corresponding to arbitrary events. General human
39 40	5	526	activity recognition using CNN have shown to be a superior approach over conventional machine
41 42	5	527	learning algorithms using both IMUs (Ravi et al., 2016; J. B. Yang et al., 2015; Zebin et al., 2016;
43 44	: 5	.28	Zeng et al. 2014: Zheng Liu Chen Ge & Zhao 2014) and computer vision (Ii et al. 2013:
45 46	5	:20	Krizbevsky et al. 2012: LeCun et al. 2015). As machine learning algorithms extract heuristic
47 48	, , ,	20	footures requiring domain knowledge, this creates shellower features which can make it harder to
49 50		50	reatures requiring domain knowledge, this creates shanower reatures which can make it harder to
51 52	. 5	531	infer high-level and context aware activities (J. B. Yang et al., 2015). Given the previously described
53 54	5	532	advantages of deep learning algorithms which apply to CNN, and the recent results of deep learning,
55 56	5	533	future model developments may benefit from exploring these methods in comparison to current
57 58	, ; 5	534	bench mark models.
59 60	5	535	Model performance outcome metrics quantify and visualise the error rate between the
61 62 63	5	536	predicted outcome and true measure. Comparatively, a kernel form of an SVM was the most common
64			10

 classifier implemented and produced the strongest machine learning approach model prediction accuracies across both IMU (Adelsberger & Tröster, 2013; Brock & Ohgi, 2017; Buthe et al., 2016; Groh et al., 2016, 2017, 2015; Jensen et al., 2016; Pernek et al., 2015; Salman et al., 2017; Schuldhaus et al., 2015; Whiteside et al., 2017) and vision-based study designs (Horton et al., 2014; Kasiri-Bidhendi et al., 2015; Kasiri et al., 2017; Li et al., 2018; Reily et al., 2017; Shah et al., 2007; Zhu et al., 2006). Classification accuracy was the most common reported measure followed by confusion matrices, as ways to clearly present prediction results and derive further measures of performance. Further measures included sensitivity (also called recall), specificity and precision, whereby results closer to 1.0 indicate superior model performance, compared to 0.0 or poor model performance. The F1-score (also called a F-measure or F-score) conveys the balances between the precision and sensitivity of a model. An in-depth analysis performance metrics specific to human activity recognition is located elsewhere (Minnen, Westeyn, Starner, Ward, & Lukowicz, 2006; Ward, Lukowicz, & Gellersen, 2011). Use of specific evaluation methods depends upon the data type. Conventional performance measures of error rate are generally unsuitable for models developed from skewed training data (Provost & Fawcett, 2001). Using conventional performance measures in this context will only take the default decision threshold on a model trained, if there is an uneven class distribution this may lead to imprecision (Provost & Fawcett, 2001; Seiffert, Khoshgoftaar, Van Hulse, & Napolitano, 2008). Alternative evaluators including Receiver Operating Characteristics (ROC) curves and its single numeric measure, Area Under ROC Curve (AUC), report model performances across all decision thresholds (Seiffert et al., 2008). Making evaluations between study methodology have inherent complications due to each formulating their own experimental parameter settings, feature vectors and training algorithms for movement recognition. The No-Free-Lunch theorems are important deductions in the formation of models for supervised machine learning (David H. Wolpert, 1996), and search and optimisation algorithms (D H Wolpert & Macready, 1997). The theorems broadly reference that there is no 'one model' that will perform optimally across all recognition problems. Therefore, experiments with multiple model development methods for a particular problem is recommended. The use of prior knowledge about the task should be implemented to adapt the model input and model parameters in order to improve overall model success (Shalev-Shwartz & Ben-David, 2014).

- Acquisition of athlete specific information, including statistics on number, type and intensity of actions, may be of use in the monitoring of athlete load. Other potential applications include personalised movement technique analysis (M. O'Reilly et al., 2017), automated performance evaluation scoring (Reily et al., 2017) and team ball sports pass quality rating (Horton et al., 2014). However, one challenge lies in delivering consistent, individualised models across team field sports that are dynamic in nature. For example, classification of soccer shots and passes showed a decline in model performance accuracy from a closed environment to a dynamic match setting (Schuldhaus et al., 2015). A method to overcome accuracy limitations in dynamic team field sports associated with solely using IMUs or vision may be to implement data fusion (Ó Conaire et al., 2010). Furthermore, vision and deep learning approaches have demonstrated the ability to track and classify team sport collective court activities and individual player specific movements in volleyball (Ibrahim et al., 2016), basketball (Ramanathan et al., 2015) and ice hockey (Tora et al., 2017). Accounting for methods from experimental set-up to model evaluation, previous reported models should be considered and adapted based on the current problem. Furthermore, the balance between model computational efficiency, results accuracy and complexity trade-offs calculations are an important factor. In the present study, meta-analysis was considered however variability across developed model parameter reporting and evaluation methods did not allow for this to be undertaken. As this field expands and further methodological approaches are investigated, it would be practical to review analysis approaches both within and between sports. This review was delimited to machine and deep learning approaches to sport movement detection and recognition. However, statistical or parametric approaches not considered here such as discriminative functional analysis may also show efficacy for sport-specific movement recognition. However, as the field of machine learning is a rapidly developing area shown to produce superior results, a review encompassing all possible other methods may have complicated the reporting. Since sport-specific movements and their environments alter the data acquisition and analysis, the sports and movements reported in the present study provide an
 - 592 overview of the current field implementations.

