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ON AN INEQUALITY FOR LOGARITHMS AND APPLICATIONS
IN INFORMATION THEORY

S.S. Dragomir, N.M. Dragomir and K. Pranesh

ABSTRACT. A new analytic inequality for logarithms which provides a converse to arithmetic
mean-geometric mean inequality and its applications in information theory are given.

1 INTRODUCTION
The present paper continues the investigations started in [1], where the main result is

Theorem 1.1. Let &, € (0,00),pr > 0,k=1,...,n with Y pr =1 and b > 1.
k=1
Then

(1.1) 0 < log, (Zpk€k> - Zpk log, &,
k=1 k=1

1~ peps 2
< (& — &) -
2 lnbk’izlgkgi

The equality holds in both inequalities simultaneously if and only if &, = ... =§,,.

2 A NEw ANALYTIC INEQUALITY FOR LOGARITHMS

We shall start to the following analytic inequality for logarithms which provides a different bound than
the inequality of Dragomir-Goh (1.1):

Theorem 2.1. Let§, € [1,00) and pr >0 with Y pr =1 and b > 1.
k=1

Then we have

(2.1) 0 < log, (Zpkfk) - Zpk log, &,
k=1 k=1

1 n
< 4lnb_zpipj (51 _gj)2'

i,j=1
The equality holds in both inequalities simultaneously if and only if £, = ... =§,,.

Proof. We shall use the well known Jensen’s discrete inequality for convex mappings which states that
n n
22 7 (Sn) < Sopr e
i=1 i=1

for all p; >0, > p; =1, f a convex mapping on a given interval I and z; € I (i =1,...,n).
=1
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38 Dragomir, Dragomir and Pranesh

Now, let consider the mapping f : [1,00) = R, f (z) = é + Inz. Then

1 741
fl@)=a+-==2 + for all z € [1,00)
T T
and
y 1 2?-1
f (a:)zl—ﬁz e for all z € [1, 00),

i.e., fis a strictly convex mapping on [1, c0).
Applying Jensen’s discrete inequality for convex mappings, we have

n 2 n n n
(23) 5 (Zpi@) +1n (Zpi@) <33 m€ +Y ping,

which is equivalent to

In (Zm&) - pilng, < % [Zpiﬁf - (Zm&) ] :
i=1 i=1 =1 =1

But

S pipi (6 -€) =D pipi [€] +€ - 26.¢]

i,j=1 i,j=1

n n n 2 n n 2
~2[Snyne- () | =2 [Sne- () |

and then the above inequality becomes

n n n
1 2
2 i (Sone ) - Yomme < w66
i=1 i=1 i,j=1
Now, as log, = = l‘[‘]—“,f, the inequality (2.4) is equivalent to the desired inequality (2.1).
The case of equality follows by the strict convexity of f and we omit the details. |

Remark 2.1. Define

_ L pip
2Inb 2= &

Bli

(51' —Ej)2 (as in Theorem 1.1)

and

2=

1 ,
b Zpipj (&~ fj)2 (as in Theorem 2.1)

i,j=1

and compute the difference

1 & 2| L
Bi—B: = muzz:lpipj (&:=5) {fiﬁj - 2]

1 e (6-6)°
= 4lnbi]Z:1 3 (2-¢¢;) .

Consequently, if £; € [1,00) so that {,§; < 2 for all 4,5 € {1,...,n}, then the bound B> provided by
Theorem 2.1 is better than the bound Bi provided by Theorem 1.1. If §; € [1,00) so that §:€; > 2 for
all i,j5 € {1,...,n}, then Theorem 1.1 provides a better result than Theorem 2.1.

