
\/\joayvo\

F00T8CRAY INSTITUTE OF
TECHNOLOGY LIBRARY

CALL NO. ^ , ^ , , ^

cor

AGC'N NO.
6/0746584d ^i

THE APPLICATION OF MICROCOMPUTERS

IN

LARGE INDUSTRIAL INSTALLATIONS

(DISTRIBUTED MICROCOMPUTERS)

a 3neu&> &uJonutted tor &xaminaJtLon

ior the, Sjegree' a^ nlaUer^ o£ &nginjeenng'

hy

Alan* W, Cotton.

Dip. E.E., Dip. Eleetranie Eng.,

B. Elee. Eng. (V.I.C.)

DEPARTMENT

OF

ELECTRICAL AND ELECTRONIC ENGINEERING,

FOOTSCRAY INSTITUTE OF TECHNOLOGY.

1S84

(i)

SYNOPSIS

This thesis is concerned with the study of Microcomputers in Large

Industrial Installations as a replacement for the traditional remote

control and monitoring techniques.

A typical conveyor transport installation is described and was used as

the basis for the system model developed by the author.

The thesis outlines the traditional techniques of control and data

transmission in a widely distributed conveyor network and shows how they

were used, or modified, for a microcomputer-based scheme.

In addition to the method of data transmission adopted by the author for

the system model, the need for standard data transmission techniques

(including error checking) is also described.

To be complete, research into distributed microcomputer systems must

cover computer techniques (software and hardware), input/output

requirements and linking techniques. The thesis describes each facet in

detail, and includes the problems encountered during implementation.

The thesis also includes an outline of the Loy Yang project which is one

of two systems for the State Electricity Commission of Victoria (SECV)

where some of the concepts have been implemented since the research was

completed.

(ii)

ACKNOWLEDGEMENTS

Acknowledgement is gratefully extended to Messrs W A Evans and G J Lowe,

to the Footscray Institute of Technology and to the State Electricity

Commission of Victoria for providing the opportunity and financial

assistance to carry out this research project.

The project was supervised by Messrs W A Evans and G J Lowe, for whose

advice I am grateful.

There are many people I wish to thank, in particular the following:

My wife - for her patience throughout the work.

Messrs J M Alexander, H R Bunting and E J P Clayfield - for their

guidance, continued support and encouragement.

Messrs H W Bloxom and R M Glenn - for the original motivations

behind the research.

Messrs J Ikin, D Marshall and R Said - for their assistance in

the compilation of this thesis.

Messrs I Strachan, D Jagmin, L Omachen, G Atkinson, D Wilson and

T Stork - for their assistance.

Miss E C Watson, Mrs L Price and Mrs H Langley for the organising

and the typing of the thesis.

(iii)

STATEMENT OF ORIGINALITY

I certify that the work reported in this thesis is my own in the

following respects:

(a) The writing of this thesis is my own work.

(b) The design and implementation of the distributed control system,

writing and testing of software, and the development of the

electronic circuitry are my own work.

No part of this work has been presented by the author for any other

Degree. The author's publication relating to the topic is listed below

and a reprint is included in Appendix E.

LOWE, G J, and COTTON, A W,

"Hierarchical Control Using Satellite Microprocessors" Conference

on Microprocessor Systems, The Institution of Engineers,

Australia, 15-16 November, 1977.

Alan W Cotton

TABLE OF CONTENTS

PAGE

SYNOPSIS (i)

ACKNOWLEDGEMENTS (ii)

STATEMENT OF ORIGINALITY (iii)

1 INTRODUCTION 1

1.1 BACKGROUND 1

1.1.1 General 1

1.1.2 The Process Under Investigation 2

1.1.3 Developments in Open Cut Control 3

1.2 OBJECTIVES OF THE RESEARCH 5

2 LITERATURE REVIEW 8

2.1 TRADITIONAL TECHNIQUES OF OPEN CUT CONTROL 8

2.2 MICROCOMPUTER HISTORY 11

2.3 MONITORING AND CONTROL DEVELOPMENTS 12

3 THE RESEARCH PROGRAM 15

3.1 DETERMINATION OF THE SUITABILITY

OF MICROCOMPUTER SUB-SYSTEMS 15

3.1.1 General 15

3.1.2 A Single/Multiple Microprocessor-based
Sub-system 19

PAGE

3.1.2.1 A Single Microprocessor-based
Microcomputer Sub-system 19

3.1.2.2 A Multiple Microprocessor
Microcomputer Sub-system 20

3.1.3 Advantages and Disadvantages of

Microcomputer-based Systems 21

3.2 ESTABLISHMENT OF THE HIERARCHY OF THE

PROTOTYPE SYSTEM 24

3.2.1 General 24

3.2.2 Master Sub-system 28

3.2.3 Sub-master Sub-system (Front-end) 31

3.2.4 Slave Sub-systems 33

3.2.5 Methods of Communication 35

3.2.5.1 Party-line 35

3.2.5.2 Radial 36

3.3 INVESTIGATION OF THE DATA TRANSFER

TECHNIQUES FOR THE MODEL 36

3.3.1 Modes of Operation 36

3.3.1.1 Interrupt Operation 37

3.3.1.2 Polling Operation 37

3.3.2 The Message Protocol of the Model 38

3.3.3 Error Detection in the Model 43

THE EXPERIMENTAL MODEL 44

4.1 DEVELOPMENT OF THE MODEL 44

4.2 THE HARDWARE REQUIREMENTS OF THE MODEL 48

4.2.1 Master Computer 48

4.2.2 Front-end Computer 50

4.2.3 Slave Computer 54

4.2.4 High Speed Data Interfaces 56

PAGE

4.2.4.1 General 56

4.2.4.2 The Basic Building Blocks 58

4.2.4.3 The High Speed Data Link of

the Master 60

4.2.4.4 The High Speed Data Links 68

of the front-end and the slaves

4.2.5 The Data Transfer Paths 73

4.3 THE SYSTEM SOFTWARE FOR THE MODEL 75

4.3.1 General 75

4.3.2 System Software Elements 78

4.3.2.1 Standard Software 78

4.3.2.2 Developed Software
for the Master 79

4.3.2.3 Developed Software for the
front-end 81

4.3.2.4 Developed Software for the
Slaves 83

4.3.3 The Structure of the Fundamental

Software 86

4.3.3.1 Interactive Programs 86

4.3.3.2 The Debug Programs 87

4.3.3.3 The Interrupt Sub-routines 89

4.3.3.4 BASIC Sub-routines 98

4.3.4 The Operating Strategy of the Model 99

THE VALIDATION OF THE CONCEPTS INVESTIGATED 104

5.1 THE PERFORMANCE OF THE SYSTEM MODEL 104

5.1.1 Independent Control 104

5.1.2 Results of Actual Data Transmission 105

PAGE

5.1.3 Performance of the Hardware to the
Manufacturers' Specifications 107

5.1.4 Software Performance 108

5.1.5 Increased Reliability 108

5.1.6 Interrupt Servicing for Multiple Tasks 111

5.2 THE SUCCESSFUL IMPLEMENTATION IN AN OPEN CUT

ENVIRONMENT 111

5.2.1 General 111

5.2.2 The Loy Yang System 111

5.2.2.1 The Central Computer System 112

5.2.2.2 The Data Acquisition
Equipment 113

5.2.2.3 The Microcomputer Conveyor
Controllers 114

5.2.3 The Concepts Incorporated in the
Loy Yang System 114

CONCLUSIONS 116

FURTHER WORK AND RECOMMENDATIONS 119

REFERENCES 122

APPENDICES

PAGE

APPENDIX A : SYSTEM SOFTWARE : PART A 125

APPENDIX B : SYSTEM SOFTWARE : PART B 153

APPENDIX C MASTER HIGH SPEED SERIAL DATA INTERFACE

CARD "A (50 TO 9600 BAUD) SERIAL

INTERFACE TO THE HEWLETT PACKARD 21 MX

MINICOMPUTER"

172

APPENDIX D FRONT-END AND SLAVE HIGH SPEED SERIAL

DATA INTERFACE CARD "A DUAL (50 TO

9600 BAUD) SERIAL INTERFACE TO NATIONAL

SEMICONDUCTOR'S PACE MICROCOMPUTER"

174

APPENDIX E THE AUTHOR'S PUBLISHED PAPER

"HIERARCHICAL CONTROL USING SATELLITE

MICROPROCESSORS" TECHNICAL CONFERENCE OF

THE INSTITUTION OF ENGINEERS, AUSTRALIA

176

APPENDIX F : INDUSTRY STANDARDS FOR MESSAGE

PROTOCOLS AND ERROR DETECTION

183

PHOTOGRAPHS

PAGE

No 1 TOTAL SYSTEM INTERCONNECTION 25

2 SYSTEM LAYOUT 25

3 SYSTEM INTERCONNECTION ARRANGEMENT 51

4 MASTER COMPUTER FRONT VIEW 29

5 MASTER COMPUTER REAR VIEW 30

6 SYSTEM INTERCONNECTION AND FRONT-END

ARRANGEMENT 32

7 FRONT-END AND SLAVES 1 AND 2 LAYOUT 32

8 MASTER COMPUTER INTERFACE 57(a)

. COMPONENT SIDE

9 MASTER COMPUTER INTERFACE 57(a)

. SOLDER SIDE

10 FRONT-END AND SLAVE INTERFACE 57(b)

CHAPTER 1 : INTRODUCTION

1.1 BACKGROUND

1.1.1 General

A prerequisite for the overall development, co-ordination and operation

of large complex industrial installations is a centralised control

system. One example is the system required by the State Electricity

Commission of Victoria for the control and monitoring of the mining of

brown coal in the Latrobe Valley. As the size of the power stations

increase, so does the demand for fossil fuel and, to meet this demand,

the open cut operations become more and more complex. To keep the

bunkers of the power stations full, a network of dredgers and conveyors

in an open cut is used to excavate and transport the coal.

In the early stages of development of the Latrobe Valley coalfields, the

supply of coal was fairly easy to co-ordinate because the demand for fuel

was low but, as the demand increased and the transport distances involved

also increased, it became necessary to optimise the control and

monitoring. In practice, a permanent centralised control centre is used

and is located remote from the working faces of the open cut. One of the

functions of the control centre is to co-ordinate the activities on a

daily and long-term basis. Without the control centre, the conveyor

network would be most inefficient in its operation. The amount of time

lost starting and stopping the conveyors without overall co-ordination

would be considerable. A further function of the control centre is to

optimise the operations of the conveyor network.

Since the early 1960s, large industrial installations have combined both

central minicomputer and telemetry techniques to control the activities

of a complex process. In the case of an open cut conveyor transport

network, the use of computers had been confined to the central control

system with hardwired links (a single wire link for each signal

monitored) to the plant.

1.1.2 The Process Under Investigation

Typically, an open cut conveyor transport network consists of manned

dredgers and stackers and unmanned conveyors, power distribution centres

and pumping stations. During start-up, normal operations and stopping

the network must be controlled to avoid overfilling and spillage at the

transfer points.

With items of plant being located over a wide area there are many remote

control functions to be performed, such as the starting and stopping of

multiple motor drives, belt slip detection and motor protection.

Traditionally, these functions have been controlled mainly by relay based

remote control sub-systems with some of the later conveyor control

systems of the 1970's using discrete solid state logic.

Each of the traditional style control sub-systems also has an interface

between the control sub-system and the telemetry sub-system which,

because of the physical connections required, is expensive. The

combination of the control and the telemetry sub-systems provides the

remote control function from the control centre. For each output from

the control centre there was a separate input for the conveyor control

sub-system which was connected to the output of the control centre

telemetry sub-system. The combined sub-systems form the "remote slaves"

in a large, widely distributed conveyor control network. The search for

a simpler Interface was one of the major objectives of this study.

In addition to the overall control functions, there are monitoring or

data acquisition functions which have to be carried out using the same

interface between the control and telemetry sub-systems. The data is

used to determine the reason for plant stoppages and hence loss of

production. In the case of the unattended plant (conveyor and pumping

stations) the importance of the information to be transmitted to the

control centre is much greater than with the manned plant. On the manned

plant, the Information can be supplemented by voice communications.

1.1.3 Developments in Open Cut Control

Between 1966 and 1970, a remote control and monitoring system was

installed in the State Electricity Commission's Morwell Open Cut to

improve the reporting of plant stoppages. It consisted of a single

central mini-computer with 16k of memory and several crossbar scanners

for scanning the field inputs. There was no preprocessing of Information

at the plant, except for starting and stopping sequences and overall

control was maintained from the control centre via the central

minicomputer.

During the early 1970s, it was realised that the concepts used in the

Morwell system would have to be improved for the next system required for

the redeveloped Yallourn Open Cut. The Morwell system took six seconds

to scan all of the field Inputs and it was therefore not always possible

to determine the correct chronological sequence of events during the

stoppage of a conveyor line because the field inputs could change several

times during the scan period.

During the period from 1972 to 1974, the author was Involved in

investigations into ways of improving the recording of the chronological

sequence of events at individual conveyors.

It was not until 1975, when the first microcomputer was Installed in the

Morwell Open Cut for controlling a pumping station, that an economic

solution became available. It was decided to try a prototype

microcomputer-based control system. If any major problems did develop,

it was possible to man the pumping station on a limited basis without any

risk to the coal supplies. Whereas, with a conveyor, if the prototype

control system had failed, it would have been more difficult to man the

conveyor because of the dusty environment; and further more any

stoppages would have affected coal supplies. The Morwell pumping station

prototype controller provided the basis for a much larger distributed

system and enabled a study to be made of the effects of the industrial

environment without affecting coal supplies.

The author was involved in further developments in 1976 when a second

microcomputer-based pumping station was installed at the Yallourn Open

Cut. The Yallourn pumping station unit Included the facility for

transmitting eight status signals to an open cut control centre display

controlled by the pumping station microcomputer.

These two pumping stations formed the basis for the research into the

large scale application of the microcomputer in control systems for open

cut conveyor control. Before proceeding with an actual conveyor system,

it was decided to investigate the suitability of a microcomputer-based

distributed control system. Approval was obtained for the author to

Investigate the application of microcomputers in a distributed system

with independent control at the remote locations in an overall

hierarchical master/slave configuration. This investigation was

necessary before proceeding with a major change in philosophy that could

affect the operation of the conveyors and hence the supply of coal to the

power stations.

1.2 OBJECTIVES OF THE RESEARCH

The concepts forming the basis of the research were formulated while

working with the Morwell Open Cut control system and the two

microcomputer-based pumping stations.

The Morwell Open Cut control system configuration could not always

provide chronological recording of events. When an event occurred at a

conveyor, the result had to be detected by the central minicomputer

Immediately. Therefore, an objective of the research was to demonstrate,

using a microcomputer-based conveyor control system, that it is possible

to record the events at the remote conveyors in the correct sequence

regardless of the task being performed by the central system.

The pumping station at Yallourn demonstrated that if several events were

to be scanned then an error-free method of transmitting data would have

to be adopted.

In addition to the study of the technique of transmitting data, the

research also aimed to Investigate the problem of the compatibility of

transmitted data from different systems. In developing the conveyor

transport network, different manufacturer's control equipment had been

used on the individual conveyors and this continues to be the case.

A model with a minicomputer master and a distributed microcomputer-based

system representing two conveyors linked through high speed serial data

links to the control centre was used to achieve the objectives of the

study. These objectives can be summarised as follows:

To demonstrate that independent control and monitoring can be

maintained by the remote microcomputer-based sub-systems in the

event of the link to the central computer being lost;

To investigate the possibility of improving the chronological

recording of data and to provide secure data transmission from

the remote sub-systems;

To distribute the central system tasks, making it possible to

improve the management reports at the control centre;

To remove single points of failure in an overall control system

by distributing the tasks;

To determine the necessary facilities and design techniques

required for a microcomputer-based system;

To obtain an understanding of the problems and software

requirements associated with using microcomputer-based

distributed sub-systems;

To investigate the possibility of removing the expensive

interface required between the remote plant control sub-system

and the data acquisition sub-system (refer to Section 1.1.2) by

integrating the task of data acquisition in the sub-system

control tasks;

To determine the requirements for linking different

manufacturers' microcomputer-based sub-systems together;

To study the different types of system configurations possible;

To replace the traditional hardwired conveyor control systems

(relay or solid state) and telemetry systems with a more flexible

system utilising serial data transmission, better suited to the

one-off nature associated with large conveyors;

To demonstrate that it is possible to change a conveyor's control

functions by down-line loading (transmitting) new control

parameters in the conveyor sub-system.

8

CHAPTER 2 : LITERATURE REVIEW

2.1 TRADITIONAL TECHNIQUES OF OPEN CUT CONTROL

Initially during the 1920's horse-drawn carts were used to transport coal

to the power stations then as the coal demand increased the carts were

replaced by electric trains. The trains were controlled from a central

communications centre with some control of the railway signals. During

the 1950s, it was decided that it would be more economic to use conveyors

to transport the coal to the power stations. As the conveyor equipment

increased in size and number, it became necessary to centralise the

control and monitoring of the conveyor transport network. The first

major remote control and monitoring system for open cut control used by

the SECV was the system installed in the Morwell Open Cut.

The evaluation of technical and economical aspects by the Control System

Suppliers showed the expediency of employing both minicomputer and

telemetry techniques (using cross-bar scanners), to control the

activities of the Morwell Open Cut. From the experiences of Hailstone

(5) and the practical experiences of the author, the combination of a

minicomputer and a telemetry system, would have been a relatively new

technique for the 1960s. It has now been the practice for the past 25

years to use some form of telemetry (frequency division multiplexing,

(FDM) or time division multiplexing,(TDM)) or direct wiring to connect

the remote plant control systems to a central control centre minicomputer

system to provide the overall system for the control and monitoring of

the plant.

Other observations made and supported by Jenkins (6) in the area of

distributed computers and Prophet (8) in his article ("A new tool for

Production Control") indicated that it would be feasible to implement

major control functions by using dedicated computers. The work

undertaken independently by Jenkins, Prophet and the author during the

early 1970s suggested that a microprocessor-based computer sub-system

could be dedicated to performing control and monitoring tasks in a

distributed computer system.

The trends in control system techniques during the 1970s is discussed by

Sargent and Lundy (9). In their paper they outline the reasons for an

increase in the use of solid state control systems leading to the

programmable devices of the 1980s.

A problem with the early minicomputer control system used in the Morwell

Open Cut was the high cost and complexity of the interconnecting cabling

system.

A second problem area highlighted by the Morwell Open Cut system was the

low speed of handling data. In order to Increase the thoughput of a data

acquisition system, the speed of data transmission had to be increased.

For the FDM and TDM systems, the environmental conditions determine the

speed of transmission and as a result transmission rates of all

sub-systems in the system had to be adjusted to the same rate to be

compatible with the the slowest link. Deshon (2) indicated that, in the

future, it should be possible with the microcomputer sub-system to vary

the transmission rate to suit the environment. This is an important

aspect for an open cut system which could be subject to electrical

interference. The microcomputer would provide the automatic

re-transmission of the message at a different speed or bit rate.

10

In the commercial data gathering systems of the late 1970's, a defined

protocol or message format was used to ensure the secure transmission of

information, but this was not the case in the industrial systems.

There is a number of transmission and error detection codes available

(refer to Appendix F for more details). Transmission codes

"Bose Chadahuri", "Baudot", "ASCII" and "BCD" (30) and error codes

"CRC-12", "CRC-16" and "CRC-CCITT" (30) are the most commonly used. The

message protocol of a data transmission system is basically a set of

rules for operating the communication system. McNamara (30) in his book

("Technical Aspects of Data Communications") indicates some of the

reasons for these rules, i.e.:

The determination of which part of the message constitutes the

control characters or the data portion;

To eliminate duplicate messages, to avoid the loss of messages,

and to properly identify messages that are re-transmitted by the

error control system;

The determination of which station is going to transmit or

receive;

Solving the problem of which message to transmit when there is no

data to send;

Solving the problem of which steps should be carried out if

message flow suddenly ceases;

11

The process of initiating transmission in an idle or quiescent

system is often complex.

It is unfortunate that computer and peripheral equipment suppliers have

developed their own protocols. Nevertheless, certain protocols (refer to

Appendix F (p.183)) are now becoming standards by design or through wider

use in Industry. Standards institutes, such as American National

Standards Institute (NASI) and the International Standards Organisation

(ISO), are about to adopt certain protocols as standard protocols (12).

The Australian Standards Association has published a data transmission

standard (25) in an attempt to standardise on data transmission methods.

Because of the large number of control equipment suppliers involved in

conveyor control systems, data protocol was an important area

investigated during this research.

2.2 MICROCOMPUTER HISTORY

In 1971 the Intel Corporation (INTEL) (a large semi-conductor supplier)

produced a programmable device as a solution to a request for a flexible

control system. The result was the INTEL 4004, the world's first

microprocessor (a four (4) bit device). It was yery slow by modern

computer standards and it could address only 4k bytes of memory, but it

was programmable and relatively inexpensive. It was then followed by the

8008, an eight bit device. As stated by Tobias (11) in his paper,

microprocessor designs have continued to advance with more powerful and

faster devices being developed such as the 16 bit and the bit slice

devices.

12

The microprocessor is yery much a hardware oriented product and owes its

development to two major factors associated with Large Scale Integration

(LSI). One is the technological development of the semi-conductor

industry in the LSI area. The other factor is the economics of LSI.

Previously, a hardwired control system required a one-off design for each

application. An alternative in the 1980s is the microcomputer which can

be customised by a change of program. The microcomputer of the early

1980's consisted of one microprocessor chip with a dedicated or defined

software program and the required input/output interfaces.

One problem is that most of the advances have been in hardware. There is

still an almost universal under-estimation of software problems in

Industrial microcomputer systems similar to those experienced with the

large computers and minicomputers ten years earlier.

2.3 MONITORING AND CONTROL DEVELOPMENTS

With the advent of solid state logic (discrete components, subsequently

LSI) the control functions were achieved in a similar manner to the relay

systems by using interconnected logical "AND" and "OR" discrete logic

blocks (9).

The changeover to solid state control devices was considered a sufficient

change in direction for control system design during the 1970s and this

made the acceptance of the microcomputer more difficult.

13

The question was, "Should a company disregard many years of experience

and use this new microcomputer technology, considering the problems

encountered with minicomputers during the 1960s?". Obviously the

microcomputer had to have definite advantages over the techniques in use

at the time and, in addition, an understanding of the problems of

implementing control requirements using microcomputers was essential if a

company was to change its direction.

Falling microcomputer hardware costs and rising costs of one-off

hardwired logic systems made it economically attractive to replace

traditional methods of remote control and monitoring in large

installations. It was feasible to combine remote control, real-time data

acquisition and distributed computing at the remote plant locations using

microcomputer-based sub-systems linked to a central master. Amendt (1)

suggested that a design engineer must consider new approaches to control

design and that learning the techniques associated with

microcomputer-based systems would prove to be invaluable. At the time of

this research, the microcomputer was not widely accepted as a possible

method for industrial control and hence there was a need for a study of

microcomputer techniques.

South (10) also suggested that the form of remote control sub-systems

used at the time could be replaced by a microcomputer-based remote

sub-system. There was no preprocessing of information by the earlier

control sub-systems but it is now possible to distribute some of the

central system's processing of the data to the microcomputer, thereby

Increasing the effectiveness of the overall control system. This was

also supported by Deshon (2) and Dominquez and Tennant (3).

14

The basic aim of the research program was to investigate a method of

improving the data throughput of a centralised conveyor control system.

This was to be achieved by using microcomputers to control the

transmission of the data from a simulated conveyor network without

complicating the operating procedures of the system. The following

Chapters outline how the microcomputer was adapted to enable the increase

in the data throughput for an actual conveyor control system.

15

CHAPTER 3 : THE RESEARCH PROGRAM

3.1 DETERMINATION OF THE SUITABILITY OF MICROCOMPUTER SUB-SYSTEMS

3.1.1 General

In a large open cut industrial installation, the control system must

handle multiple control tasks distributed over a wide area. The layout

of the conveyor network as shown by Figure 3.1 represents at least 30

separate plant items. Each conveyor (LlOO, etc) and dredger (D14, etc)

requires a dedicated control sub-system to carry out the control and

monitoring functions at each remote location.

It was demonstrated during the research, using modelling techniques for a

limited system, that it is feasible to use a microcomputer-based

sub-system for a remote control and monitoring system configured as shown

by Figure 3.2. The sub-system tasks were handled by dedicated slave

microcomputers, one for each plant item. To distribute some of the

central system tasks, the slave sub-systems were controlled by a

"Sub-master" or "Front-end" which was in turn controlled by the master.

The natural division between the plant systems, as shown in the open cut

layout of Figure 3.1, is the deciding factor in determining the number of

slaves controlled by a front-end or sub-master. It is considered

undesirable to have plant items on opposite sides of an interchange (or

transfer) area or in different conveyor routes connected to the same

front-end. To avoid any interaction, or the loss of more than one route

(there are 24 possible routes in Figure 3.1), each front-end would have

only one dredger group, bunker group or stacker group of plant items

directly linked.

16

FIRE sgRvice wo
TRANSFER PUMPS

H. GULLET
S. STN.

FIGURE 3.1 : LOY YANG OPEN CUT PLANT LAYOUT

17

A model consisting of one master, one front-end (sub-master) and two

slave sub-systems was selected for the research program to check the

concepts referred to in Section 1.2.

The model was configured in a similar manner to the full scale system of

Figure 3.2. Each sub-system was connected by a high speed serial data

link to the next level in the hierarchy. The master communicated with

the front-end which in turn communicated with the slave sub-system using

a defined message protocol.

The model represented the front-end (No 4) for the plant group associated

with Dredger No 17 and the two slave sub-systems represented

Conveyors L400 (Slave 1-S41) and L410 (Slave 2-S42) (see Figures 3.1 and

3.2). The research program was designed to provide a better

understanding of the hardware and software requirements and the

associated problems. Because a full scale system for the open cut

represented many different facets (i.e. the interconnecting cables, the

conveyor sub-systems and the overall control centre system) it was

essential that the working model developed include all of these facets.

The various levels in the hierarchy are discussed in detail in the

following Sections.

cc

I

18

SYSTEM PERIPHERALS

MASTER
CENTRAL COf^ROL

MONITORING

FIELD INTERFACE

HIGH SPEED INTERFACE
BETWEEN MASTER AND

FRONT"END MICROPROCESSORS
(SERIAL ANC/OR PARALLEL)

FRONT
-END

1

wm
FRONT
-END

2

FRONT
-END

3

fffflMM

FRONT
-END

SERIAL INTERFACE
TO SLAVES

FRONT
-END

5

FRONT
-END

6

FRONT
-END

• N '

SERIAL INTERFACE
TO SLAVES

HIGH SPEED
SERIAL INTERFACE

SLAVE
1-S41

SLAVE
2-S^2

SLAVE
3-S43

SLAVE
4-S44

SLAVE
5-S45

SLAVE
6-S46

SLAVE
7-S47

CC

PLANT-CONTROL INPUTS/OUTPLTTS MONITORING INPUTS/OLnTPUTS

FIGURE 3.2 : SYSTEM CONFIGURATION

19

3.1.2 A Single/Multiple Microprocessor-based Sub-system

The sub-systems required to implement the system control strategy would

be based on either a single microprocessor or a multiple microprocessor

configuration.

3.1.2.1 A Single Microprocessor-based Microcomputer Sub-system

A single microprocessor chip microcomputer had to sequentially carry out

the tasks previously performed by the traditional techniques and in

addition demonstrate definite improvements.

The aim of replacing proven control and monitoring techniques by a single

microprocessor-based sub-system, by the proper scheduling of multiple

tasks, was to cover:

the functions provided by a separate telemetry system;

data acquisition via high-speed serial data links;

preprocessing of data at remote plant locations;

the problems of interconnecting different manufacturers' products

using standard interfacing methods;

the standardisation of sub-system hardware by having the

differences in the local control algorithms in the individual

software programs;

20

a reduction in the central system functions, such as data storage

and time 'tagging' (chronological recording) of events.

The microprocessor also enabled the development of an interactive

diagnostic facility with VDU terminals which were used in conjunction

with a limited English text (question and answer response) as described

in 4.3.3.1.

3.1.2.2 A Multiple Microprocessor Microcomputer Sub-system

Instead of using a single microprocessor chip, it would have been

possible to develop a sub-system that had multiple microprocessor chips

controlling the various tasks. For example six microprocessors could

have been dedicated to a sub-system with one for each specific task as

follows:

One for motor control, such as starting sequences or variable

speed control, etc;

One for protection monitoring (slip detection, faults, etc);

One for data reduction on the Information to be transmitted;

One for data transmission, including control and message protocol

emulation (standardisation possible by reprogramming for

different formats);

One for the different programming formats: such as relay ladder

diagram or logic symbol programming for control;

21

One for functional independence of tasks, such as having the

local control functions separate from the data transmission

function.

The multiple microprocessor-based sub-system would have simplified some

of the complexity of the software required in the multiple task single

processor sub-system. It is the author's view that each software task

could have been written for the dedicated device, with less cost and

complexity than for the single microprocessor software package. This

multiple microprocessor-based sub-system model was not developed. At the

time of this research a multiple microprocessor microcomputer was not

available, refer to Chapter 7 regarding further work and recommendations.

3.1.3 Advantages and Disadvantages of Microcomputer-based Systems

An advantage of the microcomputer in some of the areas formerly dominated

by the minicomputer is that it is an economical solution for single

tasks. The conventional approach of using a minicomputer would be to use

it for several parallel tasks. This is not ideal because a failure of a

multiple-task minicomputer would affect the whole system. Using the

model, it was demonstrated that by distributing the tasks over several

microcomputers overall control was maintained during failures of the

central minicomputer with higher reliability and at a lower cost.

Prior to this research it was anticipated that the use of

microcomputer-based sub-systems for control would have the following

advantages and disadvantages:

22

ADVANTAGES:

Standardisation of hardware, with special software to suit the

unique control requirements thus enabling the manufacturer to

proceed with the hardware manufacture before completing the

system design;

Reduction in development and design of the hardware for each

unique situation when compared to the one-off relay systems

therefore each design only had to cover the different functional

requirements by incorporating suitable software sub-routines;

Reduction in central system dependence so that each sub-system

can operate Independently during failures of the central system;

Reduction in central system tasks, especially in implementing the

control requirements so that the remote sub-system need only

transmit status changes as they occur;

Distribution of the central system tasks to the microcomputer

based sub-systems to provide increased reliability and

flexibility;

Reduction in the overall system hardware costs.

DISADVANTAGES:

Changing to the new microcomputer-based sub-systems would require

a change in existing fault finding techniques. In the past,

fault-finding was achieved by visually checking through the relay

23

contacts for electrical continuity which is not possible with the

microcomputer;

In some cases, the introduction of a different style of

technology (computer-based) would require the retraining of

existing personnel;

The cost of software could increase well above the original

estimates if the software programmer does not fully understand

the process to be controlled. This is a common problem with

software based industrial systems.

These advantages and disadvantages were demonstrated and confirmed by the

research work and have since the original study, been reinforced by the

developments that have taken place at Loy Yang.

24

3.2 ESTABLISHMENT OF THE HIERARCHY OF THE PROTOTYPE SYSTEM

3.2.1 General

A hierarchical system consists of two or more levels of distributed

sub-systems arranged in a pyramid or multi-level formation. At each

level, a number of sub-systems (front-ends, slaves) operate in parallel.

There is an iterative data transfer between the various levels with a

preference for the data transfer down the pyramid to be treated as a

command by the lower levels.

For the open cut plant situation considered in this project, the control

centre master (a minicomputer) represented the highest level in the

hierarchy with the front-ends (microcomputer-based) and the slaves

(microcomputer-based) representing the second and third levels

respectively. As outlined in Section 3.1.1, a front-end would control

the slaves for the conveyors from the dredger to the transfer area or

from the transfer area to the bunker as shown in Figure 3.1. The

hierarchy of the control system was determined by the basic process to be

controlled and the functional independence required between common or

parallel tasks, such as a dredger to bunker route, taking into

consideration any interchange area.

Accordingly, the hierarchy of the prototype system model was as shown in

Figure 3.3 and Photograph No 2. This model enabled the requirements of

an actual system to be Investigated and demonstrated.

ilMULATED SLAVE
INPUT/OUTPUT

MASTER

SLAVE 2

SLAVE 1

MAIN
VDU

DATA
LINKS FRONT-END

/

FRONT-END
VDU

GRAPHIC
• DISPLAY

PHOTOGRAPH NO 1 - TOTAL SYSTEM INTERCONNECTION
{MASTER - FRONT-END - SLAVE 1, SLAVE 2)

RESEARCH LABORATORY

DISKS

MASTER

SLAVES

.P. CARD
ESTER

AUTHOR

FRONT-END
VDU

HIGH SPEED
CRO

FRONT-END

PHOTOGRAPH NO 2 - SYSTEM LAYOUT

26

HIGH
SPEED
PRINTER/VDU

1
MODEM
1

T

INPUT

DEVICES

OUTPUT

- ^ MASTER

MINI COMPUTER

I
HIGH
SPEED
DISC

CENTRAL

SYSTEM

-L

MODEM
2

T
STANDARD
PROTOCOL
HOLC ETC
MESSAGE
FORMATS

BISYNC.

MODEM

3

1
HIGH SPEED
DATA LINKS.

MODEM

I
FRONT-END

MICROCOMPUTER

MODEM LINKS

T 1

VDU

T CONTROL
FOR
SEVERAL

I
CONVEYORS
IN A
RO

FLOPPY
DISCS

UTE

RS 232C AND STANDARD PROTOCOL
HIGH SPEED DATA LINK

MODEM
SLAVE 1
MICROCOMPUTER
CONVEYOR 1 .

MODEM
SLAVE 2
MICROCOMPUTER
CONVEYOR 2

/ \ 7r\
MODEM
SLAVE B
MICROCOMPUTER
CONVEYOR 3.