 - 594 5 Conclusions

This systematic review reported on the literature using machine and deep learning methods to automate sport-specific movement recognition. In addressing the research questions, both IMUs and computer vision have demonstrated capacity in improving the information gained from sport movement and skill recognition for performance analysis. A range of methods for model development were used across the reviewed studies producing varying results. Conventional machine learning algorithms such as Support Vector Machines and Neural Networks were most commonly implemented. Yet in those studies which applied deep learning algorithms such as Convolutional Neural Networks, these methods outperformed the machine learning algorithms in comparison. Typically, the models were evaluated using a leave-one-out cross validation method and reported model performances as a classification accuracy score. Intuitively, the adaptation of experimental set-up, data processing, and recognition methods used are best considered in relation to the characteristics of the sport and targeted movement(s). Consulting current models within or similar to the targeted sport and movement is of benefit to address bench mark model performances and identify areas for improvement. The application within the sporting domain of machine learning and automated sport analysis coding for consistent uniform usage appears currently a challenging prospect, considering the dynamic nature, equipment restrictions and varying environments arising in different sports.

Future work may look to adopt, adapt and expand on current models associated with a specific sports movement to work towards flexible models for mainstream analysis implementation. Investigation of deep learning methods in comparison to conventional machine learning algorithms would be of particular interest to evaluate if the trend of superior performances is beneficial for sport-specific movement recognition. Analysis as to whether IMUs and vision alone or together yield enhanced results in relation to a specific sport and its implementation efficiency would also be of value. In consideration of the reported study information, this review can assist future researchers in broadening investigative approaches for sports performance analysis as a potential to enhancing upon current methods.

- 623 Acknowledgements
- 624 Not applicable.

626 Disclosure statement

- 627 No potential conflict of interest was reported by the authors. However, the last author is co-author of
- 628 three studies included in this systematic review.

630 Funding

- 631 The authors received no specific funding for this work.

633 Author ORCID

- 634 Sam Robertson 0000-0002-8330-0011
- 635 Alice Sweeting 0000-0002-9185-6773
- 636 Emily Cust 0000-0001-6927-6329

References 639

- Adelsberger, R., & Tröster, G. (2013). Experts lift differently: Classification of weight-lifting athletes. In 2013 IEEE International Conference on Body Sensor Networks (pp. 1-6). Cambridge, MA: Body Sensor Networks (BSN). https://doi.org/10.1109/BSN.2013.6575458 Aggarwal, J. K., & Xia, L. (2014). Human activity recognition from 3D data: A review. Pattern Recognition Letters, 48, 70-80. https://doi.org/10.1016/j.patrec.2014.04.011 Anand, A., Sharma, M., Srivastava, R., Kaligounder, L., & Prakash, D. (2017). Wearable motion sensor based analysis of swing sports. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 261–267). https://doi.org/10.1109/ICMLA.2017.0-149 Barris, S., & Button, C. (2008). A review of vision-based motion analysis in sport. Sports Medicine, 38(12), 1025–1043. https://doi.org/10.2165/00007256-200838120-00006 Bengio, Y. (2013). Deep learning of representations: Looking forward. Lecture Notes in Computer
- Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7978 LNAI, 1–37. https://doi.org/10.1007/978-3-642-39593-2_1
 Bertasius, G., Park, H. S., Yu, S. X., & Shi, J. (2017). Am I a baller? Basketball performance assessment from first-person videos. Proceedings of the IEEE International Conference on
- *Computer Vision*, 2196–2204. https://doi.org/10.1109/ICCV.2017.239
 657 Brock, H., & Ohgi, Y. (2017). Assessing motion style errors in ski jumping using inertial sensor
- brock, H., & Ongi, T. (2017). *Issessing motion style crois in ski jumping using metual sensor*devices. *IEEE Sensors Journal*, (99), 1–11. https://doi.org/10.1109/JSEN.2017.2699162
 Brock, H., Ohgi, Y., & Lee, J. (2017). Learning to judge like a human: convolutional networks for
- 660 classification of ski jumping errors. *Proceedings of the 2017 ACM International Symposium* 661 *on Wearable Computers ISWC '17*, 106–113. https://doi.org/10.1145/3123021.3123038
- Buckley, C., O'Reilly, M. A., Whelan, D., Vallely Farrell, A., Clark, L., Longo, V., ... Caulfield,
 B. (2017). Binary classification of running fatigue using a single inertial measurement unit. In
 2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor
 Networks (pp. 197–201). IEEE. https://doi.org/10.1109/BSN.2017.7936040
- Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition using bodyworn inertial sensors. *ACM Computing Surveys*, 46(3), 1–33.
 https://doi.org/http://dx.doi.org/10.1145/2499621
- Buthe, L., Blanke, U., Capkevics, H., & Tröster, G. (2016). A wearable sensing system for timing
 analysis in tennis. In *BSN 2016 13th Annual Body Sensor Networks Conference* (pp. 43–48).
 San Francisco, CA. https://doi.org/10.1109/BSN.2016.7516230
- Bux, A., Angelov, P., & Habib, Z. (2017). Vision based human activity recognition: A review. In P. Angelov, A. Gegov, C. Jayne, & Q. Shen (Eds.), Advances in Computational Intelligence Systems: Contributions Presented at the 16th UK Workshop on Computational Intelligence (pp. 341–371). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-46562-3 23