RGMIA Research Report Collection, Vol. 2, No. 1, 1999



An Inequality for Logarithms 39

We give now some applications of the above results for arithmetic mean-geometric mean inequality.
n

Recall that for ¢; > 0 with Q, := Y ¢;, the arithmetic mean of z; with the weights ¢;,i € {1, ...,n}
i=1

is
(A) Ap (5, E‘) = éiqml

and the geometric mean of x; with the weights ¢;,¢ € {1,...,n}, is

(@) G, (1,7) = (ﬁ ;ﬂ) -

It is well known that the following inequality so called arithmetic mean-geometric mean inequality,
holds

(2.5) 40 (2,7) > Ga (3,7)
with equality if and only if z; = ... = z,.
Now, using Theorem 1.1, we can state the following proposition containing a counterpart of the

arithmetic mean-geometric mean inequality (2.5):

Proposition 2.2. With the above assumptions for q¢ and x, we have

4, (9,2 o
’ qiq; 2
(2.6) 1< ———= <exp, [7 (i — ;) ]
G, (q, a:) 2Q2 lnbi,j (TiTj

where exp, (z) = b", (b > 1). The equality holds in both inequalities simultaneously if and only if v, =

e = Iy

Also, using Theorem 2.1, we have another converse inequality for (2.5).

Proposition 2.3. Let q be as above and x € R"™, so that x; > 1,i =1, ..., n.
Then we have the inequality:

2

A, (g, g
2.7) ' %ﬂ:; = [m;z

qj o
z; (i — x;j)

where b > 1. The equality holds in both inequalities simultaneously if and only if x1 = ... = zy.

Remark 2.2. As in the previous remark, if 1 < z;z; < 2 then the bound (2.7) is better than (2.6). If
x;x; > 2, then (2.6) is better than (2.7).

3 APpPPLICATIONS For THE ENTROPY MAPPING

Let us consider now, the b-entropy mapping of the discrete random variable X with n possible outcomes
and having the probability distribution p = (p;),
1={1,..,n}:

- 1
H,(X)= Zpi log, (;) .
i=1 !

We know (see [1]) that the following counterpart inequality holds:

1 ¢ >
(3.1) 0 <log, n— Hy(X) < ZlnbiZ:j (pi —p5)

with equality if and only if p; = £ for all i € {1,...,n}.
The following similar result also holds:
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40 Dragomir, Dragomir and Pranesh

Theorem 3.1. Let X be as above. Then we have

2 <l — Hy(
o o <t < gy 5 )

The equality holds if and only if pi = + for alli € {1,...,n}.

Proof. As p; € (0,1], then §; = = € [1,00) and we can apply Theorem 2.1 to get

1 & 1 1\?
<1 —Hy(X)< == pipj (— — —
0 <log,n b( )_4lnbij=1pp] (pi pj)

4lnbZ

) Pzpj

The equality holds iff £, = §; for all i,j € {1,...,n} which is equivalent to p; = p; for all 4,5 €
{1,..,n}, ie, pi=2 forallze{l RN |

The following corollary is important in applications as it provides a sufficient condition for the
probability p so that log, n — Hy(X) is small enough.

Corollary 3.2. Let X be as above and € > 0. If the probabilities p;,i = 1, ..., n, satisfy the conditions:
1

etk VG )] g%g%[2+k+m]

for alll <i < j <n, where

(3.3)

then we have the estimation
(3.4) 0 <log,n— Hy(X) <e.
Proof. Let observe that

_ (pi = pj)”
41nbZ plpj 21nb Z

=1 1<i<j<n plp]

Suppose that

N2
Pizpi) o p fpi<i<j<n
pipj
Then
—(2+Kpip; +p; <0 forl1<i<j<n.
Denoting t = p— the above inequality is equivalent to t> — (2 + k)t +1 < 0, i.e., t € [t1,t2], where

, 2+ k—/k(k+4) nd o 2+ k+k(k+4)
1= 9 = .
2 2

If we choose k = n‘*ﬁ;ﬂi’), then by (3.2) we have

0 < log,n— Hy(X _4lan

=1 Pzpj
_ 1 S (pi —p))°
2Inb 1<t<i<n pipj

1 n(n—1) 4elnd
< = . =
- Z 4Inb  n(n-—1) ©

1<i<j<n

and the corollary is proved. i
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Now, consider the bounds

n

Pp— P . 2 ]
M= o Inb 2=, (pi — pj) (given by (3.1))
and
_ 1 <~ i-p) :
My = b, ST (given by(3.2)).

