Effects of Supplement-Timing and Resistance Exercise on Skeletal Muscle Hypertrophy

This is the Published version of the following publication

The publisher’s official version can be found at

Note that access to this version may require subscription.
EFFECTS OF SUPPLEMENT-TIMING AND RESISTANCE EXERCISE ON
SKELETAL MUSCLE HYPERTROPHY

Paul J. Cribb and Alan Hayes.

Exercise Metabolism Unit, Center for Ageing, Rehabilitation, Exercise and Sport (CARES) and
the School of Biomedical Sciences, Victoria University. Victoria, Australia.

Running Head: supplement timing and resistance training

Key words: whey protein, creatine, carbohydrate, supplementation, histochemistry, lean body
mass,

Address for correspondence
Dr. Alan Hayes.
Exercise Metabolism Unit.
School of Biomedical Sciences, Victoria University, Victoria, Australia.
PO Box 14428 MCMC Melbourne Vic 8001 Australia
Tel: +61 3 9919 4658 Fax: +61 3 9919 4298
E-mail: Alan.Hayes@vu.edu.au
ABSTRACT

PURPOSE: Some studies report greater muscle hypertrophy during resistance exercise (RE) training from supplement-timing (i.e., the strategic consumption of protein and carbohydrate before and/or after each workout). However, no studies have examined whether this strategy provides greater muscle hypertrophy or strength development compared to supplementation at other times during the day. Therefore, the purpose of this study was to examine the effects of supplement-timing compared to supplementation in the hours not close to the workout on muscle fiber hypertrophy, strength and body composition during a 10 week RE program. METHODS: In a double-blind, randomized protocol, resistance-trained males were matched for strength and placed into one of two groups; PRE-POST consumed a supplement (1g/kg/body wt) containing protein/creatine/glucose immediately before and after RE. The MOR-EVE group consumed the same dose of the same supplement in the morning and late evening. All assessments were completed the week before and after 10 weeks of structured, supervised RE training. Assessments included strength (1RM, three exercises), body composition (DEXA) and vastus lateralis muscle biopsies for determination of muscle fiber type (I, IIA, IIX) cross-sectional area (CSA), contractile protein, creatine (Cr) and glycogen content. RESULTS: PRE-POST demonstrated a greater ($P < 0.05$) increase in lean body mass and 1RM strength in two of three assessments. The changes in body composition were supported by a greater ($P < 0.05$) increase in CSA of the type-II fibers and contractile protein content. PRE-POST supplementation also resulted in higher muscle Cr and glycogen values after the training program ($P < 0.05$). CONCLUSION: Supplement-timing represents a simple but effective strategy that enhances the adaptations that are desired from RE-training.
INTRODUCTION

Paragraph 1: Oral supplementation with whole proteins or essential amino acids (EAA) immediately before and/or after resistance exercise (RE) is shown to promote a better anabolic response (i.e. a higher stimulation of protein synthesis and a positive net protein balance) compared to placebo treatments (27; 28). In young adults, the presence of carbohydrate (glucose) appears to enhance this response (20). Therefore, it has been suggested that the consumption of a protein-carbohydrate supplement immediately before and after RE (i.e., supplement-timing) may provide the ideal anabolic conditions for muscle growth (29). Muscle hypertrophy (1; 12) or a trend for greater gains in lean body mass (LBM) (9; 22) has been observed from the intake of nutrients (namely protein) close to RE. However, the participants in these studies were not permitted to consume any other nutrients other than the designated supplement for up to 3 hours before and after each workout. Therefore, the results can be attributed to the presence (or absence) of macronutrients, such as protein. However, as normal eating patterns where inhibited, these effects could not be attributed to supplementation *per se*. Additionally, no studies have examined whether this supplement-timing strategy may provide greater benefits in terms of muscle hypertrophy or strength development compared to the consumption of the same supplement at other times during the day.

Paragraph 2: Supplementation with creatine monohydrate (CrM) has been consistently shown to promote greater gains in LBM and strength during RE training compared to placebo treated groups (17). These beneficial effects are thought to occur via the accumulation of Cr in skeletal muscle (15). The uptake of Cr by muscle appears to stimulate transcription factors that regulate contractile protein synthesis (30) and/or increase phosphocreatine (PCr) availability (15) which is thought to promote greater work capacity and strength improvements during training (23).
Since 1993, well over 200 studies have examined the effects of CrM supplementation on exercise performance (23). However, comparatively few studies have provided insights on strategies that may increase CrM transport into muscle (8; 24). For example, some research suggests that taking CrM in the hours surrounding RE may improve muscle hypertrophy (8), but no research has examined whether taking CrM at this time may result in greater accumulation within muscle or provide greater adaptations compared to supplementation at other times of the day (i.e., the hours not close to the workout). Additionally, no studies have quantified the extent of muscle Cr content alongside fiber-specific hypertrophy (i.e., type I, IIa, IIx) in response to CrM supplementation at different times of the day.

