An Inequality of Ostrowski Type and its Applications for Simpson's Rule and Special Means

This is the Published version of the following publication

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17127/
AN INEQUALITY OF OSTROWSKI TYPE FOR Mappings Whose Second Derivatives Belong to $L_1(A, B)$ AND APPLICATIONS

P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS

Abstract. An inequality of Ostrowski type for twice differentiable mappings whose derivatives belong to $L_1(a, b)$ and applications in Numerical Integration and for special means (logarithmic mean, identric mean, p-logarithmic mean etc...) are given.

1 Introduction

In 1938, Ostrowski (see for example [3, p. 468]) proved the following integral inequality:

Theorem 1.1. Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on I^o (I^o is the interior of I), and let $a, b \in I^o$ with $a < b$. If $f' : (a, b) \rightarrow \mathbb{R}$ is bounded on (a, b), i.e., $\|f'\|_{\infty} := \sup_{t \in (a, b)} |f'(t)| < \infty$, then we have the inequality:

$$
\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right| \leq \frac{1}{4} + \frac{\left(\frac{x-a+b}{2} \right)^2}{(b-a)^2} (b-a) \|f'\|_{\infty}
$$

for all $x \in [a, b]$.

The constant $\frac{1}{4}$ is sharp in the sense that it can not be replaced by a smaller one.

For some applications of Ostrowski's inequality to some special means and some numerical quadrature rules, we refer to the recent paper [1] by S.S. Dragomir and S. Wang.

In paper [2], the same authors considered another inequality of Ostrowski type for $\|\|_1$ norm as follows:

Theorem 1.2. Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping in I^o and $a, b \in I^o$ with $a < b$. If $f' \in L_1[a, b]$, then we have the inequality:

$$
\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right| \leq \frac{1}{2} + \frac{|x - \frac{a+b}{2}|}{(b-a)} \|f'\|_1
$$

for all $x \in [a, b]$.

They also pointed out some applications of (1.2) in Numerical Integration as well as for special means.

In 1976, G.V. Milovanović and J.E. Pečarić proved a generalization of Ostrowski’s inequality for n-time differentiable mappings (see for example [3, p. 468]) from which we would like to mention only the case of twice differentiable mappings [3, p. 470]:

Date. December, 1998

1991 Mathematics Subject Classification. Primary 26D15; Secondary 41A55.

Key words and phrases. Ostrowski’s Inequality, Numerical Integration, Special Means
Theorem 1.3. Let \(f : [a, b] \to \mathbb{R} \) be a twice differentiable mapping such that \(f'' : (a, b) \to \mathbb{R} \) is bounded on \((a, b)\), i.e., \(\| f'' \|_{\infty} = \sup_{t \in (a, b)} |f''(t)| < \infty \). Then we have the inequality:

\[
\begin{align*}
12 & \left| \frac{1}{2} \left[f(x) + \frac{(x-a)f(a) + (b-x)f(b)}{b-a} \right] - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt \right| \\
& \leq \frac{\| f'' \|_{\infty}}{4} (b-a)^2 \left[\frac{1}{12} + \frac{(x-a+b)^2}{(b-a)^2} \right]
\end{align*}
\]

for all \(x \in (a, b) \).

In this paper we point out an inequality of Ostrowski type for twice differentiable mappings which is in terms of the \(\| \cdot \|_1 \) -norm of the second derivative \(f'' \) and apply it in numerical integration and for some special means such as: logarithmic mean, identric mean, p-logarithmic mean etc.

2 Some Integral Inequalities

The following inequality of Ostrowski's type for mappings which are twice differentiable, holds.

Theorem 2.1. Let \(f : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\), twice differentiable on \((a, b)\) and \(f'' \in L_1(a, b) \). Then we have the inequality:

\[
\begin{align*}
& \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) \, dt - \left(x - \frac{a+b}{2} \right) f'(x) \right| \\
& \leq \frac{1}{2(b-a)} \left(\left| x - \frac{a+b}{2} \right| + \frac{1}{2} (b-a) \right)^2 \| f'' \|_1 \leq \frac{b-a}{2} \| f'' \|_1
\end{align*}
\]

for all \(x \in [a, b] \).