FIGURE 3.3

LOCAL CONVEYOR MOTORS.
FIELD INPUTS AND OUTPUTS
PROCESS SENSORS. LIMITS SWITCHES,ETC ,

A HIERARCHICAL SYSTEM : REPRESENTING A

TYPICAL CONVEYOR NETWORK AS INVESTIGATED DURING THE RESEARCH

27

The anticipated configuration for an actual situation, as shown in

Figure 3.1, (p.16) and Figure 3.3 consists of multiple microcomputers,

each one with well defined tasks to perform. For a conveyor network, the

overall control is maintained by the master (consisting of single or dual

minicomputers). The next level in the system hierarchy is the front-end

or sub-master level. Because of the number of front-ends, there must be

a defined hierarchy or priority between the front-ends as determined by

the conveyor route requirements.

From experience with earlier open cuts the most Important group is the

top conveyor line in the open cut followed by the lower groups. It is

necessary to remove the top layers of overburden and coal in order to

keep the alternative routes available. Therefore, the overburden group

front-end is the highest priority front-end of the second level.

Similarly, the individual slaves also have a priority rating as

determined by the position of the conveyor in the conveyor line. To

avoid spillage, the last slave in the line is given the highest priority

and to minimise the situation where a slave in the hierarchy was never

serviced, a regular check must be initiated by the master.

The model as described in Chapters 3 and 4 is based on this

configuration.

28

3.2.2 Master Sub-system

(Photographs Nos 4 and 5)

The 21MX Hewlett Packard minicomputer performed the task of system master

for the model. It was controlled through the VDU keyboard which in turn

controlled the graphic display of Figure 3.1 and the message transmission

to the lower sub-systems (the front-end and the slaves).

Messages to the front-end and slaves (conveyors) were simulated in the

master and transmitted via the high-speed serial data link developed for

the 21MX minicomputer (refer to Photograph No 5). The message performed

the same function as operating a start or stop button at the master.

When the message was received by the front-end, it was decoded (as

explained in Section 4.3.3.3 on (p.94)) and checked for errors before

performing the task or command contained in the message. If the message

contained a request for data from the front-end sub-system, the

appropriate action of encoding the data was carried out. If the message

was for a slave it was re-transmitted to the slaves by the front-end.

The central master continued on with other tasks until it received an

Interrupt from the front-end.

In addition to checking for errors in messages from the master, the

front-end also checked messages from the slaves before re-transmitting to

the master. This reduced the load on the master because the front-end

Indicated to the slave that the data received had an error without

Interrupting the master. This error checking would be Important in an

actual conveyor network because the interconnecting control cables are

located in the vicinity of high voltage equipment in the field and are

therefore susceptible to electrical noise.

SYSTEM
MASTER

H.P. - 21 MX
MINI COMPUTER

HIGH SPEED
SYSTEM TAPE
READER

READER m
MASTER -
FRONT-END
DESTINATION

CARD SPEED
SELECTION
THUMBWHEEL

VDU MAIN
CONTROL UNIT

PHOTOGRAPH NO 4 - MASTER COMPUTER -
HEWLETT PACKARD
21 MX - FRONT VIEW

PHOTOGRAPH NO 5 - MASTER COMPUTER -
HEWLETT PACKARD
21 MX - REAR VIEW

31

3.2.3 Sub-master (Front-end) Sub-system

The second level of control in the hierarchy (Figure 3.3) was the

front-end computer which was based on the National Semiconductor PACE

microcomputer (refer Photograph No 6). The introduction of a front-end

in the system strategy enabled the distribution of some of the functions

normally performed by the master. In addition, the front-end sub-system

also provided two secondary functions:

The storage of programs for the model (the slave, front-end and

master programs were stored on disc and subsequently down-line

loaded on request);

Development facilities were provided for the microcomputer

software and hardware via the National Semiconductor prototyping

extender card.

The front-end serviced the messages from the master and re-transmitted to

the slaves as outlined in Section 4.3.4. In the internal front-end

hierarchy, the link to the master had the highest priority after all

internal functions of the front-end were serviced.

The internal functions of the front-end were interrupts from the Internal

clock and the other software sub-routines (e.g. stack handling) during

multiple sub-routine servicing. The stack function of the PACE

Microprocessor was an internal logic function of the microprocessor chip

that handled up to ten transfers of data words or sub-routine return

addresses before requiring external memory for storage.

SYSTEM
INTERCONNECTION

FRONT-END
SLAVES
CABLES

MASTER - FRONT-END
CABLE LINK

H.P. CARD TESTER
FITEE DESIGN

DEVELOPMENT SYSTEM
OR FRONT-END DUAL FLOPPY DISK

- SLAVE 1

CRT GRAPHIC
DISPLAY

PHOTOGRAPH NO 6 - SYSTEM INTERCONNECTION AND FRONT-END ARRANGEMENT
(FRONT-END AND DEVELOPEMENT SYSTEM)

SLAVE 1

FRONT-END
SLAVES
CABLE LINKS

DATA LINK
CARD

SLAVE 2

I/O CONTROL
ELECTRONICS

PHOTOGRAPH NO 7 - FRONT-END AND SLAVES 1 AND 2 LAYOUT

33

Distributed systems such as the model are subject to many coincident

interrupt requests. In the model, in addition to random requests from

the connected sub-systems, the front-end was required to service the

front-end VDU (refer to Photograph No 2) and acknowledge requests such as

time of day in hours, minutes and seconds.

The modular approach of the system model also allowed the removal of the

front-end from the hierarchy. The software of the slave was designed to

receive the protocol directly from any sub-system. Hence, for a small

full scale system (e.g. during the initial development of an open cut

with only one dredger and one conveyor line), it would be possible for

the slave to be directly connected to the master.

3.2.4 Slave Sub-systems (Photograph No 7)

The third level in the hierarchy consisted of the microcomputer-based

slave sub-systems and was also based on the PACE microcomputer. Each of

the slaves had the same basic data transfer and Internal management

software packages as the front-end.

The individual slave sub-system which would normally be located at the

remote plant sites (conveyors and dredgers) was configured as shown in

Figure 3.4.

T o/From
Upstream
Conveyor

t
34

To/From Motors

Limit Switches, etc.

SLAVE 1/
SLAVE 2

Interface

To/From

Control
Centre
T

Master/

SLAVE 2

Interface

Field

Input/Output
Interface
Circuits

To/From
Downstream
Conveyor

SLAVE 2/
SLAVE 3

Microcomputer Controller

"SLAVE 2"

Memory and c e n t r a l p r o c e s s i n g u n i t (C .P .U .)

FIGURE 3.4 : INTERFACE REQUIREMENTS FOR A REMOTE SUB-SYSTEM

The slave consisted of a microcomputer-based sub-system with several high

speed serial data links for interconnections with the front-end and

adjacent slaves. The hierarchy within the sub-system was established

with the direct link to the front-end as the highest priority and the

alternative paths through the adjacent slave would be rated according to

the direction of flow of the material on the conveyor. The priority of

the different links was the same order for the slave as was required for

the interconnecting links in the front-end (refer to Section 3.2.3). The

slave was also rack mounted for ease of change or card replacement. The

loss of small elements such as individual slaves in one conveyor route

would be more acceptable than the major losses possible with more

traditional techniques which could take out more than one conveyor route.

35

3.2.5 Methods of Communication

In the development of the hierarchical system, consideration was given to

the way the sub-systems were connected together. At the hardware

interface level, the following factors were taken into account:

There was a variety of speeds used by the devices and sub-systems

to be Interfaced which was accommodated by the selectable logic

on the Interface card;

The devices used were either current or voltage driven;

The voltage requirements for voltage driven devices used the

industry standards EIA (RS-232C) and CCITT (V24);

The hardware Interfaces had to be compatible with other serial

devices and with existing software packages.

Once the hardware interfaces for the model had been designed, it was then

necessary to decide if the configuration would be a party line or radial

communications network.

3.2.5.1 Party-Line

In a party-line network, at the slave or front-end level, each sub-system

would share a common data cable pair. All units would receive the same

message but only the one addressed would respond.

36

3.2.5.2 Radial

In a radial network, each sub-system would have its own dedicated data

cable pair radiating from; the central sub-system. Sub-system

identification is not necessary since the identification is Inherent in

the layout. The choice of the method to be used usually depends on the

polling frequency, response time and the number of cable pairs required.

Generally, in an open cut situation the smallest cable used (based on the

consideration of its mechanical strength) would have 10 pairs, hence the

one cable could support 10 sub-systems.

Following consideration of the cable pairs available and the speed

required to identify the sub-system, a radial communication network was

chosen for the prototype system.

3.3 INVESTIGATION OF THE DATA TRANSFER TECHNIQUES

FOR THE MODEL

3.3.1 Modes of Operation

Most of the traditional modes of operation of communication systems are

also applicable in hierarchical microcomputer systems, such as:

polling (group, individual) of sub-systems by the master;

interrupt driven communication with the sub-systems;

continuous communication with the sub-systems;

priority messages to and from the sub-systems.

37

Use of the microcomputer enabled a system model to be developed which

used basically an interrupt driven and a time initiated polling

structure.

There were two methods of operation which were fundamental to the overall

system structure; interrogation on interrupt from the sub-systems and

time controlled polling of the sub-systems. The polling mode was

controlled by the clock (sub-routines were initiated on a time flag)

while the interrupt mode was controlled by the hardware and the system

hierarchical structure.

3.3.1.1 Interrupt Operation

In a steady state system under normal program execution, the sub-systems

would be fairly Inactive, stopping and starting motors, etc, but

continually updating their record of the previous status of the plant.

This mode would reduce the flow of data to and from the master computer

by comparing the previous status (i.e. the status that was last

transmitted to the master, which was stored in memory) to the current

status. If a sub-system does not transmit, the master will assume the

same condition exists; for example, if a slave has reported that a motor

has stopped it will not report its status again unless it is restarted or

the master requests a status check.

3.3.1.2 Polling (or Continuous) Operation

Polling, by definition follows a predetermined sequence in its

acquisition of data. Instead of permitting any sub-system to report

status changes as they occur, a polling system permits each sub-system to

38

report only when it is requested to do so. In this way, data

transmission is completely controlled by the master.

Polling systems have no way of giving priority to Important information.

Each critical alarm must wait until it is next scanned before the master

can act on the data. This is also one of the major problems of the

traditional systems using relay or solid state logic. These earlier

systems have no processing capability, hence there is no way of assigning

priorities. A combination of the above modes can reduce the effect of

these problems. The model allowed:

faster scanning;

checking for the presence of altered data;

preprocessing of information;

Increased message efficiency;

system response Improvements.

3.3.2 The Message Protocol of the Model

Distributed microcomputer sub-systems require a structured message system

similar to the earlier telemetry systems outlined in Section 2.1. In

data transmission systems, data can be transmitted either synchronously

or asynchronously. Synchronous transmission means that the data being

transferred is in synchronisation with a timing signal or a strobe pulse.

In synchronous systems, the strobe pulse is transmitted with the data.

The strobe signal notifies the receiving device that valid data is

available.

39

In serial asynchronous systems (such as the one under study),

synchronisation is provided by the active data transmitted or received.

The transmission of a particular data pattern consists of a start bit,

eight data bits and one or two stop bits; testing for a particular data

word "SYN" provides the synchronisation of the data blocks while the

start and stop bits provide the synchronisation of each character

received.

One of the advantages of a serial system is that it lends itself to

transmission over telephone cables. The serial digital data (refer to

Section 4.2.4) is converted to a frequency signal by a modem, placed onto

a voice-grade cable and converted back to serial digital data by the

receiving modem at the other end of the line.

In the model a defined protocol or message format was used to ensure the

secure transmission of information.

The information outlined in the Literature Review of Chapter 2 and

Appendix F regarding industry standards and the requirements of the

Australian Standards Association was used as a guide for the protocol of

Figure 3.5 (p.41) as adopted for the research model. The system protocol

also Included the following standard transmission control characters:

"SYN" (Synchronous idle) - a signal from which synchronism may be

achieved;

"SOH" (start of heading) - first character of a heading;

"ETX" (end of text) - terminates a text;

40

"NAK" (negative acknowledge) - message not accepted;

"ENQ" (enquiry) - request for a response;

"EOT" (end of transmission) - indicates the end of the message;

"ACK" (acknowledge) - an affirmative response to the transmitting

sub-system;

"STX" (start of text) - used to precede text and terminate a

heading;

"FS" (File separator) - used to separate blocks of data.

Secure data transfer between the sub-systems was achieved using the

protocol of Figure 3.5, as developed by the author, refer also to

Appendix B, (p.153) for an example of the software sub-routine that used

the developed message protocol to transfer data between the sub-systems.

41

(t)

-n- i - i n
en- iTTEi)

•fNIWMIIIM
ricu

(I) («i (i i (I) (t i (I)

I i-«ir
(I ITTEII

•-•IT
(1 •tTE)

I • • - • I I I 2 •'
(1 ttni (I I

-•IT

»•••)
••-•IT

I I >•••)

•MUM rtcu

l^-ilT
I i«n

I I I .
1 (t I I

• IT
!»••)

i«-iir
[| <oni

e««riH Ficu

•f rt -m- {•-•IT
!'• ' T« 'm' «•(••)

I ' •>

SYir„ SOHg
HEROER

N O . l

S
0
Hi

HEROER
110.2

ERROR
CODE

F
Si

CONTROL
BLOCK

S
T
Xi

INFORMATION FIELD
C IF RNr)

E
T
Xi

[••-•IT
11 IMtl

NOTES:

MESSAGE FORMAT

SYNCHRONISING FIELD :
en SYNCHRONISING CHflRflCTERS (SYNl j MAXIMUM OF TEN ERROR BYTES BEFORE

m ENQUIRY IS SENT TO THE TRANSMITTING SUB-SYSTEM.

ADDRESS FIELD
(1) START OF HEADING BLOCK NO.l CSOH) t SIX CHARACTERS REQUIRED TO

ESTABLISH A CORRECT SEQUENCE.

(2J "HEADER NO.l" J DATA LINK CHANNEL ADDRESS FOR THE NEXT
SUB-SYSTEM LEVEL

C3) START OF HEADING BLOCK NO.2 CSOH) i ft SINGLE CHARACTER IS USED TO
SEPARATE THE TWO HEADER BLOCKS.

C4) 'HEADER NO.2' i SECTOR NUMBER (MAXIMUM 256) IS THE MOST SIGNIFICANT
BYTE. THE SUB-SYSTEM MEMORY IS SUBDIVIDED INTO 256 SECTORS.

WORD NUMBER (MAXIMUM 256) EACH SECTOR IS DIVIDED INTO 256 WORDS.

(5) ERROR CODE $ A CHECKSUM CALCULATION OF THE INFORMATION FIELD
, FOR ERROR CHECKING.

CONTROL FIELD :
(1) FILE SEPARATOR (FS) *'USED TO SEPARATE THE CONTROL FIELD FROM THE

ADDRESS FIELD.

(2J THE 'CONTROL BLOCK' CONSISTS OF THREE WORDS i

• COMMAND WORD NO.l FOR THE RECEIVING SUB-SYSTEM (16 BIT)

• COMMAND WORD NO.2 FOR THE NEXT LEVEL (THIRD LEVEL) AND THE
FOLLOWING (THE FOURTH). ONE BYTE FOR EACH COMMftND.

• THE RELOCATABLE ADDRESS POINTER FOR THE INFORMATION BLOCK.

DATA FIELD :
(1) START OF TEXT (STX)

(2) 'INFORMATION FIELD' * ALLOWS FOR fl COMPLETE RELOAD OF THE RECEIVING
SUB-SYSTEM MEMORY (UP TO 65,536 WORDS). VRRIABLE LENGTH DATA.

(3) END OF TEXT (ETX)

FIGURE 3 . 5 : PROTOCOL FORMAT ADOPTED FOR THE RESEARCH

42

In addition to the standard control characters used in the system

protocol of Figure 3.5, the standard control characters were also used to

acknowledge messages or errors in messages.

The incoming message was loaded into a receive buffer and if at any stage

during the transmission of data an error was detected, a standard error

code, negative acknowledge "NAK" or enquiry "ENQ", was sent to the

transmitting sub-system. It was possible to terminate the data transfer

at any stage by transmitting an "EOT" - end of transmission character.

If the data was received without an error being detected, the acknowledge

signal "ACK" was transmitted by the receiving sub-system.

From Figure 3.5, it can be seen that the protocol developed followed the

basic rules for information protocols as outlined in Appendix F. The

protocol included a synchronising field, an address field, a control

field and a data field. In addition, the system used the standard

control characters such as "SYN" synchronise, "SOH" start of heading and

"ETX" end of text.

Sections 4.3.3.3 (p.94) and 4.3.4 (p.99) explain how the system protocol

and, in particular the control characters, were used to clarify two

important areas of investigation:

The data transfer techniques required for system modelling;

The operating strategy of the model.

43

3.3.3 Error Detection in the Model

For error detection within the model, it was decided to develop the

hardware error signals (refer to Section 4.2.4.4 on (p.73)) and a

checksum sub-routine (refer to sub-routine "CHEKSM" as explained in

Section 4.3.3.2, (p.89)) in order to investigate the requirements for

data transfer and its security.

Each eight bits of the incoming data was subjected to the hardware error

checks, followed by a test for particular 8-b1t characters (i.e. "SYN",

"SOH", "STX" and "EOT") as outlined in the above section. Once the data

transfer was complete, it was then subjected to the checksum test. For

an actual system, one of the cyclic redundancy checks (CRC) as outlined

in Appendix F3 could be used. Using the more complex CRC code, instead

of the checksum approach as used, would only have been an additional

software coding exercise. This could be included if there was any

further development of the model but was not Implemented due to the time

constraints.

44

CHAPTER 4 : THE EXPERIMENTAL MODEL

4.1 DEVELOPMENT OF THE MODEL

The model developed for the research represented the fundamental units

required for the investigation of a microcomputer-based conveyor

transport control and monitoring system. The configuration selected

enabled the study of data transfer techniques within a hierarchical

structure and comprised a hypothetical control centre master with several

lower order sub-systems. In addition, the feasibility of interconnecting

the lower order sub-systems via the alternate data path between the

sub-systems was investigated.

In an open cut plant network, the operational and environmental

constraints determine the basic parameters (system reliability, linking

and construction) of the industrial control system. It was these

parameters that were used as part of the criteria for the model. An

understanding of the requirements of each one was gained by the author

during many years of working with the application of control systems for

open cut plant.

An overall plant control and monitoring system should not degrade the

security of the coal and overburden removal networks. The configuration

selected for the model meets the security requirements since any major

failure of a system would be due to damage to the Interconnecting cable,

see Figure 4.1 (p.45). As can be seen from Figure 4.1 and the conveyor

plant layout. Figure 3.1 (p.16) it is not possible to bypass a single

plant item (dredger or conveyor) in the middle of a conveyor line. An

outage of the conveyor route could be caused by the loss of one of the

45

individual slave (conveyor) sub-systems or by the loss of the cable along

the conveyor structures which form the routes from the dredgers. For

example, the L400 to L415 conveyor group (Figure 3.1, (p.16)) has only

one cable with up to 24 pairs, damage to the cable or a failure of

front-end No 4, as shown in Figures 3.2 and 4.1, would have the same

effect.

TO OTHER
CONVEYOR
GROUPS
(ROUTES)

COMMON
CONTROL"
CABLE

FRONT-END
4

CONVEYOR/DREDGER
GROUP 4

PLANT ITEMS

(1) SLAVE 1

CABLE
PAIR-
CN')

SLAVE 'N'

DREDGER 1
(NO 17)

CONVEYOR 2
(L400)

BUNKER OR
OVERBURDEN
DUMP 'N'

FIGURE 4.1 : COMMON CABLE FOR SUB-SYSTEMS OF THE SAME GROUP

Therefore, the use of a front-end in an open cut control system model,

with a small reduction in the overall hardware reliability, was justified

by the Increased benefit of Improved security of the overall control

system. The front-end provided the opportunity for limited control at

the control centre during any outage of the master, see Section 5.1.1.

46

Any other configuration would require control at the remote conveyor

(slave) locations during failures of the master which would involve long

delays while trying to co-ordinate the overall control. For comparison

purposes, the hardware and software were also developed to allow for the

case where the master controlled the slaves without the front-end. This

was achieved by developing the software in the lower sub-system levels to

a point where the front-end sub-systems became transparent by

re-transmitting any messages received to the next level in the hierarchy

(refer to Section 4.3.4) or by direct connections between the master and

slaves.

Another configuration, using the same hardware and software in a multiple

slave daisy chain arrangement is also possible, but due to the time

constraints of the project this configuration was not Investigated.

47

CONTROL CENTRE

MASTER
MINICOMPUTER

(Z]MX-HP)

INPUT,
OUTPUT

INTERR^CE

VDU

TO OTHER
FRONTENDS

PACE
DEVELOPMENT
SYSTEM

THIGH SPEED
• - ^SERIAL DATA

l̂ LINK

SERIAL DATA
LINKS W

OTHER
SLAVES

UJ
>
Ui

LUO
> O
LU

Q:
LU

cc
o

UJ
>
UJ

UJ o
cr

z o
o
O Q.
w) o

ex
o

tr. o

RACE
MICROCOMPUTERS

VDU

^ ^
PLANT INPUT/OUTPUTS

I
I

VDU

X

o

FIGURE 4.2 : SYSTEM CONFIGURATION OF THE EXPERIMENTAL MODEL

48

The model was therefore developed around the natural constraints of the

open cut application and the sub-systems available. The completed model

consisted of a single master minicomputer, one group front-end sub-system

connected to two slave sub-systems representing two conveyors as shown in

Figure 4.2.

4.2 THE HARDWARE REQUIREMENTS OF THE MODEL

4.2.1 Master Computer

The minicomputer selected for the master computer in this project was

typical of the type of computer that has been used for this task since

the early 1960s and as Hewlett Packard support facilities were already

available at the Institute, the HP-21MX computer was selected as the

master computer.

The master computer (21MX) was configured with a high speed paper tape

reader, teletype, Real-time clock and a graphic display VDU. As part of

the project, special high speed serial interfaces were designed for

connection to the system VDU and to the other sub-systems (front-end and

slaves) as shown in Figure 4.2.

With the 21MX computer, it is possible to service up to 56 distinct

interrupts, each of which has a unique priority code associated with a

corresponding interrupt location in memory and input/output Interface

channel. This is designed to suit the different peripherals and high

speed data Interfaces of the master. Within the hierarchy of the model-

the channels were selectively enabled or disabled under program control,

thus switching the device connected into or out of the defined interrupt

structure.

Each device (CRT, VDU, Real-time Clock, tape reader and front-end) was

assigned a priority, based on the conveyor plant configuration of

Figure 3.1 (p.16) and the expected master system functions. The

selection of priorities enabled a systematic sequence for servicing

interrupts from the different devices. It was also required that the

high-speed devices should not have to wait for the low-speed device

transfers.

The plant configuration of Figure 3.1 (p.16) consisting of five dredgers

at different coal levels, set up the priorities for the model with the

external overburden conveyor line as the highest priority followed by the

next level down. For the model, consideration was only given to the

priorities between the devices connected. Logically, the Real-time clock

had the highest priority followed by the front-end interface, with the

VDU unit for display purposes as the lowest priority.

50

4.2.2 Front-end Computer

The front-end (Photograph No 6 (p.32)) of the model was a National Semi

conductor Full Scale PACE microcomputer development system. The PACE

development system consisted of 12k RAM memory, a high speed paper tape

reader, a teletype, VDU, dual floppy discs. Several special hi ah speed

serial data links for communication with the slave and the master

computers were developed as part of the project. The development system

enabled each microcomputer-based sub-system (front-end and slaves) to be

developed from the basic cards and components available.

The locally supported PACE microcomputer was chosen as the most suitable

device for the task in order to avoid delays and problems with

replacement hardware. In addition, the facilities available in the

Electrical Engineering Department at the Footscray Institute of

Technology provided supplementary support to a PACE microcomputer-based

system study. All of the basic principles applied to the PACE

microcomputer during the research can be applied to other

microprocessors.

In addition to the standard cards, use was made of the prototyping

facility of the development system (front-end) in order to develop the

special high speed data links of the slaves and front-end and to enable

the interconnection of the sub-systems to the front-end as shown by

Photograph No 3.

Handling multiple tasks is an important function for computer systems and

languages. The sub-systems of the model had to be able to handle several

concurrent tasks in their combined local control and data transmission

MASTER - FRONT-END
CABLE CONNECTION
(RED)

FRONT-END - SLAVES
DATA LINK CARDS FRONT - END

COMPUTER BUS
UMBILICAL
CHORD

VDU LINK
SECOND RS 232
INPUT/OUTPUT

MASTER SERIAL
DATA LINK CARD
(RS 232 No 1,
INPUT/OUTPUT)

REAL- TIME
CLOCK INPUT!

LOGIC
PROBE

PHOTOGRAPH NO 3 - SYSTEM INTERCONNECTION

ARRANGEMENT

52

modes. To achieve the hierarchy for the front-end and the slaves, use

was made of the 6-level priority Interrupt structure of the PACE

microprocessor shown in Figure 4.3. (p.53).

Each level was provided with a software driven enable "(IE2-IE5)" plus

the overall enable "lEN". When an interrupt request (NIR1-NIR5)

occurred, the associated request latch (IRl to IR5) was set, if "lEN" was

true then an interrupt was generated and recognised. The Interrupt

pointers or addresses of the various interrupt service sub-routines were

stored in the memory (refer to Section 4.3.3.3 (p.91), regarding stack

handling for more details).

Each of the interrupt levels was assigned a task in the system hierarchy.

The highest priority interrupts were assigned housekeeping tasks such as

stack or multiple sub-routine handling and Real-time clock servicing.

The remaining interrupts were used to form the external hierarchical

structure. See Section 4.3.3,3, on Interrupt handling for further

details. For systems that require expanded user interrupts, the

technique outlined in the PACE user's manual (31) could be adopted, but

for the model, an expanded interrupt capability was not required.

53

INT
lENABLEl

REAL
TIME
CLOCK

(N I R 3 >

MASTER

CNrR4 >

SLAVE 1

C N I R 5 >

SLAVE 2

STACK FULL
INTERRUPT

>1
&

PRIORITY
ENCODER

^1
& INTERRUPT

INTERRUPT
POINTER

IE, ,- Interrupt Enable;

NIR, ,- Interrupt Request;

IR, ,- Interrupt Pointer;
A

X - Interrupts 1 to 5;

FIGURE 4.3 : PACE INTERRUPT SYSTEM AS IMPLEMENTED IN

THE FRONT-END

54

4.2.3 Slave Computer

The hardware requirements of the slave computers were not as Involved as

those of either the master or the front-end. The slaves for the model

consisted of the standard general purpose National Microcomputer cards

(CPU, ROM and RAM). In addition a Real-time clock card, input/output

panel and interface control card and a high speed serial link card was

designed for the slave.

The Central Processing Unit (CPU) card contained the

microprocessor, a crystal controlled oscillator and data buffers. The

flag and control sections provided the external signals for the

connection to the other cards. Data transfers between the CPU and memory

or peripheral devices were carried out over the 16 bit parallel

input/output data bus.

CONTROL

SIGNALS

MULTIPLEXED

ADDRESS AND

DATA I /O BUS
1 i

TIMING

AND

CONTROL

CARD
ADDRESS

SELECT

ADDRESS

LATCH

DATA

BUFFERS

ENABLE ^

ADDRESS ^

DATA IN

DATA OUT

STATIC

RAM

ARRAY

EJGURE 4.4 : RAM BLOCK DIAGRAM

55

The National Semiconductor Memory card, as shown by the block

diagram of Figure 4.4, consisted of the RAM or ROM memory chips -

depending on the type of memory required. The address was latched to

select the memory location for data transfer.

The Real-time clock card was another Important area of the

real-time control situation under investigation. The Real-time clock

card was specially customised to suit the timing requirements of the

software programs and provided a predetermined pulse for the Real-time

clock sub-routine. All events at the slave sub-systems were related to

the time of occurrence and were therefore referenced to the actual time.

In addition, the scheduling of the software sub-routines for execution

was controlled by the Real-time clock pulses. The time period was fixed

at the smallest value required (100 milliseconds), while larger periods

were determined by the software sub-routines.

56

4.2.4 High Speed Data Interfaces

4.2.4.1 General

In addition to the standard computer cards and input/output devices used

and adapted, there was a need for a high speed Interface card, as shown

in Photographs Nos 8 and 10, in order to link the sub-systems (master,

front-end and slaves) of the model together and for interfacing the

teletype and VDU to the computers. At the time of the research, the

suppliers of the hardware had not developed a suitable application card

which met all of the requirements of Section 3.2.1. The high speed data

links were an essential part of the model, hence it was necessary to

design and produce several cards for the model.

The hardware was developed using prototyping cards consisting of dual

in-line Integrated circuit sockets with wire wrap pins or soldered

connections, as shown by the prototypes in Photographs Nos 8, 9 and 10.

The appropriate cards were tested by using either the PACE development

system or the Hewlett Packard card tester.

The following Sections (4.2.4.2 and 4.2.4.3) describe in block diagram

form how the logic functions on the cards were Implemented. As with most

computers, the 21MX-HP minicomputer and the PACE microcomputer processor

cards did not directly drive the peripheral devices connected, therefore

it was necessary to analyse the backplane signals as detailed in the

handbooks with the aid of a camera mounted on a high speed cathode ray

oscilloscope in order to design the interface cards required.

FLAG AND
INTERRUPT
LOGIC

W MILLIAMP
LOOP

i
X 'STAL ^ " ^

CABLE EDGE
CONNECTOR

PHOTOGRAPH NO 8 MASTER COMPUTER
COMPONENT SIDE
HIGH SPEED DATA LINK INTERFACE

PROTO-TYPE
WIRING

MINI COMPUTER
INTERFACE CARD

PHOTOGRAPH NO 9 - MASTER COMPUTER
SOLDER SIDE
HIGH SPEED DATA LINK INTERFACE

BACKPLANE EDGE
CONNECTOR

FLAG AND
INTERRUPT
LOGIC

CARD SPEED SELECT

INPUT/OUTPUT
CHIPS

X'STAL

20 MILLIAMP
LOOP

PROGRAMMABLE
CLOCK CHIP

UART

CARD
SELECT

BACKPLANE
EDGE CONNECTOR

PHOTOGRAPH NO 10 FRONTEND AND SLAVE
DUAL RS232 AND 20 MILLIAMP INTERFACE
- HIGH SPEED SERIAL DATA LINK d

58

4.2.4.2 The Basic Building Blocks of the High Speed Interfaces

The basic function of the high speed interface cards was to convert the

parallel data to serial data and vice versa at a predetermined and

flexible speed. In order to meet the requirements of the model, two

basic building blocks (a Universal Asychronous Receive and Transmit

(UART) chip and a Programmable Baud Rate Chip) were used. These two

devices were selected in preference to discrete shift registers in order

to minimise the number of components and to standardise the cards as much

as possible. The features of the two basic blocks were as follows:

The UART: This device provided the central processing unit of

each sub-system with more time to carry out other tasks while it

transferred the data to the peripherals. The peripherals used

were 8-b1t devices and were within the speed range of the 8-bit

UART. Use was made of the inbuilt flags of the UART to interrupt

the computer after the data had been received or transmitted in

order to transfer the data for processing.

Although the 21MX minicomputer and the PACE microcomputers were

able to process 16-bit data, the variable speed and asychronous

features of the UART outweighed the disadvantage of processing

8-b1t data. In both the 21MX minicomputer and PACE

Microcomputer, the least significant 8 bits of the 16-bit data

bus were used for the data transfers via the UART interface

cards.

59

Although the design and development of the data link cards took

time, it was highly desirable to use a standard interface device

such as the UART because of the substantial time and effort that

would be required for the development of a similar device using

discrete components;

The Programmable Baud Rate Chip: Another important requirement

of the high speed interface card was to be able to vary the speed

at which data was transferred within the hierarchy of the model

without major changes to the hardware. To achieve the variable

output speed required the card edge connectors of the peripheral

device were wired with the code that selected the speed of the

programmable chip (as shown in Figure 4.5). This speed was then

used to determine the baud (bits/s) rate at which the UART

received or transmitted the data.

5 6 P. F.

lOMfl

(50 — 9 600 BAUD)

X'TAL

" 2-4576
5 6 PR MHz

Ix So

Si

S2

S3

Ox Z

ON CARD CONTROL

f H I •
^xt: EDGE

nCONTROL

U VARIABLE OUTPUT

FIGURE 4 . 5 : PROGRAMMABLE BAUD RATE LOGIC

60

4.2.4.3 The High Speed Data Link of the Master

The card developed for the master was the one shown in Photographs Nos 8

and 9 and the circuit details in Appendix C. This card used the basic

blocks, the UART and the programmable baud rate chip which enabled the

data to be transferred at selectable baud rates of 50 to 9600 Baud

(bits/s) depending on the device connected. As shown in Figure 4.6 and

Photograph No 8, the prototype card for the 21MX had a standard flag

logic section which provided standard signals on the card for data

control.

61

« w ^ i L|> •ED ^

r=3>

"tovo

«l '

M l

2

1 3 - IV

3>

Ch
II> 1

TMO—

1

sT
««C M «

r»t< i»if

. • M l

I • .*Vt

I3Z
9 ? ? .

•w»-
>IM

tlvv-

1

tO-r ^ 1 "
'« 111

3>1 Iil*M.

Standard Hewlett
Packard Minicomputer
Flag Logic Diagram

FIGURE 4.6 : FLAG BLOCK

It was necessary to Include this standard flag logic as part of the logic

for the 21MX Interface card in order to make use of the computer

backplane signals. During the execution of the different computer

instructions, the following flag and input/output signals were observed

and photographed.

_!l_h_JLJLJl.J\jL_

r
T3

lEN

J T J U l _ I^
J L Jl

J O U U U L J L J L

_ n n

lAK

-t

J-
SIR

DEV FLAG
STF •

J-

62

\ .

-V-

>

J-

f-

^^*

A.

\

A.

T3

100

101

ZOB

SPC

SFS

STC

10 V/Div V e r t . 2 x l o " Sec Hor/IOH«.10 V/Div Ve r t . 0 .2 x 10~^ s e c Hor/lOH«.

FIGURE 4 .7 : INT. REQUEST

n. .J^

J 1

t\
11.