677	Camomilla, V., Bergamini, E., Fantozzi, S., & Vannozzi, G. (2018). Trends supporting the in-field
678	use of wearable inertial sensors for sport performance evaluation: a systematic review.
679	Sensors, 18(3), 873. https://doi.org/10.3390/s18030873
680	Chambers, R., Gabbett, T., Cole, M. H., & Beard, A. (2015). The use of wearable microsensors to
681	quantify sport-specific movements. Sports Medicine, 45(7), 1065–1081.
682	https://doi.org/10.1007/s40279-015-0332-9
683	Connaghan D Kelly P O'Connor N E Gaffney M Walsh M & O'Mathuna C (2011)
684	Multi-sensor classification of tennis strokes <i>Journal of IEEE Sensors</i> 1437–1440
685	Conceiro M S Dias G Mendes R & Araújo D (2013) Accuracy of pattern detection
686	methods in the performance of golf putting. <i>Journal of Mater Bahavier</i> 45(1) 37–53
687	https://doi.org/10.1080/00222805.2012.740100
6007	Diaz Daraira M. D. Cámaz Conda I. Escalara M. & Oliviari D. N. (2014). Automatia
000	Diaz-referita, M. F., Gomez-Conde, I., Escalona, M., & Onvien, D. N. (2014). Automatic
089	recognition and scoring of orympic rhytininic gymnastic movements. <i>Human Movement</i>
690	Science, 34(1), 63–80. https://doi.org/10.1016/j.numov.2014.01.001
691	Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. P. (2010). Preprocessing techniques for
692	context recognition from accelerometer data. <i>Personal and Ubiquitous Computing</i> , 14(7),
693	645–662. https://doi.org/10.1007/s00779-010-0293-9
694	Fong, D. TP., & Chan, YY. (2010). The use of wearable inertial motion sensors in human lower
695	limb biomechanics studies: A systematic review. Sensors, 10(12), 11556–11565.
696	https://doi.org/10.3390/s101211556
697	Gabbett, T., Jenkins, D., & Abernethy, B. (2012). Physical demands of professional rugby league
698	training and competition using microtechnology. Journal of Science and Medicine in Sport,
699	15, 80–86. https://doi.org/10.1016/j.jsams.2011.07.004
700	Gabbett, T., Jenkins, D. G., & Abernethy, B. (2011). Physical collisions and injury in professional
701	rugby league match-play. Journal of Science and Medicine in Sport, 14, 210–215.
702	https://doi.org/10.1016/i.isams.2011.01.002
703	Gastin P B McLean O C Breed R V & Spittle M (2014) Tackle and impact detection in
704	elite Australian football using wearable microsensor technology <i>Journal of Sports Sciences</i>
704	$32(10)$ 947_953 https://doi.org/10.1080/02640414.2013.868920
705	S2(10), $947-955$. https://doi.org/10.1000/02040414.2015.000920
700	damanda in professional Australian fastball using integrated washeld stablets tracking
707	technology Lewrol of Science and Medicine in Sport 16(6), 580, 502
708	technology. Journal of Science and Medicine in Sport, 10(6), 589–595.
709	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{10$
710	Gløersen, Ø., Myklebust, H., Hallen, J., & Federolf, P. (2018). Technique analysis in elite athletes
/11	using principal component analysis. Journal of Sports Sciences, 36(2), 229–237.
712	https://doi.org/10.1080/02640414.2017.1298826
713	Groh, B. H., Fleckenstein, M., & Eskofier, B. M. (2016). Wearable trick classification in freestyle
714	snowboarding. In 13th International Conference on Wearable and Implantable Body Sensor
715	Networks (BSN) (pp. 89–93). IEEE. https://doi.org/10.1109/BSN.2016.7516238
716	Groh, B. H., Fleckenstein, M., Kautz, T., & Eskofier, B. M. (2017). Classification and visualization
717	of skateboard tricks using wearable sensors. Pervasive and Mobile Computing, 40, 42–55.
718	https://doi.org/10.1016/j.pmcj.2017.05.007
719	Groh, B. H., Kautz, T., & Schuldhaus, D. (2015). IMU-based trick classification in skateboarding.
720	In KDD Workshop on Large-Scale Sports Analytics.
721	Hachaj, T., Ogiela, M. R., & Koptyra, K. (2015). Application of assistive computer vision methods
722	to Oyama karate techniques recognition. Symmetry, 7(4), 1670–1698.
723	https://doi.org/10.3390/sym7041670
724	Hafer, J. F., & Boyer, K. A. (2017). Variability of segment coordination using a vector coding
725	technique: reliability analysis for treadmill walking and running <i>Gait and Posture</i> 51 222–
726	227 https://doi.org/10.1016/j.gaitpost 2016.11.004
720	Hecht-Nielsen R (1989) Theory of the backpronagation neural network <i>Proceedings Of The</i>
727	International Joint Conference On Neural Networks 1 503 605
720	https://doi.org/10.1100/HCNN 1020.112622
723	Hophroiter S = R Schmidhuber I I (1007) I one short term receiver Normal Commutet' = 0(0)
/30	normener, S., & Schmunuber, J. J. (1997). Long Short-term memory. <i>Neural Computation</i> , 9(8),
/31	1-32. https://doi.org/10.1102/hec0.1997.9.8.1733
/32	Horton, IVI., Gudmundsson, J., Cnawla, S., & Estephan, J. (2014). Classification of passes in
/33	tootball matches using spatiotemporal data. ArXiv Preprint ArXiv:1407.5093.
734	https://doi.org/10.1145/31055/6
735	Howe, S. T., Aughey, R. J., Hopkins, W. G., Stewart, A. M., & Cavanagh, B. P. (2017).
	23

