

An Estimation for In k

This is the Published version of the following publication

Dragomir, Sever S and Sofo, Anthony (1998) An Estimation for In k. RGMIA research report collection, 1 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17121/

AN ESTIMATION FOR $\ln k$

S.S. DRAGOMIR AND A. SOFO

ABSTRACT. In this paper we point out a better estimate for ln k than Kicey and Goel in their recent paper [1] from American Mathematical Monthly.

1 Introduction

In their recent paper Kicey and Goel [1], established the following series expansion for $\ln k$, k = 2, 3, ...

(1.1)
$$\ln k = \sum_{i=1}^{\infty} \left[1 + k \left(\left\lfloor \frac{i-1}{k} \right\rfloor - \left\lfloor \frac{i}{k} \right\rfloor \right) \right] \frac{1}{i}$$

where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. Basically, Kicey and Goel proved the following inequality:

$$\left| \ln k - \sum_{i=1}^{Nk} \left[1 + k \left(\left\lfloor \frac{i-1}{k} \right\rfloor - \left\lfloor \frac{i}{k} \right\rfloor \right) \right] \frac{1}{i} \right| \le \frac{k-1}{N}$$

for all $k \geq 2$ and $N \geq 1$. In this paper the authors shall prove that inequality (1.2) can be improved as follows.

2 The Results

The following result holds.

Theorem 2.1. With the above assumptions, we have the inequality:

$$\left|\ln k - \sum_{i=1}^{Nk} \left[1 + k\left(\left\lfloor\frac{i-1}{k}\right\rfloor - \left\lfloor\frac{i}{k}\right\rfloor\right)\right] \frac{1}{i}\right| \le \frac{1}{Nk} \min\left\{k - 1, \left(\frac{k-1}{(q+1)k}\right)^{1/q} \left(\frac{k^{2p-1}-1}{2p-1}\right)^{1/p}\right\}$$

where p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, for all $k \ge 2$ and $N \ge 1$.

We prove, firstly the following lemma.

Lemma 2.2. Let $f:[a,b] \to \mathbf{R}$ be an absolutely continuous mapping on [a,b]. Then we have

Date. December, 1998

¹⁹⁹¹ Mathematics Subject Classification. Primary 26 D 15; Secondary 41 A 55 Key words and phrases. Logarithmic mapping

20 Dragomir and Sofo

the inequality:

$$\left| \int_{a}^{b} f(x) dx - (b - a) f(b) \right| \leq \begin{cases} \frac{(b - a)^{2}}{2} \left\| f' \right\|_{\infty} & \text{if } f' \in L_{\infty} [a, b]; \\ \frac{(b - a)^{1 + 1/q}}{(q + 1)^{1/q}} \left\| f' \right\|_{p} & \text{if } f' \in L_{p} [a, b] \text{ where } p > 1, \text{ and } \frac{1}{p} + \frac{1}{q} = 1; \\ (b - a) \left\| f' \right\|_{1}. \end{cases}$$

Proof. Integrating by parts we have

$$\int_{a}^{b} (x-a) f'(x) dx = (b-a) f(b) - \int_{a}^{b} f(x) dx$$

and from this identity, we may write

$$\left| \int_{a}^{b} f(x) dx - (b - a) f(b) \right| \leq \int_{a}^{b} \left| (x - a) f'(x) \right| dx$$

$$\leq \left\| f' \right\|_{\infty} \int_{a}^{b} (x - a) dx$$

$$= \frac{(b - a)^{2}}{2} \left\| f' \right\|_{\infty}$$

and the first inequality in (2.2) is proved. Now using Hölder's inequality we obtain

$$\int_{a}^{b} (x-a) \left| f'(x) \right| dx \le \left\| f' \right\|_{p} \left[\int_{a}^{b} (x-a)^{q} dx \right]^{1/q}$$
$$= \frac{(b-a)^{1+1/q}}{(q+1)^{1/q}} \left\| f' \right\|_{p}$$

and the second inequality in (2.2) is proved. Finally, we may write

$$\int_{a}^{b} (x-a) \left| f^{'}(x) \right| dx \le (b-a) \left\| f^{'} \right\|_{1}$$

and therefore (2.2) is completely proved.