FIGURE 4.8 : INPUT/OUTPUT SIGNALS

T3

lEN

FLG
IRQ

SIR

lAK

DEV
FLG

r
K
1

\

I

Vv

^ f " "
u 1

ll

• ~ v _
p-r U-

T3

STF

CLF

CLC

<;TP

_J^F

10 V/Div Vert. 5 x 10~ SEC. Hor/lOMM. 10 V/Div Vert. 2 x 10 SCCHor/loni-i.

FIGURE 4.9 : INT. REQUEST FIGURE 4.10 : SET AND CLEAR FLAGS

The following paragraphs show how the computer backplane signals were

combined with the UART flags to implement the basic data transfer

requirements for transmitting and receiving:

63

Transmit: This was achieved by loading the eight data bits

(Bits 0-7) into a buffer on the card before being strobed into

the UART chip. The UART then converted the data from parallel to

serial data for transmission to the connected peripheral or

sub-system. Depending on the type of device to be connected

(RS232C industry standard voltage or 20 milliamp current, device)

different pins on the output side of the card were connected.

The "Transmit End of Character" (TEOC) flag of the UART was used

to Interrupt the computer when the card was ready for another

eight bits.

Once the appropriate interrupt signal was given by the UART to

the computer, the software sub-routine selected via the interrupt

memory location determined the next step to be taken. This

sub-routine, which is explained in the software Sections 4.3.2

and 4.3.3.3, used a combination of the "set device" control bit

signal "STC" (see Figure 4.8) and the "output the register to

device instruction" (OTA or 0TB) which generated the data output

signal "100" shown in Figure 4.8 on the computer backplane (refer

also to the detailed circuit diagram in Appendix C and the block

diagram of Figure 4.11). This signal was used to load the card

control codes (for transmit), select codes (for different

devices) or for loading data words into the data buffer. The

"STC" signal was used to generate a transmit strobe pulse of a

predetermined period to suit the UART timing specification. The

time duration was determined by the logic within the control

logic block shown in Figure 4.11.

64

DATA

T O /

FROM

THE "*

COMPU

TER

r B1T7 _

_

iBUFF-

ERS

BITO

BITU

BIT12

BIT13

PARALLEL

TO

SERIAL

SERIAL

TO

PARALLEL

• SERIAL
DATA • •

DATA STROBE

TEOC

RDA

READER

CONTROL

PUNCH

CONTROL

PRINT

CONTROL

RS 2320

I / O

VOLTAGE
mviCES

CURRENT

N O T E :

SEE DETAIL
CIRCUIT IN
APPENDIX C.

VAR-
lA -
BLE

SPEED
OUT

»-EXT
TIMING

INPUT

PROGRA
MMABLE
BAUD
RATE
LOGIC

SPEED

SELECTION

READ COMMAND ^

PUNCH COMMAND

PRINT COMMAND

FIGURE 4 .11 : SIMPLIFIED BLOCK DIAGRAM FOR THE

SERIAL DATA INTERFACE CARD

65

The parallel data input to the UART was then converted to serial

data and transmitted at a rate (50-9600 baud) determined by the

programmable baud rate chip to the connected device (RS232C or

20 milliamp loop);

Receive: The basic input concepts of the Interface are as shown

in Figure 4.12A and make use of another UART flag, "Received Data

Available" (RDA), to signal that the data had been received.

The operational amplifier was used as a Schmitt trigger to remove any

noise associated with the input. The Schmitt trigger arrangement, as

shown in block form, functioned as a one-bit analogue to digital

converter. The device was arranged so that it had two output states

which were functions of the amplitude of the input excitation

(Figure 4.12B). In addition to removing noise, the circuit converted

20 milliamp signals to TTL logic levels for the UART chip. The UART chip

also had some noise immunity; it sampled the data every half data bit,

testing for a low signal which signified the start of the data word.

-h12V

20 milliamp

EIA

SCHMITT
TRIGGER

FIGURE 4.12A : BASIC INPUT BLOCK DIAGRAM

66

4 OUTPUT
STATE

INPUT

OUTPUT
STATE

VT2 Vx VT1
INPUT

VT2 VTl

FIGURE 4.12B : THE INPUT/OUTPUT RELATIONSHIP OF THE

SCHMITT TRIGGER

Switching between the two output states of the Schmitt trigger was very

fast because it utilised the Internal regenerative feedback set-up in the

operational amplifier. The input/output relationship is illustrated in

Figure 4.12B. When the input voltage exceeded the threshold voltage

(Vy,), the output returned to the '0' state (29). As indicated, the

device exhibits hysteresis in the region between Vj, and Vj^. Note that

if the input rises to or falls to V , the output will remain in its last
A

logic state of either '1' or '0'. Hence, the arrangement was used as a

threshold filter and was used to remove the contact bounce noise such as

occurred on the signal from a teletype. See Figure 4.13 for a

diagrammatic representation of the observed signals.

67

NOISE

SAMPLE PERIOD - HALF BIT

NOISY INPUT INTO SCHMITT TRIGGER
I I
I I

I

A

+12V

0 -

- 1 2 V

5V

0
SCHMITT TRIGGER OUTPUT

FIGURE 4.13 : SKETCH OF PHOTOGRAPHED SIGNALS

In addition to the above noise which can cause Incorrect sampling by the

UART chip due to spikes occurring a half-bit apart, it is also possible

to cause a stalemate situation when reading from a teletype. This

condition could occur if the interface card is given the command to read

and the reader moves the tape one character space but the UART rejects

the character as noise. If a noise spike occurs at the sample period as

shown in Figure 4.13, the UART would wait for the next character and the

computer would not give the next read command until the previous read

command had been carried out.

To overcome this problem, a 16-b1t counter was Introduced into the logic

(see Figure 4.14). (33) If a character was correctly received, the

"Received Data Available" flag was reset and cleared the counter after 11

bits (eight bit data, one start and two stop bits) but if the UART

rejected the start of the character the counter caused the reader to move

on after a delay of five bits, avoiding the stalemate.

68

^ READ
COMMAND

— *
COUNTER
16 BIT

RESET

READ

TO FLAG/INTERRUPT

LOGIC

INPUT

101 DATA
BUS

BUFFER

FIGURE 4.14 : BLOCK DIAGRAM OF READER CONTROL

The software can also use the Inherent error checks of the UART because

the framing error, receiver over-run and parity error flags, refer to

Figure 4.17 (p.73), of the device, had been connected to bits 12 to 14 of

the data bus. When the data is read into the computer by executing the

"LIA" computer instruction, which generated the "lOI" signal (see

Figure 4.8), the status of the UART error flags were also connected to

the computer bus during the transfer of data to bits 0 to 7.

4.2.4.4 The High Speed Data Link of the Front-end and the Slaves

(Photograph No 10)

The high speed data link card for the microcomputers of the model was

developed as a dual RS232C (voltage) interface card.

69

The logic designs of the microcomputer cards were developed using the

same basic building blocks (the UART and programmable baud rate chip) as

the master computer.

The fundamental difference between the two computers (the minicomputer

and the microcomputer) was that the PACE microcomputer did not have a

select code or special input/output instruction set. The microcomputer

peripheral interface cards were effectively a location in memory as far

as its central processing unit (CPU) was concerned. Therefore, the

Interface card was developed using an address decoder. If the address

matched the predetermined card address on the card (see circuit details

in Appendix C and Photographs Nos 3 and 10) then the computer 16-b1t

address word was accepted by the card logic as a card select and function

select code word. The first six bits provided the appropriate select

code for the operation to be performed by the executed sub-routine. As

shown in Table 4.1, the possible commands were determined by the bit

pattern of the card address.

Bits

5

4

3

0-2

Function

RS232C 1 or 2 (Link (1) or

Ready to transmit (RTS)

Ready to receive (RTR)

Data process code

(2))

TABLE 4.1 : DATA WORD FORMAT

The function select code for the 0-2 bits enabled eight different data

process functions. These are listed in Table 4.2:

70

Binary

000

001

010

Oil

100

101

110

111

Function

print or transmit

tape read

power on

power off

echo

enable data

enable status

not used

TABLE 4.2 : FUNCTION SELECT CODES

^

15

1

14

0

13

0

12

1

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

1

3

1

2

0

1

0

0

0

CARD ADDRESS / f.,vt
RS232 RTR

TRANSMIT

RS232
N*1

FIGURE 4.15 : CONTROL WORD : PACE

Figure 4.15 represents the control word necessary to select the serial

link(RS232C No 1) for data transmission.

Transmit Data: As previously discussed in Section 4.2.4.2, the

front-end and slave serial data link Interface cards used the UART chip.

The UART converts the 8-b1t parallel data to an acceptable serial form

for transmission either as a 20 milliamp current signal or as an industry

standard voltage signal (RS232C). The UART was used again to minimise

the number of components on the cards and enabled the transmit function

required.

71

To achieve the functions outlined in Table 4.2, the basic design adopted

is as shown in Figure 4.16. In order to design.the data link card logic,

the microcomputer processor card signals were also studied and combined

with the UART flags as outlined in Section 4.2.4.1 (p.56).

When the correct card address was received the output data strobe (ODS)

signal of the CPU latched the data on the data bus into the UART.

The next data word was inhibited in the software either by waiting for a

flag (JC13, etc) or an Interrupt (NIR 2-5). Refer to Figure 4.3, (p.53),

for the significance of the interrupt signals, i.e. NIR2 is an interrupt

from the Real-time clock. Once the UART had completed the data transfer

a signal (JC13 or NIR 2-5) was given to the central processing unit to

continue with the next word to be transmitted.

The tape read function was also Implemented in the same way as explained

for the master interface (p.67) to avoid a halt in the program execution

due to noise rejection.

Receive Data: The data input circuit is also similar to the data

input circuit on the master high speed interface card (p.65). For the

dual RS232C input, an appropriate input code had been selected and

defined in Table 4.1 to enable switching from one input to the other. In

the case of the slaves the normal data transfer path is for data to be

received from the front-end computer; it was also possible to switch to

the alternative or Indirect route via the second RS232C input/output

chips (see Figure 4.16) which was connected to the adjacent slave

sub-system, refer to Section 4.2.5 for more details. Data was received

by the UART in a serial string of eight bits (0-7) which then generated a

"Received Data Available" (RDA) flag, which in turn caused an interrupt

72

or flag on the computer bacl^plane. An input sub-routine (MSTINP (p. 162))

which included an Instruction that provided the "Input Data Strobe"

signal (IDS), was then executed. This enabled the .UART high Impedance

outputs and the TTL high impedance bus drivers (UART outputs can drive

one TTL gate only). Once enabled, the 8-bit data (Incoming) was allowed

to appear on the data bus and hence was read by the processor.

The UART flags were also cleared by the IDS signal ready for the next

data word.

STATUS
ERRORS
^ODE

<
DATA BUS

CARD
SELECT

<nz> FUNCnON
SELECT

INTERRUPT
LOGIC

>

PARALLEL
TO
SERIAL

SERIAL
TO
PARALLEL

PROG.
BAUD
RATE
LOGIC

I/b

20
mAMPSK
I/O

POWER ON

READER
LOGIC

NOTE: SEE DETAILED
CIRCUIT
APPENDIX D

FIGURE 4.16 : A SIMPLIFIED BLOCK DIAGRAM FOR THE PACE

DATA LINK CARD

73

Where high security techniques were required, it was possible to test for

"Receiver Over-run" (ROR), "Received data Parity Errors" (RPE) and

"Received data Framing Errors" (RFE) by using the UART hardware signals

for ROR, RPE and RFE in a similar way as explained for the master

interface card (see Appendix C for circuit details). The hardware

signals were used in the error detection sub-routine "CHECKSM" in

addition to the error code techniques as explained in Section 3.3.3.

Before loading the next data word, a status request was made; the data

on the computer bus was then tested for any ROR, RPE and RFE errors

before continuing to load data. See Figure 4.17 below.

•^^ 3 1 M 1 U ^ ^

ENABLE

FUNCTION

FLAG

I N T E R

RUPT

LOGIC

STATUS

BUFFER

A

^
ROR

RFE

RPE

UA RT

RDA

i \

SERIAL

DATA

FIGURE 4.17 : ERROR STATUS BLOCK DIAGRAM

4.2.5 The Data Transfer Paths

In the distributed system model, as shown in Figure 4.18, the direct data

path was to or from the slave through the front-end to the master.

74

INDIREQ
PATH

MASTER

4 • •
DIRECT DATA .PATH

I I

N«1 FRONT-END
GROUP
CONTROLLER \

\
\

DIRECT / ^"'•;!;i,P':^ DIRECT v
DATA / ?,?°DAVr DATA\ INDIRECT
PATH I '"TER^A^E P A T H \ P A T H ^^^^^^

-^ fATH V INDIREI ^ •
PATH T l SLAVE 3
DIRECT
DATA
PATH

FIGURE 4.18 : INDIRECT/DIRECT DATA ROUTES OF THE MODEL

In order to provide a back-up to the direct link to the master the second

or Indirect link on the card was used. As shown in Figure 4.18, an

indirect path was possible via the second set of RS232C Inputs and

outputs on the data link card. The computer used a second memory

location in order to select the indirect data path. This route was also

used for linking the sub-systems together; messages such as sequence

start, which are required as a direct link between the conveyors, were

passed via this link.

75

4.3 THE SYSTEM SOFTWARE FOR THE MODEL

4.3.1 General

In order to explain how the software was developed and the problems

encountered in achieving the objectives of the research, a brief outline

of the two computers is included.

The 21MX Hewlett Packard Minicomputer: The computer has eight

16 bit working registers which can be selected for display and

modification through the operator's panel or directly by the software

sub-routines. The main registers are the A and B registers which can be

directly addressed by the memory reference instructions. The memory is

divided into fixed pages of 1024 words each. It is possible to directly

address page zero (the current page) and the page in which the

instruction is located. To address the other pages, indirect addressing

is necessary and is realised by using a defined location in memory. A

more detailed explanation of the 21MX computer can be found in the

Hewlett Packard Reference Manual (28).

The PACE Microcomputer: Four main functional aspects need to be

considered during the development of the system software:

the use of the registers and accumulators;

the use of the status and control flags;

the method of data transfer for the memory or peripherals;

the stack servicing for multiple task handling.

76

The Registers and Accumulators: The PACE microprocessor has

seven 16 bit registers with four accumulators (ACO, ACl, AC2 and AC3)

which are available to the programmer. Register ACO serves as the

principal working register while Registers AC2 and AC3 can be used as

index registers.

The Status and Control Flags: There are fourteen status and

control flags which can be set or pulsed depending on program

requirements for interrupt handling.

The Data Transfer Techniques: The data transfer techniques for

peripherals have already been briefly described in Section 4.2.4.2

(p.58). In contrast to the National approach other microprocessors

(INTEL) and minicomputers (Hewlett Packard) have special input/output

Instructions. The PACE approach is more flexible by allowing the direct

use of the full Instruction set with the external devices by treating

them as memory locations. In developing the software, consideration had

to be given to the allocation of addresses to the memory and to the

peripherals.

For the front-end sub-system of the model, consideration also had to be

given to the allocation of memory which was used by National

Semiconductor for the PACE Development System peripherals. It was

suggested by National that memory locations 8000,g to BFFF,g should be

allocated to any new peripherals which would not conflict with any future

peripherals that National Semiconductor produce for their development

system. Any interfaces which were developed were able to be used with

the standard peripherals thus avoiding conflicting signals. Another

Important consideration for the memory allocations was to decide if the

technique of "Split Base Page" was going to be used for the

77

sub-systems (see Figure 4.19 below and (p.138) Appendix A) where i t was

possible to al low f o r a s p l i t base page. The technique was used to share

the base page memory area addresses between memory and peripherals f o r

high speed access, re fe r to reference (31) f o r a more deta i led

explanat ion.

NORMAL
(BPS = 0)
HARDWARE
CONTROL
SIGNAL

SPLIT BASE PAGE
(BPS = l S
HARDWARE
CONTROL
SIGNAL

FFFFi6(65,535)

FF16(?55)

016(0)

6ASE

TOP
SECTOR

,/,BASE

1 177m.
^^^5! ^ F F 3 0 , « (6 5 t 0 8)

</•'//.
»

FFFFi6(65 535)

FF i6 (l27)

016 (0)

FIGURE 4.19 : BASE-PAGE MEMORY MAP

The Stack Handling: An Important funct ional aspect of the PACE

microprocessor was the in terna l s tack, which was used fo r serv ic ing the

sub-routines in the correct order by s tor ing the return addresses of each

sub-rout ine being serviced. The stack was also used fo r s tor ing data

78

(accumulator content and flag status) by executing the "Push to Stack"

Instruction. The stack provided 10 words which were accessed in a

sequential last-in, first-out (LIFO).

In simple applications this facility eliminates the need for an external

stack but because of the size of the task and the different types of

functions which were performed by the system model, it was necessary to

develop a complex stack service sub-routine for each of the microcomputer

sub-systems to provide Increased stack space, refer to Section 4.3.3.3

for details.

4.3.2 System Software Elements

4.3.2.1 Standard Software

The main languages used were BASIC and the respective computer Assemblers

(PACE and Hewlett Packard 21MX minicomputer). BASIC was used for driving

the graphic representation of Figure 3.1 (p.16) in the Master, while the

control and data transmission requirements were written in Assembler.

The high level language "PASCAL" was not available at the time but from

recent developments it appears that it could become a yery useful

language in the future (26) (15). In Section 5.2.2.1 the languages used

in the Loy Yang Open Cut application are briefly covered.

The proven Assembler sub-routines (Load, Dump and Breakpoint) for loading

and dumping programs and for breakpoint handling developed within the

Electrical Engineering Department at Footscray Institute of Technology

for the Hewlett Packard computer and the PACE microcomputer were

integrated into the system software, refer to Section 4.3.3.2. Refer to

79

Figures 4.20 (p.80), 4.21 (p.82) and 4.22 (p.85) for a diagrammatic

representation of the software developed by the author which is explained

in the following Sections.

4.3.2.2 Developed Software for the Master

The role of the master in the hierachy of the model was fairly easy to

demonstrate; hence, it did not require any complicated software (refer

to Figure 4.20 for a diagrammatic representation of the master software).

To display the conveyor network of Figure 3.1 (p.16), use was made of the

graphic software package for driving the graphic display VDU. The

software for the master was written in BASIC in order to make use of the

graphic display calls available for driving the VDU.

The master only had two devices to service, the front-end and the graphic

(or master) VDU. An input from the VDU Keyboard was used to interrupt

the display sub-routine (refer to Section 4.3.3.4 (p.98) for more

details). To simplify the master sub-system software, the messages for

communication with the lower levels (front-end and slaves) were

predetermined and stored in memory in tabular form. A look-up table of

VDU Keyboard characters was used to access the different messages for the

demonstration of data transfer between the sub-systems as explained in

Section 4.3.4. (p.99).

FIBURE 4.20.

FIGURE 4.21

FI6URE 4.22.

SLAVE 1
SUB-SYSTEM

SOFTWARE
(ASSEMBLER)

MASTER
SUB-SYSTEM

SOFTWARE
(BASIC 4 ASSEMBLER)

80

SERIAL LINK

FRONT-END
SUB-SYSTEM

SOFTWARE
(ASSEMBLER)

SERIAL LINK r SERIAL LINK

INDIRECT PATH

X
FIGURE 4.22

(• ^ V n 1 • 2 MM lOIMTICM.)

SLAVE 2
SUB-SYSTEM

SOFTWARE
(ASSEMBLER)

(INTERCONNECTION DIAGRAM FOR SYSTEM SOFTWARE » FIGURES 4.20.4.21 4 4.22)

DISPLAY CREATION SUB-ROUTINE«

• INCLUDES FORMULAE FOR
GRAPHICAL SHAPESJ

• VDU CURSOR CONTROL VIA
ASSEMBLER CALLS.

MASTER
SUB-SYSTEM
SOFTWARE

(BASIC i ASSEMBLER)

BINARY DATA BLOCK
AND LOOKUP TABLE OF
ASCII KEYBOARD CHARACTERS:

• LOAD DATA FOR TRANSMITj
MASTER TO SLAVE 1,
MASTER TO SLAVE Z,
MASTER TO FRONT-END.

• RETURN DATA FOR 01SPLAYi
FROM SLAVE 1.
FROM SLAVE 2.
FROM FRONT-END.

(REFER TO EXAMPLES IN
FIGURES 4.23(A).(B),
(C).(D) i (E) .)

a
a
•
a 1

JLYOCCl 1

l"
1 °

-
CURE 3.1

, f •RONT-END
HRS:MINS

1

1
T

- • - K -»

- • - t. H

VDU DISPLAY

VDU KEYBOARD

3"

1 D
VDU CONTROL (MASTER)

TRANSMIT TABULAR MESSAGES
OR KEYBOARD CHARACTERS:

• VIA HIGH SPEED
DATA LINK»

• DISPLAY RETURNED
DATA FROM FRONT-ENDJ

• SIMULATE PROTOCOL
USING VDU KEYBOARD,

(ASSEMBLER)

FIGURE 4 .20 : A DIAGRAMMATIC REPRESENTATION OF THE
SOFTWARE FOR THE "MASTER" TO/FROM FRONT-END

SEE FIGURE 4.21

81

4.3.2.3 Developed Software for the Front-end

The most important sub-system in the model was the front-end, because it

had to handle messages and interrupts from several sources, i.e. the

master and slaves data links, its own Internal functions (Real-time

clock, Stack handling and Debug control) and the connected peripherals.

Basically the operation of the front-end depended on the interrupts from

the various sub-routines (refer to Figure 4.21 for a diagrammatic

representation of the software). In its steady-state mode, the front-end

cycled through the debug and Interactive character codes in a continuous

loop. Any Interrupts from the Stack servicing. Real-time clock control,

Master to Front-end, Front-end to Slave 1 and Front-end to Slave 2

sub-routines Interrupted the front-end in a defined priority order. Each

Interrupt controlled sub-routine could Interrupt a lower priority

sub-routine.

TO/FROM MASTER (SEE FI6URC 4 2 0)

•TIME*

INTERACTIVE SUB-ROUTINEs

• CONVERTS VALUES OF
SUB-ROUTINE 'RLTBC'
TO ASCII«

• DISPLAY TIME VALUES ON
VDU FOR FRONT-ENO AND
SLAVE IMAGES.

(

A

-ii—

-MSTRIT-

FRONT-ENO TO MASTER HIGH SPEED
DATA LINK CONTROL SUB-ROUTINE:

• MESSAK SYNCHRONIZATION!
• MESSAGE LOAOINGi
• FORMAT SYSTEM PROTOCOL*
• TEST FOR SYSTEM PROTOCOL*
• ERROR CHECKINCi
• VDU CONTROL*
• TRANSMIT/RECEIVE BUFFERING*
• OOHN-LINE LOADING*
• LINK CONTROL*
• DATA TRANSFER*
• ERROR CALCULATION*
• TRANSMIT TO LONER LEVELS.

82

PACE DEVELOPEMENT SOFTWARE
AND PERIPHERIAL CONTROL.
(SEE REFERENCE NO.31 FOR
DETAILS OF SOFTWARE)

UTILITY SUB-ROUTINES:

EG.
ALTER LOCATIONS*
LOAD REGISTERS*
MOVE DATA*
REMOVE BREAKPOINTS*
LOAD*
DUMP MEMORY*
COPY*
BINARY LOAD*
BOOTSTRAP*
VDU CONTROL*
PRINT.

OM-LINC
fUNCTIOM

DEBUG SUB-ROUTINES:

•CMOTRN*

• TRANSMIT COMHANOS*
• PROTOCOL EMULATION*

-TTYMO*

• SELECT HIGH SPEED LINK
ON DUAL LINK CARD*

•CHECKSM-

• ERROR CALCULATION
(CHECK^JM VALUE)*

-RLnME"

REAL-TIME CLOCK
CONTROL SUB-ROUTINE:

• INCREMENT AND TEST
HRS.MINS.SECONOS AND
TENTHS OF A SECOND
LOCATIONS*

• INCREMENT TIME IMAGES
FOR aj»VES 1 AND 2

FRONT-END
SUB-SYSTEM

SOFTWARE
(ASSEMBLER)

iKTEMiurr
(MIVEN

(NO.l)

•STKINT-

STACK SERVICING SUB-ROUTINE:

• SUB-ROUTINE NESTING*
• ERROR MESSAGE DISPLAY

FOR INCORRECT NESTING*
• EXTENDING INTERNAL STACK

TO RAM OR FROM RAM MEMORY.

(MSEHBLER)

:p

IMITIMTCD
ON tTMtTUP

I N I T I M B l OH
STWm*

•SLVlIN-
FRONT-END TO SLAVE 1 HIGH SPEED
DATA LINK CONTROL SUB-ROUTINE:

• MESSAGE SYNCHRONIZATION*
• MESSAGE LOADING*
• FORMAT SYSTEM PROTOCOL*
• TEST FOR SYSTEM PROTOCOL*
• ERROR CHECKING*
• TRANSMIT/RECEIVE BUFFERING*
• DOWN-LINE LOADING*
• LINK CONTROL*
• DUAL-CHANNEL SELECTION*
• DATA TRANSFER*
• ERROR CODE CALCULATION*
• NEXT LEVEL COMMAND.

(mscnaLERi

-FLUSH-

INTERACTIVE SUB-ROUTINE:

• CLEAR MEMORY LOCATIONS
FOR STARTUP OR RESTART
(INITIAL CONDITIONS)

(KSSEmLEK)

INTERACTIVE SUB-ROUTINES:

-TRSET-

• CLEAR TIME LOCATIONS*
• SET INITIAL TIME VALUES*

•MRSET-

• CLEAR MEMORY LOCATIONS FOR
THE HIGH SPEED LINKS*
(MASTER.SLAVES 1 AND 2).

(ASSEM8LER1

-SLV2IN-

FRONT-END TO SLAVE 2 HIGH SPEED
DATA LINK CONTROL SUB-ROUTINE:

• MESSAGE SYNCHRONIZATION*
• MESSAGE LOADING*
• FORMAT SYSTEM PROTOCOL*
• TEST FOR SYSTEM PROTOCOL*
• ERROR CHECKING*
• TRANSMIT/RECEIVE BUFFERING*
• DOWN-LINE LOADING*
• LINK CONTROL*
• DUAL-CHANNEL SELECTION*
• DATA TRANSFER*
• ERROR CODE CALCULATION*
• NEXT LEVEL COMMAND.

IMSEMM.ERI

<:

V
TO/FROM SLAVE 1
(SEE FIGURE 4.22)

FIGURE 4.21 : A DIAGRAMMATIC REPRESENTATION OF THE
SOFTWARE FOR THE "FRONT-ENO" V

TO/FROM SLAVE 2
(SEE FIGURE 4.22)

83

Sub-routine Priorities: The stack service sub-routine had the highest

priority of all front-end sub-routines. As each sub-routine transferred

the return address of the interrupted sub-routine and the contents of the

registers to the Internal stack, a check was made to determine if the

number of words transferred to or from the internal stack had exceeded

ten. This sub-routine could be initiated at any time but it did depend

on the number of words on the stack during the transfer.

The second highest priority sub-routine was the Real-time clock

sub-routine which was initiated eyery 100 milliseconds to update the

clock values stores in memory.

In the front-end sub-system there were also the three major interrupt

driven sub-routines, "MSTRIT", "SLVIIN" and "SLV2IN" which were used in

the overall distributed system to communicate with the master (MSTRIT),

Slave 1 (SLVIIN) and Slave 2 (SLV2IN). The sub-routine controlling the

data link with the master (MSTRIT) had the highest priority of the three

and the sub-routine SLV2IN had the lowest priority. The three

sub-routines were similar except that the interrupt sub-routine "MSTRIT"

also included a test for incoming VDU characters, refer to Appendix B

(p.153) for the detailed flowchart. This test was used to determine

whether a VDU had been connected in place of the master for control at

the second level of the hierarchy.

4.3.2.4 Developed Software for the Slaves

The software for the slaves used sub-routines with a similar structure to

those used in the front-end, i.e. Stack servicing. Real-time clock. Data

link and Debug sub-routines. In addition a minor sub-routine was

84

included for servicing the input and output panel as shown in Photograph

No 7 (p.32). Refer to Figure 4.22 for a diagrammatic representation of

the software for the slave.

The Panel was used to represent simple field inputs and outputs for local

control at the conveyor plant. The control logic is far more complex and

the number of inputs and outputs are much greater on actual conveyors.

The panel was used to simulate the motors and protective devices

connected in a real situation and the change of state of the panel was

stored in memory with the time of the occurrence.

The slave sub-system software could be extended to simulate a small

conveyor. Including starting several motors, if required for future

investigations.

TO/FROM FRONT-ENO
(SEE FIGURE 4.21)

A

•TIME^

INTERACTIVE SUB-ROUTINE:

• CONVERTS VALUE OF
SUB-ROUTINE •RLTIME^
TO ASCII*

• DISPLAY TIME VALUES
ON VDU FOR SLAVE.

85

•SLAVE•

SLAVE TO FRONT-END HI04 SPEED
DATA LINK CONTROL SUB-ROUTINE:

• MESSAGE SYNCHRONIZATION*
• MESSAGE LOADING*
• FORMAT SYSTEM PROTOCOL*
• ERROR CHECKING*
• VDU CONTROL*
• TRANSMIT/RECEIVE BUFFERING*
• LINK CONTROL*
• DATA TRANSFER*
• ERROR CALCULATION.

aH-<.iNi
I JUV COMItTlaNM.
njwci

UTILITY SUB-ROUTINES:

EG.
• LOAD*
• DUMP MEMORY*
• PRINT*
• LOAD REGISTERS.

(MtEMILEII)

•RLTIME^

REAL-TIME CLOCK
CONTROL SUB-ROUTINE:

• INCREMENT AND TEST
MRS,MINS.SECONDS AND
TENTHS OF A SECOND
LOCATIONS.

(KSSEMBLERI

IWlMtT MTH

10/rmm «JIVC *

INTflMUPT
DHIVtH MO.*

IMITIATEO an J

tTwrrup

INTERACTIVE SUB-ROUTINES:

•TRSET^

• CLEAR TIME LOCATIONS*
• SET INITIAL TIME VALUES*

•MRSET-

• CLEAR MEMORY LOCATIONS FOR
THE HIGH SPEED LINKS.

SLAVE 1
SUB-SYSTEM
SOFTWARE

(ASSEMBLER)

iNTEiwurr
OMIVEN N0.2

IWTERRUPT
' ODIVEN NO.l

-STKINT-

STftCK SERVICING SUB-ROUTINE:

• SUB-ROUTINE NESTING*
• ERROR MESSAGE DISPLAY
FOR DEBUGGING*

• EXTENDING INTERNAL STACK
TO RAM OR FROM RAM.

CASSEMLER)

IMITIATB)
W CTMm»

WIN

sue-muTiNC

•PANL-

PANEL CONTROL SUB-ROUTINE:

• DISPLAY PANEL OUTPUTS*
• LOAD INPUT SWITCH CHANGES*
• DEBOUNCE SWITCHES*
• CONTROL INPUT/OUPUT

INTERFACE.
lASaCMOLEKI

-FLUSH-

INTERACTIVE SUB-ROUTINE:

• CLEAR MEMORY LOCATIONS
FOR STARTUP OR RESTART.
(INITIAL CONDITIONS)

(<

DEBUG SUB-ROUTINES:

-CMDTRN-

• TRANSMIT COMMANDS*
• PROTOCOL EMULATIONS*

-TTYMO-

• SELECT DIRECT OR
INDIRECT PATH*

-CHECKSM'

• ERROR CALCULATION
(CHECKSUM VALUE)

NOTE:
SUB-ROUTINES STRUCTURED THE
SAME AS THE FRONT-END.

FIGURE 4.22 : A DIAGRAMMATIC REPRESENTATION OF THE
SOFTWARE FOR THE "SLAVES"

(SLAVES 1 » 2 ARE IDENTICAL)

86

4.3.3 The Structure of the Fundamental Software

4.3.3.1 Interactive Programs of the Front-end and Slaves

In industrial control systems Interactive programs are performing an

increasingly important role in the man to machine interface. Although it

is not possible to quote current examples for conveyor systems

(microcomputers have only been used since the research was completed for

large conveyor control tasks) it was decided to Incorporate some examples

in the system model.

Typical examples of the interactive sub-routines developed and used in

the model are :

Clear memory locations "FLUSH";

Clear current time values "TRSET";

Clear Interrupt pointers "MRSET";

Display current time "TIME".

The 'clear' memory type sub-routines (FLUSH, TRSET and MRSET) were used

during system startup, the sub-systems requested simple decisions in

order to establish the initial conditions of the sub-system. Other

sub-routines, such as "TIME", were used during normal operation, if for

example the current time of the front-end was required, depressing the

'T' character of the connected VDU keyboard would initiate the

sub-routine "TIME". This sub-routine converted the values stored by the

Interrupt driven sub-routine "RLTIME" into English text for display on

the VDU.

87

The interactive sub-routines also enabled control of the hierarchial

network from any level in the model. The control point could be shifted

using a VDU and keyboard to initiate messages to the different

sub-systems (refer to Section 5.1.5 (p.110)).

Other examples of the interactive sub-routines are shown in Appendix A

(p.135) under the heading of 'FRNTND COMNDS'.

4.3.3.2 The Debug Programs of the Front-end and Slave

Use was made of the standard sub-routines, ('Load', 'Dump' and

'Breakpoint') developed at Footscray Institute of Technology for

debugging the system.

These three sub-routines were combined with many others especially

developed for the project by the author.

Typical examples of the special Debug sub-routines developed and used in

the model were:

Transmit a command "CMDTRN";

High speed data link select "TTYMD";

Error code calculate "CHEKSM";

Print memory locations "PRINT".

Refer to Appendix A for the detailed flow charts and software listings.

The debug sub-routines enabled the model to be gradually built up until

all of the sub-systems were linked together and properly communicating

using the defined system protocol for data transfer.

88

The initiation of the debug sub-routines was also achieved in the same

way as for the Interactive sub-routines. The debug sub-routines were the

basic sub-routines to which all of the other sub-routines were added.

Each of the debug sub-routines had specific functions to perform for the

model as follows:

"CMDTRN" (p.147): This was an important debug sub-routine and

was initiated by the control 'Z' character. The sub-routine

enabled the eight bit data, or keyboard characters following the

control 'Z' command to be transmitted via the high speed data

link (Front-end to Master, Front-end to Slave 1 and Front-end to

Slave 2) until an "EOT" character was processed. It was possible

to transmit interactive replies and debug commands or to simulate

a data transfer from one sub-system to the next (i.e. front-end

to Slave 1).