736	Quantifying important differences in athlete movement during collision-based team sports:
737	Accelerometers outperform global positioning systems. In 2017 IEEE International
/38	Symposium on Inertial Sensors and Systems (pp. 1–4). Kauai, HI, USA: IEEE.
/39	https://doi.org/10.1109/ISISS.2017.7935655
740	Hulin, B. T., Gabbett, T., Johnston, R. D., & Jenkins, D. G. (2017). Wearable microtechnology can
741	accurately identify collision events during professional rugby league match-play. Journal of
742	Science and Medicine in Sport, 20(7), 638–642.
743	https://doi.org/http://dx.doi.org/10.1016/J.Jsams.2016.11.006
744	Torunna, M., Murandharan, S., Deng, Z., Vandal, A., & Mori, G. (2016). A Hierarchical Deep
745	https://doi.org/10.1100/CVDD.2016.217
740	nups://doi.org/10.1109/CVPK.2010.21/ Janson JJ. Plank D. Kugler D. & Estofier D. M. (2016). Unohtrusive and energy afficient
747	Jensen, U., Blank, P., Kugler, P., & Eskoner, B. M. (2010). Unobirusive and energy-enficient
740	3080 https://doi.org/10.1100/ISEN 2016.2520010
749	Jensen II Prade F. & Eskofier B. M. (2013) Classification of kinematic swimming data with
750	emphasis on resource consumption. In 2013 IEEE International Conference on Body Sensor
752	Networks RSN 2013 https://doi.org/10.1109/RSN 2013 6575501
752	Iensen II Schmidt M Hennig M Dassler F A Jaitner T & Eskofier B M (2015) An
754	IMU-based mobile system for golf putt analysis Sports Engineering 18(2) 123–133
755	https://doi org/10/1007/s12283-015-0171-9
756	It S Yang M Yu K & Xu W (2013) 3D convolutional neural networks for human action
757	recognition IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1) 221-
758	231 https://doi.org/10.1109/TPAMI 2012.59
759	Jiao, L., Wu, H., Bie, R., Umek, A., & Kos, A. (2018). Multi-sensor Golf Swing Classification
760	Using Deep CNN. Procedia Computer Science, 129, 59–65.
761	https://doi.org/10.1016/i.procs.2018.03.046
762	Kapela, R., Świetlicka, A., Rybarczyk, A., Kolanowski, K., & O'Connor, N. E. (2015). Real-time
763	event classification in field sport videos. Signal Processing: Image Communication, 35, 35–
764	45. https://doi.org/10.1016/i.image.2015.04.005
765	Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014a). Large-
766	scale video classification with convolutional neural networks. <i>Computer Vision and Pattern</i>
767	Recognition (CVPR), 2014 IEEE Conference On, 1725–1732.
768	https://doi.org/10.1109/CVPR.2014.223
769	Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014b). Large-
770	scale video classification with convolutional nural networks. Retrieved December 18, 2017,
771	from http://cs.stanford.edu/people/karpathy/deepvideo/
772	Kasiri-Bidhendi, S., Fookes, C., Morgan, S., Martin, D. T., & Sridharan, S. (2015). Combat sports
773	analytics: Boxing punch classification using overhead depth imagery. In 2015 IEEE
774	International Conference on Image Processing (ICIP) (pp. 4545-4549). Quebec City,
775	Canada: IEEE. https://doi.org/10.1109/ICIP.2015.7351667
776	Kasiri, S., Fookes, C., Sridharan, S., & Morgan, S. (2017). Fine-grained action recognition of
777	boxing punches from depth imagery. Computer Vision and Image Understanding, 159, 143-
778	153. https://doi.org/10.1016/j.cviu.2017.04.007
779	Kautz, T. (2017). Acquisition, filtering and analysis of positional and inertial data in sports. FAU
780	Studies in Computer Science, 2.
781	Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity
782	recognition in beach volleyball using a deep convolutional neural network. Data Mining and
783	<i>Knowledge Discovery</i> , 1–28. https://doi.org/10.1007/s10618-017-0495-0
784	Ke, S. R., Thuc, H., Lee, Y. J., Hwang, J. N., Yoo, J. H., & Choi, K. H. (2013). A review on video-
785	based human activity recognition. <i>Computers</i> , 2, 88–131.
786	https://doi.org/10.3390/computers2020088
787	Kelly, D., Coughlan, G. F., Green, B. S., & Caulfield, B. (2012). Automatic detection of collisions
788	in elite level rugby union using a wearable sensing device. Sports Engineering, $15(2)$, $81-92$.
789	Retrieved from https://0-link-springer-com.library.vu.edu.au/article/10.1007%2Fs12283-012-
790	
791	Kobsar, D., Osis, S. T., Hettinga, B. A., & Ferber, R. (2014). Classification accuracy of a single tri-
/92	axial accelerometer for training background and experience level in runners. <i>Journal of</i>
/93	<i>Biomechanics</i> , 4/(10), 2508–2511. https://doi.org/10.1016/j.jbiomech.2014.04.01/
/94	κ_{05} , w_{1} , α κ_{1} randerger, 1. (2017). A wearable device and system for movement and biometric data
	24