Proof. Let us define the mapping \(K(\cdot, \cdot) : [a, b]^2 \to \mathbb{R} \) given by

\[
K(x, t) := \begin{cases}
\frac{(t-a)^2}{2} & \text{if } t \in [a, x] \\
\frac{(t-b)^2}{2} & \text{if } t \in (x, b]
\end{cases}
\]

Integrating by parts, we have successively

\[
\begin{align*}
\int_{a}^{b} K(x, t) f''(t) \, dt \\
= \int_{a}^{x} \frac{(t-a)^2}{2} f''(t) \, dt + \int_{x}^{b} \frac{(t-b)^2}{2} f''(t) \, dt \\
= \left(\frac{t-a}{2} \right)^2 f'(t) \bigg|_{a}^{x} - \int_{a}^{x} \left(t-a \right) f'(t) \, dt + \frac{(t-b)^2}{2} f'(t) \bigg|_{x}^{b} - \int_{x}^{b} (t-b) f'(t) \, dt
\end{align*}
\]
\[(x - a)^2 \frac{f'(x)}{2} - \left[(t - a) f(t) \right]_a^x - \int_a^x f(t) dt \]
\[- \frac{(b - x)^2}{2} \frac{f'(x)}{2} - \left[(t - b) f(t) \right]_x^b - \int_x^b f(t) dt \]
\[= \frac{1}{2} \left[(x - a)^2 - (b - x)^2 \right] f'(x) - (x - a) f(x) \]
\[+ \int_a^x f(t) dt + (x - b) f(x) + \int_x^b f(t) dt \]
\[= (b - a) \left(x - \frac{a + b}{2} \right) f'(x) - (b - a) f(x) + \int_a^b f(t) dt \]

from where we get the integral identity:

\[(2.2) \quad \int_a^b f(t) dt = (b - a) f(x) - (b - a) \left(x - \frac{a + b}{2} \right) f'(x) + \int_a^b K(x, t) f''(t) dt \]

for all \(x \in [a, b] \), which is interesting in itself, too.

Using the identity (2.2) we have

\[(2.3) \quad \left| f(x) - \frac{1}{b - a} \int_a^b f(t) dt - \left(x - \frac{a + b}{2} \right) f'(x) \right| \]
\[= \frac{1}{b - a} \left| \int_a^b K(x, t) f''(t) dt \right| \]
\[= \frac{1}{b - a} \left| \int_a^x \frac{(t - a)^2}{2} f''(t) dt + \int_x^b \frac{(t - b)^2}{2} f''(t) dt \right| \]
\[\leq \frac{1}{b - a} \left[\int_a^x \frac{(t - a)^2}{2} \left| f''(t) \right| dt + \int_x^b \frac{(t - b)^2}{2} \left| f''(t) \right| dt \right] \]
\[\leq \frac{1}{b - a} \left[\frac{(x - a)^2}{2} \int_a^x \left| f''(t) \right| dt + \frac{(b - x)^2}{2} \int_x^b \left| f''(t) \right| dt \right] \]
\[\leq \frac{1}{b - a} \max \left\{ \frac{(x - a)^2}{2}, \frac{(b - x)^2}{2} \right\} \left[\int_a^x \left| f''(t) \right| dt + \int_x^b \left| f''(t) \right| dt \right] . \]

Now, let observe that

\[\max \left\{ \frac{(x - a)^2}{2}, \frac{(b - x)^2}{2} \right\} \]
\[
= \frac{1}{2} \left[\frac{(x-a)^2 + (b-x)^2}{2} + (b-a) \left| x - \frac{a+b}{2} \right| \right] \\
= \frac{1}{2} \left[\frac{(x-a)^2 + (b-x)^2}{2} + (b-a) \left| x - \frac{a+b}{2} \right| \right] \\
= \frac{1}{2} \left[\frac{1}{4} (b-a)^2 + \left(x - \frac{a+b}{2} \right)^2 + (b-a) \left| x - \frac{a+b}{2} \right| \right] \\
= \frac{1}{2} \left(\left| x - \frac{a+b}{2} \right| + \frac{1}{2} (b-a) \right)^2.
\]

Using (2.3) we deduce the desired inequality (2.1). \[\blacksquare\]

Corollary 2.2. Let \(f \) be as above. Then we have the midpoint inequality:

\[
(2.4) \quad \left| f \left(\frac{a+b}{2} \right) - \frac{1}{b-a} \int_a^b f(t) \, dt \right| \leq \frac{1}{8} (b-a) \| f'' \|_1.
\]

The following trapezoid inequality also holds:

Corollary 2.3. Under the above assumptions we have:

\[
(2.5) \quad \left| \frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_a^b f(t) \, dt - \frac{b-a}{4} \left(f'(b) - f'(a) \right) \right| \\
\leq \frac{1}{2} (b-a) \| f'' \|_1.
\]