Paragraph 3: Therefore, the aim of this study was to examine the effects of supplement-timing during RE training with a CrM-containing protein/carbohydrate supplement in comparison to supplementation at times not close to the immediate pre-post workout period. Unlike others that have examined the effects of strategic supplementation during RE, we wanted to examine the effects of supplementation in the presence of normal eating patterns. Based on the results from previous work in this area (1; 8; 9; 12; 20; 22; 27) it was hypothesized that supplement-timing would provide greater chronic adaptations (i.e., greater increases in LBM, strength and muscle fiber hypertrophy) compared to supplementation in the hours not close to RE.
METHODS

Participants

Paragraph 4: Twenty three recreational male bodybuilders met the requirements to commence this study. To qualify as participants the men (a) had no current or past history of anabolic steroid use, (b) had been training consistently (i.e., 3-5 days per week) for the previous six months, (c) submitted a detailed description of their current training program, (d) had not ingested any ergogenic supplement for 12-weeks prior to the start of supplementation, and (e) agreed not to ingest any other nutritional supplements, or nonprescription drugs that may affect muscle growth or the ability to train intensely during the study. All participants were informed of the potential risks of the investigation before signing an informed consent document approved by the Human Research Ethics Committee of Victoria University of Technology and the Department of Human Services, Victoria, Australia. All procedures conformed to National Health and Medical Research Council guidelines for the involvement of human subjects for research and conformed to the policy statement regarding the use of human subjects and written informed consent published by *Medicine & Science in Sports & Exercise*®.

Supplementation

Paragraph 5: After baseline testing the participants were matched for maximal strength (1RM) in three weight lifting exercises (see strength assessments) and then randomly assigned to one of two supplement groups. The PRE-POST group consumed their supplement just before commencing and straight after finishing workout (4 times per week for 10 weeks). The MOR-EVE group consumed the same supplement in the morning before breakfast and late evening before sleep, each training day; these times were at least 5 hours outside of the workout. All participants were prescribed 1g of the supplement per kg of body weight (1g·kg⁻¹·bw), to be
consumed twice on training days only. The supplement contained (per 100g), 40g protein (from whey isolate), 43g carbohydrate (glucose), <0.5g fat, 7g CrM, provided by AST Sport Science, Golden, Colorado, USA. This dose provided an 80kg participant with 32g protein, 34.4g carbohydrate, <0.4 fat and a 5.6g dose of CrM in each serving (a total of 1124kJ). The chosen supplement dose was based on previously reported intakes of this population (18) and is similar to previous studies that involved protein (1) or CrM (8) supplementation close to RE. The participants were instructed to maintain their habitual daily diet during the trial. That is, the MOR-EVE group consumed the supplement before breakfast, performed RE (for 1 hour) between 3-6PM, consumed their normal evening meal approximately 1-2 hours after the workout and then consumed their second supplement dose before sleep. The PRE-POST group ate and trained at similar times to the MOR-EVE group but this group took their supplement servings immediately before and after each workout. The participants signed a consent form stimulating they would follow their habitual daily diet (as determined by dietary records), take the supplement only as prescribed and not consume any other type of supplement that may affect body composition during the study. Participants were given approximately a one-week supply of the supplement at the start of each week and asked to return the container before they received the next weeks supply as an act of compliance to the dosing procedure.

Paragraph 6: Obviously, an individual in this study was not blinded to the group that he was in. However, the researcher and personal trainer involved in the trial were blinded to the groups. After baseline testing, each participant was handed a sealed envelope by an individual not involved in the study that contained a letter notifying them of their group allocation and instructions on how to consume their supplement dose. To maintain this blinded procedure, the participants were asked not to discuss their dosing protocol and to consume their supplement
whilst not in the presence of others involved in the study. Ability to comply with this request was made very easy for the participants. Each was supplied with several identical opaque drink bottles in which they consumed water ad libitum during each workout; the MOR-EVE group mixed and consumed their supplement with water in one of these bottles at home, whereas participants in the PRE-POST group carried their supplement servings in these dry bottles that were kept in lockers at the facility, and consumed discreetly away from others just before commencing each workout and again as soon as the workout was completed.

Paragraph 7: Prior to the study, the participants were shown how to record nutrient intake and each participant was asked to submit three written dietary recordings (each recording consisted of 3-days) for the calculation of macronutrient and energy intake. Participants were asked to submit one of these recordings before the study, one in the first week and another in the final week of the training/supplementation program. Macronutrient and energy intake was analyzed using Nutritionist PRO (First Data Bank, San Bruno, CA, USA). The participants were weighed on a Seca 703 stainless steel digital medical scale (Seca, Perth, WA) on each occasion the recordings were obtained. Energy intake is expressed in kcal$^{-1}$kg of body weight per day; protein and carbohydrate are expressed in g$^{-1}$kg of body weight per day.