795	Acquisition for sports applications. <i>IEEE Access</i> , 1–1.
796	https://doi.org/10.1109/ACCESS.2017.2675538
797	Kos, M., Ženko, J., Vlaj, D., & Kramberger, I. (2016). Tennis stroke detection and classification
798	using miniature wearable IMU device. In International Conference on Systems, Signals, and
799	Image Processing https://doi org/10.1109/IWSSIP 2016 7502764
800	Kotsiantis S. Zaharakis I. & Pintelas P. (2007). Supervised machine learning: A review of
801	classification techniques. Informatica, 31, 501, 520, https://doi.org/10.1115/1.1550160
801	Krizbausky A. Sytekayar I. & Hinton C. E. (2012) ImageNet elegification with deep
00Z	KIIZILEVSKY, A., SUISKEVEI, I., & HIIIIOII, G. E. (2012). IIIageivet classification with deep
803	convolutional neural networks. Advances in Neural Information Processing Systems, 1097–
804	1105. https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
805	Lai, D. T. H., Hetchl, M., Wei, X., Ball, K., & McLaughlin, P. (2011). On the difference in swing
806	arm kinematics between low handicap golfers and non-golfers using wireless inertial sensors.
807	Procedia Engineering, 13, 219–225. https://doi.org/10.1016/j.proeng.2011.05.076
808	LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
809	document recognition. IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
810	LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural Networks:
811	Tricks of the Trade (Vol. 1524, pp. 9–50).
812	LeCun Y Yoshua B & Geoffrey H (2015) Deen learning Nature 521(7553) 436-444
813	https://doi.org/10.1038/natura14530
015	Li L Tion O. Zhang G. Zhang E. Ly C. & Wang I. (2018) Basaarah an hybrid information
014	Li, J., Haii, Q., Zhang, G., Zheng, F., Lv, C., & Wang, J. (2016). Research on hybrid information
815	recognition algorithm and quality of golf swing. Computers and Electrical Engineering, 1–
816	13. https://doi.org/10.1016/j.compeleceng.2018.02.013
817	Liao, W. H., Liao, Z. X., & Liu, M. J. (2003). Swimming style classification from video sequences.
818	In Kinmen (Ed.), 16th IPPR Conference on Computer Vision, Graphics and Image
819	Processing (pp. 226–233). ROC.
820	Lu, W. L., Okuma, K., & Little, J. J. (2009). Tracking and recognizing actions of multiple hockey
821	players using the boosted particle filter. <i>Image and Vision Computing</i> , 27(1–2), 189–205.
822	https://doi.org/10.1016/j.imavis.2008.02.008
823	Magalhaes, F. A. de, Vannozzi, G., Gatta, G., & Fantozzi, S. (2015). Wearable inertial sensors in
824	swimming motion analysis: A systematic review. <i>Journal of Sports Sciences</i> , 33(7), 732–745.
825	https://doi.org/10.1080/02640414.2014.962574
826	Mannini A & Sabatini A M (2010) Machine learning methods for classifying human physical
020 977	ectivity from on body accelerometers. Sensors 10(2) 1154 1175
027	https://doi.org/10.2200/g100201154
020	Intips.//doi.org/10.5590/8100201154
029	McIvaniara, D. J., Gabbeu, T., Bianch, P., & Keny, L. (2017). The relationship between wearable
830	microtechnology device variables and cricket fast bowling intensity. International Journal of
831	Sports Physiology and Performance, 1–20. https://doi.org/https://doi.org/10.1123/ijspp.2016-
832	0540
833	McNamara, D. J., Gabbett, T., Chapman, P., Naughton, G., & Farhart, P. (2015). The validity of
834	microsensors to automatically detect bowling events and counts in cricket fast bowlers.
835	International Journal of Sports Physiology and Performance, 10(1), 71–75.
836	https://doi.org/10.1123/ijspp.2014-0062
837	Minnen, D., Westeyn, T. L., Starner, T., Ward, J. a, & Lukowicz, P. (2006). Performance metrics
838	and evaluation issues for continuous activity recognition. In Proc. Int. Workshop on
839	Performance Metrics for Intelligent Systems (pp. 141–148).
840	https://doi.org/10.1145/1889681.1889687
8 <u>4</u> 1	Mitchell E. Monaghan D. & O'Connor N F (2013) Classification of sporting activities using
Q12	smortphone accolorometers. Sensors (<i>Basel Switzerland</i>) 13(4) 5317–5337
042	https://doi.org/10.2200/g120405217
045	$\frac{1}{10000000000000000000000000000000000$
844	Monamined, M., Knan, M., & Basnier, E. (2016). <i>Machine Learning: Algorithms and Applications</i> .
845	Militon: CKU Press.
846	Moher, D., Liberati, A., Tetzlatt, J., Altman, D. G., & Group, T. P. (2009). Preferred reporting
847	items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, $6(7)$,
848	e1000097. https://doi.org/10.1371/journal.pmed.1000097
849	Montoliu, R., Martín-Félez, R., Torres-Sospedra, O., & Martínez-Usó, A. (2015). Team activity
850	recognition in Association football using a bag-of-words-based method. Human Movement
851	Science, 41, 165–178. https://doi.org/10.1016/j.humov.2015.03.007
852	Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., & ÓLaighin, G. (2015). Inertial sensor
853	technology for elite swimming performance analysis: A systematic review. Sensors. 16(1).
	25 25 25 25 25 25 25 25 25 25 25 25 25 2
	23