This sub-routine also enabled the transmission of simulated

messages (using the system protocol) that were formulated using

the VDU keyboard.

"TTYMD": This sub-routine was used to define which channel of

the dual RS232C data link was connected to the VDU. There were

four possibilities of connecting the VDU to the front-end as can

be seen from the number of cards in Photograph No 3 (p.51), i.e.:

89

The Front-end to Master data link card;

The Front-end to Slave 1 data link card;

The Front-end to Slave 2 data link card;

As a normal peripheral device.

"CHEKSM" : This sub-routine was developed as part of

the data link control sub-routines and as a debug program to

provide the error code (a checksum value) for a block of data

between any two memory locations "XX" and "YY" given by the

command - "CS, XX, YY" (refer to Appendix A (p.135) for more

details).

For the purpose of this project, the error code is defined as the

calculated checksum of the information field (16 bit words), between the

"STX" and "ETX" control characters of the system protocol. This value

was calculated by the originating sub-system and stored in the address

field of the transmitted message as shown by Figure 3.5 (p.41).

"PRINT" (p.130) : This sub-routine was developed to provide a

print-out of the contents of a block of memory between any two

memory locations "XX" and "YY" (refer to Appendix A for more

details).

4.3.3.3 The Interrupt Sub-routines of the Front-end and Slaves

As outlined in the preceding sections, the servicing of interrupts was a

fundamental mode of operation of the system model.

The structure of the software and the data link card logic was such that

the first eight bits received Initiated an interrupt controlled

90

sub-routine. The selected sub-routine turned off the interrupt request

logic of the lower priority interrupts until the incoming data block had

been received or there was an enquiry on the data received. If the data

was correct or there was an enquiry, the interrupt request logic was

again enabled after the transfer was finished. The transmitting

sub-system did not continue transmitting data if the previous data word

was not received back as an echoed message from the receiving sub-system.

Therefore, while a message was being received via one high speed

Interface, the other lower priority sub-system Interface cards had their

echo and Interrupt functions turned off to avoid any loss of information.

For example, if the front-end was processing a message from the master,

the higher order Interrupt would take precedence over a slave message

transfer but it would not be able to stop the transmission from the slave

if it did not also turn off the echoing of received data.

There were five major interrupt driven sub-routines involved:

Stack servicing "STKINT";

Real-time clock control "RLTIME";

Master to Front-end control "MSTRIT";

Front-end to Slave 1 control "SLVIIN";

Front-end to Slave 2 control "SLV2IN".

The Stack servicing sub-routine had the highest priority with the

Front-end to Slave 2 control as the lowest priority. As the title of

each sub-routine suggests each sub-routine had a basic function to

perform, i.e:

91

Stack Servicing "STKINT" (refer to Appendix A (p.131) for the

detailed flow chart and listing): An Important aspect of a

multiple task software system is its ability to be able to

restore and continue executing any sub-routines that have been

interrupted by a higher priority sub-routine. It became evident

while trying to integrate all of the software tasks to establish

the hierarchy of the model that it would not be possible to

execute the software sub-routines in a sequential order and still

maintain REAL-TIME control. Each interrupt would use five words

of the stack for storing the return address and the contents of

the four registers, therefore, three interrupts would require an

extension to the stack. It was necessary to extend the ten word

stack handling capabilities of the PACE microprocessor chip by

developing a complex sub-routine (STKINT) which extended the

stack into external memory. The stack-full or stack-empty

signals of the PACE microprocessor were used to initiate the

"STKINT" sub-routine via the interupt servicing function. The

sub-routine transferred a full stack to memory or restored an

empty stack from memory. It was not possible to control the

return to each of the interrupted sub-routines by using only the

"Push to Stack" instructions to control the sequence of return

without extending the storage area.

During the development phase of the sub-system software, it was

necessary to Include a message to the VDU "stack-full" or

"stack-empty" in order to monitor the co-ordination of the

transfers to or from the stack. The sub-routine could be

92

initiated during the execution of any of the interrupt driven

sub-routines, or by a "Push to/Pull from" the stack instruction,

which causes the internal stack to overflow,

Real-time clock control "RLTIME" (refer to Appendix A (p.126))

for the detailed flow chart and listing):

In order to provide the Real-time values for the interactive sub-routine

"TIME" in each of the sub-systems, a Real-time interrupt driven

sub-routine "RLTIME" (p.141) was introduced into each of the sub-systems.

This sub-routine was Initiated by the hardware clock card eyery

100 milliseconds. The sub-routine utilised the second highest priority

Interrupt and saved the contents of the registers and the return address

of the active sub-routine before executing the sub-routine. The memory

location for the tenths of a second portion of the stored current time

value were incremented and tested to determine if the seconds, minutes or

hours should also be incremented.

The sub-routine "TIME" for the front-end also updated the last image it

had received from each of the slaves which was used to determine if the

sub-system's clocks were synchronised. All of the values were stored in

ASCII characters which provided the format for the display sub-routine

"TIME";

The most important sub-routines developed for the model were the

interrupt driven data link control sub-routines which were used to link

the sub-systems together to achieve the system hierarchy.

93

Each sub-system used similar Interrupt driven sub-routines to format the

data (refer to Figure 3.5 (p.41) for the required format) for transfer

via the high speed data links. The front-end had the three major

interrupt driven sub-routines ("MSTRIT", "SLVIIN" and "SLV2IN") to

control its data links with the other sub-systems.

The data link interrupts sub-routines provided many of the requirements

for the model, i.e.:

orderly servicing of the data transfers between the sub-systems;

the method of data transfer;

the prototype system hierarchy;

the message protocol and error checks.

Since the structure of each sub-routine for controlling the high speed

data links was yery similar, only an explanation of the front-end

sub-routine "MSTRIT" will be given here:

Master to front-end control "MSTRIT" (refer to Appendix B (p.153)

for the detailed flowchart and listing): When the UART on the

Interface card connected to the master received the first

character (eight bits), it generated the interrupt (as explained

in the hardware Section 4.2.2) which Initiated the "MSTRIT"

sub-routine.

94

The character received by the UART was then checked against a

defined table (refer to Appendix B (p.161)) to determine if it

was a VDU command or a synchronising character "SYN" indicating

the start of a data transfer. Ten errors were allowed to enable

the link to settle before an inquiry on the data received was

transmitted back to the transmitting sub-system.

Once the link was established, a test was carried out for six

start of heading characters "SOH" to identify the first header

block as required for the system protocol. The next header

block, which was separated from the first by a single "SOH", gave

the next data link channel number for the front-end to use if the

message was to be passed onto one of the slave sub-systems.

The address block enabled the variable length data of up to 256

words to be loaded commencing at one of 256 locations in the

different sub-system memories depending on the address defined by

the originating sub-system.

The memory of the sub-systems had been divided into 256 sectors

of 256 words (256 x 256 = 65 536 maximum memory size). This

provided the flexibility necessary in this type of distributed

system for loading different memory arrangements depending on the

individual slave configurations or control tasks. The transmit

and receive buffers and the free memory space of each sub-system

could be in different locations for each sub-system. Hence, the

sector address and relocatable address pointer in the control

block provided the required flexibility. The address field of

the message (refer to Figure 3.5 (p.41)) also included the error

95

code for the data hence when the data had been received and

loaded in the sub-system receive buffer, it was checked by

the sub-routine. If a difference was detected between the

calculated error code (a checksum value) and the received

error code then the transmission control character "NACK" was

transmitted back to the transmitting sub-system, refer to the

general flowchart of Figure 4.23.

The next field of the message after the address field contained

the control commands of the "Control Block" for determining the

actions to be taken by the receiving sub-system. Refer to

Section 4.3.4 for typical examples.

96

SAK/E CURRENT PROGRAM AND
STATUS INPUT MESSAGE
(STATUS AND COUNTER)

INPUT MEMORY SECTOR AND
MESSAGE LENGTH ERROR CODE
RETURN CHANNEL ADORESS

INPUT MESSAGE-(COMMANDS

FOR NEXT LEVEL ADORESS)

INPUT DATA BLOCK

EXIT IF DEBUG

COMMAND

EXIT WITH *ENQ'

ON MESSAGE

EXIT WITH -ENQ'

ON MESSAGE

EXIT WITH 'ENQ'

ON MESSAGE

RETURN WITH NEGATIVE
ACKNOWLEDGB'NACK*

IN MESSAGE

N

RELOAD COMMAND

AND EXECUTE

I
FIGURE 4.23: GENERAL FLOW

CHART OF THE INTERRUPT SUB

ROUTINE "MSTRIT"

RELOAD AND RESTORE
—PBEyiGUS PROGRAM

97

The detailed flowcharts in Appendix B represent the sequence of action

carried out by the high speed data link sub-routines, ("MSTRIT", "SLVIIN"

and "SLV2IN") of the model.

In summary, the High Speed Data link interrupt service sub-routines of

the sub-systems provided the basic software structure of the model. A

message transmitted from the master contained the controlling commands

(refer to Figures 4.24 (a), (b), (c), (d) and (e) for typical examples)

which determined the actions to be carried out at the lower levels,

similarly for messages from the front-end to the slaves. It was possible

to control, alter and detect errors at all levels (master, front-end and

slave) in the model.

98

4.3.3.4 BASIC Language Sub-routines in the Master

In order to draw a graphical representation of the open cut conveyor and

dredger plant layout, a program was written in BASIC with Assembler

sub-routine calls for the VDU (A Textronix CRT display unit with

graphics). The symbols used in the display were calculated using

mathematical formulae in BASIC with the resulting data transmitted to the

display by way of an Assembler call. The unique symbols for representing

the plant items were calculated and then used repeatedly depending on the

number of conveyors or dredgers in a conveyor route.

Once the layout had been derived it was only a matter of requesting the

raw data (consisting of CRT co-ordinates with the CRT dot on or off) for

display.

In addition to the open cut plant display, a BASIC sub-routine with

Assembler sub-routine calls was also used to set up the master to

front-end data transfers. This enabled the BASIC sub-routine to control

the display while transmitting data to the other sub-systems. A single

keyboard character was used to Initiate the Assembler call to transmit a

defined data block.

Once the data was available for driving the graphic CRT (the system VDU)

from the system master it was also possible to use the data produced by

the BASIC sub-routine to create a similar display with the Textronix unit

connected at any sub-system. The sub-system's memory was down-line

loaded with the raw display data from the central system. BASIC was

confined to the system master and only the display data was used at the

lower levels. BASIC was not used in the microcomputer sub-system

software.

99

4.3.4 The Operating Strategy of the Model

An important feature of the message protocol in each of the high speed

data link interrupt handling sub-routines (i.e. in "MSTRIT", "SLVIIN" and

"SLV2IN") was the "Control Field" (refer to Figure 3.5 (p.41)). From the

sub-routine, appendix B, (p.156) and the "Control Block" tables of

Figures 4.24 (a), (b), (c), (d) and (e) it can be seen that the receiving

sub-system substituted the first word of the "Control Block" with the

second word and then reversed the two eight bit characters of the 16 bit

word. This logic was used to enable the data to be transferred to the

required destination or to be received from the originating sub-system

computer regardless of the data transfer path which could be through

several sub-systems and levels.

Each sub-system had the same basic protocol handling sub-routine;

therefore, the treatment of the "Control Block" had to control the

transfer of data through all levels. The words were reversed or

substituted in order to set-up the correct transfer sequence as shown by

the examples in Figures 4.24 (a), (b), (c), (d), and (e).

The least significant eight bits of the first word of the "Control Block"

(which consisted of two ASCII characters) was used by the receiving

sub-system, the second of the two ASCII characters was used by the next

sub-system in the hierarchy. The second word of the "Control Block" was

similarly used by any third and fourth level sub-systems as shown by

Figures 4.24 (c) or (e).

100

MESSAGE "CONTROL BLOCK"

0̂1' 1st Word) From
•) the

2nd Word) Master

Becomes:

1st Word) Transposed
) hy th*:*

2nd Word) Front-end

FIGURE 4.24 (a) MASTER TO FRONT-END : SEND A BLOCK OF DATA

•

Figure 4.24 (a) represents the case where, for example, there was a

request for the current time of the front-end. The message block

transmitted by the master contained the memory address of the front-end

time value which had been stored by the sub-routine "RLTIME" as well as

the "Control Block" as shown in the table above. The front-end computer

responded with the two word data block (tenths of a second and seconds;

minutes and hours) and included the error code for the data.

- Message destination

- Do not care characters (8 bits)

- Transmit command character (8 bits)

- Load command character (8 bits)

- First word of command (Figure 4.24(a))

- Second word of command (Figure 4.24(a))
(control commands)

(Possible "Control Block" characters)

Each of the tables of Figures 4.24(a) to (e) Indicates the required

"Control Block" characters in the system message (refer to Figure 3.5

(p.41)). The original two words as determined by the master are shown.

These two words are transposed by the receiving sub-system in order to

determine the "Control Block" for the next level. The least significant

character of the first word as shown by the quotation marks determines

the action to be taken by the receiving sub-system.

101

MESSAGE "CONTROL BLOCK":

0"L"

00
1st Word) From

) the
2nd Word) Master

Becomes;

0"0*
00

1st Word) Transposed
) by the

2nd Word) Front-end

FIGURE 4.24 (b) MASTER TO FRONT-END : LOAD A BLOCK OF DATA

Figure 4.24 (b) is an example where the real-time clock value of the

front-end value had to be changed. The new value was transmitted to the

front-end, checked for errors and then loaded.

M

RE.

S

\

"r" L

1 ,

'
T

L

f
1, -p ff

MESSAGE "CONTROL BLOCK":

Master commands the slave to
load a block of data into the
front-end from the slave.

0'T'
TL

1st Word) From
) the

2nd Word) Master

Becomes in the front-end:

CT-

LT

1st Word) Transposed
) by the

2nd Word) Front-end

Then in the slave:

1st Word) Transposed
) by the

2nd Word) Slave

FIGURE 4.21 (c) MASTER TO SLAVE : LOAD IN F.E.

Another example of Figure 4.24 (c) would be the case of a direct link

lost to a slave, the second RS232 link (or indirect path) would be used

to communicate between the master and the slave via the adjacent slave.

102

M

RE.

S

\

"T"

\

"L"

MESSAGE "CONTROL BLOCK":

Master commands the slave to
load a block of data:

1, •»»

0T
LT

1st Word) From
) the

2nd Word) Master

Becomes:

TV 1st Word) Transposed
) by the

2nd Word) Front-end

FIGURE 4.24 (d) MASTER TO SLAVE : LOAD IN SLAVE

These two examples, 4.24 (d) and (e) are direct requests to a plant item

such as a conveyor. Figure 4.24 (d) Indicates the down-line loading of

the starting parameters for the slave control sub-system and

Figure 4.24 (e) is a request for data (a sequence of events) stored at

the slave.

M

RE.

S

*

"r"

MESSAGE "CONTROL BLOCK":

Master commands the slave to
transmit a block of data back.

TT

s
1st Word) From

) the
2nd Word) Master

Becomes in the front-end:

Then in the slave: ^n
TT

$T)
TT'
'\S

fransposed

FIGURE 4.24 (e). MASTER TO SLAVE : SEND A BLOCK OF DATA

The examples in Figures 4.24 (a), (b), (c), (d) and (e) were used with

the interrupts servicing sub-routines, the hardware, the system protocol

and the different sub-systems (master, front-end and slaves) to

103

demonstrate the operating strategy of the Model. In order for the model

to operate as a prototype system, each facet as explained in the

preceding sections of Chapter 4 had to function correctly.

Depending on the function required, such as a request for the current

time, a selection initiated via the system VDU would start a sub-routine

which in turn generated a message using the system protocol for

transmission to the lower levels.

A message from the master to the slave requesting data (i.e. from the

control centre to the conveyors) would use all of the hardware facilities

(Interrupt flags, baud rate control and Interconnected sub-systems) as

well as the software facilities incorporated in the Model, such as the

logic for processing the "Control Block" words.

A VDU and keyboard was used to control the hierarchical network from any

level in the system while still maintaining the Master/Front-end/Slave

configuration. Data was transferred through the system model using a

message protocol that met the standards required (refer to AS 1484,

Parts 1 to 5 (15) and Appendix F).

104

CHAPTER 5 : THE VALIDATION OF THE CONCEPTS INVESTIGATED

5.1 The Performance of the System Model

5.1.1 Independent Control

Using the model as outlined in Chapters 3 and 4, it was demonstrated that

the concept of independent control can be maintained. This is especially

important in open cut control of conveyors. Using the more traditional

relay logic techniques of the past, the conveyor control systems had

developed by the 1970's to a stage where the conveyor could continue to

operate even with total loss of the control centre. It is essential for

coal supplies to have no single point of failure in the overall control

system. Therefore, one of the objectives of the research was to show

that independent control at the plant would be maintained and that it

could be improved by using microcomputer-based sub-systems. To

demonstrate independent control using the microcomputer, the links (as

shown in Figure 3.3 (p.26) between the slaves, the front-end and the

master were disconnected. The slave continued to monitor the field

simulation panel (refer Photograph No 7) and displayed outputs as a

result of simulated Inputs from the panel switches. The improvements in

overall conveyor control and monitoring were demonstrated by using a VDU

connected to the broken link at the slave. Control and monitoring was

still possible using the VDU while separated from the central master and

sub-master. It is therefore possible for mobile field personnel to

control the conveyors via VDU units at the plant locations. The same

exercise was repeated for the link between the master and the front-end.

It also performed as an independent sub-system with control maintained

105

via the VDU connected to the disconnected interface. The software

sub-routines of each sub-system, test for VDU control commands or the

system protocol in any data received.

5.1.2 Results of Actual Data Transmission

Using the "Real-time Clock" card as outlined in Section 4.2.3, the

changes in the field inputs were stored with the time of occurrence.

After allowing for contact bounce, any change in the status of the input

which had been previously transmitted to the master, initiated the

transmission of a data block identifying the input and the time of

occurrence. The slave sub-system was, therefore, able to record events

chronologically with a resolution of one hundred milliseconds between

occurrences which was approaching the speed of contact bounce. This

Improvement in recording is a significant advance over the Morwell Open

Cut system's resolution of six seconds. In large conveyor networks, six

seconds is not fast enough to record the order of occurrence of events

over the whole open cut plant. The individual microcomputers have fewer

Inputs to monitor than a single overall computer and fewer functions to

perform. As a result, the operations personnel would be able to identify

the initiating fault.

In order to demonstrate the down-line loading of new sub-system

parameters, a data block was transmitted to the slaves from the master in

a similar manner as represented by Figure 4.24 (d) (p.102). The data

contained new addresses for the direct and alternate links to the slave

sub-system reversing their roles. As a result, the direct link changed

over to the alternate link (refer to the indirect path of Figure 4.18

(p.74) demonstrating that any of the sub-system's parameters could be

106

changed to suit, for example, new digging patterns in a constantly

changing open cut environment. This could avoid the need for major plant

outages for changes to conveyor control functions.

In addition to providing a method of data transfer, the microcomputer

based sub-system could in the future enable the removal of any fixed &,

input to output interface between the conveyor control sub-system and the

data acquisition sub-system. It was possible to demonstrate this by

using the model because the slave sub-system developed, included both

control and data acquisition functions within the one sub-system.

At the time of this study, each input monitored at the open cut control

centres had a separate input in the data aquisition equipment connected

to a separate output in the conveyor control systems. Using the serial

transmission capabilities of the model, it was demonstrated that the

status of the plant (approximately 6000 conveyor and dredger status

signals in total) could be monitored using a transfer of data from the

dedicated sub-systems. The number of inputs monitored by the master of

the model were varied by the size and contents of the data block

transferred.

It was realised during the development of the format of the data block

and the message protocol for the model, that this aspect would represent

the biggest problem for an open cut conveyor system. During the

construction of the open cut, each of the conveyor sub-systems would be

supplied by a different conveyor manufacturer, therefore, the plant

specifications would have to detail the data and the expected message

protocol formats. The interface, which would use a defined protocol

Instead of physical links, between the different manufacturer's

107

sub-systems, would still remain as the area to be carefully Implemented.

Serial data transfer does provide flexibility, but it would be necessary

to specify the entire structure of the message and the data block. The

execution of control commands ideally has to be error free.

5.1.3 Performance of the Hardware to the Manufacturer's

Specifications

Two different manufacturer's Universal Asynchronous Receiver Transmitter

(UART) chips were used for the high speed serial interfaces. The two

devices were pin for pin compatible, with only small differences in their

timing characteristics. The two devices performed identically at the

lower speeds, but at 9600 baud the cheaper device did not always transmit

the data loaded by the computer. This was evident when the data bit

lengths were of the same time duration as the 'strobe' or 'transmit data'

pulse which occurs at 9600 baud.

Another problem of the UART not stressed by the manufacturers, was its

'zero catching' feature. When standard Hewlett Packard software was

used, the card control information was transferred to the Interface card

before the data. The problem with this, was that the control word

transferred to the card contained zero's in the data section of the word.

The zero's were retained by the UART blocking the data bits. Therefore,

in order to use standard software sub-routines, a buffer had to be

Included on the interface card and the UART strobed every time it was

accessed in order to clear any zeros.

108

5.1.4 Software Performance

Each of the sub-routines developed were used in the different sub-systems

with only minor modifications. Another objective of the project was to

show that a microcomputer-based sub-system would be better suited to the

one-off nature of conveyor control than a hardwired sub-system. This was

clearly demonstrated by being able to use the software developed for one

sub-system in the other sub-systems.

A further objective was achieved by shifting some of the central system

tasks to the sub-systems. Each of the sub-systems sorted its events into

their chronological order and also tested each data transfer for errors

before interrupting the master. This was a task previously carried out

at the control centre.

5.1.5 Increased Reliability

As outlined in Section 4.2.5, the system model had an indirect link to

the master via the alternate RS232C serial input and output on the high

speed interface card. When the direct link was lost, it was demonstrated

that the communication with the conveyor was maintained by using the

alternative indirect data path as shown by Figure 4.18 in Section 4.2.5.

In the development of the system model, care was taken to ensure that,

when the hierarchial strategy was established, this path had an order of

priority lower than the direct path. To avoid a conflict or loss of

message, it was necessary to test in this direction for messages on a

time initiated basis and not have interrupts during the servicing of the

direct link.

109

A second advantage of the dual link is that it provided an interface for

the local command VDU, making it possible to take control at this level

when required. Therefore, overall control can be maintained by using the

VDU at the front-end level or conveyor level, refer to Figure 5.1. The

alternate path provides a more reliable link between the sub-systems and

can also increases the overall reliability of an open cut control system

by providing more than one point of control and communication path.

110

UJ
>
LU

VDU

MASTER

TEMPORARY

O

UJ o
>. o

(T

o

UJ

UJ
>
UI

o
\-
z
o
u a

o Q>
LU
to

c

X X

c
v_

PLANT INPUT / OUTPUTS

FIGURE 5.1 : VDU CONTROL LOCATIONS (LEVELS) IN THE MODEL

Ill

5.1.6 Interrupt Servicing for Multiple Tasks

Careful planning was required for the servicing of the interrupts of each

sub-system task. Priorities were set for the different elements in the

system model. Also, the multiple sub-routine handling techniques

required modifications initially until the correct return addresses for

the sub-routines were obtained. Light emitting diodes (leds) were used

as a visual indication of the data transfers during the execution of each

sub-routine and were connected to the transmit and receive lines. Error

messages for incorrect sub-routine handling and the echoing of received

data were used to establish the procedures for multiple tasks

Implementation.

5.2 THE SUCCESSFUL IMPLEMENTATION IN AN OPEN CUT ENVIRONMENT

5.2.1 General

After the research work had been completed and tenders had been called,

orders were placed with Siemens for two large systems, one for the

Yallourn Open Cut and another for the Loy Yang Open Cut. The Loy Yang

Open Cut system is the most recent and was completed in November 1983,

hence more of the objectives have been achieved at Loy Yang.

5.2.2 The Loy Yang System

Briefly the system for the Loy Yang Open Cut consists of three major

parts, the Central Computer System (the master), the Remote Data

Acquisition equipment (equivalent to the front-end and slaves) and the

Microcomputer Conveyor Controllers.

112

5.2.2.1 The Central Computer System

The central system consists of two Siemens 300-R30 16 bit minicomputers

in a master (active) and stand-by configuration. Either minicomputer can

takeover the active role. A supervisory watchdog unit monitors the

operation of the central system and in the event of a failure of the

master or any peripheral, it automatically switches over the alternative

device. Manual selection via a control panel of the back-up equipment is

also possible. The central unit also contains a master clock for

synchronising the overall system.

The languages used in the central system were 'Fortan' (for volume

calculations), 'Pascal' (for displays), 'Assembler' (for system reports)

and 'Simat' a Siemens control language.

SZ iTntn

ria
• • • i c

HE

2
m i a r m

CENTRAL t SU8MASTER COMPUTER SYSTEMS

12*

El

Ei

iH

oiacci LiMi

rcLOCTur C—LI L I M

lUOlO LIM

OUrtTKdIM LIMCL

*
•Ml Ik

it
•1
if

cvuTion*
tMCOCCH HtMOU oulbtMllONV
mnVCLLlNC STDCKri) •IXOtC OUItt*IIIMi
LToc coMvc'ON mMiic ouitrtriONt
BIMICII W>«>TC SIDIKMS
VUVIMC SIKIIOM llVUt . OU'nilS
suKiaflON iM>ui / ouiiMrs
WMOTC (I X I I M 'ri> IMIt
tmw
HllO lONI IIJM|I«

lOCl
•MlIU

ilallON rr
am lati MILL

••010 Wit
(rt i ioN

INWIVa LIMI
•WHO w u

tX' ION

ruLO

1 T

FIGURE 5.2 : LOY YANG SYSTEM CONFIGURATION

113

5.2.2.2 The Data Acquisition Equipment - The Central Remote

Controllers and the Remote Outstations

The Central Remote Controllers are located in the control centre and

comprise 11 microcomputer-based sub-masters which are linked via serial

links to the central master. The sub-masters reduce the functions

performed by the minicomputer by directly controlling the plant based

slaves or remote outstations. All software is written in Assembler. The

tasks performed by the central sub-master units are:

message error checking;

cyclic checking of remote outstations;

maintaining an image of the plant status;

control of the data transfer between the master and slaves.

The Central Remote Controllers are linked to the fixed plant (conveyors)

over dedicated cable pairs and two wire modems, whereas the dredgers are

linked via UHF radio links. The system of central remote controllers and

data links are configured such that a single failure does not cause the

loss of more than 10% of the system or one group of plant items.

The Remote Outstations (slaves) are designed to provide the necessary

interface between the control centre and the plant items. The slave

monitors and controls the status of the plant and transmits Information

back to the Control Centre. Each remote outstation has the same message

checking and control capability as the central sub-masters.

114

A brief summary of the Remote Outstations functions are:

the scanning of digital inputs;

the scanning of pulse counters;

analogue sampling of the raw coal bunker levels;

storage of events during link loss;

chronological recording of field events;

the provision of control outputs.

5.2.2.3 The Microcomputer Conveyor Controllers

The microcomputer conveyor controller provides the same basic functions

as the earlier relay or discrete logic systems. It controls the motors

and provides outputs and Inputs for the central system remote

outstations. The original specification for the conveyor control

sub-systems included the requirement for a serial link to the central

system. But as a direct result of the research and a check on the

developments in industry, it was decided to continue to use the

traditional input to output interfacing method between the conveyor

control and data aquisition systems as the major suppliers of control

systems did not have a suitable serial link or message protocol available

for industrial conveyor control systems at the time.

5.2.3 The Concepts Incorporated in the Loy Yang System

Many of the concepts investigated during the research program were

Incorporated in the Yallourn and Loy Yang Open Cuts, for example:

115

Independent control of plant was maintained by ensuring that the

plant microcomputers do not rely on the central computer;

chronological recording and secure data transmission techniques

are used;

Ob

some of the central system tasks have been distributed out to the

data aquisition sub-systems;

alternate paths are available via short sections of cables

between the conveyor lines at the transfer and bunker areas;

the traditional conveyor control sub-systems have been replaced

by programmable microcomputer sub-systems.

The functions of the microcomputer conveyor controllers and the remote

data acquisition equipment (remote outstation) were performed by the

single slave sub-system in the system model as a single unit.

116

CHAPTER 6 : CONCLUSIONS

Following the development of the system model it has been demonstrated

that a digital microcomputer-based system can successfully fulfil the

basic requirements for the control and monitoring of an open cut coal and

overburden transport scheme. All of the basic functions required for a

full scale system were modelled, including data transmission between the

different levels.

The timely installation of the distributed system in the State

Electricity Commission's Loy Yang Open Cut with a minimum of delays has

reinforced the original motivations behind the research. The Loy Yang

system has Incorporated many of the concepts investigated during the

research program. It also has the capabilities of including more of the

concepts in the future when further developments in the industrial

control field make them standard features.

As a result of the research, the following conclusions were reached:

A scheme using microcomputers for remote control of a conveyor

transport network connected to a master while maintaining

independent local control at the remote plant is feasible;

System reliability and information gathering techniques can be

Improved by distributing some of the central system tasks between

the plant sub-systems;

117

An Improvement in the detection of faults and the management of

capital intensive large Industrial plant is possible;

Control at several levels in a large plant situation is possible

by using the facilities provided by the microcomputer-based

sub-systems;

Many of the computer techniques, such as down-line loading,

normally associated with large computer systems are also feasible

with distributed microcomputers;

The Interfacing techniques used between sub-systems can be simple

requiring only a minimum of hardware. Serial data links can also

be used for interfacing control VDU's providing a solution to the

loss of control from the higher level;

One of the most Important functions of remote control and

monitoring of an open cut Installation is to maintain a reliable

coal supply. The distributed microcomputer, with its inherent

reliability, will enable outages caused by the control systems to

be reduced;

Interactive software packages and other computer techniques can

provide data for the control engineer to assist with the fault

finding;

In the future, a greater use will be made of the microcomputer to

Implement control functions hence reduced one-off design costs;

118

Further advances in the emulation of message protocol by either

hardware or software techniques will also benefit distributed

microcomputer schemes by defining the standards to be used.

Distributed computer systems require a well defined message structure in

order to communicate with other computers within the system. The

successful use of the microcomputer will depend on a detailed functional

description of the application and a thorough knowledge of digital

techniques.

119

CHAPTER 7 : FURTHER WORK AND RECOMMENDATIONS

Now that the basic system model has been developed, further work could be

carried out in the areas where additional developments are needed before

any more advancements in industrial control can be made. These areas

are:

down-line loading of control parameters;

linking of different manufacturer's microcomputer - based

conveyor control systems directly to existing control centre

masters;

distributing more of the central system tasks to the remote

sub-systems;

Increasing the amount of preprocessing of Information at the

plant;

introducing more interactive diagnostic techniques;

achieving limited control via VDU displays at the different

levels in a system hierarchy.

This work could be carried out with the actual systems after further

tests with the model.

In addition to using the model, it is recommended that an investigation

into directly linking the plant controllers with the system master should

include a study of the multiprocessor sub-systems due for release in the

120

near future. This device might be able to handle the tasks of control

and data acquisition more effectively than a single microprocessor

system.

The above tasks were implemented in the model, but since the model was a

limited control system, they were not recommended for the Yallourn or Loy

Yang projects until further tests are carried out. The linking of

conveyor controllers direct to the central master and software controlled

Indirect paths had been included in the original designs for the conveyor

plant but were removed as a result of the study. These options will be

investigated in the future depending on developments in the Control

Industry.

Other concepts which were included in the plant and control centre

specifications at the time of the research were:

replacement of traditional techniques with microcomputer-based

control;

fast scanning of plant signals and chronological recording of

data to a resolution of 25 milliseconds;

serial transmission of data to the control centre;

distributed central system tasks.

As a result of the research, these concepts were continued and have since

proven to be successful.

121

Many of the concepts of the study were incorporated in the SECV's plant

specifications at the time of the research work. This was due to the long

lead times required for design and installation and although some of the

concepts have been removed, the basic objectives of the study have been

achieved.

Successful completion of the initial stages of the Loy Yang Open Cut

projects in 1984 has demonstrated that there is a future for the

microcomputer in industrial control. In addition, it has demonstrated a

role for the close co-operation between large industrial control system

users and Engineering Institutes.

122

REFERENCES

HARDWARE DEVELOPMENTS

1 Amendt, A J, "MICROPROCESSORS - THE REVOLUTION IN CONTROL SYSTEM
DESIGN". Control and Instrumentation (February 1976), pp 28-31.

2 Deshon, W E, "MICROPROCESSORS IMPROVE SERIAL COMMUNICATIONS",
Control Engineering (March 1978), pp 127-129.

3 Dominguez, J and Tennant, J, "MICROCOMPUTERS UNLOAD DATA LINKS",
Electrical World (15 July 1975).

4 Freeman, L L, and Fowler, A M, "DEVELOPMENT SYSTEMS - HARDWARE
AND SOFTWARE REQUIREMENTS", The Institution of Engineers,
Australia, Conference Papers No 78/13.

5 Hailstone, G, "SOME ASPECTS OF THE USE OF COMPUTERS IN
SUPERVISORY CONTROL SYSTEMS", Electrical Engineer (October 1975),
pp 13-18.

6 Jenkins, D W, "THE CHOICES BETWEEN DISTRIBUTED AND CENTRAL
COMPUTING CONTROL", Control Engineering (June 1978), pp 61-64.

7 Knott, G J, "POTENTIAL USE OF MICROPROCESSORS IN THE DISTRIBUTION
INDUSTRY", Electrical Engineer (May 1978), pp 67-71.

8 Prophet, G, "DISTRIBUTED PROCESSING POWER - A NEW TOOL FOR
PRODUCTION CONTROL", Control and Instrumentation (June 1977), pp
41-43.

9 Sargent and Lundy, "ELECTRONIC VS CONVENTIONAL CONTROLS IN POWER
PLANTS ADVANTAGES AND DISADVANTAGES", Combustion (January 1978),
pp 20-22.