Resistance Training Protocol

Paragraph 8: Questionnaires demonstrated that the participants had been training consistently (i.e., 3-5 days per week) for at least six months before expressing interest in this investigation. However, to ensure the participants were trained and to minimize the impact of a new program on strength and hypertrophy adaptations, the men underwent a structured training program (similar to the one used in this study) for 8 to 12 weeks prior to commencing this trial. The 10 week RE program used in the study (*Max-OT™*, AST Sport Science, Golden, CO, USA) has
been described elsewhere (10) and began the week immediately after baseline assessments. In brief, the program was designed specifically to increase strength and muscle size. It consisted of high-intensity (overload) workouts using mostly compound exercises with free weights. Training intensity for the program was determined using repetition maximums (RM) from strength tests. Once a designated RM was reached, the participants were encouraged by the trainer to increase the weight used. This progressive overload program was divided into 3 phases, Preparatory (70-75% of 1RM), Overload Phase-1 (80-85% of 1RM), and Overload Phase-2 (90-95% of 1RM). Qualified personnel supervised each participant on a one-to-one basis, every workout. Aside from the personal training each participant received during the 10 week program, they also kept training diaries to record exercises, sets, repetitions performed and the weight utilized throughout the program and these were viewed by the trainer on a weekly basis. The following assessments occurred in the week before and after the 10-week RE program.

Experimental Protocols

Paragraph 9: Strength assessments consisted of the maximal weight that could be lifted once (1RM) in three weight training exercises: barbell bench press, deadlift and squat. A recognized 1RM testing protocol and exercise execution guidelines were followed as has been previously documented (2). Briefly, the participant’s maximal lift was determined within no more than five single attempts following three progressively heavier warm up sets. Participants were required to successfully lift each weight before attempting a heavier weight. Each exercise was completed before the next attempt and in the same order. Reproducibility for these tests was determined on 2 separate occasions that provided a CV that ranged from 0.5-5%.
Body Composition

Paragraph 10: Lean mass (total fat free mass), fat mass and body fat percentage were determined using a Hologic QDR-4500 dual energy x-ray absorptiometer (DEXA) with the Hologic version V 7, REV F software (Waltham, MA). Whole body scans were performed on the same apparatus, by the same licensed operator. Quality control calibration and scanning procedures were performed as previously described (10). Participants were scanned at the same time of the day, that is, in the morning in a fasted state. For longitudinal studies in which relatively small changes in body composition are to be detected, whole body scanning with this instrument has been shown to be accurate and reliable (CV 0.8-2.8%) (21)

Muscle analyses

Paragraph 11: Muscle biopsies for determination of muscle fiber type, cross-sectional area (CSA), contractile protein content and metabolite concentrations were taken approximately 30 minutes after a leg workout that was completed on the Monday of the first and last week of the RE program. Muscle biopsies (100-450mg) were taken using the percutaneous needle technique (5mm diameter) with suction to ensure adequate sample size (13) at a similar depth in the vastus lateralis muscle by the same medical practitioner. On the day of the procedure, the participants were asked to consume their supplement once before the biopsy; either in the morning (MOR-EVE) or just before training (PRE-POST). A small part of the muscle sample was immediately frozen for metabolite analysis. The remaining tissue was mounted using OCT medium and snap frozen in isopentane pre-cooled in liquid nitrogen and stored at -80° C for histochemical analysis.

Paragraph 12: Histochemical analysis of muscle fibers was performed by staining for ATPase to classify muscle fiber types-I, IIa and IIx based on the stability of their ATPase activity. A preincubation medium of pH 4.54 along with the standard preincubations of 4.3 and 4.6 were
utilized to enable a clear differentiation of the type-II sub groups as described by Dubowitz (11). The biopsy samples were serially sectioned (12µm thick) on a cryostat microtome at −20°C. Baseline and endpoint cross-sections were assayed simultaneously. A loaded image of the stained cross-sections was analyzed using Analytical Imaging Station (AIS) software™ (Imaging Research Inc. Ontario, Canada) interfaced to a Zeiss microscope. Fiber type percentages and CSA were determined from sections containing a mean of 210 (range 130-400) fibers. To assess reproducibility, all samples were measured twice on two separate occasions for percentage total fiber area, and mean area of fibers. The intra-assay CV were, 1.5% and 1.3% respectively.

