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AN OSTROWSKI TYPE INEQUALITY FOR DOUBLE
INTEGRALS AND APPLICATIONS FOR CUBATURE
FORMULAE

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. An inequality of the Ostrowski type for double integrals and appli-
cations in Numerical Analysis in connection with cubature formulae are given.

1 INTRODUCTION

In 1938, A. Ostrowski proved the following integral inequality [5, p. 468]

Theorem 1.1. Let f : [a,b] — R be a differentiable mapping on (a,b) whose

derivative ' : (a,b) — R is bounded on (a,b), i.e., ||f'|| == sup |f (t)] < cc.
t

€(a,b)

Then we have the inequality

1 b
b_a/ F(t) dt
for all x € [a,b].

The constant i is the best possible.

1 (x_aTH)) _ ’
Pt ](b D17

<

(L.1) |f(ﬂv) -

For some generalizations of this classic fact see the book [5, p. 468-484] by
Mitrinovié, Pecari¢ and Fink.

Some applications of the above results in Numerical Integration and for
special means have been given in the recent paper [3] by S.S. Dragomir and S.
Wang. For other results of Ostrowski’s type see the papers [1], [2] and [4].

In 1975, G.N. Milovanovié¢ generalized Theorem 1.1 where f is a function of
several variables [5, p. 468]

Theorem 1.2. Let f : R™ — R be a differentiable function defined on D =
{(z1, ey m) a; <a; < b (i =1,....,m)} and let ’%‘ <M; (M;>0,i=1,....m)

in D. Furthermore, let function x — p (x) be integrable and p (x) > 0 for every
x € D. Then for every x € D, we have the inequality:

Jp(y) fy)dy i M; ['p(y) |z — yil dy
D =1 D

(12 f @)= [p(y)dy = [p(y)dy
D D
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14 Barnett and Dragomir

In the present paper we point out an Ostrowski type inequality for double
integrals and apply it in Numerical Integration obtaining a general cubature
formula.

2 THE RESULTS

The following inequality of Ostrowski’s type for mappings of two variables holds:

Theorem 2.1. Let f : [a,b]x[c,d] — R continuous on [a,b]x[c,d], f,/, = aa;afy
exists on (a,b) X (¢,d) and is bounded, i.e.,
2
o= s (PO o
e ye(ab)x(ed) | 0Ty
then we have the inequality:
b d d b
@y | [ [fendsd-e-a) [ fands@-o [ s
—(d=c)(b—a)f(z,y)]|
< |Fo-ay+ (a2 2 Lo+ (y- 21 2 1724
~— |4 2 4 Y 2 s,tll 0o
for all (z,y) € [a,b] x [c,d].
Proof. We have the equality:
z oy
(2.2) / / (s —a) (t — ) 17, (s,1) deds
x Y
— [G-alisnu-a- [ fisodas
T Yy T
~w-o [G-afiend- [ [s-anends)da

=W-0 (w—a)f(wvy)—/xf(say)ds _/’“’ (w—a)f(%t)—/zf(sat)ds

c

:<y—c><x—a>f<x,y>—<y—c>/f<s,y>ds
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Ostrowski Inequality for Double Integrals 15

—(ac—a)/yf(x,t)dt—i—/I/yf(s,t)dsdt.

Also, by similar computations we have

z d

(2.3) / / (s —a) (t—d) £/, (s,t) dsdt

:j(s—a)[ /dfstdt]ds
:(d—y)/(s—a i(/s—a stds)d

umse-ason-frems] - Je-aren- fruou]

=(x—a)(d—y)f(x,w—<d—y>/f<s,y>ds

—(x—a)/df(x,t)dt—i—j/yf(s,t)dsdt.