10 South, E, "A DISTRIBUTED PROCESSING SYSTEM FOR NETWORK CONTROL
AND MONITORING".

11 Tobias, J, "DEVELOPMENTS AND TRENDS OF THE MICROPROCESSOR",
Control Systems, Number 3, pp 17-31.

12 Washburn, J, "COMMUNICATIONS INTERFACE PRIMER", Instruments and
Control Systems (March 1978), pp 43-48.

123

SOFTWARE

13 Bishop, P 6, Parish, C C M and White, D J, "A MEDIUM LEVEL
PROGRAMMING LANGUAGE FOR MICROPROCESSORS",
Central Electricity Research Laboratories, Job No VL035 (March
1974).

14 Falk, H, "MICROCOMPUTER SOFTWARE MAKES ITS DEBUT", IEEE Spectrum
(October 1974), pp 78-84.

15 Gibbons, J, "WHEN TO USE HIGHER LEVEL LANGUAGES IN
MICROCOMPUTER-BASED SYSTEMS", Electronics (August 1975),
pp 107-111.

16 Ogdin, C A, "THE HIGHS AND LOWS OF MICROCOMPUTER PROGRAMMING
LANGUAGES", Instruments and Control Systems (June 1978), pp
81-84.

17 Steger, J P, "INTRODUCTION TO MICROPROCESSOR PROGRAMMING",
Electronic Engineering (October 1975), pp 43-47.

18 Telecom Australia Research Laboratories, "MICROPROCESSOR
NEWSLETTERS", (May 1976), J Hont.

ERROR TECHNIQUES

19 Burton, H 0, "ERRORS AND ERROR CONTROL", Proceedings of The IEEE,
Vol 60, No 11 (November 1972), pp 1293-1301.

20 CCITT, "INTERNATIONAL TELECOMMUNICATION RECOMMENDATIONS",
Chapter 2.

21 Martin, J D, "USING POLYNOMIAL CODES", Electronic Engineering
(July 1978), pp 46-49.

22 Owens, A and Harknett, M R, "BASIC AND EXTENDED CYCLIC HAMMING
CODES", Electronic Engineering (December 1975), pp 34-37.

23 Philips Industries Ltd, "ENCODER AND DECODER FOR ERROR
DETECTION", GZF1202 Product Information, pp 18-19.

24 Townsend, R L, and Watts, R N, "EFFECTIVENESS OF ERROR CONTROL IN
DATA COMMUNICATION OVER THE SWITCHED TELEPHONE NETWORK", The Bell
System Technical Journal, Volume XLlll (November 1964), No 6, pp
2611-2638.

124

GENERAL REFERENCES

25 Australian Standards Association, "DIGITAL DATA TRANSMISSION AS
1484, PARTS 1 TO 5".

26 Bowles, K L, "PROBLEM SOLVING USING PASCAL",
Springer-Verlag.

27 Cotton, A W , and Lowe, G J, "HIERARCHICAL CONTROL USING SATELLITE
MICROPROCESSORS", The Institution of Engineers, Australia,
Conference papers on Microprocessor Systems, Publication No 77/11
(1977).

28 Hewlett Packard, "21MX COMPUTER SERIES - REFERENCE MANUAL",
December 1974.

29 Kuo, F F, "COMPUTER APPLICATIONS IN ELECTRICAL ENGINEERING
SERIES", Prentice-Hall Electrical Engineering Series. Digital
Electronics with Engineering Applications.

30 McNamara, J E, "TECHNICAL ASPECTS OF DATA COMMUNICATIONS",
Digital Equipment Corporation.

31 National Semiconductor, "PACE USERS MANUAL", (December 1974).

32 PACE, "MICROPROCESSOR ASSEMBLY LANGUAGE PROGRAMMING MANUAL",
National Semiconductor (January 1977).

33 Wickes, W E, "LOGIC DESIGN WITH INTEGRATED CIRCUITS",
Wiley, J, and Sons Inc.

125

APPENDIX A : SYSTEM SOFTWARE : PART A

INTERACTIVE AND DEBUG SUB-ROUTINES:

SUB-ROUTINE

. RLTIME

. TIME

. CONTROL ' Z '

. PRINT

. STKINT

. FLUSH

. TRSET

. MRSET

FLOWCHART
(PAGE)

126

128

129

130

131

132

132 .

133

LISTING
(PAGE)

141

145

147

147

149

151

15 2

152

126

'RLTIME' SUB-ROUTINE - APPENDIX A

SAVE REOISTERS
* RETURN ADDRESS

ON STACK

SAVE FLAOS

NOTEi- (1) REAL TIME SUB-ROUTINE 'RLTIME' USES DECIMAL
ADDITIONS TO DETERMINE OVERFLOMS BETWEEN SECONDS.
MINUTES AND HOURS.
lE.l MINUTE - 80 SECONDS
EACH PULSE OR INTERRUPT INCREMENTS iY
100 MILLISEC8 (0.1 SECONDS) THEREFORE
AN EXAMPLE MOULD BEi-

58.9 8ECS
••O.l ADD CONSTANT
00.0 OIVES AN OVERFLOH

LOAD TENTHS OF
SECOND A SECONDS

'tCCTEN'

THIS IMPROVES THE EFFICIENCY OF THE RESULT
FOR THE OUTPUT SUB-ROUTINE 'TIME'.

INCREMENT VALUE

LOAD MINUTES
VALUE 'MIMUTS'

STORE NEN VALUE
'SECTEN'

INCREMENT MINUTES
VALUE AND STORE

MAX
POSSIBLE 1
85.538

,MINUTES .

RESET TENTHS
i SECONDS VALUE

LOAD lECONOS
VALUE 'SECOND'

LOAD HOURS/MINUTES
'HR8MIN' AND INCREMENT

INCREMENT AND
STORE NEN VALUE

LOAD TENTHS OF
SECOND VALUE

'SECTEN'

STORE HRSMIN
FOR FRONT-END

INCREMENT HOUR
PORTION OF 'HRSMIN'

INCREMENT AND
STORE NEN VALUE

STORE IN HRSMIN
FOR FRONT-END

LOAD TENTHS OF
SECOND AND SECONDS
FOE SLAVE 1 IMAOE

INCREMENT VALUE
'8ETEN1'

LOAD HOURS
VALUE 'HOURS'

INCREMENT AND
STORE NEH VALUE

127

'RLTIME' SUB-ROUTINE - APPENDIX A CPAGE 2 OF 2)

RESET SECONDS AND
TENTHS OF SECOND

'SETONl*

STORE NEH
VALUE IN '8ETEN1'

LOAD HOURS/MINUTES
FOR SLAVE 1 'HRMINl'

INCREMENT
MINUTES PORTION

INCREMENT HOUR
PORTION OF 'HRMINl'

STORE IN FRONT-END
IMAOE AREA

LOAD TENTHS OF SECOND
AND SECONDS VALUE FOR
SI^VE 2 IMAOE 'SETEN2'

'HAS
^ VALUE

Y / REACHED
.80 MINUTESy

STORE HOURS
MINUTES FOR

SLAVE 1 IN FRONT-ENO
IMAOE OF

SLAVE 1 CLOCK

INCREMENT
VALUE 'SETEN2'

RESET SECONDS AND
TENTHS OF SECOND

'8ETEN2'

LOAD HOURS/MINUTES
FOR SLAVE2
•HRM1N2•

INCREMENT
MINUTES PORTION

RESTORE RETURN
ADDRESS

RESTORE REOISTERS
RESET INTERRUPT

FLAOS

RETURN TO
MAIN PROCRAM
END OF CLOCK
INTERRUPT

STORE HOURS
MINUTES IN

SLAVE 2 IMAOE

INCREMENT HOUR
PORTION OF 'HRMIN2'

STORE IN IMAOE

128

'TIME' SUB-ROUTINE - APPENDIX A

HAIT FOR COMPLETION
OF REQUEST

(FOR FRONT-ENO. SLAVE 1 OR SLAVE 2)

OUTPUT MESSAGE
'TIME IN HRSiMIN.SECS.TENTHS'

OUTPUT MESSAGE
'TIME IN HRSiMIN.SECS.TENTHS'

LOAD THE ADDRESS OF
FRONT-ENO TIME VALUES

SUB-ROUTINE 'TIME'

(1) OUTPUTS TIME IN ASCII

(21 MAX 88158.58.9 FROM INTERRUPT
CONTROLLED SUB-ROUTINE 'RLTIME'
NHICH STORES THE VALUES IN
BINARY ANO HEXIOECIMAL.

O) THE FRONT-END KEEPS AN IMAOE
OF THE CLOCKS IN THE SLAVE
SUB SYSTEMS FOR REFERENCE.

(4) ALL VALUES OF TIME (FRONT-END
ANO SLAVES) ARE UPDATED
EVERY 100 MILLI8EC0N6.

SELECT OUTPUT
CHANNEL FOR

PRINTOUT OF TIME

SET CONTROL NORD
FOR END OF THO

MORO OUTPUT 'RTCHRO'

OUTPUT 5 SPACES

SHIFT LOADED HORO
RIOHT FOR FIRST

CHARACTER

ADD HEX '30 TO
CONVERT TO ASCII

SHIFT SAME HORO
LEFT FOR SECOND

CHARACTER

OUTPUT CONVERTED
HEX VALUE

PREPARE FOR
LAST IMAOE OF
SLAVE 1 TINE

STORED IN FRONT-ENO

PREPARE FOR
LAST IMAOE
OF SLAVE 2

LOAD THE ADDRESS
OF SLAVE I TIME

LOAD THE ADDRESS
OF SLAVE 2 TIME

OUTPUT
THO SPACES

U

RETURN TO
MAIN PROGRAM

129

CONTROL 'Z' SUB-ROUTINE - APPENDIX A

NOTE!

(1) THIS SUB-ROUTINE ENABLES THE
TRANSMISSION OF DATA HITHOUT
THE SYSTEM PROTOCOL.

(2) THE LINK COULO BE CONNECTED TO
ANOTHER LEVEL IN THE HIERARCHY
TO RECEIVE THE UNFORMATED DATA
OR A VDU UNIT.

(3) THE MESSAGE COULD BE USED
FOR SIMULATING THE SYSTEM PROTOCOL.

ENTER HERE ON INTERRUPT
OR BY FLAG REQUEST

SAVE CURRENT LINK ADDRESS

LOAD SELECTED OUTPUT
INTERFACE CARD MEMORY
LOCATION FOR OUTPUT

RETURN TO CURRENT
LINK ADDRESS

LOAD DATA HORO
FROM LINK

ABORT ME888A0E
OUTPUT ANO EXIT

EXIT FROM SUB-ROUTINE
(ENO OF COMMAND SEQUENCE)

LOAD SELECTED OUTPUT
INTERFACE CARD ADORESS

TRANSMIT DATA

TRANSMIT DATA BACK
TO LINK (ECHO)

RESTORE CURRENT LINK
AND CONTINUE RECEIVING

130

'PRINT' SUB-ROUTINE
- APPENDIX A

P 'XX'
PRINT CONTENTS
OF 'XX'

P'XX','YY'
PRINT CONTENTS
OF 'XX' TO 'YY'

LOAD RANGE
OF PRINT AREA

SELECT OUTPUT
DEVICE CHANNEL NO

TYPE ADDRESS

TYPE MEMORY
LOCATION

EXIT AND
RETURN TO

MAIN PROGRAM

EXIT AND
RETURN TO

MAIN PROGRAM

NOTE:- THIS SUB-ROUTINE PRINTS THE CONTENTS
OF MEMORY FOR ONE LOCATION OR
BETWEEN TWO LOCATIONS 'XX' TO 'YY'.

131

'STKFULL' SUB-ROUTINE' - APPENDIX A
'STKINT' (HIGHEST PRIORITY PROGRAM)

SAVE REOISTERS
SAVE RETURN ADDRESS

TEST STACK FOR
FULL OR

ALMOST FULL

STACK
FULL

SET UP A COUNT
OF FIVE.

SAVE TOP FIVE
HOROS OF STACK

LOAD EXTENDED
STACK POINTER

SET UP A COUNT
OF FOUR.

SAVE TOP FOUR
HOROS OF STACK

STORE ONE HORO
FROM STACK IN
RAM SOFTHARE

EXTENDED STACK

GET FIRST HORO
FOR STACK

DECREMENT
COUNTER \ N

(HAVE FIVE/FOUR)
.HORDS BEEN.

SAVED

GET ANOTHER HORO
FROM STACK AND SAVE

GET NEXT HORO
FROM EXTENDED STACK

RESTORE POINTER
TO START OF

EXTENDED STACK
—JuNDERFLOHj

STORE HORO
ON STACK

((AS
'iBTACK̂

'REACHED
END OF

.EXTENDED.
.STACK

CLEAR
HARDHARE
STACK

PRINT MESSAGE TO
INDICATE UNOERFLOH

RESET STACK
FLAG

RE-ENABLE
INTERRUPTS

STORE HORO
FROM STACK

SEND MESSAGE
EXTENDED STACK

OVERFLOH

RESTORE
REGISTERS

RETURN TO
DEBUG PROGRAM

RESET
STACK FLAG'S

RETURN FROM
INTERRUPT

RE-ENABLE
INTERRUPT

RESTORE ONE WORD
FROM EXTENDED STACK

RETURN TO
DEBUG PROGRAM

PUT ON BOTTOM
OF STACK

'HAVE^

N / BEEN
RESTORED

RESTORE
REGISTERS

RETURN FROM
INTERRUPT

132

'FLUSH' SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

TRANSMIT MESSAGE
'BREAK POINTS 8'

PRINT OR OUTPUT
LOCATIONS OF
BREAK POINTS

NOTE:

THIS SUB-ROUTINE CLEARS ANY HALTS
PUT IN PROGRAM MHILE DEBUCCINC ERRORS.
AFTER PROMPTING FOR AN ANSHER.

TRANSMIT MESSAGE
'FLUSH?' TO

CLEAR BREAK POINTS

ARE

'POINTS TO V L
LBE CLEARED.

RETURN TO
MAIN PROGRAM

CLEAR
BREAK POINTS

RETURN TO
MAIN PROCRAM

'TRSET' SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

OUTPUT MESSAGE
'RESET REAL TIME CLOCKS'

NOTE:

THIS SUB-ROUTINE CLEARS THE MEMORY LOCATION
FOR THE CLOCK VALUES IN THE FRONT-ENO
ON START UP OR REQUEST.

LOAD RESPONSE

ODES
•'REAL T I H E \ N
VALUE HAVE

TO BE
LCLEARED.

RETURN TO
MAIN PROCRAM

LOAD
MEMORY LOCATION

CLEAR
LOCATION

RETURN TO
MAIN PROGRAM

INCREMENT
POINTER

133

'MRSET' SUB-ROUTINE - APPENDIX A
(AN INTERACTIVE SUB-ROUTINE)

TRANSMIT MESSAGE
'CLEAR MASTER AND SLAVE

MEMORY LOCATIONS?'

NOTE:

THIS SUB-ROUTINE CLEARS THE
MEMORY LOCATIONS FOR THE HIGH
SPEED INTERFACE INTERRUPT
POINTERS: MASTER, SLAVE 1 AND
SLAVE 2 IN THE FRONT-END.

1
LOAD

OPERATOR ANSWER

DO
THE

INTERRUPT
LOCATIONS

FOR FRONT-END
SLAVES NEED
CLEARING

RETURN TO
MAIN PROGRAM

LOAD ADDRESS OF
MEMORY LOCATION

1
CLEAR LOCATION

RETURN TO
MAIN PROGRAM

INCREMENT ADDRESS
POINTER

J

134

END PASS 1
PACE ASSEMBLER REV-A 21 DEC 76
PACE FTND CTRLPR6H 17/11/78

PAGE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0000
.TITLE PACE,''FTND CTRLPRGM 17/10/78'
.ASECT
.NOBAS

*4t*4:*****4!**4c***lNITIAL COMNDS.*•**••••***••«*•••*••

*
TYPE Y IF TIMES ARE TO BE CLEARED *

N " " " NOT TO BE " •
*

Y " MASTER $ SLAVES MEM. LOGS. " .•
N " NOT CLEARED *

*

*

TYPE Y IN ANSUER TO FLUSH ! IF REQD. N IF NOT *
Y LEAVES BREAK PTS. N CLEARS THEM •

*
t*****************t***9**t******t*ttni***=^******

\7/\§/7% VERSION *»•*••**•»*»
FRONTENOE DEV. CONTROL PROGRAM * "DEVDB".SRC

FRONTEND (DEBUG) CONTROL OF s- * .LM
1 BINARY LOADER
2 BINARY CORE COPIER
3 BOOTSTRAP LOADER
4 BOOTSTRAP CORE COPIER
5 ANY USER PROGRAMS
6 CONTROL OF SLAVE MICROS.
7 STKFUL INTERRUPTS.
OVERFLOU PRINTS FS <PC>
UNDERfLOU " _ES_<PC> .

8 REAL TIME INTERRUPT CLOCK 'lENZ'
9 MASTER INTRPTS 'lENS'
10 OTHER SLAVES 'IEN4 OR 5'

* .MP

lENl '•

DESIGNED FOR PACE DEVELOPMENT SYSTEM
AND IS CALLED FROM DISC. IN THE NORMAL
UAY eDEV(DATE).HP (IE. 6TH. USE 6).MP
ASSEMBLY LISTING TIME APPROX. 4HRS - 35MINS.

BY TELETYPE. ASR ' 110 BAUD',
OR BY TELETYPE 43 ' 300 BAUD '-2HR 35HINS

LIST SUPRSSD. AT END OF RAM LOCS APRX 250
TO COMNDS SECTION APRX. 500

<A6AIN AT END OF REAL TIME SUB TO STKFL SB.

••*••••••••*•••*•••••••••*•*•*•*•«»*«••••»•»**<,

135

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPR6M 17/10/78
FRNTND COMNDS

PAGE

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

.PAGE FRNTND COMNDS'

PART B DEBDB.SRC *
DEBUG FOR FRONTEND DEV. SYSTEM. *

17/10/78 *
USES RAH FROM 0000 TO 0BFF UITH SOME GAPS*

*

COMMANDS.

A XX,DDC,YY,..] ALTER LOC XX TO DD
(LOC XX+1 TO YY,ETC.)

P
P

XX
XX,YY

PRINT CONTENTS OF XX
PRINT CONTENTS OF XX TO YY

L N,XXC,YY,...D

0=> AC0
1=> ACl
2=> AC2
3?> AC3

LOAD REGISTER N UITH XX
(N-H UITH YY,ETC)*

*

4=> FLAGS
5=> TOP OF STACK
6=> PROGRAM COUNTER

TYPE REGISTERS IN ABOVE ORDER

I DB,XX,YY

H
H N
H N,XX

6
6 XX

MOVE DATA IN XX TO YY UP ONE
THEN INSERT DD IN LOCN. XX

REMOVE ALL BREAKPOINTS
REMOVE BREAKPOINT N (N=1 TO 4)
SET BREAKPOINT N AT LOCN. XX

EXECUTE FROM PROGRAM COUNTER
EXECUTE FROM LOCN. XX

" SUBSTITUTE","SUB",OR "CONTROL Z"
CONTROL Z'TRANSMITS COMMANDS TO THE TRANS/REC.
CHANNEL AS SELECTED BY "CONTRL Q", "DC1"

TERMINATED BY " EOT ","CONTROL D"
THE ABOVE IS ANOTHER METHOD OF COMMUNICATION

UITH SYSTEM ELEMENTS.

D XX,YY DUMP LOCS XX TO YY IN BINARY

TEST SECOND CHAR. AFTER "C" FOR CHKSM REQST.

C XX,YY COPY LOCS XX TO YY IN ASCIKHEX)
CS XX,YY IS A REQUEST FOR A CHECKSUM

B LOAD BINARY TAPE

136

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPR6M 17/10/78
FRNTND COMNDS

PAGE

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

* S LOAD BOOTSTRAP TAPE [ASCII(HEX)] *

U TYPE BREAKPOINT LOCATIONS •

X CHANGE I/O MODE TO HEX *

0 CHANGE I/O MODE TO OCT *

T REAL TIME CLOCK IN HRS:MINS,SEC.T'THS *

*

T=F.E. TIME,T1=SLAVE1 TIME,T2=SLAVE2 TIME •

100HOURS MAX. IE. 99:59,59.9 *
*

CHANGE THE I/O TRANS/REC. CHANNEL *
"CONTROL Q" N, "DC1" N •

N = CHANNEL NUMBER =1(MAIN CN'TL) *
" =2(FRT'ED-MASTR) •
" =3(FRT'ED-SLVE2) *
" M(FRT'ED-SLVEI) *

NOTE:- •
'TRANS/REC.'CAN BE ANY DEVICE'110'TO'9600'BAUD*
SUCH AS A VDU,TTY OR A HIGH SPEED SLAVE. *

*

137

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPR6H \7/\%/7%
POINTERS

PAGE

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

.PAGE 'POINTERS'

0003
0002
000F
000F
000D
000D
000F
0000
0000
0001
0002
0003
0001
0005

0001
0002
0000
000B
0001
0002
0003
0004
0005
0009
0020
0026
002A
001F
0040
003C
003E
0000
0001
0002
0005
0003
9800

BIT0
POS
JC14
RFL6
PFLG
READR
SENDP
AC0
ACO
ACl
AC2
AC3
ZRO
NZRO
NEG
CI
C2
STKFUL
NSIGN
IEN1
IEN2
IEN3
IEN4
IEN5
I EN
STSAV
ENSAV
BKPNTS
0000
TINTS
TIMTS1
TIMTS2
TTYOUT
TTYTAP
TTYON
TTYGET
TTYOFF
ADDTTY

= 3
•' 2

•' 1 5

•• 15

= 13
= 13
= 15
•• 0

• 0

« 1
= 2
» 3
» 1
= 5
= 11
= 1
= 2
0
X'B
1
2
3
4
5
9
:SAV0
=PC

-HLOC
=X'1F
-HRSMIN
^HRMINl
-HRMIN2
'- 0
'- 1
» 2
•• 5

'• 3

X'9800

BOC AC0(BIT 0)
BOC IF AC0 POSITIVE

TELETYPE INPUT,FLAG
TELETYPE OUTPUT FLAG

AC0 =
AC0 POS.

0
(BIT 15 = 0)

; START OF REGISTER FILE
; END OF REGISTER FILE
; START OF BREAKPOINT TABLE
RETURN JUMP FOR LOADERS ETC.

BASE PAGE ADDRESSES

SHIFT INTERRUPT POINTERS
IF SPLIT BASE PAGE.

0000 .=X'0
0000 9801 A AAAA: JMP eSTARTI ; JUMP TO DEBUG INT'N. LOCN. JMP.
0001 00BD A STARTI: .UORD START

INTRPT SUB. LOCS.

138

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPR6M 17/10/78
POINTERS

PAGE

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

0002
0003
0004
0005
0006
0007
0008

0009
000A

000B
000C
000D

05B4
0170
06BB
0871
09EF
0026
1800

9800
9820

9900
9880
0000

000E
0010
0011
0012

0200
013F
02B4

0020
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
002A
002E
0033
0034
0035
0036
0037
0038
0039
003A

.UORD STKINT ; STACK FULL

.UORD RLTIME J REAL TIME CLOCK
•UORD MSTRIT ;INTERRUPT W (MASTER INT. PTR.)
.UORD SLVIIN ; INTERRUPT «4 (SLAVE1 " ")
.UORD SLV2IN ; INTERRUPT US (SLAVE2 " ")
.UORD PC ; LEVEL ZERO PC LOCATION
JMP 0 ; FAKE AN INITIALIZE

RS 232 ADDRESSES

TTYUD1: .WORD ADDTTY ; SHIFT LOCATION TO
TTYUD2: .UORD ADDTTY-i-020 ; SUIT RELATIVE ADD. IN
; TTYFX SUBROUTINE
TTYWD3: .UORD ADDTTY+0100 ;
TTYUD4: .UORD ADDTTY•^080 ;
SOFTDFT: .UORD 0000 : * DO

A XPUTU:
A XCRLF:
A X6ECH0:

SLAVE2-"990X"
SLAVE1-"988X"

NOT INSERT ANY PROG AT LOC. '
DUE TO SYSTEM UILL NOT LOAD IT

IT STAYS AS X'D0B2

.= X'10

.UORD PUTU ;**««FOR CNTRL PNL IN POU. SYSTEM***

.UORD CRLF ;***»D0 NOT MOVE*****

.UORD 6ECH0 ;***CALLED BY LOCN. IN STKFL.**

SPARE SPACE HERE X'13 TO X'lF

RAM LOCATIONS ALTER FOR SPLIT TO X'FFBO APROX.

SHIFT
SAV0
SAV1
SAV2
SAV3
FLAGS
STACK
PC
POINTER
CURD
DATA
HLOC

A HDATA
A MODE

PCS
TMP0
TMP1
TMP2
TMP3
TTYCHN
TTYADD

= X'20
S0+SHIFT
M+SHIFT
S2+SHIFT
S3+SHIFT
'4+SHIFT
=5+SHIFT
=6+SHIFT
=7+SHIFT
=8+SHIFT
=9+SHIFT
M0+SHIFT
M4+SHIFT
=19+SHIFT
'20+SHIFT
=21+SHIFT
'22+SHIFT
'23+SHIFT
'24+SHIFT
=25+SHIFT
=26+SHIFT

REGISTER STORES

SAVE FLAGS
TOP OF STACK
PROGRAM COUNTER
POINTER TO BEGIN
INSERTION DATA
INSERTION DATA
; 4 BREAKPOINT LOCATIONS
; 4 BREAKPOINTED INSTRUCTIONS

; CONTROLS I/0_FORMAT
: PC FOR 00 SUBROUTINE

REAL TIME CLOCK LOCS.

SLAVE 1 I 2 TIMES

139

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
POINTERS

PAGE

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

003C A HRMINl
003B A SETEN1
003E A HRMIN2
003D A SETEN2

=28+SHIFT
=27+SHIFT
=30+SHIFT
=29"fSHIFT

SLAVE1 TIME

SLAVE2

F.E. TIMES

0040
003F
0041
0042
0043
0044
0045
0046
0047

004B
004C
004D
004E
004F
0050
0051
0060
0061
0066
0067

HRSMIN
SECTEN
TENTHS
SECOND
MINUTS
HOURS
RETADT
RTCURD
RTREG

=32+SHIFT
=31+SHIFT
=33+SHIFT
=34+SHIFT
=35+SHIFT
=36+SHIFT
=37+SHIFT
=38+SHIFT
=39+SHIFT

HEX VALUE OF TIME
•I •• H 11

TENTHS OF SECS.
SECONDS
MINUTES
HOURS

RETURN ADDS. FOR CLOCK

TO 42•̂ SHIFT

STKFUL INTERRUPT LOCATIONS

$SAV0 M3+SHIFT
SSAV1 =44•̂ SHIFT
$SAV2 M5+SHIFT
$SAV3 =46+SHIFT
IRETA =47+SHIFT
$TEMP M8+SHIFT
SpFTST =49+SHIFT
STKEND S64+SHIFT
«STAK =65+8HIFT
fSWPTR =70+SHIFT
•SPTR =71+SHIFT

J.- 1 - ' V!_ TP_ STKEND (INCREASE SII<JY_=X11000)
; ALLOWS 4 6VFLS.(« =X'10FF ')
TO 69+SHIFT

MASTER INTRPT. LOCNS.

0068 A MSTREG =72+SHIFT ; TO 75-̂ SHIFT
006C A RETMST =76*SHIFT ;RET. ADDS.

2000 A MMS6ST =X'2000

006D
006E
006F
0070
0071
0072
0073
0074

MSOHCT
MSNSYN
MSTCHL
MSTCMD
MSTADD
MSTERR
MSERAD
MS6END

=77+SHIFT
=78+SHIFT
=79+SHIFT
=80+SHIFT
S81+SHIFT
=82+SHIFT
=83+SHIFT
=84+SHIFT

9K IN F.E. MSG. STRE AREA F.E.

INIT. INT CNT. NON-SYN CHS.
TX. CHANNEL STORE LOC.
CMND. STORE LOC.
MES6 LOAD ADDS IN MSTR.
ERROR CODE STR.

ADDS. PTR.
TO 85+SHIFT SPARE LOCS FOR MASTER

SLAVE1 INTRPT LOC NS.

140

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
POINTERS

PAGE

299 0076 A SL1REG
007A A RETSL1

=86+SHIFT
=90+SHIFT

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

; TO 89•̂ SHIFT
; RET. ADDRESS

2800 A S1M6ST =X'2800

007B
007C
007D
007E
007F
0080
0081
0082

SI SHOT
S1NSYN
SL1CHL
SL1CMD
SL1ADD
SL1ERR
S1ERAD
S1HEND

=91-fSHIFT
'92+SHIFT
=93+SHIFT
=94•̂ SHIFT
=95+SHIFT
=96-HSHIFT
=97•̂ SHIFT
=98+SHIFT

10K IN F.E. MSG. STRE AREA SL1.

INIT. INPT. COUNT OF NON-SYN CHS.
TX. CHNL. STORE LOC.
SLVl. CMD. STORE LOC.
MESG LO ADDS IN F.E.
;ERROR CODE STRE.
; " " ADS. PTR.
TO 99•̂ SHIFT SPRE LOCS. FOR SLVl

SLAVE2 INTRPT. LOCNS.

0084 A SL2REG
0088 A RETSL2

= 100-frSHIFT
=104•^SHIFT

2C00 A S2M6ST =X'2C00

0089
008A
008B
008C
008D
008E
008F
0090

A S2SHCT
A S2NSYN
A SL2CHL
A SL2CMD
A SL2ADD
A SL2ERR
A S2ERAD
A S2HEND

=105-̂ SHIFT
'106+SHIFT
'107+SHIFT
'108+SHIFT
:109+SHIFT
=110+SHIFT
:111+SHIFT
=112+SHIFT

; TO 103+SHIFT
RET. ADDRESS

11K IN F.E. MSG. STRE AREA SL2.

INIT. INPT. COUNT OF NON-SYN CHS.
TX. CHNL. STORE LOC.
SLV2. CMD. STORE LOC.
MESG LD ADDS IN F.E.
;ERROR CODE STRE.
; " " ADS. PTR.
TO 113+SHIFT SPRE LOCS. FOR SLV2

0091 A LIMIT =113•̂ SHIFT ; BASE PAGE STORAGE LIMIT

SPACE HERE X'? TO X'FF

MORE SPACE IS ACHIEVED BY
SHIFTING START (BO) TO X'100

141

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INTRPT. SUB. RLTIME-IEN2

PAGE 17

670
671 ;
672 ;
673 ;
674 ;
675 ;
676 ;
677 ;
678 i
679
680 0170 SC00 A f
681
682
683
684 0001 A
685
686
687
688
689 0171 0047 A
690 0172 D448 A
691 0173 D849 A
692 0174 DC4A A
693 0175 6400 A
694 0176 0045 A
695 0177 5C00 A
696 0178 0400 A
697 0179 A944 A
698 017A A544 A
699 017B 0800 A
700 017C CI 48 A
701 017D 5F00 A
702 017E C03F A
703 017F 8B00 A
704
705 0180 9140 A
706 0181 El 44 A
?i? 0182 A947 A
708 0183 4B0C A
709 0184 D03F A
7]9 0185 A946 A
711 0186 F13B A
712 0187 1904 A
713 0188 C041 A
714 0189 E13C A
715 018A D041 A
716
717 018B 194C A
718 018C C042 A
719 018D E138 A
720 018E D042 A
721
722 018F 19F8 A
723 0190 C043 A

.PAGE 'INTRPT. S UB. RLTIME-IEN2'
«««* #:#*4c*«4c**4c******#**:|c*«4t******=»:*:f *•****««*

* *

* REAL TIME SUBROUTINE *
* 100HR. CLOCK BY INTERRUPTS OF 100MILLISEC*
*

*
INTERRUPT 2 - IEN2 (NIR2) *

«

^t******************-¥**if*****^*****^-¥**********

RLTIME:

•

f

INCTEN;

INCSEC:

ICMIN1:

RCPY 0,0 ; NOP

.LIST 01

ST ACO,RTREG
ST AC1,RTRE6-H
ST AC2,RTRE6-^2
ST AC3,RTRE6•^3
PULL ACO
ST ACO,RETADT
RCPY AC0,AC0 ;
CFR ACO ;
AND ACO,TMASK ;
OR ACO,TINTST ;
CRF ACO
LD 0,CONSTL
RCPY 0,3
LD 0,SECTEN
DECA 0,(3)

SUBB 0,CONST1
ADD 0,ONET
AND 0,MSKT
BOC NSIGN,ICMIN1
ST 0,SECTEN
AND AC0,MSKT3
SKNE ACO,ONESEC
JMP INCSEC
LD AC0,TENTHS
ADD ACO,ONET
ST ACO,TENTHS

UAS PUSHF
MOVE FLAGS TO ACO
MASK OLD INT. STATUS
OR IN NEU "

; SECONDS/TENTHS OF SECS.
; USE BCD INSTRUCTION 'DECA'

FOR FORMATTING UORDS
;SUBTRACT CONST.
; TUO'S COMPLEMENT

; 60 REACHED. RESET TO 0

1 INCREMENT
; TENTHS OF A SECOND
; COUNTER.

; MAX 65,536 OR 1.822HRS
JMP SL1TUD ; JMP TO SL1 TIME UPDATE.
LD ACQ,SECOND
ADD ACO,ONET ;
ST ACO,SECOND

JMP INCTEN
LD AC0,MINUTS ;

INCREMENT SECOND
; COUNTER (MAX 65 ,536)
; (OR 18.22HRS.)