The following Lemma also holds:

Lemma 2.3. Let f be as above and let $I_n : a = x_0 < x_1 < ... < x_{n-1} < x_n = b$ be a division

An Estimation for ln k

of [a, b]. Then we have the inequality:

(2.3)
$$\left| \int_{a}^{b} f(x) dx - \sum_{i=0}^{n-1} h_{i} f(x_{i+1}) \right| \leq \begin{cases} \frac{\left\| f' \right\|_{\infty}}{2} \sum_{i=0}^{n-1} h_{i}^{2}; \\ \frac{\left\| f' \right\|_{p}}{(q+1)^{1/q}} \left(\sum_{i=0}^{n-1} h_{i}^{q+1} \right)^{1/q}; \\ \nu(h) \left\| f' \right\|_{1}; \end{cases}$$

where $h_i := x_{i+1} - x_i, i = 0, 1, 2, ..., n-1$ and $\nu(h) := \max_{i=(0, n-1)} h_i$.

Proof. We have

$$\left| \int_{a}^{b} f(x) dx - \sum_{i=0}^{n-1} h_{i} f(x_{i+1}) \right| = \left| \sum_{i=0}^{n-1} \left(\int_{x_{i}}^{x_{i+1}} f(x) dx - h_{i} f(x_{i+1}) \right) \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{x_{i}}^{x_{i+1}} f(x) dx - h_{i} f(x_{i+1}) \right|$$

and using the first inequality in (2.2) we obtain

$$\sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} f(x) dx - h_i f(x_{i+1}) \right| \le \frac{\left\| f' \right\|_{\infty}}{2} \sum_{i=0}^{n-1} h_i^2,$$

so the first inequality in (2.3) is proved. Using the second inequality in (2.2) and Hölder's discrete inequality, we obtain

$$\sum_{i=0}^{n-1} \left| \int_{x_i}^{x_{i+1}} f(x) dx - h_i f(x_{i+1}) \right| \leq \frac{1}{(q+1)^{1/q}} \sum_{i=0}^{n-1} h_i^{1+1/q} \left(\int_{x_i}^{x_{i+1}} \left| f'(t) \right|^p dt \right)^{1/p} \\
\leq \frac{1}{(q+1)^{1/q}} \left(\sum_{i=0}^{n-1} \left(h_i^{1+1/q} \right)^q \right)^{1/q} \left(\sum_{i=0}^{n-1} \left(\left(\int_{x_i}^{x_{i+1}} \left| f'(t) \right|^p dt \right)^{1/p} \right)^{1/p} \\
= \frac{1}{(q+1)^{1/q}} \left\| f' \right\|_p \left(\sum_{i=0}^{n-1} h_i^{q+1} \right)^{1/q}$$

and the second inequality in (2.3) is proved. Finally we have:

$$\sum_{i=0}^{n-1} \left| \int_{x_{i}}^{x_{i+1}} f(x) dx - h_{i} f(x_{i+1}) \right| \leq \sum_{i=0}^{n-1} h_{i} \int_{x_{i}}^{x_{i+1}} \left| f'(t) \right| dt$$

$$\leq \nu(h) \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \left| f'(t) \right| dt$$

$$= \nu(h) \left\| f' \right\|_{1}$$

and the Lemma is completely proved.