We give an example for which M is less than M, and another example for which M, is less than
M which will suggest that we can use both of them to estimate the above difference log, n — Hy (X).

Consider the probability distribution:
p1 = 0.3475, p2 =0.2398, p3 = 0.1654

pi=0.1142, ps =0.0788, ps = 0.0544.
In this case
M; =6.5119, M, = 12.1166,

where

“ 1
V= LS i g i :Zz Sandn =
i,j=1 j=1 pp

J

N =
-

Consider the probability distribution
p1 = 0.2468, p> =0.2072, p3 =0.1740

ps = 0.1461, ps=0.1227, ps = 0.1031.

In this case,
My =52095, M, = 2.3706.

4 BoOUNDS FOR JOINT ENTROPY

Consider the joint entropy of two random variable X and Y [3, p. 25]:
=3 p (e, y)log, ——
—~ p(z,y)

where the joint probability p (z,y) = P{X =z,Y = y}.
In paper [2], S.S. Dragomir and C. J. Goh have proved the following result using Theorem 1.1:

Theorem 4.1. With the above assumptions, we have that

(4.1) 0 < log, (rs) — Hy (X,Y) mb >3 (u,v))?

T,y u,v

where the range of X contains r elements and the range of Y contains s elements. Equality holds in
both inequalities simultaneously if and only if p (x,y) = p (u,v) for all (z,y), (u,v).

The following corollary is useful in practice:

Corollary 4.2. With the above assumptions and if

IN

2el
max |p(z,y) —p(uo) < /22 e

(z,y),(u,v) rs
then we have the estimation

0 < log, (r,s) — Hy (X,Y) < ¢
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Now, using the second converse inequality embodied in Theorem 2.1, we are able to prove another
upper bound for the difference log, (rs) — Hy (X,Y).

Theorem 4.3. With the above assumptions, we have

1 (p(x,y) —p (u,v))°
(4.2) 0 < log, (rs) — Hy (X,Y) < 19— > p(z,y)p(u,0)

T,y u,v

where the range of X andY are as above. Equality holds in both inequalities simultaneously iff p (z,y) =
p (u,v) for all (z,y) and (u,v).

Proof. Using Theorem 2.1, we have for p; = p (z,y) and §; = @,

0 < log, (Zp(z’y)'p(;,y)> —Zp(z,y)logbﬁ
1 1 Ly
< 41nb§;p(x’y)p(u’v) (p(zny) _p(u,v)>
_ 1 (2 (2,y) = p(u,0))*
- 41@;; p(z,y)p (u,v)

which is clearly equivalent to the desired result. The case of equality is obvious by Theorem 2.1. |

The following corollary is important in practical applications:

Corollary 4.4. Let X and Y be as above and ¢ > 0. Denote P = maxp(wz,y) and p = minp(z,y). If

(4.3) §§1+k+s/k(k+2)

where

- 2¢e ln2b7
(rs)

then we have the bound

0 <log, (rs) — Hy (X,Y) <e.
Proof. At the beginning, let us consider the inequality

(a=b) _ k

> 0.
5ap =k for a,b >0 and k£ >0

This inequality is clearly equivalent to
a> =21 +k)ab+b* <0
or, denoting ¢ := ¢, to
t?—2(1+k)t+1<0,
ie.,
1+k—VEFE+2) <t<1+k+k(k+2).

Now, let suppose that

(4.4) L4k — k(k+2)g@g1+k+\/k(k+z)

p(u,v)
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for all (z,y) and (u,v) and k := %} Then by (4.2), we have

0 < log, (rs) — Hy (X,Y) < — » (r ;:c( i/)y)—pp((u, v))

~4lnb 4 u, V)
1 2 (rs)> 2elnb
< . = . =
S o T oms Gy

Now, let observe that the inequality (4.4) is equivalent to:

1+k—\/k(k+2)§%§§§1+k+\/k(k+2).

But & >1+k— +/k(k+2) is equivalent to
L
p

—k+1+VE(k+2)

1
<
T 14+ k—E(k+2)
and the corollary is proved. |l
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