INCREMENT MINUTE

142

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INTRPT. SUB. RLTIME-IEN2

PAGE 18

724
725
726
727
728
729
730
731
732
733

0191 E134 A

0192
0193
0194
0195
0196
0197
0198
0199

734 019A
735 019B
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
77%
77\
772
773
774
775
776
117

019C
019D
019E
019F
01A0
01A1
01A2
01A3
01A4
01A5
01A6
01A7
01A8
01A9
01AA
01AB
01AC
01AD
01AE
01AF
01B0
01B1
01B2
01B3
01B4
01BS
01B6
01B7
01B8
01B9
01BA
01BB
01BC
01BD

01 BE
01BF
01C0
01C1
01C2

D043
C135
D03F
C13A
5F00
C040
8B00
9135
E12B
2010
4B03
2010
D040
1938
430D
C125
E040
A927
D040
C044
E11F
0044
19F6
5C40
A921
E11C
2010
19F0
5000
A91D
Flic
19F7
5C00
19ED
5C00
C045
6000
C047
C448
C849
CC4A
3200
3280
7C00

ADD AC0,ONET ; COUNTER (MAX 65,536)
; (OR 48.27DAYS.;

ST ACO,MINUTS
LD 0,ZEROT ;RESET SECOND/TENTHS
ST 0,SECTEN ; AND INCR. MINS S HRS.
LD 0,CNST2L
RCPY 0,3
LD 0,HRSMIN
DECA 0,(3)
SUBB 0,CONST2
ADD 0,ONET
ROL 0,8,0 ;TEST FOR SIXTY MINS.
BOC NSIGN,RESTT
ROL 0,8,0 ,' RESTORE BITS IN AC0

STORHM; ST 0,HRSMIN
JMP SL1TUD; JMP TO SLAVES TIME UPDATE

RESTT: BOC BIT0,REST1
LD 0,ONET2
ADD 0,HRSMIN
AND 0,MSKT2
ST ACO,HRSMIN
LD ACO,HOURS
ADD ACO,ONET
ST ACO,HOURS
JMP STORHM*1

REST2! RCPY 1,0
AND 0,MSKT3
ADD 0,ONET3
RPk.0»8,,0
JMP STORHM

REST1: RCPY 0,1
AND 0,MSKT4
SKNE 0,MSKT4
JMP REST2
RCPY 0,0
JMP RESTT+1

RTINXT: RCPY AC0,AC0
LD ACO,RETADT
PUSH ACO
LD ACO,RTREG
LD AC1,RTREG-H
LD AC2,RTRE6+2
LD AC3,RTREG-f3
PFLG IEN2
SFLG IEN2
RTI

RESET HRS-MINS LOCATION

; INCREMENT HOUR COUNT.
; MAX 65,536 OR 7.5 YRS.

UATCH ADDRESSING LATER

EXIT SUBROUTINE. UAS PULLF
RESTORE INTR RETURN ADO'S

RESTORE REGS.

CLEAR INT. LATCH

820B A
8203 A
4010 A
4000 A
0090 A

ALLOW SPACE FOR TIMER INCR'TS.

TMASK: .UORD X'820B ;STACK FULL CAN INT.
TINTST: .UORD X'8203 ; IEN1 = BIT "1"
CONST: .UORD X'4010
C0NST1: .UORD X'4000
ONESEC: .UORD X'0090

143

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INTRPT. SUB. RLTIME-IEN2

PAGE 19

778 01C3
779 01C4
780
781

01C5
01C6

782 01C7
783 01C8
784 01C9
785 01CA
786 01CB
787 01CC
788 01CD
789 01CE
790 01CF
791 0100
792 01D1
793 0102
794 0103
795 0104
796 0105
797
798
799
800
801
802 01D6
803 01D7
804
805 0108
806 01D9
807 01 DA
808 01DB

01DC

0100
01DE

809
810
811
812
813 01DF
814 01E0
815
816
817
818
819

01E1
01E2
01E3
01E4
01E5

820 01E6
821
822 01E7
823 01E8
824
825
826
327
628
829
830
831

01E9
01EA
01EB
01EC
01ED
01EE
01EF
01F0

98A2
98A5
01C0
0001
0100
0010
0000
FFF0
FF00
00F0
000F
0041
0040
01CE
199D
1995
1996
1998
1998

RSON:
RSGET:
CONSTL:
ONET:
0NET2:
0NET3:
ZEROT:
MSKT:
MSKT2:
MSKT3:
MSKT4:
CONSTM:
C0NST2:
CNST2L:
ERR0R9:
SENOB:
PUTUI:
JUMP1:
EXITP:

.UORD X'98A2

.UORD X'98A5

.UORD CONST

.UORD X'1

.UORD X'0100

.UORD X'0010

.UORD X'0

.UORD X'FFF0

.UORD X'FF00

.UORD X'00F0

.UORD X'000F

.UORD X'0041

.UORD X'0040

.UORD CONSTM
JMP ERRORS
JMP SENOB1
JMP PUTUI1
JMP JUMP11
JMP EXITP1

;KEYB0ARD LOCATIONS

HRSMIN CONST. 9999-0040

UPDATE TIME SUB FOR CURRENT RECO. TIMES
FOR SLAVES SEE FRONT PAGE DIRECT'NS.

003B A SLTPT1: .UORD SETEN1
0030 A SLTPT2: .UORD SETEN2

C9F0
1503
C9FC
1501
1907

C1E7
5F00
C200
8B00
91DF
E1E3
A9E6
4B02
D200

C1E1
D200
C1E6
5F00
7A01
C200
8B00
91E0
E1D6
2010

A SL1TUD: LD AC2,SLTPT1
A JSR SLATUD
A SL2TUD: LD AC2,SLTPT2
A JSR SLATUD
A JMP RTINXT

•

A SLATUD: LD ACO,CONSTL ;
A RCPY AC0,AC3
A LD AC0,(AC2)
A DECA AC0,(AC3)
A SUBB AC0,C0NST1
A ADD ACO,ONET
A AND ACO,MSKT
A BOC NSIGN,SLVSEC
A ST AC0,(AC2) ;
A RTS 0

A SLVSEC: LO AC0,ZEROT
A ST AC0,(AC2)
A LD AC0,CNST2L
A RCPY AC0,AC3
A AISZ AC2,1 ;
A LD AC0,(AC2)
A DECA AC0,(AC3)
A SUBB AC0,C0NST2
A ADD ACO,ONET
A ROL 0,8,0

; SLAVE1 TIME UPDATE

2 "

SLAVES TIME UPD. SUB.

TENTHS UPDATE

RESET SECTENTHS

RESET AC2 FOR HRSMIN1
LOAD LOCN.

144

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10 /78
INTRPT. SUB. RLTIME-IEN2

PAGE 20

832 01F1
833 01F2
834 01F3
835 01F4
836
837 01F5
838 01F6
839 01F7
840 01F8
841 01F9
842 01FA
843
844 01FB
845 01FC
846 01FD
847 01FE
848 01FF
849 0200
850 0201
851 0202
852 0203
853
854 0204
855 0205
856 0206
857 0207
858 0208
859 0209
860

4B03
2010
0200
8000

4305
C1D0
E200
A9D2
0200
8000

5000
A9D0
FICF
1905
C1C7
E200
A9C9
D200
8000

5C40
A9C6
E1C1
2010
0200
8000

A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

•

SLHRIC:

a

SLHRI1:

SLHRST:

m

9

BOC NSIGN,SLHRIC
ROL 0,8 ,0
ST AC0,(AC2) ;
RTS 0

BOC BIT0,SLHRI1
LD AC0,0NET2
ADD AC0,(AC2)
AND AC0,MSKT2
ST AC0,(AC2) ;
RTS 0

RCPY 0,1
AND 0,HSKT4
SKNE AC0,MSKT4
JMP SLHRST
LD AC0,0NET2
ADD AC0,(AC2)
AND ACO,MSKT2
ST AC0,(AC2)
RTS 0

: ; TEST FOR 60

STORE NEU MINS

; SLAVE HR INCR.

STORE HR INCR'T.

RCPY 1,0 ; SLAVE HR RESET
AND AC0,MSKT3
ADD AC0,0NET3
ROL 0,8,0
ST AC0,(AC2) ;
RTS 0

RESET HRS.

MINS

145

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INSTRUCTION EXECUTION

PAGE 24

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

.PAGE

* •

* T: PRINTS HRSrMINS,SEC.TENTHS OF SECS. *
* MAX. 99:59 , 59.9 +.1SEC -REAL T. »
* INTERRUPT CONTROLLED CLOCK 'IEN2' •
* *

023A 1579 A TIME: JSR GECHO
023B 190B A JMP FETIME
023C F146 A SKNE AC0,SLV1TM
0230 190C A JMP SI TIME
023E F145 A SKNE AC0,SLV2TM
023F 1900 A JMP S2TIME
0240 5340 A LI AC3,TINTS
0241 1900 A FEPRTM: JMP .+1
0242 149A A JSR TTYFX
0243 SDC0 A RCPY AC3,AC1
0244 79FF A AISZ AC1,-1
0245 D446 A ST ACl,RTCURD
0246 1909 A JMP TIME2
0247 152D A FETIME: JSR RTMESG
0248 5340 A LI AC3,TINTS
0249 19F7 A JMP FEPRTM
024A 152A A SI TIME: JSR RTMESG
024B 533C A LI AC3,TIHTS1
024C 19F4 A JMP FEPRTM
0240 1527 A S2TIME: JSR RTMESG
024E 533E A LI AC3,TIMTS2
024F 19F1 A JMP FEPRTM
0250 5102 A TIME2: LI ACl,2
0251 6100 A PUSH ACl
0252 CB00 A LO AC2,(AC3)
0253 5020 A LI ACO,X'20
0254 5105 A LI ACl,5
0255 1537 A TSPACE: JSR RTTS
0256 79FF A AISZ AC1,-1
0257 19FD A JMP TSPACE
0258 5104 A LI ACl,4
0259 F534 A PIX1: SKNE AC1,TU0SP
025A 190B A JMP SPTUO
025B 5C80 A PIX2: RCPY AC2,AC0
025C 2A08 A SHL AC2,4,0
025D 2C18 A SHR ACO,12,0
025E 7830 A AISZ ACO,X'30
025F 9D2C A SK6 AC0,RTNU9
0260 1901 A JMP .+2
0261 7807 A AISZ AC0,X'7
0262 152A A JSR RTTS
0263 79FF A AISZ AC1,-1
0264 19F4 A JMP PIXI
0265 1903 A JMP SPTU01

UAIT FOR CR,LF

146

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INSTRUCTION EXECUTION

PAGE 25

1006 0266
1007 0267
1008 0268
1009 0269
1010 026A
1011 026B
1012 026C
1013 0260
1014 026E
1015 026F
1016 0270
1017 0271
1018 0272
1019 0273
1020 0274
1021 0275
1022 0276
1023 0277
1024 0278
1025 0279
1026 027A
1027 027B
1028 027C
1029 027D
1030 027E
1031 027F
1032 0280
1033 0281
1034 0282
1035 0283
1036 0284
1037 0285
1038 0286
1039 0287
1040 0288
1041 0289
1042 028A
1043 028B
1044 028C
1045 028D
1046 028E
1047 028F
1048 0290
1049 029F
1050 02A0
1051 02AF
1052 02B0
1053 02B3

5020
1525
19F2
6500
79FF
1902
5100
1906
7BFF
1900
5CC0
F046
19DD
5100
19C4
6DC0
1500
6700
ED16
C300
4106
2410
1551
2410
154F
7B01
19F8
6F40
8000
0031
0032
193F
1949
196F
192B
1970
19AD
0092
0039
99FD
0002
0019
2020
0D0A
2020
0D0D
2020
0000

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

SPTUO:

SPTU01:

NEXTUD:

TIMEXT:
RTMESG:

RTMSRF:

RTMSCT:

RETRNX:

SLV1TM:
SLV2TM:
SENDA:
PUTUA:
6ETHXC:
GECHOB:
GETHXB:
ERRQRB:
TTYS1:
RTNU9:
RTTS:
TUOSP:
RTITLE:
RTMESS:

LI ACO,X'20
JSR RTTS
JMP PIX2
PULL ACl
AISZ AC1,-1
JMP NEXTUD
LI AC1,0
JMP TIMEXT
AISZ AC3,-1
JMP .-H
RCPY AC3,AC0
SKNE AC0,RTCURD
JMP TIME2
LI AC1,0
JMP EXITC
RXCH AC3,AC1
JSR .+1
PULL AC3 ;
ADD AC3,RTITLE ,
LO AC0,(AC3) ,
BOC 1,RETRNX
ROR 0,8,0
JSR SENDC
ROR 0,8,0
JSR SENDC
AISZ AC3,1'
JMP RTMSCT
RXCH AC1,AC3
RTS 0
.UORD X'31
.UORD X'32
JMP SEND
JMP PUTU
JMP 6ETHX
JMP GECHO
JMP 6ETHXA
JMP ERRORC
.UORD TTYS
.UORD X'39
JMP 8TTYS1
.UORD X'2

, SET STACK UITH NXT. LOC
PUT INTO AC3

; REAL MESSAGE REFERENCE
; " " COUNT

.UORD RTMESS-RTMSRF

.ASCII ' TIME

.UORD X'0O0A

.ASCII '

.UORD X'0D0D

.ASCII '

.UORD 0

[N HRS:MINS,SECS.TENTHS'

: , •

147

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
INSTRUCTION EXECUTION

PAGE 33

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

0379
037A
037B
037C
0370
037E
037F
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
038A
038B
03BC
0380
038E
038F
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
039A

.PAGE
4E««*4t4i«4c*:tc*****4E*****3|c**************«****=r**********

* •

* CONTROL Z XXXXXX...'EOT' TRANSMITS COMMANDS *
* TO INTERFACE AS SELCTD. -"DC1 N"-TERM'TD BY EOT •

1504
19FB
149A
1516
19FB
6300
CC09
DC3A
6700
1511
A913
41F9
Fill
19F7
F110
9910
F110
8000
1501
8001
6300
CC09
DC3A
1502
6700
8000
9901
9901
0092
0093
007F
0070
032D
0004

CMDTRN:

6ECMDI:

SENDQ:

SENDR:
RECVN:
TMITS2:
TMITR1:
H7F1:
GALT1:
AB0RT1:
EOT:

JSR 6ECMDI
JMP EXIT1
JSR TTYFX
JSR SENDR
JMP CMDTRN
PUSH AC3
LD AC3,TTYUD1
ST ACS,TTYADD
PULL AC3
JSR RECVN
AND AC0,H7F1
BOC ZR0,6ECMDI
SKNE AC0,H7F1
JMP GECMDI
SKNE AC0,GALT1
JMP eABORTI
SKNE ACO,EOT
RTS 0
JSR SENDQ
RTS 1
PUSH AC3
LD AC3,TTYUD1
ST AC3,TTYADD
JSR SENDR
PULL AC3
RTS 0
JMP ?TMITS2
JMP gTMITRI
.UORD TTYS
.UORD TTYR
.UORD X'7F
.UORD X'7D
.UORD ABORT
.UORD X'4

; ECHO ALL CHARACTERS
(UITHOUT FURTHER PROCESSING)

*

PRINT MEMORY CONTENTS OF XX TO YY *
*

P XX:YY OR P XX,YY OR P XX *
*

039B
039C

15BF A PRINT: JSR RANGE
5100 A LI AC1,0

; GET ADDRESS RANGE

148

PACE ASSEMBLER REV-A 20 DEC 76 PAGE 34
PACE FTND CTRLPRGM 17/10/78
INSTRUCTION EXECUTION

1375 039D
1376 039E
1377 039F
1378 03A0
1379 03A1
1380 03A2
1381 03A3
1382 03A4
1383 03A5
1384 03A6
1385 03A7
1386 03A8
1387 03A9
1388 03AA
1389 03AB
1390 03AC
1391 03AD
1392 03AE
1393 03AF
1394 03B0
1395 03B1
1396
1397 03B2
1398 03B3
1399 03B4
1400 03B5
1401 03B6
1402
1403

6100
149A
15B3
5EC0
15B5
5020
1503
CB00
15B1
4F0B
FC28
1909
7B01
5CC0
B90A
19F7
6500
6100
7900
19F3
19ED

1SA0
6500
5100
19C0
0007

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A

LINE:

RTYP:

SURD:

•

FIN:

007:
•
f
•

r

PUSH ACl
JSR TTYFX
JSR SCRLF ; NEU LINE : CR/LF FIRST
RCPY AC3,AC2
JSR PUTUY ; TYPE ADDRESS
LI AC0,X'20 ; " "
JSR SENDI ; SEND TUO BLANKS
LD AC2,(AC3) ,* TYPE OUT VALUE
JSR PUTUY
BOC RFLG,FIN ; ATTEMPTED INPUT : STOP
SKNE AC3,CURD ; CHECK IF DONE YET
JMP FIN ; FINISHED
AISZ AC3,1 ; INCREMENT ADDRESS
RCPY AC3,AC0 ; CHECK FOR END OF LINE
SKAZ AC0,DO7
JMP SURD
PULL ACl
PUSH ACl
AISZ AC1,0 ; SKIP IF AC1=0 (REG.TYPE TEST
JMP SURD ; CONTINUE LINE IF AC1»0
JMP LINE

JSR SCRLF ; GIVE CR/LF UHEN FINISHED
PULL ACl
LI AC1,0 ; CLEAR STACK AND ACl
JMP EXIT1 ; 60 BACK TO PROMPT
.UORD 7

149

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
STKFUL INTERRUPTS

PAGE S''

2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041 05B4
2042 05B5
2043 05B6
2044 05B7
2045 05B8
2046 05B9
2047 05BA
2048 0SBB
2049 05BC
2050 0SBD
2051
2052
2053
2054 0SBE
2055 05BF
2056 05C0
2057 05C1
2058 05C2
2059 05C3
2060 05C4
2061 05C5
2062 05C6
2063 05C7
2064 05C8
2065 05C9
2066 05CA
2067 05CB
2068
206?
2070
2071 05CC
2072 05CD
2073 05CE
2074 05CF
2075 05D0
2076 05D1
2077 05D2
2078 05D3
2979 05D4
2080
2081
2082
2083 05D5

D04B
D44C
D84D
DC4E
6400
D04F
401 D
6000
4018
6400

5104
AC67
A067
6000
C067
F145
1903
79FF
19F8
1904
C13F
D067
505C
192B

C04F
6000
C04B
C44C
C84D
CC4E
3100
3180
7C00

6400

A <
A
A
A
A
A
A
A
A
A

A
A <
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A

.PAGE -STKEUL INTERRUPTS'

'*t*:*t^.*^i:{(ir.if:tilf^:i<^i:^:^^;iiftt-^***********-**********

* *
* STKFUL INTERRUPT SUBROUTINE »
* *
*****t********-4:**4r.**********************'*'**

; SAVE

STKINT:

REGS. AND DETERMINE IF FULL/EMPTY.

ST ACO,$SAV0
ST AC1,$SAV1
ST AC2,$SAV2
ST AC3,$SAV3
PULL ACO
ST ACO,$RETA
BOC STKFUL,$FULL
PUSH ACO
BOC STKFUL,fAFULL ; TEST IF ALMOST

PULL ACO ; FULL

; STACK EMPTY. RESTORE FOUR UORDS.

»EMP;

RSTPTR:

L I ACl,4 ; STACK IS EMPTY
DSZ $SPTR ; IF EXECUTED FIRST IT
LO ACO,e$SPTR ; UILL STORE A ITEMP LOCN
PUSH ACO
LD ACO,«SPTR
SKNE ACG,*FEMP ; SKIP IF EXECUTED
JMP RSTPTR ; BEFORE A STKFUL.
AISZ AC1,-1
JMP $EMP
JMP $REST
LD ACO,$SSBEG ; RESTORE PTR TO
ST ACO,fSPTR ; START OF SOFTUARE STK.
L I AC0,X-5C ; LOAD UNFLU DEFAULT
JMP *UNFLU

; RESTORE REGISTERS AND RETURN FROM INTERRUPT

JREST:

; STACK

$AFULL:

LD ACO,$RETA
PUSH ACO
LD ACO,$SAV0
LD AC1,$SAV1
LD AC2,«SAV2
.LD AC3,$SAV3
PFLG IEN1
SFLG IEN1
RTI

IS ALMOST FULL

PULL ACO

PACE fiSSEHBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
STKFUL INTERRUPTS

150

PAGE 53

2084 g5D6 5104 A
2085 05D7 1901 A
2086 :

LI ACl,4
JMP .^2

NO. OF UORDS TO SAVE

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
STKFUL INTRPT. SUB. -IEN1

PAGE 54

2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123

.PAGE -STKFUL INTRPT. SUB. -IEN1

; STACK FULL. SAVE TOP FIVE ELEMENTS OF STACK

05D8 5105 A $FULL:
0SD9 D466 A
0SDA C92B A

05DB 6400
05DC 0200
05DD 7A01
05DE 79FF
05DF 19FB

05E0
05E1
05E2
05E3
05E4
05E5
05E6
05E7
05E8
05E9

05EA
0SEB
05EC
0SED
05EE
05EF
05F0

5104
6400
B067
C067
F122
190B
7801
D067
79FF
19F7

C466
7AFF
C200
6000
79FF
19FB
19DB

*LP1:

LI ACl,5
ST AC1,$SUPTR
LD AC2,«ADR

PULL ACO
ST ACQ,(AC2)
AISZ AC2,1
AISZ AC1,-1
JMP SLP1

; NOU PUT BOTTOM FOUR UORDS ONTO SOFTUARE STACK

LI ACl,4
«LP2: PULL ACO

ST ACO,e«SPTR
LD ACO,$SPTR ; CHECK FOR OVERFLOU.
SKNE ACO,$SSEND
JMP fOVFL
AISZ AC0,1
ST ACO,$SPTR
AISZ AC1,-1
JMP $LP2

: FINALLY RESTORE TOP 4/5 UORDS TO BOTTOM OF STACK

LD AC1,$SUPTR
ILP3: AISZ AC2,-1

LD AC0,(AC2)
PUSH ACO
AISZ AC1,-1
JMP fLP3
JMP $REST

LOAD TOP 4/5

151

PACE ASSEMBLER REV-A 20 DEC 76 PAGE 55
PACE FTND CTRLPRGM 17/10/78
STKFUL INTERRUPTS

2124
2125
2126
2127
2128 05F1
2129 05F2
2130 05F3
2131 05F4
2132 05F5
2133 05F6
2134 05F7
2135 05F8
2136 05F9
2137 05FA
2138 05FB
2139 05FC
2140 05FD
2141 05FE
2142 05FF
2143 0600
2144 0601
2145 0602
2146 0603
2147 0604
2148 0605
2149
2150
2151
2152 0606
2153 0607
2154 0608
2155 0609
2156 060A
2157
2158
2159 060B
2160 060C
2161 060D
2162 060E
2163 060F
2164 0610
2165 0611
2166 0612
2167 0613
2168 0614
2169 0615
2170 0616
2171 6617
2172 0618
2173 0619
2174 061A
2175 061B
2176 061C
2177 061D

5109
6400
79FF
19FD
5046
1902
5045
6000
149A
1492
5053
1492
C84F
9410
9411
C^il
D067
3100
3180
3980
9904

0061
0060
0051
0050
00FB

9411
1512
062C
C82A
9410
C82B
9410
C82C
9410
C82D
9410
9411
1507
0632
9412
1902
F10F
8008
5000

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

•

.PAGE -STKFUL INTERRUPTS'

; STACK OVERFLOU. /UNDERFLOUS.
«
1

$OVFL:

1UNFLU:

SPCLOD:

t

LI ACl,9 ; STACK OVFLOU. HAS OCCURRED.
PULL ACO
AISZ AC1,-1
JMP .-2
LI AC0,X'46 ; TRANS. " F " TO INDICATE QVF
JMP $PCLOD
LI AC0,X'45 ; TRANS. " E" TO INDICATE UNFLU.
PUSH AC0 ; PUSH STACK FOR UNFLU. RESET.
JSR TTYFX
JSR TTYS
LI ACO,X'53 ; SEND "S"
JSR TTYS
LD AC2,$RETA ; PC. AT OV/UNFLU.
JSR eXPUTU ; SHOU THIS !
JSR 0XCRLF ; DO A CR-LF.
LD ACO,tSSBEG
ST ACO.SSPTR
PFLG 1
SFLG 1
SFLG 9 ;RE-ENABLE INTERRUPTS
JMP ePPRMT ; JUMP TO DEBUG

; POINTERS.

$ADR:
$SSEND:
tSSBEG:
iFEMP:
PPRMT:

f
•
1
FLUSH:

.UORD ISTAK

.UORD STKEND ;INCRES. TO 10FF FOR MORE

.UORD SOFTST ; " " 1000 " "RM.

.UORD SOFTST-1 ; $SPTR DECRMTD. TOO EARLY

.UORD PROMPT fPOINTER TO DEBUG PROMPT ENTRY

JSR eXCRLF
JSR FMES
.UORD FMES1
LD AC2,HL0C
JSR eXPUTU
LD AC2,HL0C-H

JSR eXPUTU
LD AC2,HL0C•^2
JSR exPUTU
LD AC2,HL0C+3
JSR 8XPUTU

JSR eXCRLF
JSR FMES

.UORD FMES2
JSR eXGECHO

JMP .+3 ;"CR" FLUSH !
SKNE ACO.FASCN
RTS 8 ; "N" — NO FLUSH

LI AC0,0 ; FLUSH REQD.

152

PACE ASSEMBLER REV-A 20 DEC
PACE FTND CTRLPRGM 17/10/78
STKFUL INTERRUPTS

PAGE 56

2178 061E
2179 061F
2180 0620
2181 0621
2182 0622
2183 0623
2184 0624
2185 0625
2186 0626
2187 0627
2188 0628
2189 0629
2190 062A
2191
2192 062B
2193 062C
2194 0631
2195 0632
2196 0636
2197
2198 0637
2199 0638
2200 0639
2201 063A
2202 063B
2203 063C
2204 063D
2205 063E
2206 063F
2207
2208
2209 0640
2210 0641
2211 0642
2212 0643
2213 0644
2214 0645
2215 0646
2216 0647
2217 0648
2218
2219 0649
2220 064A
2221 064B
2222 0657
2223 0658
2224 0668
2225
2226
2227
2226 0669
2229 666A
2230 066B
2231 066C

8000
6600
6200
CA00
C200
4501
8001
2010
1492
2010
1492
7A01
19F7

004E
4252
0000
464C
0000

9411
15E6
064B
9412
1902
F10C
8008
5000
8000

9411
15DD
0653
9412
1902
F104
S008
5000
8000

004E
004E
5245
0000
2020
0000

9900
035B
9900
013F

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A

FMES:

FMESA:

•

FASCN:
FMES1:

FMES2:

•

TRSET:

•

t
m
f

MRSET:

m

f

TASCN:
MASCN:
TMES1:

MMES1:

RTS 0
PULL AC2
PUSH AC2
LD AC2,0(2)
LD AC0,0(2)
BOC NZRO,.+2
RTS 1
ROL 0,8,0
JSR TTYS
ROL 0,8,0
JSR TTYS
AISZ 2,1
JMP FMESA

.UORD X-4E
.ASCII -BR/PTS (? '
.UORD 0
.ASCII 'FLUSH ? '
.UORD 0

JSR 0XCRLF
JSR FMES ; USE FLUSH PRT. SUB.
.UORD TMES1
JSR eXGECHO
JMP .-1-3 ; "CR" CLEAR
SKNE AC0,TASCN
RTS 8 ; "N" NOT CLEARED
LI AC0,0
RTS 0 ; CLEAR

JSR 0XCRLF
JSR FMES ; USE FLUSH SUB.
.UORD MMES1
JSR eXGECHO
JMP .-•3 ; "CR" CLEAR
SKNE AC0,MASCN
RTS 8 ; "N" NOT CLEARED
LI AC0,0
RTS 0 ; CLEAR

.UORD X'4E

.UORD X'4E

.ASCII 'RESET REAL TIME CLOCKS ?'

.UORD 0

.ASCII ' " MASTER i SLAVES MEM.

.UORD 0

; CHECKSUM SUBROUTINE X PRINT RESULT

RANGEl:
RANGE2:
CRLFJ:
CRLFK:

JMP eRAN6E2
.UORD RANGE ; GET MEM. RANGE
JMP eCRLFK
.UORD CRLF : CR/LF TX. SUB.

LOCS.

153

APPENDIX B : SYSTEM SOFTWARE : PART B

FRONT-END TO MASTER INTERRUPT SUB-ROUTINE:

PAGE

FLOWCHART 154

LISTING 160

VDU COMMANDS 161

MESSAGE PROTOCOL (SYSTEM) 171

154

'MSTRIT' SUB-ROUTINE -
'INTERRUPT lEN'

APPENDIX B (PAGE 1 OF B)

SAVE REGISTERS
SAVE RETURN ADDRESS

INTERRUPT OR
IN NEH STATUS

INTERRUPT DRIVEN
SUB-ROUTINE FROM
MASTER LINK

TURN ON MASTER
LINK CARD

TURN OFF SLAVE
INTERFACE CARDS

A VDU CAN
INTERVENE AT THIS
POINT WITH DEBUG
OR COMMAND REQUEST

JUMP TO
VDU COMMAND

SUB-ROUTINE OR
DEBUG SUB-ROUTINE

TEST FOR DEBUG
OR VDU COMMAND

TEST FOR 'SYN'

INITIALIZE (ACn
REGISTER FOR
'SON' TEST

NOTE I

(tl SUB-ROUTINE ALLOHS TEN ERRORS BEFORE AN ENQUIRY
ON RECEIVED DATA 18 SENT BACK TO MASTER.

(2) 'SYN' CHARACTER USED TO SYNCHRONISE LINK.

STORE SYN CHARACTER
IN MESSAGE BUFFER

AREA 2000

LOAD COUNTER (10) FOR
ERROR DATA TEST

READ NEXT
CHARACTER

JUMP TO
CHARACTER

TEST

/ ALLOM \
TEN)

Y ERRORS J

INPUT NEXT CHARACTER
ANO INCREMENT
BUFFER POINTER

LOAD 'ENQ'
ENQUIRY ON MESSAGE

TRANSMIT ENQUIRY
TO THE MASTER

r CORRECT
SYN

L RECEIVED

ERROR
RECEIVEOJ

MESSAGE
INCORRECT?

RESET COUNTERS
TO ZERO

TURN ON
MASTER LINK

RESTORE REOISTERS t
RETURN ADDRESS

RETURN FROM
INTERRUPT

INCREMENT 'SON'
STORE 'SOH' IN
MESSAGE BUFFER

INPUT NEXT
CHARACTER

INCREMENT MESSAGE
BUFFER POINTER

''CONTINUED>
NEXT PAGE

II

155

'MSTRIT' SUB-ROUTINE - APPENDIX B CPAGE 2 OF 6)

FROM
PREVIOUS

PAGE

II
LOAD 'SOH'

COUNTER VALUE
TEST FOR MESSAGE

CHANNEL
FOR

MESSAGE
TRANSMIT,

BLOCK (1)
rCHANNEL SELECT FOR NEXTl
L SUB-SYSTEM LEVEL J

'OOXXX'

LOAD 'ENG'
ON MESSAGE

TRANSMIT TO MASTER

NEW CHARACTER IS
TRANSMIT CHANNEL

NUMBER

RESET COUNTERS

'ERROR'
SIX 'SON' BYTES!
HERE REQUIRED J

'ENQ' .

STORE RETURN CHAHNEL
FOR SLAVE IN
NESSAOE BUFFER

RETURN FROM MASTER
LINK INTERRUPT

INCREMENT MESSAGE
BUFFER POINTER

NOTE I

AT THIS POINT ALL DATA
RECEIVED IS IS BIT AND
IS RECEIVED THO BYTES
AT A TIME.

