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AN ESTIMATION FOR Ink

S.S. DRAGOMIR AND A. SOFO

ABSTRACT. In this paper we point out a better estimate for In k than Kicey and Goel in their
recent paper [1] from American Mathematical Monthly.

1 INTRODUCTION

In their recent paper Kicey and Goel [1], established the following series expansion for Ink,
k=23,..

S (CIRH))E

where || denotes the greatest integer less than or equal to z. Basically, Kicey and Goel proved
the following inequality:
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for all ¥ > 2 and N > 1. In this paper the authors shall prove that inequality (1.2) can be
improved as follows.

(1.2)

2 THE REsuLTS
The following result holds.

Theorem 2.1. With the above assumptions, we have the inequality:
(2.1)
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wherep>1and%-{—%:l,forallkZQandNZl.

We prove, firstly the following lemma.

Lemma 2.2. Let f : [a,b] = R be an absolutely continuous mapping on [a,b]. Then we have
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the inequality:

(2.2)
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Proof. Integrating by parts we have
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and the first inequality in (2.2) is proved. Now using Holder’s inequality we obtain
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and the second inequality in (2.2) is proved. Finally, we may write
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and therefore (2.2) is completely proved. I

The following Lemma also holds:

Lemma 2.3. Let f be as above and let I, :a = xg < 11 < ... < Tp_1 < T, = b be a division
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of [a,b]. Then we have the inequality:

f n—1
A
2 i

b

(2.3) f(x)dm—ri:lhif(:riﬂ) < ‘f ) nml 1/q

v |7 ;
where h; := z;y1 —x;,1=0,1,2,...n —1 and v (h) := ;g)lax l)hi.
Proof. We have
b n—1 _ Tit1
[t@de =S nf @i =X | [ F@de = hif (i)
. i=0 =0 \ 7.

Tit1

Z / x)dz — hif (zi1)
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and using the first inequality in (2.2) we obtain

Tit1

7],
Z/ z)dz — hi f (it1) STOOZh?;
i=0

=0 z

so the first inequality in (2.3) is proved. Using the second inequality in (2.2) and Holder’s
discrete inequality, we obtain

| T 1 n—1 Tit1 1/p
’ p
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and the second inequality in (2.3) is proved. Finally we have :
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=0 ;.
v 7],

and the Lemma is completely proved. I
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Corollary 2.4, If I, : x; = a+ I’_T“i,i =1,2,...,n, then we have the inequality

(2.4)
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Proof. Using (2.4) and noting that a = N,b = Nk,
n=N(k—1)and f(z) =1 we have
( N(k—-1 ,
e
Nk Nk—N
1 1 Nk — N\
(2.5) /—da:— | < (7) 0
J T ; N+ g+1 f b
-
\ 1
But we have that
/ 1
1. = ==
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, ! . N
= —dax =
‘f P ]Z:r% (2p — 1) (NE)*
and
/ k—1
17, =
hence from (2.5) we obtain
(2.6)
k-1
2N’
NE-N 1 k=1 \Y7 /g2t 1\ VP
Ink— Y g R SRTANCESIN p—1
i=1 Wherep>1and%+%:1;
k-1
\ Nk’

from (2.6), "2;1 > "k;l for k > 2, hence, by the identity, see [1],

P e R R

Theorem 1 is proved.
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FIGURE 1: The contour of /T = 1 on the k — p plane.

Remark 2.1. Clearly, for a minimum of (2.6) we need only investigate the terms Ty = k — 1

and T, = ((q’:f)k)l/q (’“25,,‘_1;1)1/”.

I _
T,

From figure 1, the region on the left of the contour line is described by Tp < T and the
region on the right of the contour line is described by 7> > T7. This demonstrates, clearly, that
each of the bounds 77 or 75 may be best under different circumstances.

Using a computer package we may obtain the contour line 1 as follows.
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