b d
(2.4) // (s —b)(t—d) f, (s,t)dsdt

xT

b d
:/(S_b) [(d_y)f;(svy)_/f;(sat)dt] dS
b d b
=<d—y>/<s—b>f;<s,y>ds—/(/<s—b>f;(s,t>ds) dt

z Y
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16 Barnett and Dragomir

b d b
—(d-vy) [(b—mﬂx,y)—/f(s,y)ds] —/ [(b—x>f<x,t>—/f<s,t>ds] i

x x

b

=(d—y)(b—x)f(x,w—(d—w/f(s,y)ds

d b d
—(b—x)/f(x,t)dt—l—//f(s,t)dsdt

xT

and finally

(2.5) /b/ysb t—c)fi,(s,t)dsdt
- /b (s —b) [(y—c)fs’(s,y)— / f;<s,t>dt] ds

C

:(y—c)/bs—b Syds—/y(/s—b stds)dt

b y b
(-0 [(bx>f<z,y>/f<s,y>ds] 7/ [(bx>f<z,t>/f<s,t>ds] di

x c x

b

=<y—c><b—x>f(x,y>—(y—c>/f<s,y>ds

x

(bx)/yf(x,t)dtJr/b/yf(s,t)dsdt.

If we add the equalities (2.2) — (2.5) we get in the right membership:

(y—c)(@—a)+@—a)(d=y)+(d-y) (b—2)+(y—c) (b—2)] f (z,9)
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Ostrowski Inequality for Double Integrals 17

—(d—C)/wf(S,y)ds—(d—C)/bf(svy)dS—(b—a)/yf(wvt)dt

—(b—a)/df(x,t)dt—i-]/yf(s,t)dsdt+]/df(s,t)dsdt

b d by
+$/y/f(s,t)dsdt+w/c/f(s,t)det

—(b—a)/bf(gc,t)dt—i—/b/df(s,t)dsdt.

For the first membership, let us define the kernels: p : [a, b]2 — R,
q: e, d]2 — R given by:

s—a if s € [a, ]
p(z,s) =
s—b if s € (x,b]

and

t—c if t € [e, 9]

q(y,t) =
t—d if t € (y,d]

Now, using these notations, we deduce that the left membership can be
represented as :

b d
/ / p(2,5) g (y.1) f, (s, 1) dsdt.

Consequently, we get the identity

b d
(2.6) [ [poratn .0 asae

d

b b d
—(@-0 0= @y -0 [f@ds-b-a) [fandr [ [ 1

c
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18 Barnett and Dragomir

for all (z,y) € [a,b] X [¢,d].
Now, using the identity (2.6) we get

b d b

(2.7 |//f(s,t)dsdt—[(b—a)/df(x,t)dﬂ—(d—c)/f(x,y)ds

a c a

—(d=c)(b—a)f(zy)]|

bod b od
S//\p(ww)llq(y,t)llféft (s,t)| dsdt < Hfé’,tHoc//Ip(w,S)llq(y,t)ldsdt-
Now, observe that
b

/|p(z75)|d5j(sa)ds+/b(bs)ds

a a

and, similarly,

/dq(y,t)dtZi(d—c)2+ (y— C;d)z.

Finally, using (2.7) , we get the desired inequality (2.1). I

Corollary 2.2. Under the above assumptions, we have the inequality:

(2.8) /b/df(s,t)dsdt— (b—a)/df<a;rb,t> dt

c

+(d—6)/bf(s,cgd>ds—(d—c)(b_a)f<“‘2Fb7“2rd>

IN

1
60—’ @=o”[If, -

Remark 2.1. The constants i from the first and the second bracket are optimal
in the sense that not both of them can be less than i.

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



Ostrowski Inequality for Double Integrals 19

Indeed, if we had assumed that there exists ¢1,cq € (0, i) so that

b d b

(2.9) |//f(s7t)dsdt—[(b—a)jf(x,t)dt—k(d—c)/f(s,y)ds

a C a

—(d=c)(b—a)f(z,y)]

< [G1(b—a)2+<x—a+b)2 [CQ(d_c)z+<y_c;d>2

2
for all f as in Theorem 2.1 and (z,y) € [a,b] X [¢,d], then we would have had
for f(s,t) = st and = a,y = c¢ that:

/b/df (s,¢) dsdt = (" - a2)4(d2 —<) :

d
d? — 2 b2 — o2

b
[tana=a S0 [ =e

(&

175l =2

and by (2.9), the inequality:

i.e.

i.e.

(2.10) i < <c1 + i) (c2 + i) .