LOAD NEXT HORO

•ERROR'
A SEPARATOR 'SOH

HAS REQUIRED
'ENQ'

•]

STORE 'SOH' IN
MESSAGE BUFFER

/ 6TH SOH \
CHARACTER}

LOAD 'ENQ'
ON MESSAGE

TRANSMIT TO MASTER

INCREMENT MESSAGE
BUFFER POINTER

RESET COUNTERS

INPUT NEXT HORO
(MESSAGE LENGTH)

- BLOCK (21 (U ^
r MESSAGE SECTOR NUMBER 1
L AND MESSAGE LENGTH J

'XX.YY'

RETURN FROM MASTER
LINK INTERRUPT

STORE IN
MESSAGE BUFFER

REMOVE SECTOR
PRINTER 'MAX 256'

DATA
256 HORDS
LONG STORED]
AT SECTOR
LOCATION,

CAN LOAD A 256 HORD
DATA BLOCK AT ONE OF

256 LOCATIONS.
THEREFORE IN ANY
LOCATION IN THE

POSSIBLE MEMORY AREA
(258 X 256 • 16538)

INCREMENT
BUFFER POINTER

INPUT NEXT WORD
(ERROR CODE)

STORE ERROR CODE
IN BUFFER AND

ON STACK

^BLOCK (2) (Ii)
r ERROR CODE IN
[SAME BLOCK]

156

'MSTRIT' SUB-ROUTINE - APPENDIX B (PAGE 3 OF 6)

STORE ADDRESS OF
ERROR CODE IN
ERROR POINTER

STORE ERROR CODE
IN ERROR CODE

LOCATION

RELOAD
ERROR CODE

STORE ' F S ' AND
INCREMENT

BUFFER POINTER

LOAD 'ENQ' ON
MESSAGE

•ERROR'
F F I L E SEPARATOR 'FS
I HAS EXPECTED

'ENO'
•]

INPUT NEXT
COMMAND

HILL BE EITHER
'TX' OR 'LO'

RETURN FROM
INTERRUPT

'COMMAND BLOCK'
BLOCK 3

(t) RECEIVED MESSAGE COMMAND

(2) NEXT LEVEL COMMANDS

(3] SLAVE ADORESS FOR DATA
BLOCK OF MESSAGE

LOAD 'ENQ' ON
MESSAGE

STORE COMMAND
IN COMMAND

MEMORY LOCATION

TRANSMIT ENQ
TO MASTER

'ERROR'
r HAS NOT A DEFINED
COHMAND 'TX' OR 'LO'

^ (TRANSMIT OR LOAD)

LOAD NEXT
DATA HORD

RETURN FROM
MASTER INTERRUPT

^NEXT LEVEL COMMAND'
ROTATE COMMAND FOR
NEXT SUB-SYSTEM

LEVEL

ROTATE HORD
IE SHIFT BYTES

ROTATED FOR NEXT
SUB-SYSTEH LEVEL

STORE IN MESSAGE
BUFFER AREA

LOAD 'ENQ'
ON MESSAGE

TRANSMIT TO MASTER

'ERROR'
r HAS NOT A PROPER
I COMMAND IE 'TX' OR 'LO

'ENQ'
]

INPUT NEXT HORD
STORE AS NEXT LEVEL

ADDRESS POINTER

RETURN FROM MASTER
LINK INTERRUPT

r NEXT LEVEL "I

LADORESS POINTERJ

157

'MSTRIT' SUB-ROUTINE - APPENDIX B (PAGE 4 OF 6)

(STXl

r DATA "1
L BLOCK J

(ETXl

LOAD 'ENQ'
ON MESSAGE AND

TRANSMIT TO MASTER

STORE ' S T X '
INCREMENT BUFFER
POINTER AND ADD
TO REGISTER ACS

RETURN FROM
MASTER-LINK
INTERRUPT

'STX'
STORE START OF TEXT 1

OR START OF DATA BLOCKJ

INPUT NEXT WORD

ADD TO NEGATIVE
ERROR HORO
LOCATION

STORE DATA HORD
IN BUFFER

INCREMENT
BUFFER POINTER

STORE 'ETX'
IN BUFFER

_ 'DATA BLOCK' _
[STORE DATA BLOCKJ

TEST RECEIVED
MESSAGE FOR

ERRORS
TEST ERROR CODE

RECEIVED FOR ERRORS

'ETX'
r STORE END OF TEXT
OR END OF DATA BLOCK

158

'MSTRIT' SUB-ROUTINE - APPENDIX B

'ACK'

TEST MASTER TO
FRONT-ENO COMHAND

FROM BLOCK 3

COMMAND 1
INOJRRECTJ

0_

LOAD 'ENO' ON
MESSAGE

1
TRANSMIT TO

MASTER

•

RETURN FROM
MASTER LINK
INTERRUPT

(PAGE 5 OF 6)

LOAD STORED
ERROR CODE

LOAD 'ACK'
ACKNOMLEDOE

TRANSMIT TO MASTER

LOAD MASTER'S
COMHAHO FROM

LOCATION MSTCMD

LOAD MESSAGE
POINTER

LOAD NEGATIVE
ACKNOHLEOOR 'HACK'

TRANSHIT 'HACK'
TO HASTER

'ERROR CODE TES"
r ERROR IN 1
L MESSAGE J

'NAK'

CLEAR ERROR
VALUE IN 'MSTERR'

RETURN FROM
MASTER INTERRUPT

LOAD A HORD

'ERROR' LOAD 'ENO' ON
MESSAGE

TRANSMIT TO
MASTER

LOAD MASTER
MESSAGE POINTER

LOAD 'ENO' ON
HESSA6E

RELOAD ERROR
POINTER ADDRESS

TRANSHIT A RETURH
FROH HASTER
INTERRUPT

LOAD MESSAGE
LENGTH

LOAD BASE VALUE
FOR MESSAGE BLOCK

!\RB^ IN SLAVES
'FCOC

@ -

RETURN FROM
MASTER LINK
INTERRUPT

'ENO'

LOAD DATA IN FRONT-ENO
rLOADING DATA FROMl
[MESSAGE BUFFER J

^ 'LOAD' ,
PL O A D OATAl
L BLOCK 4 J

LOAD ADDRESS
POINTERS
MESSAGE

DESTINATION

LOAD SECTOR SIZE
AND ADO TO
BASE VALUE

LOAD A HORO
AND TEST FOR

START OF TEXT 'STX'

LOAD MESSAGE
AND REMOVE

SECTOR POINTER

CONTINUED
NEXT PACE

.VII

159

'MSTRIT' SUB-ROUTINE - APPENDIX B (PAGE 6 OF G)

LOAD NEXT
HORO AND STORE

•
INCREHENT

STORE ADDRESS

— — < END OF >

CREATE A NEH
ERROR CODE FOR
HE8SA0E DUE
TO CHANGE

.DATA

END
OF
JOB

TRANSMIT EOT
BACK TO MASTER

f END \ —
RETURN FROM
MASTER LINK
INTERRUPT

'TRANSMIT'
TRANSMIT ALL OF
MESSAGE TO NEXT

SUB-SYSTEM

TEST FOR ERROR ANO
TRANSMIT BUFFERED

DATA TO NEXT
SUB-SYSTEM
DATA IS FROM

MASTER

STORE NEH ERROR
CODE IN HE8SA0E

TRANSMIT MESSAGE
FROM BUFFER VIA

SELECTED SLAVE LINK

'EOT'
TRANSMIT 'EOT'
BACK TO MASTER Y JOB /

RETURN FROM
INTERRUPT FROM
MASTER LINK

—f END j

'EOT'

160

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 10

391
392
393
394
395
396
397
398
399

401
402
403
404
405 06BB
406 06BC
407 06BO
408 06BE
409 i6BF
410 06CI
411 06C1
412 06C2
413 06C3
414 06C4
415 06C5
416
417
418 06C6
.419 06C7
420 06C8
421 f6C9
422 06CA
423 06CB
424 06CC
425 06CD
426 06CE
427 06CF
428
429
430 06D0
431 06D1
432 0602
433 0603
434 06D4
435
436
437 0605
438 06D6
439 06D7
440 06D8
441 0609
442 06BA
443 06DB
444 06DC

.PAGE 'MASTER INTRPT. SUB.-IEN3'

4t******«*****««*«**************«***«»*4t**4c**

*

MASTER INTERRUPT SUBROUTINE IEN3
CHNDS. FROM MASTER CAUSE TNTRPTS.
THIS ROUTINE UILL LOAD A TRANSMITTED CMND

FROM CHANNEL 1-TEST AND THEN TRANS. DEPENDING
ON SELECTED CHNL. 'DC1 N' AS RECD. IN CMND.

X'9800

5C00 A MSTRIT: RCPY ACO,ACO
0168
0469
D86A
DC6B
6400
0061:
0400
A90C
A50C
0800

50FF
CD0A
D302
CD09
0303
CD08
0303
1550
5100
1905

8207
8207
9800
9900
9880

5C00
CD0E
F300
1905
C700
F520
192E
7B02

ST AC0,MSTREG
ST AC1,MSTREG-H
ST AC2,MSTRE6+2
ST AC3,MSTREG+3
PULL AC0
ST AC0,RETMST
CFR AC0
AND AC0,MMSK1
OR AC0,MINTT1
CRF AC0

MSTR INTRPT. SUB. START
SAVE REGS.

,' RETURN ADDRESS
; MOVE " TO ACO
;MASK OLD INT. STATUS
: OR IN NEU "

MINITNi LI AC0,X'FF ; LOAD OMMY URD (INITIALIZE SUB.)
; LOAD MASTER CARD ADDS.
; TURN ON MASTER CARD

; TURN OFF SLAVE1

; " " SLAVE2

LOAD 'SOH' CNTR. U. 0

MMSK1:
MINTT1
MTRCD1
SLVC11
SLVC21

LD AC3,MTRCD1
ST AC0,TTY0N(3)
LD AC3,SLVC11
ST AC0,TTY0FF(3)
LO AC3,SLVC21
ST AC0,TTYOFF(3)
JSR MSTINP
LI AC1,0 ;
JMP CMDTST ; TEST FIRST INPUT VDU/MSTR.

.WORD X'8207

.UORD X'8207

.UORD X'9800

.UORD X'9900

.UORD X'9880

CMDTST: RCPY ACO,ACO
LO AC3,DGTBL

NXMCMD: SKNE AC0,(AC3)
jnr LMDGOT ;

LO AC1,(AC3)
SKNE AC1,TZR0

JMP MSMSOH ;
AISZ AC3,2

;NOP

;NXT MSTR CMD
EXIT IF EQ. TO CMD.

ALTER HERE
JCHECK NXT CMD

161

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 11

445 06DD
446 06DE
447 06DF
448 06E0
449 06E1
450 06E2
451 06E3
452
453 06E4
454 06E5
455 06E6
456 06E7
457 06E8
458 06E9
459 06EA
460 06EB
461 06EC
462 06ED
463 06EE
464 06EF
465 06F0
466 06F1
467 06F2
468 06F3
469 06F4
470 06F5
471 06F6
472 06F7
473 06F8
474 06F9
475 06FA
476 06FB
477 06FC
478 06FD
479 06FE
480 I6FF
481 0700
482 0701
483 0702
484 0703
485 0704
486 0705
487 0706

488 tin
489 0708
490
491
492 0709
493
494
495 070A
496 070B
497
498

19F9
CF01
5C00
C06C
5C00
6400
6400

1B00
06E6
0041
0214
004C
022A
0050
039B
0043
0433
0042
0418
0044
0429
0057
040E
0053
041E
0052
03B7
0049
0368
0048
03C6
0047
03F1
001A
0379
0058
020A
004 F
020F
0011
00A5
0054
023A
0000

076F

5100
193E

A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A

A
A

CMDGOT:

DGTBL:
DBGTBL:

TZRO:
•

>

TBLIXT;

MSMSOH:

•

r

JMP NXMCMD
LD AC3,1(AC3)
RCPY AC0,AC0
LD ACO,RETMST
RCPY ACO,AC0
PULL ACO
PULL ACO

JMP (AC3)
.UORD DBGTBL
.UORD X'41
.UORD ALTER
.UORD X'4C
.UORD LDREG
.UORD X'50
.UORD PRINT
.UORD X'43
.UORD COPPY
.UORD X'42
.UORD BINARY
.UORD X'44
.UORD DUMP
.UORD X'57
.UORD WHERE
.UORD X'53
.UORO STORE
.UORD X'52
.UORD REGTYPE
•UORD X'49
.UORD INSERT
.UORD X'48
.UORD HALT
.UORD X'47
.UORD 60
.UORD X'1A
.UORD CMDTRN
.UORD X'58
.UORD MHEX
.UORD X'4F
.UORD MOCT
.UORD X'11
.UORD TTYMD
.UORD X'54
.UORD TIME
.UORD 000 ;

.UORD MSTIXT

LI AC1,0
JMP MSTSYN

; LOAD ADDS.
;UAS PULLF BUT CAUSED STK.

,-NOP
; " JSR GECHO FRM STK.
; " " AT X'F2

; 60 TO PROG.

. M ^ H

. Ill II

a lip II

; "C" XX,YY COPY MEM. ONLY
; "CS" XX,YY CHKSM REQST.

.11 pii

. II]) II

.iiyii

. agi.

; "R"

. II T H

» *

; " H "

; " Q "

; CONTROL "Z","SUB"

. «X"

. HQI.

; "CONTRL Q" , " DC1"

. HTII

ENO TABLE

; EXIT IF ZERO

; LOAD 'SOH' CNTR. U. 0

152

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 12

499
500 070C
501 070D
502 070E
503
504 070F
505 0710
506 0711
507 0712
508 0713
509 0714
510 0715
511 0716
512 0717
513
514 0718
515 0719
516 071A
517 071B
518 071C
519 071D
520 071E
521 071F
522 0720
523 0721
524 0722
525 0723
526 0724
527 0725
528 0726
529 0727
530 0728
531 0729
532 072A
533
534
535 072B
536 072C
537 0720
538 072E
539 072F
540 0730
541 0731
542 0732
543 0733
544 0734
545 0735
546 0736
547 0737
548 0738
549 0739
550 073A
551 073B
552

1502
6900
8000

6100
151A
2810
6000
1517
6500
5840
6500
8000

6300
CD25
0303
CD24

D303
CD23
D303
6700
D302
D300
4001
19FE
4F01
19FE
C305
F11E
1910
D303
8000

6300
CD12
D302
4F01
19FE
C305
A911
F10B
1905
0300
4001
19FE
6700
8000
6700
6400
1933

A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

•

MSTILD:

t

MSTRED:

MSTFET:

•
t
t

MSTINP:

MSTSTR:

MSTTRM:

1

JSR MSTRED ,* FRNT-END INPUT LOAD
RADD AC0,AC1 ; FINAL 16 BITS
RTS 0

PUSH ACl ; FRNT-END READ 16 BITS
JSR MSTINP ; INPUT LSB'S.
SHL 0,8,0
PUSH AC0
JSR MSTINP ; INPUT MSB'S.
PULL ACl
RXOR AC1,AC0
PULL ACl
RTS 0

PUSH AC3 ;FRNT-END.-MASTER TRANS'MT.
LD AC3,MSTCD1
ST AC0,TTYOFF(3)
LO AC3,SL1CD1

ST AC0,TTYOFF(3)
LD AC3,SL2CD1
ST AC0,TTYOFF(3).
PULL AC3 ; AC3 CARD ADDS DETERMD. BY JSR CALL
ST AC0,TTYON(3)
ST AC0,TTYOUT(3)
BOC PFLG,.•••2
JMP .-1
BOC RFLG,.+2 ; UAIT FOR RTRN MSG
JMP .-1
LD AC0,TTYGET(3) ; CLEAR INCOM.
SKNE AC0,MS2E0T ; SKIP IF NOT EOT
JMP MSTTRM ; UNCONDITIONAL TERMTE.
ST AC0,TTYOFF(3)
RTS 0

PUSH AC3 ; FRNT-END INPUT SUB.
LD AC3,MSTCD1 ; LOAD CHNNL. 1 ADD'S.
ST AC0,TTY0N(3)
BOC RFLG,.+2 ; SKIP IF INPUT FLAG SET
JMP .-1
LO AC0,TTYGET(3) ; " CHART'R. FROM "
AND AC0,MSRCMK JMSK UPPER BITS
SKNE AC0,MS3E0T ; SKIP IF NOT EOT
JMP MSTTRM ; UNCONDITIONAL RETURN
ST AC0,TTYOUT(3) ; PULSE LINE UITH CH.
BOC PFLG,.+2
JMP .-1
PULL AC3
RTS 0
PULL AC3 ; MASTER TERMNTE.
PULL ACO ; CLEAR STACK (JSR)
JMP MSTIXT ;UNCONDniONAL EXIT

163

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 13

553 073C
554 073D
555 073E
556
557 073F
558 0740
559 0741
560 0742
561 0743
562 0744
563 0745
564 0746
565 0747
566 0748
567 0749
568
569
570 074A
571 074B
572 074C
573 0740
574 074E
575 074F
576 0750
577 0751
578 0752
579 0753
580 0754
581 0755
582 0756
583 0757
584 0758
585 0759
586 07SA
587 075B
588 075C
589 0750
590 075E
591 075F
592 0760
593 0761
594 0762
595 0763
596 0764
597 0765
598 0766
599 0767
600 0768
601 0769
602 076A
603 076B
604 076C
605 076D
606 076E

820F A MSTMSK:
820F A MSTINT:
0004 A MS3E0T:

9800
9900
9880
0001
00FF
000A
0016
FF04
0001
0005
06BB

FIFA
1907
C46E
E5F4
D46E
6C40
9DF3
99F7
190D
C92E
D200
E9EC
1504
F1ED
19FB
F1ED
190B
C46D
6C40
9DEA
1901
1936
5005
CDDD
0300
4001
19FE
1909
C46D
E50A
D46D
D200
F1DB
1903
E9D5
15BD
19EA

MSTCD1
SL1C01
SL2CD1
MSTONE
MSRCMK
MSOCNT
MSTSCH
MS2E0T
MS2S0H
MS2SHC
MSSRIT

.UORD X'820F ; STKFL,CLK,MSTR

.UORD X'820F ; CAN INTERPT.

.UORD X'0004

.UORD X'9800

.UORD X'9900

.UORD X'9880

.UORD X'1

.UORD X'00FF

.UORD X'A ; DEC. 10 COUNT

.UORD X'16 ;SYN CHARACTER

.UORD X'FF04 ; SEE MSTEOT

.UORD X'1 ; " MSTSOH

.UORD X'5 ; SEE SHMCNT

.UORD MSTRIT

TEST FOR SYN CHTR.

LD IN NU. SYN CNT.
INCRMT.
RESET COUNT

START OF MESG. TEST

MSTSYN: SKNE AC0,MSTSCH
JMP MS0STR
LD ACl,MSNSYN
ADD ACl,MSTONE
ST ACl,MSNSYN
RXCH AC1,AC0
SK6 AC0,MSOCNT ,*IF >10 ENQ ON MESG.
JMP eMSSRIT JCONT'E. UNTL SOH OR XCESS
JMP HSEROR ,- OUTPUT ENQ ON MESG

MS0STR: LD AC2,MSTMPT ;LD MSTR MESG STR. PTR.
MSSSST: ST AC0,(AC2) ; STR FIRST SYN

ADD AC2,MSTONE
JSR MSTINP ; INPUT NXT CH.
SKNE AC0,MSTSCH ; TEST FOR NXT SYN CH.
JMP MSSSST

MSTRSH: SKNE AC0,HS2SOH ; SKIP IF NOT START OF MESG.
JMP MSCTSH

SHTST1: LD ACl,MSOHCT
RXCH AC1,AC0
SK6 AC0,MS2SHC
JMP MSEROR
JMP MSCNST ;

MSEROR: LI AC0,X'5 J
LO AC3,MSTCD1
ST AC0,TTYOUT(3)
BOC PFLG,.+2
JMP .-1
JMP MSTIXT

MSCTSH: LD ACl,MSOHCT
ADD ACl,MSTONE
ST ACl,MSOHCT

MSSTRE: ST AC0,(2)
SKNE AC0,MS2EOT
JMP MSTIXT ; EXIT END OF CMND.
ADD AC2,MSTONE
JSR MSTINP
JMP MSTRSH : NXT. SOH

SKIP IF >5 SOH CNT.

FTHR. PRCSG. INPT.
: ENQUIRY ON MESG.

DATA ie. CHNNL. SL

MSTR. CNT. OF SOH'S

STORE SOH DATA

164

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 14

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

076F
9778
i77\
9772
0773
0774
0775
0776
9777
0778
0779
077A
077B
077C
077D
077E
i77^
0780
0781

0782
0783
0784
0785
0786
0787
0788
0789
078A
078B
078C
078D
078E
078F
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
079A
079B
079C
079D
079E
ff79F
07A0
07A1
07A2

SC00
5000
D06D
D06E
CDCB
0302
COCA
0303
CDC 9
0303
C06C
6000
C068
C469
C86A
CC6B
3300
3380
7C00

2000
C5FE
C873
7A01
6080
C200
CC6F
6000
2410
158C
6400
6000
A96D
1588
6400
E9B0
0874
F474
8000
19F1
6D00
A969
5F00
CF08
DC6F
5001
0200
E9A4
9554
F15D
1901
19BE
D200

MSTIXT: RCPY AC0,AC0; EXIT ROUTINE
LI AC0,0
ST AC0,MSOHCT
ST AC0,MSNSYN ;
LD AC3,MSTC01
ST AC0,TTY0N(3) ;TURN ON
LD AC3,SL1CD1
ST AC0,TTYOFF(3)
LD AC3,SL2CD1 ;
ST AC0,TTY0FF(3)
LO AC0,RETMST
PUSH AC0
LD AC0,MSTREG
LD AC1,MSTREG+1
LO AC2,MSTREG+2
LD AC3,MSTREG+3
PFLG IEN3
SFLG IEN3
RTI

RESET "SOH" COUNT
SYN

OFF SI
S2

;MESG. TRANSMIT SUB.
; LAST ADDS. DATA STORE
; INC TO INC. ETX CODE.

AC2 HAS END OF MESG. STORE.
TRNS BLOCK AS DETR AC2 TO AC3 VAL.

A CH. :NEED A RETURN CH.

MSTMPT: .UORD MMS6ST
MSMTRN: LO ACl,MSTMPT

LD AC2,MSERAD
AISZ AC2,1
RXCH AC2,AC1 ;

MSMTX2: LD AC0,(AC2) ;
LD AC3,MSTCHL
PUSH AC0
ROR 0,8,0
JSR MSTFET
PULL AC0

MSSITX: PUSH AC0 ; TRANS.
AND AC0,MSRUD
JSR MSTFET
PULL AC0
ADD AC2,MSTONE
ST AC2,MSGEND
SKNE AC1,MSGEND ; SKIP IF NOT EQ. END MES'G.
RTS 0 ; RETURN TOEXIT ROUTINE.

JMP MSMTX2 ; CONTINUE UNTIL CMPLTO.
MSCNST: RXCH AC0,AC1 ; MSTR. CHNNL. SELECT STORE

AND ACO,MSTCHN ;MSTR. CHNNL. SET
RCPY AC0,AC3
LD AC3,TTYUD1-1(3) JGET TRN'S CHNNL
ST AC3,MSTCHL

RETURN ADDS. PTR.
STORE RT'N. ADOS. FOR SLV.

LI AC0,1 ;
ST AC0,(AC2) ;
ADD AC2,MSTONE

MSSCBL: JSR PMSINLD
SKNE AC0,MSTSOH
JMP MSMSTR
JMP MSEROR

MSMSTR: ST AC0,(AC2)

; INPT. STRT/NEXT BLOCK
;SKIP IF NOT "

OTPT. ENQ. CHTR.
MESSAGE STORE (SOH)

165

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 15

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
.699
700
79\
702
703
704
705
706
797
708
709
710
711
712
713
714

07A3
07A4
07A5
07A6
07A7

07A8
07A9
07AA

07AB
07AC
07AD
07AE
07AF
07B0

07B1
07B2
07B3
07B4
07B5
07B6
07B7
07B8
07B9
07BA
07BB
07BC
07BD
07BE
07BF
07C0
07C1
07C2
07C3

E99E A
954E A
0200 A
A91B A
5F00 A

E999 A
9549 A
5000 A

D200
D873
E994
6000
7101
D472

9541
F150
1902
6400
19AA
0200
E98A
953A
A942
F104
1907
F103
1905
19A1
0054
004C
0001
00FF
0070

07C4
07C5
07C6
07C7
07C8

952E
2410
D200
E9F9
0200

ADD AC2,MSTONE
JSR 8MSINLD
ST AC0,(AC2)
AND AC0,MSTMLH
RCPY AC0,AC3

; INPT MSSG. LNTH.
; STORE MESG. LNTH.
: SLOUGH SECTOR PTR

AC3 HAS MESSAGE LENGTH (MAX 256)

ADD AC2,MSTONE
JSR 8MSINLD ; INPT ERROR CODE
RCPY AC0,AC1 ; LOAD " " IN ACl

ACl S STK. HAS ER. CDE. =TOTL DATA UDS

ST AC0,(AC2) ;
ST AC2,MSERAD ;
ADD AC2,MSTONE
PUSH AC0 ;STORE
CAI AC1,1
ST ACl,MSTERR

ACl HAS -ERROR CODE

STRE. ERR. CDE MSG. ADDS

STK.
; -(ERROR CODE)
STRE ERR CDE.

TEST FOR "FS"
:FILE SEPARATOR CH.

JMP TO COMNO. LD

; OTPT. ENQ. CHTR.
STORE FS.

JSR eMSINLD
SKNE AC0,MSTFSC
JMP MSCMDL
PULL AC0
JMP MSEROR

MSCMDL: ST AC0,(AC2)
ADD AC2,MSTONE
JSR PMSINLD ; INPT. TX. OR LD CMND.
AND ACO,MSRUD
SKNE ACO,MSTXCH
JMP MSVCMD ; STORE TX CMND.
SKNE ACO,MSLDCH

MSTXCH
MSLDCH
MSTANE
MSTMLH
MSVCMO

JMP MSVCMD
JMP MSEROR
.UORD X'54
.UORD X'4C
.UORD X'1
.UORD X'00FF
ST ACO,MSTCMD

STORE LOAD CMND.
ENG ON MSG
TX CHARATR. T
LD " L

; MSTR. MSG. LN6TH. MASK
;STORE COMAND

THIS ROUTINE ROTATES I CREATES
NEU CMNDS. FOR NXT LEVEL
DEPENDING ON SECOND CMND. GROUP

JSR SMSINLD

ROR AC0,8,0 ; ROTATE NXT STAGE CMND
ST AC0,(AC2) ; STORE NEU COMMAND
ADD AC2,MSTANE
ST AC0,(AC2) ; ROTATED FOR NEXT LEVEL

166

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 16

715 07C9
716 07CA
717 07CB
718 07CC
719 07CD
720 07CE
721 07CF
722 0700
723 07D1
724 07D2
725 07D3
726 07D4
727
728
729
730 0705
731 07D6
732 07D7
733 07D8
734 07D9
735 07DA
736 07DB
737
738
739
740 07DC
741 07DD
742 07DE
743 07DF
744 07E0
745 07E1
746 07E2
747 07E3
748 07E4
749 07E5
750 07E6
751 07E7
752 07E8
753
754
755
756 07E9
757 07EA
758 07EB
759 07EC
760 07ED
761 07EE
762 07EF
763 07F0
764 07F1
765
766
767 07F2
768 07F3

E9F7
2410
A930
F1F2
1903
F1F1
1901
198F
9521
0071
0200
E9EC

951 D
F127
1901
1987
0200
E920
6B80

7301
9515
F123
1909
C472
6900
0472
0200
E916
5C80
68C0
4201
19F4

5003
0200
6400
4117
C472
5C40
4114
5015
9902

072B
070C

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A

MSTADP:

ADD AC2,MSTANE ; I STORED
ROR AC0,8,0 ; ROTATE BACK FOR TEST
AND AC0,MSRUD
SKNE AC0,MSTXCH
JMP MSTADP ; JUMP TO MSTR ADDS PTR.
SKNE AC0,MSLDCH
JMP MSTADP ; " " ' .
JMP MSEROR ;^ENQ ON MSG
JSR 8MSINLD
ST ACO,MSTADD ; STORE ADDS PTR.
ST ACO,(2)
ADD AC2,MSTANE

; CMND. IN MSTCMD , ADDS. LOC. IN MSTADD

MSCDST:

; AC3

MSCDIP:

; AC2

MSECOT:

1

MS2INP:
MSINLD:

JSR eMSINLD ; TEST FOR STX
SKNE AC0,MSTSTX
JMP MSCDST
JMP MSEROR ; TRNS. ENQ.
ST AC0,(AC2) ; STORE STX
ADD AC2,MSTMNE
RADD AC2,AC3 ; CMND. STORE AC3 * END TEXT

= (END ADDS.-1)

CAI AC3,1 ; AC3= -(LAST LOC. -1)
JSR 8MSINLD ; INPT. DATA
SKNE AC0,HSTETX ; TEST FOR END TEXT ETX.
JMP MSECOT ; JMP TO ERROR TEST
LD ACl,MSTERR
RADD AC0,AC1
ST ACl,MSTERR ; DECREASE ERR CNT
ST AC0,(AC2) ;STORE DATA
ADD AC2,MSTMNE ,' INCMT. ADDS.
RCPY AC2,AC0
RADD AC3,AC0 ; CURRENT ADDS-(LAST ADS.-1)
BOC C2,MSECDT ; BRNCH. TO ERROR CODE TST.
JMP MSCDIP ; CONTINUE INPT.

= ENO OF STORAGE

LI AC0,X'3 ; ETX
ST AC0,(AC2) ; STORE ETX
PULL ACO ; ERROR CODE TEST
BOC C1,CMMTST ; JUMP TO CMND. EXECUTE
LD ACl,MSTERR
RCPY AC1,AC0
BOC C1,CMMTST ; " " "
LI AC0,X'15 ; LOAD NACK DUE TO ERR.
JMP eHSERR3

.UORD MSTINP
-UORD MSTILD

167

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE W

769
779
77)
772
773
774
775
776
777
77S
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

07F4 0761 A MSERR3: .UORD MSEROR-H

07F5
07F6
07F7
07F8
07F9
07FA
07FB
07FC
07FD
07FE
07FF
0800
0801
0802
0803

0804
0805
0806
0807
0808
0809
080A
080B
080C
080D
080E
080F

0000
820F
820F
9800
9800
9880
0001
00FF
0001
0002
0004
0005

0003
001C

5006
CDF3
0302
0300
4001
19FE
C070
F1B3
1904
F1B2
1943
9931

MSNXSB
MSITST
MSMSK:
MMSCD1
MSCD1A
S2CD2A
MSTMNE
MSRUD:
MSTSOH
MSTSTX
MSTEOT
SH1CNT
MSTCHN
MSTETX
MSTFSC

HALT
.UORD
.UORD
.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

.UORD

INSERT NEXT SUB HERE
X'820F
X'820F
X'9800
X'9800 ;
X'9880 ;
X'1
X'FF
X'1
X'2
X'4
X'5
X'7
X'3
X'lC

;NEU FLAGS
; CLK CAN INTRPT.
; MASTER CARD
FRTENO CARD ADOS
SLAVE2 CARD ADDS

; MASK OUT MSB'S.
; "SOH" STRT. OF MSG.
; STRT. OF TEXT "STX"
; UNCONDITIONAL TERMINATE
; SOH COUNT

;END OF TEXT
: FILE SEPARATOR CHTR.

CMMTST: LI ACO,X'06 ;
LD AC3,MSCD1A ; "
ST AC0,TTY0N(AC3)
ST AC0,TTYOUT(AC3)
BOC PFLG,.->2
JMP .-1
LO AC0,MSTCMD
SKNE AC0,MSTXCH
JMP NECDLS ;
SKNE AC0,MSLDCH
JMP LOHXSB ;
JMP 8MSERRR

LOAD ACK -CORRECT MESG
" ADDS OF CARD

JMP TO NEU ERR CDE SOATA LD

CMND
LD '
ERROR

THIS SUB. CREATES
1 NEU DATA - DEPENDS ON REQ'T.
2 " ERROR CODE FOR ABOVE
3 " BASE ADDRESS FOR LOADING

IE. SEE MSTSLA PTR.

0810 2000 A MSTPT1: .UORD MMSGST

0811 5200 A NECDLS: LI AC2,0
0812 0872 A ST AC2,MSTERR j

0813 C5FC A LD AC1,MSTPT1
0814 6080 A RXCH AC2,AC1 ;
0815 C200 A MMS6LT: LO AC0,(AC2) ;
0816 F1EC A SKNE AC0,MSTFSC
0817 1903 A JMP MFSFR ;
0818 7A01 A AISZ AC2,1
0819 19FB A JMP MMSGLT
081A 9926 A JMP gMSERRR

CLEAR ERR CDE.

AC1=0,AC2 =MSTMPT
TEST FOR "FS"

JUMP TO MSTR FS FOUND RTNE.

168

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 18

823 08IB
824 081C
825 081D
826 081E
827 081F
828 0820
829 0821
830 0822
831 0823
832 0824
833 0825
834 0826
835 0827
836 0828
837 0829
838 082A
839 082B
840 082C
841 0820
842 082E
843 082F
844 0830
845 0831
846 0832
847 0833
848 0834
849 0835
850 0836
851 0837
852 0838
853 0839
854 083A
855 083B
856
857 083C
858 0830
859
860
861
862
863
864
865 083E
866 083F
867 0840
868
869 0841
870 0842
871 0843
872 0844
873 0845
874
875
876

7A05
0873
7AF9
CD20
C200
A91F
68C0
CC71
68C0
7A05
0200
7AFB
C200
A903
C472
7A01
0872
C871
5Fe0
6B00
7301
C200
6900
7A01
0871
B073
5C80
68C0
4204
C073
7801
D073
19F4

6C40
B072

MFSFR:

1907
FC00
FF00

0760
0718
0783
2000
0016

A MSNECS:
A

HFSFR1

AISZ AC2,5 ;
ST AC2,MSERAD
AISZ AC2,-7
LD AC3,MSTSLA
LD AC0,(AC2)
AND AC0,MSTSEC
RADD AC3,AC0
LD AC3,MSTADD
RADD AC3,AC0
AISZ AC2,5
ST AC0,(AC2)
AISZ AC2,-5
LO AC0,(AC2) ;
AND AC0,MSRUD
LD ACl,MSTERR
AISZ AC2,1
ST AC2,MSTERR
LD AC2,MSTADD
RCPY AC2,AC3
RADD AC0,AC3
CAI AC3,1
LO AC0,(AC2)
RADD AC0,AC1
AISZ AC2,1
ST AC2,MSTADD
ST AC0,eMSERAD
RCPY AC2,AC0
RADD AC3,AC0
BOC C2,MSNECS
LD AC0,MSERAD
.AISZ._AC0j1
ST AC0,MSERAD
JMP MFSFR1

LOOK FOR MSG LNTH. S ER CD. ADDS
; STRE VALUE OF AC2 IN LOC.

; LD BASE ADDS PTR.
,• " SECTOR PTR. (SEC. FOR DIP DEVICES

; ADD SECTOR TO BASE
; LOAD ADDS VALUE
; TOTAL = ADDS•^SECTOR+BASE

; STRE. " « " PTR MSG ADDS.
; MSG. LNTH. LOC.
LO MSG LNTH IN AC0
; REMOVE SECTOR PTR.

; STRE ADDS OF ERR IN ERR CDE LOC
; LD ADDS " " AC2
; STARTING ADDS TX MSG
; FINISHING " "
AC3 = -(LAST LOC. -1)
LD DATA
CREATE NEU ERR CDE.

; STRE NXT LOC.
; " DATA IN F.E. STORE

; CURRENT ADOS -(LAST-1)
; BRANCH TO NEU ERR STRE

; GET NEXT 16 BIT UO.

RXCH AC1,AC0
ST AC0,eMSTERR STRE INDIRECT

NEU ERROR CODE
DATA

ALL LOADED IN MST MESG. LOC.

JMP TXMXSB : TRANS MSG.
A MSTSLA: .UORD X'FC00
A MSTSEC: .UORD X'FF00

A MSERRR: .UORD MSEROR
A MSFETXf .UORD MSTFET
A MSMTX1: .UORD MSMTRN
A MSMPTR: .UORD MMSGST
A MS2SCH: .UORD X'16 ;

; BASE SLAVE ADDS. PTR.
: MSTR SECTOR ADDS MASK

SYN. CHARACTER

TRANSMIT STORED MESG-END UITH EOT.

169

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 19

877 0846
878 0847
879 0848
880 0849
881 084A
882 084B
883 084C
884 0840
885 084E
886 084F
887 0850
888 0851
889
890
891
892 085?