854	18. https://doi.org/10.3390/s16010018
855	Nibali, A., He, Z., Morgan, S., & Greenwood, D. (2017). Extraction and classification of diving
856	clips from continuous video footage. ArXiv, pre-print. Retrieved from
857	https://arxiv.org/pdf/1705.09003.pdf
858	O'Reilly M A Whelan D F Ward T E Delahunt E & Caulfield B (2017a) Classification
859	of lunge biomechanics with multiple and individual inertial measurement units. Sports
860	<i>Biomachanias</i> 16(3) 342 360 https://doi.org/10.1080/14763141.2017.1314544
800	Diomecnanics, 10(5), 542-500. https://doi.org/10.1060/14/05141.2017.1514344
861	O Relly, M. A., whean, D. F., ward, T. E., Delanunt, E., & Caulfield, B. (2017b). Technology in
862	strength and conditioning tracking lower-limb exercises with wearable sensors. Journal of
863	Strength and Conditioning Research, 31(6), 1726–1736.
864	O'Reilly, M., Caulfield, B., Ward, T., Johnston, W., & Doherty, C. (2018). Wearable Inertial
865	Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review.
866	Sports Medicine. https://doi.org/10.1007/s40279-018-0878-4
867	O'Reilly, M., Whelan, D., Chanialidis, C., Friel, N., Delahunt, E., Ward, T., & Caulfield, B.
868	(2015). Evaluating squat performance with a single inertial measurement unit. In 2015 IEEE
869	12th International Conference on Wearable and Implantable Body Sensor Networks IEEE
870	https://doi.org/10.1109/BSN 2015 7299380
871	Ω^{2} Reilly M Whelen D E Ward T E Delahunt E & Caulfield B (2017) Classification of
071	deadlift hierarchanics with wearchier inertial measurement units. Leven 1 of Dismost with
872	deadnit biomechanics with wearable inertial measurement units. <i>Journal of Biomechanics</i> ,
8/3	58, 155–161. https://doi.org/10.1080/14/63141.2017.1314544
874	O Conaire, C., Connaghan, D., Kelly, P., O'Connor, N. E., Gaffney, M., & Buckley, J. (2010).
875	Combining inertial and visual sensing for human action recognition in tennis. In <i>Proceedings</i>
876	of the first ACM international workshop on Analysis and retrieval of tracked events and
877	motion in imagery streams (pp. 51–56). ACM. https://doi.org/10.1145/1877868.1877882
878	Pernek, I., Kurillo, G., Stiglic, G., & Bajcsy, R. (2015). Recognizing the intensity of strength
879	training exercises with wearable sensors. Journal of Biomedical Informatics, 58, 145-155.
880	https://doi.org/10.1016/j.jbi.2015.09.020
881	Plötz, T., Hammerla, N. Y., & Olivier, P. (2011). Feature learning for activity recognition in
882	ubiquitous computing International Joint Conference on Artificial Intelligence (IICAI)
883	1729
881	Ponna P (2010) A survey on vision based human action recognition. Image and Vision
004 00E	Computing 28(6) 076 000 https://doi.org/10.1016/j.impyig 2000.11.014
000	Computing, 20(0), 970-990. https://doi.org/10.1010/j.iniavis.2009.11.014
000	Preece, S. J., Goulermas, J. Y., Kenney, L., & Howard, D. (2009). A comparison of feature
887	extraction methods for the classification of dynamic activities from accelerometer data. <i>IEEE</i>
888	Transactions on Biomedical Engineering, 50(3), 8/1–8/9.
889	https://doi.org/10.1109/TBME.2008.2006190
890	Preece, S. J., Goulermas, J. Y., Kenney, L. P. J., Howard, D., Meijer, K., & Crompton, R. (2009).
891	Activity identification using body-mounted sensors: A review of classification techniques.
892	Physiological Measurement, 30(4), R1-R33. https://doi.org/10.1088/0967-3334/30/4/R01
893	Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine
894	Learning, 42(3), 203–231. https://doi.org/10.1023/A:1007601015854
895	Oaisar, S., Imtiaz, S., Glazier, P., Faroog, F., Jamal, A., Jabal, W., & Lee, S. (2013). A method for
896	cricket bowling action classification and analysis using a system of inertial sensors. In
897	International Conference on Computational Science and its Applications (np. 396–412)
808	Berlin Heidelberg: Springer https://doi.org/10.1007/078_3_642_30640_6
800	Demonstran V. Huang I. Aby El Haija S. Corban A. Murnby K. & Foi Foi I. (2015)
000	Detecting events and key actors in multi person videos
900	Detecting events and key actors in multi-person videos.
901	nttps://doi.org/10.1109/CVPK.2016.332
902	Rassem, A., El-Beltagy, M., & Saleh, M. (2017). Cross-country skiing gears classification using
903	deep learning. ArXiv Preprint ArXiv:1706.08924. Retrieved from
904	https://arxiv.org/pdf/1706.08924v1.pdf
905	Ravi, D., Wong, C., Lo, B., & Yang, GZ. (2016). A deep learning approach to on-node sensor
906	data analytics for mobile or wearable devices. IEEE Journal of Biomedical and Health
907	Informatics, 21(1), 1-1. https://doi.org/10.1109/JBHI.2016.2633287
908	Reily, B., Zhang, H., & Hoff, W. (2017). Real-time gymnast detection and performance analysis
909	with a portable 3D camera. Computer Vision and Image Understanding, 159, 154–163.
910	https://doi.org/10.1016/j.cviu.2016.11.006
911	Rindal, O. M. H., Seeberg, T. M., Tiønnås, J., Haugnes, P., & Sandbakk Ø (2018) Automatic
912	classification of sub-techniques in classical cross-country skiing using a machine learning
<i>7</i> ± 2	
	20