Now, as we have assumed that ¢y, co € (0, i) , we get

N
a+-<-,c0+ - <<
Py >y

and then (01 + i) (02 + i) < % which contradicts the inequality (2.10), and the
statement is proved. I
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20 Barnett and Dragomir

Remark 2.2. Now, if we assume that f (s,t) = h(s)h(t), h:[a,b] = R, h is
continuous and suppose that |h'|| < oo, then from (2.1) we get (for x = y)

b

/h(s)ds/bh(s)ds—h(:v)(b—a)/bh(s)ds

b
b—a/h )ds + (b—a)® h? (z)

i.e.

b

[1G)as =@ 00 s[i(ba>2+(x“;b)]2||hn20

a

which is clearly equivalent to Ostrowski’s inequality.

Consequently (2.1) can be also regarded as a generalization for double inte-
grals of the classical result due to Ostrowski.

3 APPLICATIONS FOR CUBATURE FORMULAE

Let us consider the arbitrary division I, : a = 1 < 71 < ... < Tp_1 <
Zpn =band J, =9 < Y1 < o < Ym-1 < Ym = b and §; € [z, Tip1]
(i=0,..,n=1), n; € [yj,yj+1] (1 =0,...,m —1) be intermediate points.
Consider the sum

n—1lm-—1 Yit1

(3.1) Cfudmbm) =Y > b [ fle vyt
i=0 j=0 ;
n—1lm-—1 Tit1 n—1m—1

+> 03 / Fsomy)ds = >3 hily f (€5.m;)
=0 j=0 =0 j=0

T4

for which we assume that the involved integrals can more easily be computed
than the original double integral

b d
D:://fstdsdt
and

hi = X411 — Ty (i=07...,n—1), lj =Yi1 Yy (ij,...,m—l).

With this assumption, we can state the following cubature formula:
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Ostrowski Inequality for Double Integrals 21

Theorem 3.1. Let f : [a,b] X [¢,d] — R be as in Theorem 2.1 and I, Jp,, &
and n be as above. Then we have the cubature formula:

b d
(3.2) / / F (s.t)dsdt = C (f. T, Jons €:1) + R (f: I, Jon o)

where the remainder term R (f, L., Jim, &, M) satisfies the estimation:

(3.3) IR (f In, T, &5 m)|
n—1lm—1 1 i + T 2 1 y+y
SHfg/tHooZZ 4hf+(§i i 21+1)] 4lj2+(] J 23+1>]
i=0 j=0

1 n—1 m—1
Ly e
=0 7=0

Proof. Apply Theorem 2.1 on the interval [z;, x;41] X [y, Yj+1]
(i=0,...,n—1;7=0,....,m—1) to get:

Ti41 Yj+1 Yji+1 Ti41
/f(s,t)dsdt— h / FEtdi+1, / £ (s.m;) ds — hal, f (€5m)
Tq Yj Yj T;

<

2
1 Ti + Tip1
iy e T ]
b (-2

foralli=0,...n—1; 7=0,....m—1.

Summing over ¢ from 0 to n — 1 and over j from 0 to m — 1 and using the
generalized triangle inequality we deduce the first inequality in (3.3).

For the second part we observe that

1 Sy 2
e (- 2y .

xX; —+ (Ei+1 1 yj + yj+1 1
fi*# Sihi and T T Silj

for all 7, j as above. 1
Remark 3.1. As

n—1 n—1

S ohi<v(h)Y hi=(b-a)v(h)

1=0 =0
and

m—1 m—1

Z<p) Y l=d-ou)
=0 =0
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22 Barnett and Dragomir

where

v(h)=max{h; :i=0,..,n—1},

p(l)=max{l;:5=0,...,m—1},
the right membership of (3.3) can be bounded by

1

117l = a) (d= v (r)u (D)

which is of order 2 precision.

Now, define the sum

n—1m—1  Yif!
Ti + X
Cur (ot )= 30 [ (#5570
i=0 j=0 5

n—1m-—1 n—1m-—1
Y / (5 B s = X0 5wy (B ),
=0 )

1
1=0 j= 1=0 j=0

Then we have the best cubature formula we can get from (3.2).

Corollary 3.2. Under the above assumptions we have

b d
(3.4) / / F(s8) dsdt = Ca (£, Tns ) + R (f, Ty i)

when the remainder R (f, I, Jm) satisfies the estimation:

(B (f, L ) ABZWZF
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