For metabolite quantitation, three grams (3g) of muscle tissue was freeze-dried, powdered and then extracted in 0.5M perchloric acid/1mM EDTA and neutralized using 2M KHCO₃. The samples were analyzed in triplicate for PCr, Cr and glycogen using fluorimetric techniques as described by Harris et al. (15). All concentrations are expressed as mmol⁻¹kg⁻¹ dry weight. Intra-assay coefficients of variation were determined for each triplicate for all subjects and resulted in coefficients of 2.85%, 4.45, 3.86%, and 5.05% for ATP, PCr, Cr and glycogen respectively.

Approximately 5 mg of muscle was used to determine contractile protein content, extracted as previously described (3). Protein concentrations were assessed in triplicate using a Bradford Protein Assay (Bio-Rad Protein Assay, Bio-Rad Laboratories, Hercules, CA, USA) with BSA standards and spectrophotometric detection at 595nm (5). The values obtained are in accordance with others that have used this procedure to measure changes in muscle contractile protein content (3). To assess reliability, all samples were run twice on two separate occasions; the two runs resulted in a CV of 3.7%.

Statistics
Paragraph 13: Subject characteristics and dietary analyses are reported as means ± SD. All other values are reported as means ± SE. Statistical evaluation of the data was accomplished by two-way repeated measures analysis of variance (ANOVA) with group (supplement) and time (training) as the factors using SPSS statistical analysis software (SPSS v 11.0; Chicago, Illinois). Where significant main effects were identified by ANOVA, post hoc analysis (Bonferroni-corrected Student t test) was performed to locate differences. Simple regression was used to determine significant relationships among the deltas for selected variables. A p value of less than 0.05 was designated to indicate statistical significance.
RESULTS

Starting characteristics of groups

Paragraph 14: Six participants did not complete the trial for reasons unrelated to the study. All other participants attended all training sessions and completed all assessments. Therefore, baseline characteristics from 17 individuals ($n = 8$ PRE-POST; $n = 9$ MOR-EVE) is presented in table 1. There were no differences between the groups in any variables at the start of the study ($P > 0.05$).

Dietary Analyses

Paragraph 15: Table 2 shows the average of three day written dietary recalls for energy ($\text{Kcal}^{\text{1kg}^{-1}\text{d}}$) carbohydrate and protein ($\text{g}^{\text{1kg}^{-1}\text{d}}$) of the groups before, in the first and last week of the training program. Data does not include supplementation. No differences were identified between the groups or across time with regard to energy, protein and carbohydrate intake ($P > 0.05$).

Body composition

Paragraph 16: Table 3 presents body mass, composition and 1RM strength data. A group x time interaction ($P < 0.05$) was detected for body mass and LBM; the PRE-POST group demonstrated a greater gain in body mass and LBM (post hoc $P < 0.05$) compared to the MOR-EVE group (figure 1). The PRE-POST group also demonstrated a decrease in body fat percentage compared to the MOR-EVE group (group x time: $P < 0.05$; post hoc $P < 0.05$).

Strength

Paragraph 17: While both groups demonstrated an increase in strength in the barbell squat, bench press and deadlift after the program (time: $P < 0.01$), a group x time interaction ($P < 0.05$) was identified in the barbell squat and bench press. Compared to the MOR-EVE group, the PRE-
POST group demonstrated greater gains in 1RM strength in these exercises (post hoc $P < 0.05$) (figure 2).

Muscle characteristics

Paragraph 18: Table 4 presents fiber type proportions (percentage), CSA and contractile protein content of vastus lateralis biopsy samples. No differences were identified between the groups or across time with regard to fiber proportions. A group x time interaction ($P < 0.05$) was observed in the CSA of the type-IIa and IIx fibers; the PRE-POST group demonstrated greater increases in CSA of these fiber types (post hoc $P < 0.05$), (figure 3) and also contractile protein content (group x time $P < 0.01$; post hoc $P < 0.05$) compared to the MOR-EVE group.

Paragraph 19: Table 5 presents energy metabolite and glycogen data (mmol·kg$^{-1}$·dry weight) obtained from vastus lateralis biopsy samples. A group x time interaction ($P < 0.01$) was detected for both PCr and total Cr. The PRE-POST group demonstrated higher PCr and total Cr concentrations compared to the MOR-EVE group after the program (post hoc $P < 0.05$). The PRE-POST group also demonstrated higher muscle glycogen concentrations compared to the MOR-EVE group after the program (group x time $P < 0.01$; post hoc $P < 0.01$).
DISCUSSION

Paragraph 20: The major finding of this study was that after 10 weeks of training, supplementation before and after each workout resulted in significantly greater improvements in 1RM strength and body composition (i.e., increase in LBM and decrease in body fat percentage) compared to a matched group who consumed the same supplement at times outside of the pre-post workout time frame. A significantly greater muscle hypertrophy response from supplement-timing was evident at three different levels. That is, the PRE-POST group demonstrated a significantly greater increase in LBM, hypertrophy of the type-IIa and IIx fibers, and contractile protein. This is an important finding as this investigation is the first to confirm improvements in body composition via RE training and dietary supplementation with hypertrophy responses at the cellular (i.e., fiber-specific hypertrophy) and sub-cellular level (i.e., contractile protein content). While these results support our hypothesis, it is the design of this study that makes these findings particularly relevant to a wide sector of the population.