913	algorithm on micro-sensor data. Sensors (Switzerland), 18(1), 75.
914	https://doi.org/10.3390/s18010075
915	Ronao, C. A., & Cho, SB. (2016). Human activity recognition with smartphone sensors using
916	deep learning neural networks. Expert Systems with Applications, 59, 235–244.
917	https://doi.org/10.1016/j.eswa.2016.04.032
918	Saba, T., & Altameem, A. (2013). Analysis of vision based systems to detect real time goal events
919	in soccer videos Applied Artificial Intelligence 27(7) 656–667
920	https://doi.org/10.1080/08839514.2013.787779
921	Salman M. Oaisar S. & Oamar A. M. (2017) Classification and legality analysis of howling
922	action in the game of cricket Data Mining and Knowledge Discovery 31(6) 1706–1734
922	https://doi.org/10.1007/s10618-017-0511-4
02/	Schuldhaus D. Zwick C. Körger H. Dorschly F. Kirk R. & Eskofier B. M. (2015) Inertial
025	sonsor based approach for shot/ pass classification during a soccor match. In Prog. 21st ACM
925	KDD Workshop on Lange Seale Sports Analytics (nr. 1.4). Sudney, Austrolia
920	Saiffart C. Khashaoftaar T. M. Van Hulsa I. & Nanalitana A. (2008) DUSPoost: Improving
927	senten, C., Knoshgonaar, T. M., Van Huise, J., & Napontano, A. (2008). KUSBoost. Improving
920	Detterm Deservition (nr. 1.4), https://doi.org/10.1100/JCDD.2009.4761207
929	Shah LL Chaladina and D. Dalari D. & Dradaan N. (2007). Asternatisher the sharification in
930	Snan, H., Chokalingam, P., Paluri, B., & Pradeep, N. (2007). Automated stroke classification in
931	tennis. Image Analysis and Recognition, 1128–1137.
932	Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: from theory to
933	algorithms. New York, USA: Cambridge University Press.
934	Sharma, M., Srivastava, R., Anand, A., Prakash, D., & Kaligounder, L. (2017). Wearable motion
935	sensor based phasic analysis of tennis serve for performance feedback. In 2017 IEEE
936	International Conference on Acoustics, Speech and Siginal Processing (pp. 5945–5949). New
937	Orleans, LA: IEEE.
938	Sprager, S., & Juric, M. B. (2015). Inertial sensor-based gait recognition: A review. Sensors
939	(Switzerland) (Vol. 15). https://doi.org/10.3390/s150922089
940	Srivastava, R., Patwari, A., Kumar, S., Mishra, G., Kaligounder, L., & Sinha, P. (2015). Efficient
941	characterization of tennis shots and game analysis using wearable sensors data. In 2015 IEEE
942	Sensors- Proceedings (pp. 1-4). Busan. https://doi.org/10.1109/ICSENS.2015.7370311
943	Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, T., Zimmermann, P., Goldlücke, B., Keim,
944	D. A. (2018). Bring it to the pitch: combining video and movement data to enhance team
945	sport analysis. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 24(1), 13–22.
946	https://doi.org/10.1109/TVCG.2017.2745181
947	Sze, V., Chen, YH., Yang, TJ., & Emer, J. (2017). Efficient processing of deep neural networks:
948	A tutorial and survey. IEEE, 105(2), 2295–2329. Retrieved from
949	http://arxiv.org/abs/1703.09039
950	Thomas, G., Gade, R., Moeslund, T. B., Carr, P., & Hilton, A. (2017). Computer vision for sports:
951	Current applications and research topics. Computer Vision and Image Understanding, 159, 3–
952	18. https://doi.org/10.1016/i.cviu.2017.04.011
953	Titterton, D. H., & Weston, J. L. (2009). Strandown inertial navigation technology (2nd ed.).
954	Reston VA: AIAA
955	Tora M R Chen I & Little I I (2017) Classification of puck possession events in ice hockey
956	In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
957	Workshops (np. 147–154) https://doi.org/10.1109/CVPRW 2017.24
957	Victor B He 7 Morgan S & Miniutti D (2017) Continuous video to simple signals for
950	swimming stroke detection with convolutional neural networks. ArYiv Proprint
960	ArViv: 1705 00804 https://doi.org/10.1111/j.1467.8330.1074.tb00606.v
900	Wagner D. Kalischawski K. Valtan I. & Kummert A (2017) Activity recognition using
062	inartial songers and a 2 D convolutional neural network. In IEEE (Ed.), 2017 10th
902	Internal sensors and a 2-D convolutional neural network. In IEEE (Ed.), 2017 10m
905	https://doi.org/10.1100/NDS.2017.8070615
964	$\frac{1}{10000000000000000000000000000000000$
965	wagner, J. F. (2018). About motion measurement in sports based on gyroscopes and
966	accelerometers - an engineering point of view. Gyroscopy and Navigation, 9(1), 1–18.
967	nttps://doi.org/10.1134/S20/5108/18010091
968	Ward, J. A., Lukowicz, P., & Gellersen, HW. (2011). Performance metrics for activity
969	recognition. In ACM Trans. on Intelligent Systems and Technology (Vol. 2, pp. 111–132).
970	Whiteside, D., Cant, O., Connolly, M., & Reid, M. (2017). Monitoring hitting load in tennis using
971	inertial sensors and machine learning. International Journal of Sports Physiology and
	27