22 Dragomir and Sofo

Corollary 2.4. If $I_n: x_i = a + \frac{b-a}{n}i, i = 1, 2, ..., n$, then we have the inequality

(2.4)

$$\left| \int_{a}^{b} f(x) \, dx - \frac{b-a}{n} \sum_{i=1}^{n} f\left(a + \frac{b-a}{n}i\right) \right| \leq \begin{cases} \frac{\left(b-a\right)^{2}}{2n} \left\| f^{'} \right\|_{\infty} \\ \frac{\left(b-a\right)^{1+1/q}}{n \left(q+1\right)^{1/q}} \left\| f^{'} \right\|_{p} & where \ p > 1, \ and \ \frac{1}{p} + \frac{1}{q} = 1, \\ \frac{\left(b-a\right)}{n} \left\| f^{'} \right\|_{1}. \end{cases}$$

Proof. Using (2.4) and noting that a = N, b = Nk, n = N(k-1) and $f(x) = \frac{1}{x}$ we have

(2.5)
$$\left| \int_{N}^{Nk} \frac{1}{x} dx - \sum_{i=1}^{Nk-N} \frac{1}{N+i} \right| \leq \begin{cases} \frac{N(k-1)}{2} \left\| f' \right\|_{\infty}; \\ \left(\frac{Nk-N}{q+1} \right)^{1/q} \left\| f' \right\|_{p}; \\ \left\| f' \right\|_{1}. \end{cases}$$

But we have that

$$\left\| f^{'} \right\|_{\infty} = \frac{1}{N^2},$$

$$\left\| f' \right\|_{p} = \left(\int_{N}^{Nk} \frac{1}{x^{2p}} dx \right)^{1/p} = \left(\frac{k^{2p-1} - 1}{(2p-1)(Nk)^{2p-1}} \right)^{1/p}$$

and

$$\left\|f^{'}\right\|_{1} = \frac{k-1}{Nk},$$

hence from (2.5) we obtain

(2.6)

$$\left| \ln k - \sum_{i=1}^{Nk-N} \frac{1}{N+i} \right| \le \begin{cases} \frac{k-1}{2N}; \\ \frac{1}{Nk} \left(\frac{k-1}{(q+1)k} \right)^{1/q} \left(\frac{k^{2p-1}-1}{2p-1} \right)^{1/p} \\ \frac{k-1}{Nk}. \end{cases}$$
 where $p > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$;

from (2.6), $\frac{k-1}{2} \ge \frac{k-1}{k}$ for $k \ge 2$, hence, by the identity, see [1],

$$\sum_{i=1}^{Nk-N} \frac{1}{N+i} = \sum_{i=1}^{Nk} \left[1 + k \left(\left\lfloor \frac{i-1}{k} \right\rfloor - \left\lfloor \frac{i}{k} \right\rfloor \right) \right] \frac{1}{i},$$

Theorem 1 is proved.

An Estimation for $\ln k$

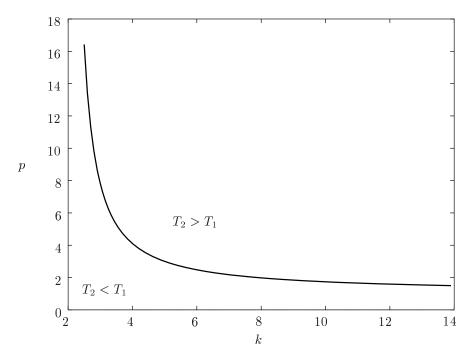


FIGURE 1: The contour of $T_2/T_1=1$ on the k-p plane.

Remark 2.1. Clearly, for a minimum of (2.6) we need only investigate the terms $T_1 = k - 1$ and $T_2 = \left(\frac{k-1}{(q+1)k}\right)^{1/q} \left(\frac{k^{2p-1}-1}{2p-1}\right)^{1/p}$.

Using a computer package we may obtain the contour line $\frac{T_2}{T_1} = 1$ as follows.

From figure 1, the region on the left of the contour line is described by $T_2 < T_1$ and the region on the right of the contour line is described by $T_2 > T_1$. This demonstrates, clearly, that each of the bounds T_1 or T_2 may be best under different circumstances.

References

[1] Kicey, C., Goel, S. A Series for ln k. American Mathematical Monthly, Vol.105, June-July, pp.552-554, 1998.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City, Victoria, Australia

 $E ext{-}mail\ address: \{ {\tt sever, sofo} \} {\tt Qmatilda.vut.edu.au}$