Paragraph 22: Acute-response investigations have shown that supplementation with protein (or EAA) before and/or after RE will enhance the anabolic response by increasing muscle protein synthesis rates, decreasing protein degradation and providing a higher net protein balance (27; 28). The majority of data from longitudinal studies generally support the theory that supplementation (with protein) before and/or after RE will enhance the chronic adaptations desired from training (i.e. muscle hypertrophy and strength). (1; 9; 12; 22). However, the assessment conditions used in these studies may also mean the results have less relevance in a real-world setting. That is, strength athletes and others that desire increases in strength and muscle mass from RE would not usually abstain from consuming protein for up to 3 hours before and after exercise. Therefore, a novel aspect of the present study is that the beneficial effects of
supplement-timing on strength and muscle hypertrophy were obtained while the participants followed normal eating patterns.

Paragraph 23: Unlike previous studies that have assessed the chronic effects of supplementation close to RE (1; 9; 12; 22), in the present study the participants consumed their habitual daily diet during the trial. The MOR-EVE group consumed the supplement before breakfast, performed RE (for 1 hour) between 3-6PM, consumed their normal meal approximately 1-2 hours after the workout and then consumed their second supplement dose before sleep. The PRE-POST group ate and trained at similar times to the MOR/EVE group but took their supplement servings just before and straight after each workout. Both groups consumed their regular meals but not other supplements that may have affected muscle growth during the trial. The use of bodybuilders in this trial was particularly advantageous as these athletes characteristically consume a protein-rich diet in regimented (frequent) meal patterns (18). For this reason and the fact we observed the participants train for 8-12 weeks prior to the start of the study, we were confident those selected would maintain their normal diet during the trial. Aside from the results obtained, the analyses of the nutrition diaries (table 2) suggest that the participants did maintain their normal eating patterns during the trial period. For these reasons, it can be confidently suggested that the beneficial effects of supplement-timing on muscle and strength development reported in this study cannot be attributed simply to the presence or absence of certain macronutrients in the hours surrounding RE. The adaptations observed from supplement-timing primarily reflect a specific interactive effect between high-intensity muscle contraction and the presence of an abundance of nutritional material (i.e., EAA, Cr and carbohydrates).