Proof. Choose in (2.1) \(x = a \) and \(x = b \) to get:

\[
\left| f(a) - \frac{1}{b-a} \int_a^b f(t) \, dt + \frac{b-a}{2} f'(a) \right| \leq \frac{b-a}{2} \| f'' \|_1,
\]

and

\[
\left| f(b) - \frac{1}{b-a} \int_a^b f(t) \, dt - \frac{b-a}{2} f'(b) \right| \leq \frac{b-a}{2} \| f'' \|_1.
\]

Adding the above two inequalities, using the triangle inequality and dividing by 2, we get the desired inequality (2.5). \[\blacksquare\]

3 Applications in Numerical Integration

Let \(I_n : a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b \) be a division of the interval \([a, b], \xi_i \in [x_i, x_{i+1}] \) \((i = 0, \ldots, n-1)\). We have the following quadrature formula:

Theorem 3.1. Let \(f : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\) and twice differentiable on \((a, b)\), whose second derivative \(f'' : (a, b) \to \mathbb{R} \) belongs to \(L_1(a, b) \), i.e.,

\[
\| f'' \|_1 := \int_a^b |f''(t)| \, dt < \infty.
\]

Then the following perturbed Riemann’s type quadrature formula holds:

\[
(3.1) \quad \int_a^b f(x) \, dx = A(f, f', \xi, I_n) + R(f, f', \xi, I_n)
\]

\[\blacksquare\]
where
\[A(f, f', \xi, I_n) = \sum_{i=0}^{n-1} h_i f(\xi_i) - \sum_{i=0}^{n-1} f'(\xi_i) \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right) h_i \]

and the remainder satisfies the estimation:
\[
|R(f, f', \xi, I_n)| \leq \frac{1}{2} \left[\frac{1}{2} \nu(h) + \sup_{i=0, \ldots, n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \| f'' \|_1
\]
\[
\leq \frac{\nu^2(h)}{2} \| f'' \|_1
\]
for all \(\xi_i \) as above, where \(\nu(h) = \max \{ x_{i+1} - x_i \mid i = 0, \ldots, n - 1 \} \).

Proof. Apply Theorem 2.1 on the interval \([x_i, x_{i+1}]\) \((i = 0, \ldots, n - 1)\) to get
\[
\left| \int_{x_i}^{x_{i+1}} f(t) \, dt - h_i f(\xi_i) + \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right) f'(\xi_i) \right|
\]
\[
\leq \frac{1}{2} \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right) + \frac{1}{2} (x_{i+1} - x_i) \int_{x_i}^{x_{i+1}} |f''(t)| \, dt.
\]
Summing over \(i \) from 0 to \(n - 1 \) and using the generalized triangle inequality we deduce:
\[
|R(f, f', \xi, I_n)| \leq \frac{1}{2} \sum_{i=0}^{n-1} \left[\frac{1}{2} (x_{i+1} - x_i) + \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \int_{x_i}^{x_{i+1}} |f''(t)| \, dt
\]
\[
\leq \frac{1}{2} \sup_{i=0, \ldots, n-1} \left[\frac{1}{2} (x_{i+1} - x_i) + \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |f''(t)| \, dt
\]
\[
\leq \frac{1}{2} \left[\frac{1}{2} \nu(h) + \sup_{i=0, \ldots, n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right] \| f'' \|_1
\]
and the estimation (3.2) is obtained. \(\square \)

Remark 3.1. If we choose above \(\xi_i = \frac{x_i + x_{i+1}}{2} \), we recapture the midpoint quadrature formula
\[
\int_{a}^{b} f(x) \, dx = A_M(f, I_n) + R_M(f, I_n)
\]
where the remainder \(R_M(f, I_n) \) satisfies the estimation
\[
|R_M(f, I_n)| \leq \frac{1}{8} \nu^2(h) \| f'' \|_1.
\]
4 Applications for Special Means

Let us recall the following means:

(a) The arithmetic mean

\[A = A(a, b) := \frac{a + b}{2}, \quad a, b \geq 0; \]

(b) The geometric mean:

\[G = G(a, b) := \sqrt{ab}, \quad a, b \geq 0; \]

(c) The harmonic mean:

\[H = H(a, b) := \frac{2}{\frac{1}{a} + \frac{1}{b}}, \quad a, b \geq 0; \]