893 0853
894 0854
895 0855
896 0856
897 0857
898 0858
899 0859
900
901 085A
902 085B
903 085C
904
905
906
907 085D
908
909
910
911 085E
912 085F
913
914
915
916
917 0860
918 0861
919 0862
920 0863
921 0864
922 0865
923 0866
924 0867
925 0868
926 0869
927 086A
928 086B
929 086C
930 0860

A
A
A
A

CDB2
D303
CDB1
0303
CDAD A
0303 A
95F6
5004
95F3
9900
076F

TURN OFF CD1
CD2

CDF1
C300
EDA6
FIEF
19FC
F1A5
1901
9916

6680
DC71

CDE3
C300
ED98
F19A
1901
19FB
C300
0200
ED92
E991
F871
1901
19F9
5C00

00FF A

TXMXSB: LD AC3,MSCD1A

ST AC0,TTY0FF(AC3)
LO AC3,S2CD2A
ST AC0,TTYOFF(•AC3)

LD AC3,MMSCD1
ST AC0,TTYOFF(AC3)
JSR eMSMTXI

TXMXAC: LI AC0,X'04
JSR eMSFETX
JMP eMSTEXT

MSTEXT; .UORD MSTIXT
MSTML1: .UORD X'00FF

LOAD MESG INTO REQ'D. MEM. AREA

EOT

C307 A
A9F5 A
5F00 A

C871 A

LDMXSB: LD AC3,MSMPTR ;
NXMSSH: LD AC0,(AC3)

ADD AC3,MSTMNE
SKNE AC0,MS2SCH
JMP NXMSSH
SKNE ACO,MSTSOH
JMP NXLOLN
JMP eMXLDEQ ;

NXLOLN: LD AC0,7(AC3) ;
ANO AC0,MSTML1
RCPY AC0,AC3

SETUP LD MESG. PTR,

MASTER ENQ ON MSG

LO MSG. LNGTH.

AC3= MESG, LENGTH (MAX 256)

LD AC2,MSTADD

AC2= MESG DESTINATION

RADD AC2,AC3
ST AC3,MSTADD

MSTADD = LAST LOC.
AC2 = FIRST LOC.

LD AC3,MSMPTR
MSDATS: LD AC0,(AC3)

ADD AC3,MSTMNE
SKNE ACO,MSTSTX
JMP MSSTOT
JMP MSDATS

MSSTOT: LO AC0,(AC3)
ST AC0,(AC2)
AiDO AC3,MSTMNE
ADD AC2,MSTMNE
SKNE AC2,MSTADD
JMP LDIXTS
JMP MSSTOT

LDIXTS: RCPY ACO.ACO

LOOK FOR STX

STORE DATA

JMP TO LO EXIT SUB.

170

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
MASTER INTRPT. SUB.-IEN3

PAGE 20

931 086E 9900 A JMP gTXMXCI
932 086F 0840 A TXMXC1: .UORD TXMXAC
933 0870 0760 A MXLDEQ: .UORD MSEROR
934 ;
935

ENQ ON LONG

171

PACE ASSEMBLER REV-A 20 DEC 76
PACE FTND CTRLPRGM 17/10/78
SLV2IN INTRPT. SUB.-IEN5

PAGE 39

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

» *

*

*

MESG STORED. *
*

0000 *
0000 *

*
II

0000
XXXX
XXXX
XXXX
OOSYN
OOSYN
OOSYN
OOSOH
OOSOH
OOSOH

IGNORED NULLS

ALLOU TEN ERRORS

NO LIMIT ON NO.
(CONTROL 'V')

REQ. SIX SONS.

*

*

*

IN MESG*
*

»

*

*

*

*
*

0B6A

OOXXX CHANNEL ADDS. TO NXT LEVEL*
00SOH SEPARATOR (CNTRL 'A') *

XX,YY. SECTOR.AOPS,,MSG,.LENGTH 16BIT*
ERROR CODE. *
00FS (CNTRL 'SHIFT' L') *
00TX OR 00LD TX='T'(X'54')/L('4C*

TXTX; TXLD ; LDTX ;LD0 SLV CMNDS, »
SL1AD0 PTR. 16 BIT CHNGE BY PRG *
00STX X'2 START OF TEXT (CL.B)*
XXXX DATA 16 BIT *
XXXX " DETERMINED BY LNG*
00ETX END OF TEXT *

*

UILL EITHER TRANS ACK OR NACK AT END *
•

0 IS 8 BIT 0 IS 16 BIT UDS *
000 USE BRK KEY •

EOT CNTRL 'D' « ETX CNTRL'C *

. = .•̂ 50
0B9C 0000 A NXTSB2: .UORD 0

00BD A .END START

172

APPENDIX C : MASTER HIGH SPEED SERIAL DATA INTERFACE CARD

FOR HP-21MX

Circuit Diagram

. RS232C and 20 Milliamp Loop

. 50 to 9600 Baud

174

APPENDIX D : FRONTEND AND SLAVE HIGH SPEED SERIAL DATA

INTERFACE CARD

Circuit Diagram

. Dual RS232C and 20 Milliamp Loop

. 50 to 9600 Baud

176

APPENDIX E : PUBLISHED PAPER BY AUTHOR

"Hierarchical Control Using

Satellite Microprocessors"

177

Reprint

of a Paper Presented

at a Technical Conference

of

THE INSTITUTION OF ENGINEERS, AUSTRALIA

lS-16 November 197/

178

Hierarchical Control Using Satellite Microprocessors
A. W. COTTON

State Electricity Commission of Victoria

and

G. J. LOWE
Senior Lecturer. Footscray Institute of Technology, Victoria

SUMMARY The aim of this paper is to show some of the developments in hierarchial control and monitoring of
large scale industrial installations. Past, present and future trends will be covered. Research work
currently being undertaken at Footscray Institute of Technology, into the problems and benefits of a system
using limited interconnection between satellite microcomputer controllers and a master minicomputer ir. =

Uscu a5 basis the
compute
aoer.

Aavar.iags.3
3S scr.a cf

/intages
zr-.e ritrs--:]

^'T --resent remote control and monitoring methods will be discussed as wel
.rle-enting a -nicrcccmcuter based scheme.

Soth r.ariware and sofrwara r-iq_irements are presented and also general observations based on the authcr-'
experiences. With failing microcomputer costs and increasing scales of operation in industrial
:r.3ta_j.ation5 serious con si-era ticn will have to be given to the methods of control and monitoring.

INTRODUCTION

'.vith the development of large, complex industrial
installations comes the need for a central control
centre if overall co-ordination is to be maintained.
One example is the development of power generation
utilizing fossil fuels. As the size of the various
power stations increased, so did the demand for
fuel, hence the operations in the mining of the
coal became more and more complex. In order to
keep the bunkers of the power stations full, a
network of conveyors is required to transport the
coal from the dredgers (or excavators) in the bottom
of the open-cut m.ine to the power station bunkers
around the outside.

Initially the supply of coal was fairly easy to
cc-ordinate, but as the distances involved increased
to kilometres and the transport equipment increased
in size and numlsers, it was found necessary to
centralize the control and monitoring of the
transport systems.

Generally, located remote from the working faces of
the open cut mine, the control centre's function is
to plan and control the activities on both a daily
and long term basis. Without the control centre,
this large and complicated transport system, would
be most inefficient in its operation. The amount
of time lost starting and stopping the long conveyor
system is considerable, so the job of the control
centre is to try and keep every item of plant in
service and producing in the most efficient overall
manner.

Briefly a remote control and monitoring scheme such
as already mentioned, combines both computer and
telemtry techniques in order to control the activ
ities of a complex plant situation, consisting of
manned dredgers and stackers and unmanned belt
conveyors and pumping stations. This equipment must
be controlled to avoid overfilling and spillage at
the transfer points during start-up, normal operation
3.nd stopping.

In addition to this main control function there are
monitoring functions which have to be carried out.

in particular due to the unattended operation cf the
conveyors and pumping stations. In the case of the
unattended plant the volume of information to be
transmitted is much bigger than with the manned
units.

The evaluation of technical and economical aspects
shows the expediency of employing remote control
and monitoring equipment. For the past 15-20 years
the remote control and monitoring systems have
generally used some form of imiltiplexing (frequency
or time division, F.D.M., T.D.M.) or direct wiring
to connect the remote outstations (conveyor drive
units etc.) to the control centre which usually
had a minicomputer to provide the overall strategy
for control and monitoring the plant.

The control necessary for the individual machinery
is placed on the unit itself in cubicles near the
power circuits and equipment and nortnally operates
at a lower voltage (240V a.c. or llOV d.c.) than the
primary circuits. Initially the control logic was
implemented using conventional relays, more rece-tly
(5-10 years) solid state logic has been used.

With falling hardware costs, especially in the field
of small computers (microcomputers), and increasing
plant size and complexity it is becoming feasible
to implement the requirements of control and ticc-
itoring for large industrial installations by-
dedicating various functions to distributed computer
at the remote outstations. The distributed computer
would be linked together in a hierarchial control
scheme with overall control still maintained at the
control centre. Research is currently being carried
out at Footscray Institute of Technology based on
using the microcomputers as multiple slave coTrputers
in a distributed remote control and monitoring
scheme. Initial results should be available late
1977 or early 1978.

A typical layout showing the remote outstations .at
the conveyor drive ends, etc.) and the centre.
centre is shown by Fig. 1. The diagram has been
simplified by leaving out the interchange ae-.een
the various levels within the open cut min-?.

23

C o n t r o l

C c n t r t

-••ASTEP"

HEzi

500 i « t r t 5

iiT

2.2.2 Multiplexing 179

/ " r « " e t e mcblLc
/-"^^ c u T s t a t i o n (d r « d (« r)

(2r-

^3

Another technique for transmitting information is
multiplexing (either frequency division or time
division), the signals are sent over the same pair
of wires but at different frequencies or different
time intervals.

3 INTELLIGENT REMOTE OUTSTATIONS

Falling microcomputer hardware costs and rising
hardwired logic system costs makes it economic to
consider replacing the current method of remote
control and monitoring in large installations. It
is feasible to combine remote control, real-time
data acquisition, distributed computing (hier
archical computer systems) low-cost communication
links.

3.1 System Organisation

The individual remotes could be as shown in Figure
2.

3.2 Microprocessor Hardware

It is not possible to discuss in detail in this
paper the hardware requirement for a control micro
processor and the following points simply indicate
some of the major aspects.

Figure 1 A typical "MASTER/SLAVE" layout

2 CURRENT METHODS OF CONTROL AND MONITORING

2.1 Control

The control requirements a t each remote o u t s t a t i o n
are implemented by i n t e r l o c k i n g the various functions
that have to be checked before a successful s t a r t i n g
or stopping opera t ion i s c a r r i ed out . Conventional
relays were used to open or c lose contac ts in a
ladder diagram depending on the condi t ion r equ i r ed .
Extra contacts were provided on the same re l ay for
monitoring purposes .

With the advent of s o l i d s t a t e log ic the con t ro l
functions were then achieved in a s imi l a r manner
with hardwired l o g i c a l " a n d ' s " and " o r ' s " .

2.2 Monitoring

As mentioned in the introduction another important
consideration is the method by which information
will be sent to and from the control centre. There
are in use today several ways of sending and
receiving data.

2.2.1 Direct wiring

In direct-wired systems as the name suggests all
of the signals are directly wired from the field to
the control centre. Multi-cored control cables are
generally used for connecting the terminal boxes on
the plant to the main terminal strip in the control
centre.

This method was one of the earliest used in trans
mitting the signals back to the control centre. It
was quickly realised that, if thousands of signals
have to be brought back many kilometres from remote
locations, the cost and number of cables would
become a very large proportion of the cost of an
installation (generally in practice the life of a
control cable is considered to be 15 years under
good conditions) hence either a system is kept to a
minimum or other methods should be assessed.

3.2.1 Program storage-memory

Programs for the microprocessor are usually stored
in ROM's as opposed to read/write store. The type
of ROM used would be one of the following depending
on the requirements of the system they are to be
used in

(a) fuseable link (b) U-V erasable
(c) Mask progranmied

T o / r r o B Wotort

L l a i t S w i t c h . * , . t e .

T o / r r o «
U p s t r « f t n
C o D v . y e r

C o n t r o l
c . a t r o

SLAVC 1 /
SL*V£! SLAVE 2

: n t . r f « c .

I n p u t / O u t p u t
[n t . r f « c .
C i r c u i t s

T o / F r o e
• Oowa>tro«B
C o B v o y o r

SLAVE . 2 /
SLAVE

. 1 c r o c o m p u T . r C o n t r o l l . r

"5LAVt 2 '

" . B o r y .tit c e r . t r a l p r o c s s i n g u n i t (C . P . U .)

Rack n o u B t . d

(1) C . f c l . l i n k f o r h i j h l F . . d s . r i . l d . t i
u s . s a n i n l B u n n u n b a r o f p a i r .

standard cabia.

(2) P c s a i b l . t o r . a t o r a l i n k t o c o n t r o l
c e n t r a v i a o t h a r a l a v a a i f n a c a a i a r T .

(3) S l a v , c o u l d ba rack mountad f o r a a s a
o f c h a n r a f o r l a b o r a t o r y t a a t i n t i n i t a a d
c ' I o n s p l a n t o u t a a a s .
(r a p l a c a by a t a n d b y l

Figure 2 Interface requirements for a
"Remote Outstation"

24

The dynamic memory of the outstation would use
random access memory for storing counters, timers
and data.

3.2.2 Interface requirements

In addition to the central processing unit (C.P.U.)
and the memory a microcomputer controller will
also require suitable interface circuits to provide
the inputs and outputs during program execution.
The interface decouples the primary circuits from
the microprocessor by using either a relay inter
face or opto-couplers.

The main benefits of using microcomputers would be
realized by connecting the remotes together by-
means of a simple serial interface as shown in Fig.
2.

The use of this serial interface simplifies the
problem of compatibility of communications between
computers and peripherals including different word
lengths and bit rates.

The serial interface with which we are concerned in
the research project is a self-synchronising type.
It was developed so that it can be used with 20
milliamp current loop or the RS232 standards.

4 SYSTEM CONTROL STRATEGY

There are several system configurations currently
being investigated as shown by Figures 3 and U.
Figure 3 shows the master computer maintaining
overall control of the remote outstations via the
front end microcomputers. For a system as shown in
Figure 1 it is envisaged that each main route or
flight of conveyor would have a front end micro
computer assigned to control the remote outstations
associated with that line. The master would trans
mit or receive messages via the front end device.
The second method under investigation as shown in
Figure 4 would use the direct links between master
and slave or possibly a secondcU?y route through
the upstream or downstream outstation.

180
u.l The Communication System

Utilizing the serial interface as outlined, the
communication system is designed so that the remote
outstations will handshake with the master computer
The master sends call messages of a particular
station down the line and receives an acknowledge
ment. After this, instructions are to be sent to
the remote computer requesting it to perform an
operation or report the current status of the plant.
The master station waits for a reply within a
defined time, retransmission could then be carried
out before the outstation is considered to be out
of cormnunication or another transmission route
could be tried.

SriTCM PEmPHCMLS

I 1 1 I
HASTEK

CEKTAAL COHTHOL
AND

KOHiroRIHf:

riCLD IKTCITACC

e

I I

j«rial in terface
To ^Ijves

-4
teri*l Ir, t»-'*c«
To Sl«v«;

«. . I.

-i
S«riil loterfac«

J II L -

7^^

Slava
1-Stl

Slava
!-S«3

Slava
•*-Saa

Slava
5-S«5

Slava
<-Si>«

nwYmrr

Slava
•J-St*?

TTITTT
Plant-::;;rrl Incuts/Outputs.Ronltorin. Inputs/Outputs

Figure 3 System Configuration -
"FRONT END PROCESSORS"

•i«l(J Int«r?«ct
C i r c u i t !

Central Control
and

Fipnitorin^

Dlie
Oriv*

Disc

Dlacran

Figure U System Configuration - "DIRECT INTERFACING WITH SL*"

25

181

k.2 Mode of Operation

In systems as outlined in this study two basic
modes of operation could be used, interrogation on
interrupt (quiescent) or a continuous scan (or
polling) of outstations.

In a quiescent system the remotes would be fairly
inactive, stopping and starting motors, etc. under
normal program execution but continually checking
the previous status of the plant. This mode could
be used to reduce the flow of data to the master
computer. By comparing the status that it last
transmitted to the master, which is stored in its
own memory, the remote can determine if it is
necessary to transmit to the master. The master
will assume the same condition exists, if a remote
has reported that a conveyor has stopped it will
not report its status again, unless it tells the
conveyor to start, or the master requests a complete
status check.

The second mode to be considered is continuous
scan, by definition, this method foii.ows a pre
determined routine in its acquisition of information
Instead of permitting any station t:- report changes
of status as they occur, a continuous scanning
system permits each station to report only when it
is "asked" to do so. In this way data transmission
is completely controlled by the master station.
However, continuously scanning systems have no way
of giving priority to important information. Each
critical alarm must wait until it is next scanned
before the master station can act on that data.
This is one of the major problems of the earlier
systems using relay or solid state logic, direct
connected or multiplexed. These earlier systems
have no intelligence, hence there is no way of time
sequencing events. A number of techniques have
been employed to reduce the effect of this problem.

- faster scanning
- checking for the presence of a l t e r e d data before

scanning a l l data
- increased message e f f i c i ency
- system response improvements

"+.3 Reliability and Security

The requirement to detect errors in data has been
a concern of the industry since the first data
acquisition and control systems were developed.
With the countless error detection methods available
what error-detection technique should be used. To
determine the best method for a particular system
the need should be clearly defined.

Basically the method employed should be efficient
- the extra transmitted information required for
error detection should be kept to a minimum. It
should also be simple and economic - the error
detection scheme should be relatively straight
forward and the cost of all special equipment to be
as low as possible.

Redundant data used for error detection purposes
is one source of wasted time in large system. Any
methods by which this wasted time can be reduced
must be very carefully considered. It is proposed
to investigate the method outlined in reference 1.
In this method a simple error code detection on the
master station to outstation is combined with a
more powerful one using considerably more redundancy
for the reverse direction - using a check-back
before execute procedure, all control operations
involving transmissions between master and slaves
are subject also to the more powerful error detect

ion code. Hence a reduced redundancy can be employ
ed in one direction of transmission while still
retaining a very low overall undetected error rate.

5 REQUIREMENTS FOR DEVELOPING A MICROCOMPUTER
BASED SYSTEM

5.1 Hardware

During the development phase a convenient and
economical means of expediting the development of
software and hardware for the intended micro
processor system is required. Hence a prototyping
or development system is needed which enables
access to the microprocessor's registers, status
flags and memory. There are several good develop
ment systems on the market which provided mass
storage in the form of a floppy-disc operating
system as well as high speed printouts and inputs.

For testing purposes a panel of switches and
indicators or another microcomputer that simulates
the process in which the microcomputer is to be
used to control is essential. The use of a second
-icroprocessor to simulate the plant providing
repeatability is very useful during the debugging
rf the system.

5.2 Software

An often underestimated requirement is the software.
The costliest part of a system using a micro
processor is the software. In choosing a micro
processor, it is essential to pay a lot of attent
ion to the software. The following software is a
prerequisite when considering available development
kits.

5.2.1 Assembler

The assembler is used to convert mnemonic instruct
ions into binary patterns. There are,two general
types of assembler packages available for micro
computers: (1) cross-assembler programs run on
minicomputers (2) self assembler programs run
on the microcomputer itself, usually in the form of
a development system. Every microcomputer now
produced has one or more accompanying cross-
assemblers. With a teletype or CRT console, the
user can type in his assembly language program.
Self assemblers are written with a definite computer
system in mind.

5.2.2 Editor

The editor is used to write, correct, and display
a source program with a minimum amount of source
handling. It also enables the generation of new
source programs and the modification of existing
sources programs in preparation for program assembly.

5.2.3 Loader

This software package is used to load the assembled
programs into random access memory for test purposes
before final programming of the ROM memory.'

5.2.4 System software development techniques

It has been found from experience that the software
requirements should be very well documented and also
developed in small modules. Shortcuts and large
programs leads to long debugging time and generally
outweights the advantage of time saved (J. Hont
1976).

26

6 ADVANTAGES AND DISADVANTAGES

The microcomputer can be an ideal replacement for
ordinary hardwired logic. Microcomputers offer
both a new set of challenges and a new set of prob
lems.

6.1 Flexibility

The microcomputer offers flexibility in system design
because it enables the hardware designs to be
carried out in parallel or earlier than the final
software. Hence changes can be made to control
strategy right up to the commissioning stage. The
flexibility offered can also be a disadvantage
since there are more factors to consider in the
design of a scheme.

6.2 New techniques

With the introduction of intelligence at the remote
outstations it could lead to a whole new set of
techniques in plant control. Some of the possibilit
ies are - control of maximurr. energy demand peaks-
conveyor belt slip control - preprocessing of data,
cius -any others.

182

The area of large scale hierarchical control and
monitoring is one where the designer may find the
microprocessor especially effective as an altemati^
to complex hardwired logic. Using a microprocessor
can result in a standardisation of design approach,
making it easier to get the design process under
way. The microprocessor is typically capable of
executing a large nujnber of complex logic and
arithmetic functions which would be costly to imp
lement in hardware.

For anybody considering an industrial remote control
and monitoring system in the future, a great deal
of work will have to be put into the investigation
stage of the project in order to determine what
type of system will suit both the present and
future requirements of the installation. Will it
be the already proven hardwired - F.D.M., T.D.M.
systems or will a system using distributed micro
computers be a better solution?

REFERENCES

6.3 Speed

Though a microprocessor can execute any desired
functions through a sequence of program steps, its
limited instruction set makes that sequence long
hence consideration must be given to execution time
in real-time systems. Even when the same circuit
family is involved, hardwired logic is faster.

7 CONCLUSIONS

The successful use of a microprocessor as a distribut
ed computer controller in a large industrial install
ation will depend on Ccu?eful assessment of the
applications. In addition to the new benefits and
problems associated with microprocessors there are
many secondary ones that have not been considered
in this paper (such as training of personnel) that
must bf- included in the assessment.

GREENWAY, J.F., LA.<H.-̂ ;:, A.H. and LOCKWOOD, D.
(1971) Communication and error control aspects of
a re-ote control syster.. Conference Publication
No. 81, I.E.E. Sep.-Oct. 1971.

HONT, J. (1976), Review of Microprocessor Activities
Microprocessor Newsletter, Telecom Australia
Research Labs., Jan. 1976.

PROPHET, G. (1977), Distributed processing power-
a new tool for production control. Control and
Instrumentation, June 1977

SPEERS, G.S. (1973), Monitoring/Control by
distributed computing. Datamation. Vol. 19, No. 8
August 1973, pp. 1+7-49

TROXEL, D.E. (1975) Serial Interfaces for
minicomputers. I.E.E.E. Transactions on Computers
Vol. 24, No. 1, October, pp.1027-1028.

27

183

APPENDIX F : INDUSTRY STANDARDS FOR -

MESSAGE PROTOCOLS

ERROR DETECTION

184

Fl Brief Summary of Australian Standard Document (AS 1484)

Part 1 - Basic mode control procedures. This part describes the

implementation of the standard seven-bit character set for information

interchange. It defines the formats for both the transmitted messages

and the supervisory sequences which are part of the transmission control

procedures. All control functions are to be performed by the use of ten

specific transmission control characters.

SOH (start of heading) - first character of a heading of an

information message.

STX (start of text) - used to precede text and terminate a

heading.

ETX (end of text) - terminates a text.

EOT (end of transmission) - used to indicate the conclusion of

transmission.

ENQ (enquiry) - request for a response.

ACK (acknowledge) - an affirmative response to the sender.

DLE (date link escape) - used to change the meaning of a

following character.

NAK (negative acknowledge) - negative acknowledge.

SYN (synchronous idle) - a signal from which synchronism may be

achieved.

ETB (end of transmission block) - for data block separation.

BCC (block check character) - an error check character.

Examples of the format used with three types of messages:

a Format for the transmission of a message without identification

STX — Text of Message — ETX (BCC)

185

b Format for the transmission of a message including an address

block or heading for identification -

SOH — Heading —- STX — Text — ETX (BCC)

c Format for the transmission of a heading or the identification of

a remote outstation, etc -

SOH —- Heading — ETB (BCC)

Part 2 of the Standard covers the character structure for

start/stop and synchronous transmission, defining the character structure

for serial 'Asynchronous' and 'Synchronous' data transmission systems.

Part 3 covers the requirements for error detection. This part

defines one method of error detection and consists of an error check

character (BCC) with the data in addition to the individual parity bits

included with each data word.

Part 4 defines the connector pin numbers for the interface

between data terminal equipment and data communication equipment.

The fifth part of the Standard (AS 1484) covers the extensions to the

control procedures in Part 1.

F2 INDUSTRY STANDARD PROTOCOLS

There are several protocols in use in industry today that meet the

formats specified in the standards, such as AS 1484. Examples of these

are 'BISYNC, 'DDCMP', 'SDLC and the system protocol developed for the

research project. A brief explanation of each protocol is included in

the following chapters.

186

F2.1 Bisync - Character Oriented Protocol

One of the most widely used protocols in the industry is IBM's 'BISYNC.

It has been in use since 1968 for transmission between IBM computers and

batch and video display terminals. 'BISYNC is a character-oriented

protocol and uses the special characters outlined in AS 1484 (STX, EOT,

SYSN, etc) to separate the various fields of a message and to control the

necessary protocol functions.

The overall format is as shown in Figure Fl below:

SYN SYN SOH — HEADING — STX — TEXT ETX (BCC)

Figure Fl - 'BISYNC MESSAGE FORMAT'

The contents of the heading or identification block are defined by the

user and the text portion of the message is variable in length, the

length of which is also defined in the heading.

To detect and correct transmission errors, 'BISYNC uses either

vertical/longitudinal redundancy checks (VRC/LRC) or a cyclic redundance

check (CRC) depending upon the information code being used. For 'ASCII',

a VRC check is performed on each character and and (LRC) on the whole

message.

If the code is 'EBCDIC, no VRC check is made, instead a CRC is

calculated for the entire message, CRC-16 is used. See F 3.4 (EilROR

CODE) for an explanation of CRC-16. If the block check character

transmitted does not agree with the calculation by the receiver, several

more attempts are made until the system determines that the transmission

eauioment is faulty, usually ;>̂ +=̂ . _,..... . , , . ..

187

There are other protocols that have been developed that are similar to

'BISYNC but they use different control characters.

F2.2 'DDCMP' - Byte Count Oriented Protocols

A study of 'BISYNC shows that it is a fairly involved protocol with

special procedures required to achieve transparent transmission and

reception. 'DDCMP' protocol has been developed to solve some of the

transparency problems. As shown in Figure F2, the format is similar to

'BISYNC in that the message is broken into two parts; a header

containing control information and a text body. Unlike, BISYNC, the

header is necessary and forms the most important part of the message

since it contains the message sequence numbering information and the

character count. Each exchange of message starts with a message number

from 0 to 255 depending on the number of the previous message. Whenever

a station transmits a message, it assigns its next sequenced message

number to that message. When an error occurs 'DDCMP' does not require an

acknowledgement as the number assigned specified the sequence number of

the last good message, (30).

SYN

C

L

SYN A

S

Length

188

Number of

Correct Current

Messages Number

COUNT FLAG RESPONSE SEQ ADDRESS

14 BITS 2 BITS 8 BITS 8 BITS 8 BITS

Data or

Acknowledgement

CRCl TEXT CRC2

16 BITS BLOCK 16 BITS

BCC

No 1

BCC

No 2

Figure F2 - 'DDCMP MESSAGE FORMAT'

'DDCMP' has two drawbacks; first, the header is relatively short,

therefore, a system must have a buffer of the appropriate size ready on

short notice. Secondly, the transmitting station must not include a

'sync' character in the middle of a message which would affect the

character count, causing an error. The first problem is overcome by

limiting the message length to a fixed length. The second is shared by

other systems as well

189

F2.3 'SDLC - Bit Oriented Protocols

In 'SDLC the information field is not restricted in format or content

and can be of any length. The maximum length is determined by the length

that can be expected to be received error free. The format for'SDLC is

as shown in Figure F3.

BEGINNING ADDRESS CONTROL INFORMATION FRAME END

FLAG 8 BITS 8 BITS ANY NUMBER CHECK FLAG

Figure F3 - 'SDLC FORMAT'

Two flags (two blocks of five 'I's') one at either end of the message are

used as reference points for the information contained within the

message, address and control fields and are used to initiate the error

checking. The end flag indicates that the last 16 bits is the error

check.

The address field is eight bits long and indicates the destination for

the message. The control field can have three formats such as

information transfer format, supervisory format and nonsequenced format,

(30).

The information format is used for data transmission and uses sequence

numbering. The supervisory format is used in conjunction with the

information format to initiate and control data transfer in the

information format. The nonsequenced format is used for initialising

stations.

'SDLC is simpler than some of the other protocols but the error check

calculations are more involved.

190

F3 : ERROR DETECTION

Data communication systems are subject to the introduction of errors by

transient voltage interference from a variety of external sources, for

example lightning, switching and crosstalk from other communications

lines. With the numerous error detection methods available it is

difficult to determine what error-detection technique should be used for

a particular system.

Basically, the method employed should be efficient with the extra

transmitted information required for error detection kept to a minimum.

Redundant data used for error detection purposes is one source of wasted

time in large systems. One method to reduce the data transmitted would

be to have a simple error code detection on the master station to

outstation message combined with a more powerful one for the reverse

direction using a checkback on the received message before executing the

procedure; hence a reduced redundancy can be employed in one direction

of transmission while still retaining a yery low overall undetected error

rate, (19).

A common form of noise in transmission systems is burst noise. A noise

burst of 100 milliseconds duration occurring during a 1200 bit per second

transmission could corrupt 120 bits of data.

The periods of high error rate are generally separated by long intervals

of low noise. Studies carried out by the authors of references (19) and
, . - . 4 - 5
(23) have indicated an error rate of between 10 and 4 x 10 for burst
noise.

The following paragraphs explain some of the error detection techniques

that are used in data transmission systems.

191

F3.1 PARITY TECHNIQUES

To determine if the bits of a character have been correctly received, it

is quite simple to append an additional bit to each character. The

parity technique sets the additional bit according to the rule that all

characters shall have an odd or even number of ones (odd or even parity).

In a parity system the device summates the ones and adds the appropriate

bit during transmission. The receiver compares the parity bit expected

with the received value and then decides if the data has been received in

error. Parity is commonly included in LSI chips such as the UART. The

limitation of parity is that it can only detect single (or three or five,

etc) errors and this applies to odd or even parity.

F3.2 LONGITUDINAL REDUNDANCY CHECK (LRC)

A second form of error checking is parity on the columns known as

Longitudinal Redundancy Check (LRC) which is also subject to incorrect

checks because it is possible to have a double error in a column. There

are numerous possibilities for double bit errors in characters to occur

simultaneously with double bit errors in columns such that neither

vertical redundancy check (VRC) nor (LRC) will indicate that the errors

have occurred.

F3.4 CYCLIC REDUNDANCY CHECK (CRC)

The detection system most effective at detecting errors in communications

systems with a minimal amount of hardware is the cyclic redundancy check

(CRC).

192

CRC calculations are usually done in multiple exclusive OR's within

hardware or software. The three most commonly used CRC codes are CRC-12,

CRC-16 and CRC-CCITT. (20)

To evaluate the effectiveness of a cyclic coding error checking system,

the data message must be considered in a mathematical form. The form

most commonly used is a polynomial with a dummy variable term x. The

least significant bit (LSB) is x° or 1, and the highest order term,

representing the most significant bit (MSB) is x". The coefficients of

the polynomial indicate whether an individual bit is a '0' or '1'. Thus

a data stream of 10 bits can be described as -

G(x) = 1110101101 (a random selection)

= x^ + x^ + x'' + x^ + x^ + x^ + 1

The code polynomial P(x) can be described in a similar way to G(x),

for example -

P(x) = x^ + x^ + x^ + x+ 1

= 101111

To generate the check bits for transmission the data polynomial G(x) is

divided by the code polynomial P (x) to obtain a remainder. This

remainder will be of a degree one less than that of the code polynomial,

and will consist of the same number of bits as P(x). The data block is

followed by the remainder block in transmission. The message will be

exactly divisible by the code polynomial at the receiver if no errors

were introduced. (23)

193

The polynomial division of G(x) by P(x) is as follows:

G(x) = Q(x) X P(x) + R(x)

Where Q(x) is the quotient and R(x) is the remainder. This gives -

G(x) - R(x) = Q(-x) X P(,x)

Since R(x) = -R(x) (modulo 2)

G(x) + R(x) = Q(x) X PCx)

Before the division by P(^) the data G(,x) is multiplied by x"

(n is the degree of P(x)).

5
X

p, s _ 15 , 13 , 12 . 10 . 8 ̂ 7 ̂ 5
GUJ - X + X + X + 'X + X + X + X

This result is divided by P(x) to give -

4 2
X + X + x+ 1

Adding to x G(x) gives the message polynomial : F(x)

p, ^_ 14 ̂ 13 ̂ 12 ̂ 10 ̂ 8 ̂ 7 ̂ 5 ̂ 4 ̂ 2 , ^ ,
rv x / " x ^ x ^ x + x ^ x ^ x ^ x ^ x ^ x + x ^ J -

If errors are introduced into the message resulting in an error

polynomial E(x) the received polynomial H(x) becomes:

H(x) = F(x) + E(x)

The received polynomial H(x) is divided by P(x), the remainder will be

E(x)/P(x)' Hence, a non-zero remainder indicates the presence of errors,

194

Data Block (MSB) G(x) (LSB)

Remainder R(x)

(MSB) " (G(^4) R(^) (LSB) Transmitted

Message

Figure F4 - "TRANSMISSION MESSAGE - ARRANGEMENT OF

DATA STREAM"

There are many variations that can be chosen, generally the user selects

a polynomial best suited to the kind of errors that occur in the system,

(21).

CRC-CCITT and CRC-16 are used to detect bursts of 16 bits or longer to

99.998% efficiency (23) CRC-12 detects bursts longer than 12 bits with

an efficiency of 99.975%, (23).

CRC-CCITT is used for European systems and when operating with eight-bit

characters, the block check character (BCC) is 16 bits. The code

polynomial 'P(x)' for CRC-CCITT is x^^ + x'̂ ^ + x^ + 1.

CRC-16 is applied to synchronous systems that use eight-bit characters.

The code polynomial P(x) is x •*" x + x + !•

12 11 3 2
CRC-12 is used with six-bit systems and uses (x + x + x + x +x + 1)

as the code polynomial P(-x).