Paragraph 24: The presence of EAA is shown to increase the acute stimulation of protein synthesis in muscle during RE and provide a higher positive net protein balance over a 24 hour
assessment period (27). The presence of CHO (glucose) may enhance this anabolic stimulus, probably by increasing plasma insulin concentrations (that also serve to increase protein synthesis rates when EAA are present) (20) or by reducing myofibrillar protein breakdown after RE (24). The major source of nitrogen in the supplement used in this trial was whey isolate; a protein that is rich in EAA, particularly, the branch chain amino acids (BCAA), (20-26g100g of protein) (6). Whey protein generally has rapid absorption kinetics and stimulates a high rate of muscle protein synthesis in a similar fashion to oral doses of free-form EAA (27; 28). Supplementation with the EAA before and after RE, results in higher stimulation of muscle protein synthesis and net gain in protein over a 24 hour period (27). In particular, supplementation with the BCAA during RE is shown to result in greater phosphorylation (activation) of p70S6k in skeletal muscles; a key (rate limiting) kinase in the signaling network controlling protein synthesis through translational initiation (16). Therefore, the beneficial effects of supplement-timing on muscle hypertrophy may be (at least partly) attributed to the abundance of EAA and glucose during high intensity muscle contraction. Supplementation with CrM is consistently shown to augment LBM and strength development during RE (23). During RE training, the addition of CrM to whey protein is shown to result in a greater gain in lean mass compared to whey protein or CHO alone (7). Therefore, CrM most likely contributed to the improvements in strength and hypertrophy observed in both groups in this study. However, an interesting finding from this study was the PRE-POST group demonstrated significantly higher muscle Cr concentrations (both PCr and total Cr) after the trial. Prior to this investigation, no studies had examined the effects of CrM supplementation at different times during the day on muscle Cr concentrations and skeletal muscle morphology during RE training.
Paragraph 25: Improvements in muscular performance during high intensity contractions are associated with ATP resynthesis as a consequence of increased PCr availability in muscle via CrM supplementation (15; 17). Increasing the availability of PCr via supplementation is not only thought to enhance cellular bioenergetics of the phosphagen system but also the shuttling of high-energy phosphates between the mitochondria and cytosol to increase the availability of energy for contractile protein synthesis (4). Supplementation is taken up by muscle where it appears to stimulate transcription factors that regulate the synthesis of contractile proteins (30). Enhanced cellular bioenergetics and/or greater expression of hypertrophy-related genes are just two possible explanations for hypertrophy responses observed in this study from CrM supplementation. However, it is less clear why the PRE-POST group demonstrated higher muscle Cr values after the study. A substantial amount of research demonstrates that CrM supplementation enables muscle to perform at a higher capacity during RE (23) and generally promotes greater muscle hypertrophy during RE (17). However, relatively few studies have examined dosing strategies that may increase the amount of exogenous Cr that is transported into muscle. CrM supplementation after submaximal exercise promotes muscle Cr uptake. Supplementation after RE is shown to increase the muscle girth and thickness of the limb (right or left arm) that was exercised (8). Based on the results obtained from the present study, along with the findings by others (8; 23) it could be suggested that supplement-timing promotes more efficient Cr accumulation within muscle and therefore, greater strength gains and muscle hypertrophy during RE training. However, this aspect was not examined directly. Based on the results obtained, further investigations are warranted to examine dose-responses and the extent of Cr accumulation during RE as well as fully elucidate the contributions of both CrM and whey protein to chronic adaptations during training.
Paragraph 26: Another novel finding was that the PRE-POST group finished the study with significantly higher muscle glycogen concentrations (table 5). Muscle glycogen is considered a major contributor of energy production during RE (14). A single bout of high-intensity RE can result in a significant reduction (up to 40%) in muscle glycogen, particularly in type-II muscle fibers (26). As the type-II fibers are responsible for maximum force production, low glycogen levels in these fibers have been associated with compromised performance during RE (14; 29). The consumption of CHO before and after RE is presumed to spare muscle glycogen stores as well as offer an ergogenic benefit such as increased work capacity during subsequent workouts (14). For these reasons it has been suggested that the consumption of CHO before and after RE may promote more efficient recovery between bouts and therefore, enhance the development of strength and hypertrophy during RE training (14; 29). In the present study, the pre- and post-training biopsies in this trial were taken 30mins after the completion of a leg workout performed on Monday of the first and last week of training. On both occasions, the groups were instructed to consume the first dose of their supplement in the prescribed manner. That is, the PRE-POST group consumed their PRO-CHO dose prior to the workout. Therefore, it could be suggested that the higher glycogen and Cr values detected in the PRE-POST group were simply due to increased availability of CHO and Cr from the supplementation on the day of the biopsy. However, if this was the case then both weeks 1 and 10 values should have been higher in the PRE-POST group. The data presented in table 5 shows that clearly, they were not. The muscle samples taken in the first week showed no significant differences between the groups in glycogen or Cr, whereas the PRE-POST group showed significantly higher glycogen and Cr values in the samples obtained in week 10. The ingestion of CrM with CHO after exercise has previously been shown to stimulate glycogen repletion more than consuming CHO alone (24).
Therefore, it could be suggested that PRE-POST supplement-timing not only promoted more efficient CrM accumulation within muscle, this strategy may have also promoted more efficient muscle glycogen restoration during the RE program. In turn, these benefits may have enabled greater work capacity during subsequent workouts that helped to promote greater strength improvements and muscle hypertrophy. While work capacity was not assessed, the significantly greater hypertrophy responses (in three of three assessments) and 1RM strength improvements (two of three assessments) demonstrated by the PRE-POST group after the program support this theory. When the metabolite results are considered alongside the morphology data, it is reasonable to suggest that the strategic consumption of nutrients such as whey protein, CHO and CrM close to the workout creates a favorable environment that results in better muscle strength and hypertrophy development during RE training.

Paragraph 27: Aside from skeletal muscle morphology, the improvements in 1RM strength observed in this trial must also be attributed to the benefits of personalized coaching/supervision. Although the participants in our study were experienced participants, none had ever received personal training by a qualified instructor (the personal training only occurred during the 10 week trial, not the training program prior to the study). Personalized instruction of the participants was a major strength of this study as this level of supervision is shown to provide better control of workout intensity and greater strength improvements during training (19). This level of supervision was important to our hypothesis as it would ensure the best chance of enhanced physiological adaptations from supplement-timing. This is based on the premise that those taking the supplement close to RE would obtain a greater anabolic response from each workout and progress at a faster rate. It is important to remember that the instructor was blinded to the supplement groups, yet the PRE-POST group demonstrated significantly greater gains in
IRM strength (in two of three assessments) and greater muscle hypertrophy responses (in three of three assessments), thus supporting the hypothesis presented.