(d) The logarithmic mean:

\[L = L(a, b) := \begin{cases}
 a & \text{if } a = b \\
 \frac{b - a}{\ln b - \ln a} & \text{if } a \neq b
\end{cases}, \quad a, b > 0; \]

(e) The identric mean:

\[I = I(a, b) := \begin{cases}
 a & \text{if } a = b \\
 \frac{1}{e} \left(\frac{b^b \cdot a^a}{a^b \cdot b^a} \right)^{\frac{1}{b-a}} & \text{if } a \neq b
\end{cases}, \quad a, b > 0; \]

(f) The \(p \)-logarithmic mean:

\[L_p = L_p(a, b) := \begin{cases}
 \left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)} \right]^\frac{1}{p} & \text{if } a \neq b; \\
 a & \text{if } a = b
\end{cases}, \quad \text{where } p \in \mathbb{R} \setminus \{-1, 0\}, a, b > 0. \]

The following simple relationships are known in the literature

\[H \leq G \leq L \leq I \leq A. \]

It is also known that \(L_p \) is monotonically increasing in \(p \in \mathbb{R} \) with \(L_0 = I \) and \(L_{-1} = L \).

Consider the mapping \(f : (0, \infty) \to \mathbb{R}, f(x) = x^r, r \in \mathbb{R} \setminus \{-1, 0\}. \)

Then we have for \(0 < a < b : \)

\[\frac{1}{b-a} \int_a^b f(x) \, dx = L_1^r(a, b) \]

and

\[\|f''\|_1 = |r (r - 1)| (b - a) L_{r-1}^r(a, b). \]
Using the inequality (2.1) we get:

\[(4.1) \quad |x^r - L_r^r - r (x - A) x^{r-1}| \leq \frac{1}{2} \left[|x - A| + \frac{1}{2} (b - a) \right]^2 |r (r-1)| L_{r-1}^{-1} \]

for all \(x \in [a, b] \).

If in (4.1) we choose \(x = A \), we get

\[(4.2) \quad |A^r - L_r^r| \leq \frac{|r (r-1)| (b - a)^2}{8} L_{r-1}^{-1}. \]

Consider the mapping \(f : (0, \infty) \rightarrow \mathbb{R} \), \(f(x) = \frac{1}{x} \).

Then we have for \(0 < a < b \):

\[
\frac{1}{b-a} \int_a^b f(x) \, dx = L^{-1}(a, b)
\]

and

\[
\|f''\|_1 = 2(b-a) L_3^{-2}(a, b).
\]

Using the inequality (2.1), we get:

\[
\left| \frac{1}{x} - \frac{1}{L} + \frac{x - A}{x^2} \right| \leq L_{-3}^{-3} \left[|x - A| + \frac{1}{2} (b - a) \right]^2
\]

which is equivalent to

\[(4.3) \quad |x (L - x) + L (x - A)| \leq x^2 L L_{-3}^{-3} \left[|x - A| + \frac{1}{2} (b - a) \right]^2
\]

for all \(x \in [a, b] \).

Now, if we choose in (4.3), \(x = A \), we get

\[(4.4) \quad 0 \leq A - L \leq \frac{1}{4} A L L_{-3}^{-3} (b - a)^2.
\]

If in (4.3) we choose \(x = L \), we get

\[(4.5) \quad 0 \leq A - L \leq L^2 L_{-3}^{-3} \left[L - A + \frac{1}{2} (b - a) \right]^2.
\]

Let us consider the mapping \(f(x) = \ln x \), \(x \in [a, b] \subset (0, \infty) \).

Then we have:

\[
\frac{1}{b-a} \int_a^b f(x) \, dx = \ln f(a, b),
\]

and

\[
\|f''\|_1 = (b-a) L_2^{-2}(a, b).
\]
Then the inequality (2.1) gives us

\[
(4.6) \quad \left| \ln x - \ln I - \frac{x - A}{x} \right| \leq \frac{1}{2} \left[|x - A| + \frac{1}{2} (b - a) \right]^2 L_{-2}^2
\]

for all \(x \in [a, b] \).

Now, if in (4.6) we choose \(x = A \), we get

\[
(4.7) \quad 1 \leq \frac{A}{I} \leq \exp \left[\frac{1}{8} (b - a)^2 L_{-2}^2 \right].
\]

If in (4.6) we choose \(x = I \), we get

\[
(4.8) \quad 0 \leq A - I \leq \frac{I}{2} \left[A - I + \frac{1}{2} (b - a) \right]^2 L_{-2}^2.
\]

REFERENCES