	972	Performance, 1–20. https://doi.org/https://doi.org/10.1123/ijspp.2016-0683
	973 974	analysing running biomechanics under field conditions, using synchronously collected foot
1	975	contact data. Sports Engineering, 12(4), 207-212. https://doi.org/10.1007/s12283-010-0043-2
2	976	Wixted, A., Portus, M., Spratford, W., & James, D. A. (2011). Detection of throwing in cricket
3	977	using wearable sensors. Sports Technology, 4(3–4), 134–140.
4	978	https://doi.org/10.1080/19346182.2012.725409
5	979	Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural
6	980	Computation, 8(7), 1341–1390. https://doi.org/10.1162/neco.1996.8.7.1391
7	981	Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimisation. IEEE
8	982	Transactions on Evolutionary Computation, 1(1), 67–82.
9	983	https://doi.org/10.1023/A:1021251113462
11	984	Wundersitz, D. W., Gastin, P. B., Richter, C., Robertson, S., & Netto, K. J. (2015). Validity of a
12^{11}	985	trunk-mounted accelerometer to assess peak accelerations during walking, jogging and
13	986	running. European Journal of Sport Science, 15(5), 382–390.
14	987	https://doi.org/10.1080/17461391.2014.955131
15	988	Wundersitz, D. W., Gastin, P. B., Robertson, S., Davey, P. C., & Netto, K. J. (2015), Validation of
16	989	a trunk-mounted accelerometer to measure peak impacts during team sport movements.
17	990	International Journal of Sports Medicine, 36(9), 742–746, https://doi.org/10.1055/s-0035-
18	991	1547265
19	992	Wundersitz D W Josman C Gunta R Netto K I Gastin P B & Robertson S (2015)
20	993	Classification of team sport activities using a single wearable tracking device <i>Journal of</i>
∠⊥ 22	994	Biomechanics 48(15) 3975–3981 https://doi.org/10.1016/j.ibiomech.2015.09.015
22	995	$V_{ang} \subset C \& H_{su} \vee I (2010) \land A review of accelerometry-based wearable motion detectors for$
24	996	physical activity monitoring Sensors 10(8) 7772-7788 https://doi.org/10.3390/s100807772
25	007	Vang L B. Nguyan M N. San P. P. Li X L. & Shonali K. (2015) Deen convolutional neural
26	008	nativorks on multichannel time series for human activity recognition. In Proceedings of the
27	998	24th International Conference on Artificial Intelligence (nr. 2005, 4001)
28	1000	24in International Conference on Artificial Intelligence (pp. 5995–4001).
29	1000	interaction activities. In Commuter Vision and Pattern Processition (nr. 17, 24) IEEE
30	1001	Interaction activities. In <i>Computer Vision and Pattern Recognition</i> (pp. 17–24). IEEE.
31	1002	Young, C., & Reinkensmeyer, D. J. (2014). Judging complex movement performances for
32	1003	excellence: a principal components analysis-based technique applied to competitive diving.
33 34	1004	Human Movement Science, 30 , $107-122$. https://doi.org/10.1016/j.humov.2014.05.009
35	1005	Yu, G., Jang, Y. J., Kim, J., Kim, J. H., Kim, H. Y., Kim, K., & Panday, S. B. (2016). Potential of
36	1006	INU sensors in performance analysis of professional alpine skiers. Sensors (Switzerland), $1((A) = 1, (A) = 1,$
37	1007	IO(4), 1-21. https://doi.org/10.3390/s16040463
38	1008	Zebin, I., Scully, P. J., & Ozanyan, K. B. (2016). Human Activity Recognition with Inertial
39	1009	Sensors Using a Deep Learning Approach. Proc. of IEEE Sensors 2010, (1), 1–3.
40	1010	https://doi.org/10.1109/ICSENS.2016.7808590
41	1011	Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, P., & Zhang, J. (2014).
42	1012	Convolutional neural networks for human activity recognition using mobile sensors. In
43	1013	Proceedings of the 6th International Conference on Mobile Computing, Applications and
44	1014	Services (pp. 197–205). https://doi.org/10.4108/icst.mobicase.2014.257786
46	1015	Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., & Li, Z. (2017). A review on human activity
47	1016	recognition using vision-based method. <i>Journal of Healthcare Engineering</i> , 2017, 1–31.
48	1017	https://doi.org/10.1155/2017/3090343
49	1018	Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using multi-
50	1019	channels deep convolutional neural networks. In International Conference on Web-Age
51	1020	Information Management (pp. 298-310). Springer. https://doi.org/10.1007/978-3-319-08010-
52	1021	9_33
53	1022	Zhu, G., Xu, C., Gao, W., & Huang, Q. (2006). Action recognition in broadcast tennis video.
54	1023	Computer Vision in Human-Computer Interaction, 89–98.
55 56	1024	https://doi.org/10.1007/11754336_9
50	1025	Ziaeefard, M., & Bergevin, R. (2015). Semantic human activity recognition: A literature review.
58	1026	Pattern Recognition, 48(8), 2329-2345. https://doi.org/10.1016/j.patcog.2015.03.006
59	1027	
60		
61		
62		
63		28
64		20
65		