Paragraph 28: In conclusion, there has been a sound theoretical basis for expecting a beneficial effect from supplement-timing but this is the first study to clearly demonstrate that this strategy results in greater strength and body composition improvements (i.e., a gain in lean mass and a decrease in body fat percent) as well as muscle hypertrophy, compared to supplementation at times outside of the workout period. Unlike previous work that has examined chronic adaptations from nutrient consumption close to RE, a significantly greater muscle hypertrophy response from supplement-timing was evident at three different levels (i.e., a greater increase in LBM, hypertrophy of the type-IIa and IIx fibers, and contractile protein accrual). Additionally, these results were obtained while participants maintained their normal eating patterns throughout the program. Therefore, we conclude that supplement-timing represents a simple but effective strategy that enhances the adaptations that are desired from RE-training. Clearly, this strategy would be of benefit to most healthy adults that perform RE to improve functional strength and body composition. However, this protocol may also have important implications for populations that require improvements in strength and body composition but have a reduced capacity for exercise such as, the frail elderly, cardiac rehabilitation patients or others living with conditions that compromise health such as HIV, cancer and the various muscular dystrophies.

Acknowledgements

The lead investigator is a consultant to AST Sports Science. The results of the present study do not constitute endorsement of the product by the authors or ACSM.
REFERENCES

Captions

Figure 1. Body composition changes *greater change compared to MOR-EVE* ($P < 0.05$)

Figure 2. 1RM Strength Changes *greater change compared to MOR-EVE* ($P < 0.05$)

Figure 3. Changes in CSA (fiber types-I, Ila and IIx) *greater change compared to MOR-EVE* ($P < 0.05$)
Figure 1

[Graph showing changes in LBM, fat mass, and body fat percentage pre/post and mor/eve with error bars and asterisks to indicate significance.]
Figure 2

![Figure 2](image-url)

The figure illustrates the changes in performance for bench press, squat, and dead-lift exercises from PRE/POST and MOR/EVE conditions. The data is represented with error bars indicating the standard deviation. Significant differences are marked with an asterisk (*).
Figure 3

- Type-I
- Type-IIa
- Type-IIx

µm²

PRE/POST MOR/EVE

* *
Table 1 Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>PRE-POST</th>
<th>MOR-EVE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 8)</td>
<td>(n = 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>21 ± 3</td>
<td>24 ± 4</td>
<td>0.21</td>
</tr>
<tr>
<td>Training age (yrs)</td>
<td>3 ± 2</td>
<td>3 ± 2</td>
<td>0.32</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>178 ± 5</td>
<td>178 ± 2</td>
<td>0.81</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>82 ± 9</td>
<td>78 ± 5</td>
<td>0.32</td>
</tr>
<tr>
<td>Lean mass (kg)</td>
<td>69 ± 6</td>
<td>65 ± 6</td>
<td>0.14</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>12 ± 4</td>
<td>13 ± 4</td>
<td>0.70</td>
</tr>
<tr>
<td>CSA type-I (µm²)</td>
<td>3206 ± 389</td>
<td>2887 ± 382</td>
<td>0.11</td>
</tr>
<tr>
<td>CSA type-IIa (µm²)</td>
<td>4604 ± 590</td>
<td>4491 ± 584</td>
<td>0.69</td>
</tr>
<tr>
<td>CSA type-IIx (µm²)</td>
<td>4507 ± 613</td>
<td>4360 ± 594</td>
<td>0.62</td>
</tr>
<tr>
<td>1RM Bench (kg)</td>
<td>127 ± 22</td>
<td>121 ± 14</td>
<td>0.51</td>
</tr>
<tr>
<td>1RM Deadlift (kg)</td>
<td>153 ± 18</td>
<td>142 ± 19</td>
<td>0.25</td>
</tr>
<tr>
<td>1RM Squat (kg)</td>
<td>148 ± 24</td>
<td>148 ± 26</td>
<td>0.46</td>
</tr>
</tbody>
</table>

(means ± SD)
<table>
<thead>
<tr>
<th>variable</th>
<th></th>
<th>PRE-POST</th>
<th>MOR-EVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (Kcal⁻¹ kg⁻¹ d)</td>
<td>before</td>
<td>43.7 ± 6.6</td>
<td>44.4 ± 4.8</td>
</tr>
<tr>
<td></td>
<td>week 1</td>
<td>44.1 ± 6.9</td>
<td>42.9 ± 4.1</td>
</tr>
<tr>
<td></td>
<td>week 10</td>
<td>42.8 ± 6.6</td>
<td>42.2 ± 2.8</td>
</tr>
<tr>
<td>Carbohydrate (g⁻¹ kg⁻¹ d)</td>
<td>before</td>
<td>4.88 ± 1.3</td>
<td>4.63 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>week 1</td>
<td>4.86 ± 1.0</td>
<td>4.62 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>week 10</td>
<td>4.79 ± 0.9</td>
<td>4.50 ± 0.7</td>
</tr>
<tr>
<td>Protein (g⁻¹ kg⁻¹ d)</td>
<td>before</td>
<td>1.84 ± 0.4</td>
<td>2.08 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>week 1</td>
<td>1.91 ± 0.4</td>
<td>2.17 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>week 10</td>
<td>1.92 ± 0.4</td>
<td>2.11 ± 0.3</td>
</tr>
</tbody>
</table>

No differences between groups at any time point (mean ± SD).
<table>
<thead>
<tr>
<th>Variable</th>
<th>PRE-POST (n = 8)</th>
<th>MOR-EVE (n = 9)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Endpoint</td>
<td>Baseline</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>81.8 ± 3.2</td>
<td>84.3 ± 3.2*</td>
<td>78.2 ± 1.8</td>
</tr>
<tr>
<td>Lean mass (kg)</td>
<td>69.5 ± 2.3</td>
<td>72.3 ± 2.3*</td>
<td>65.2 ± 1.5</td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>12.1 ± 1.5</td>
<td>11.9 ± 1.4</td>
<td>12.9 ± 1.2</td>
</tr>
<tr>
<td>Body Fat %</td>
<td>13.7 ± 1.4</td>
<td>12.6 ± 1.3*</td>
<td>15.7 ± 1.4</td>
</tr>
<tr>
<td>1RM Squat (kg)</td>
<td>144.4 ± 8.2</td>
<td>164.8 ± 8.6*</td>
<td>138.3 ± 8.5</td>
</tr>
<tr>
<td>1RM Bench Press (kg)</td>
<td>126.9 ± 6.9</td>
<td>139.1 ± 6.8*</td>
<td>121.9 ± 4.7</td>
</tr>
<tr>
<td>1RM Dead lift (kg)</td>
<td>149.7 ± 6.5</td>
<td>168.1 ± 7.7</td>
<td>141.9 ± 6.4</td>
</tr>
</tbody>
</table>

*greater change compared to MOR-EVE (P < 0.05) (mean ± SE)
Table 4 Muscle fiber proportion, CSA and contractile protein

<table>
<thead>
<tr>
<th>Variable</th>
<th>PRE-POST (n = 8)</th>
<th>MOR-EVE (n = 9)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Endpoint</td>
<td>Baseline</td>
</tr>
<tr>
<td>(%) Type I</td>
<td>45 ± 0.01</td>
<td>43 ± 0.01</td>
<td>44 ± 0.01</td>
</tr>
<tr>
<td>(%) Type IIa</td>
<td>41 ± 0.02</td>
<td>44 ± 0.02</td>
<td>44 ± 0.01</td>
</tr>
<tr>
<td>(%) Type IIx</td>
<td>14 ± 0.01</td>
<td>13 ± 0.01</td>
<td>12 ± 0.01</td>
</tr>
<tr>
<td>CSA (µm²) Type I</td>
<td>3206 ± 138</td>
<td>3632 ± 126</td>
<td>2887 ± 127</td>
</tr>
<tr>
<td>CSA (µm²) Type IIa</td>
<td>4604 ± 209</td>
<td>5757 ± 207*</td>
<td>4491 ± 195</td>
</tr>
<tr>
<td>CSA (µm²) Type IIx</td>
<td>4507 ± 217</td>
<td>5647 ± 221*</td>
<td>4360 ± 198</td>
</tr>
<tr>
<td>Contractile protein</td>
<td>61.2 ± 2.0</td>
<td>91.5 ± 1.9*</td>
<td>67.0 ± 2.6</td>
</tr>
</tbody>
</table>

*greater change compared to MOR-EVE (P < 0.05) (mean ± SE)
Table 5 Muscle metabolites and glycogen

<table>
<thead>
<tr>
<th>Variable</th>
<th>PRE-POST (n = 8)</th>
<th>MOR-EVE (n = 9)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Endpoint</td>
<td>Baseline</td>
</tr>
<tr>
<td>PCr</td>
<td>78.1 ± 1.5</td>
<td>91.2 ± 1.4*</td>
<td>79.7 ± 2.6</td>
</tr>
<tr>
<td>Total Cr (PCr + Cr)</td>
<td>123.0 ± 2.3</td>
<td>153.2 ± 1.5*</td>
<td>129.0 ± 3.9</td>
</tr>
<tr>
<td>Glycogen</td>
<td>235.1 ± 12.4</td>
<td>294.0 ± 8.0*</td>
<td>234.0 ± 4.3</td>
</tr>
</tbody>
</table>

*greater increase compared to MOR-EVE (P < 0.05) (mean ± SE)