New (Probabilistic) Derivation of Diaz-Metcalf and Pólya-Szegő Inequalities and Consequences

This is the Published version of the following publication

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17148/
NEW (PROBABILISTIC) DERIVATION OF DIAZ - METCALF AND PÓLYA - SZEGÖ INEQUALITIES AND CONSEQUENCES

TIBOR K. POGÁNY

Dedicated to Professor M.I.Yadrenko on the occasion of his 70th birthday

Abstract. Classical inequalities of Diaz - Metcalf and Pólya - Szegő are generalized to probabilistic setting which covers the initial deterministic (both discrete and integral) variants. From these two inequalities, by the probabilistic derivation method further well-known inequalities are obtained (that ones by Kantorovich, Rennie and Schweitzer).

1. Introduction

Probably the most frequently mentioned inequality is the celebrated Cauchy - Buniakowski - Schwarz inequality. In probabilistic description it is

\[|E \xi \eta|^2 \leq E \xi^2 E \eta^2, \quad (1) \]

where \(\xi, \eta \) are random variables defined on certain probability space \((\Omega, \mathcal{F}, P) \). An inequality reverse to (1) is known but just in few situations. These are both deterministic - discrete and integral variants of Diaz - Metcalf and Pólya - Szegő inequalities, such that includes many other famous ones, e.g. inequalities by Kantorovich, Rennie and Schweitzer and some of its generalizations, see [6, § 2.11.], [7].

In this paper new reverse evaluations are given to (1) for almost surely \(P \) bounded random variables \(\xi \), involving just its first two moments \(E \xi, E \xi^2 \) and the limiting parameters \(m, M \) in \(P\{m \leq \xi \leq M\} = 1 \) and precise necessary and sufficient conditions are given to hold equalities in all considered cases. These results generate the classical Diaz - Metcalf and Pólya - Szegő inequalities such that include all other above mentioned deterministic inequalities together with few new ones both in plane and weighted versions. The derived results cover the discrete and the integral cases. The used derivation methods are quite simple and elementary; we use mainly the monotonicity and linearity of the expectation operator \(E \).

In the article we will write \(\xi \sim \psi \) for r.v. \(\xi \) possessing distribution/density \(\psi \), the symbol \(I_A \) denotes the indicator of random event \(A \) and \(\chi_S(t) \) stands for the characteristic function of the set \(S \), \(\mathbb{N}_0 \) denotes the set of nonnegative integers and \(\delta_{\lambda\mu} \) is the Kronecker symbol. Finally, under \(L^2_\varphi[A] \) we mean the function space \(\{h \mid \int_A |h(t)|^2 \varphi(t) dt < \infty\} \) and \(\text{supp}(h) = \{t|h(t) \neq 0\} \).

Key words and phrases. almost surely bounded random variable, Diaz - Metcalf inequality, discrete inequality, integral inequality, Kantorovich inequality, mathematical expectation, Pólya - Szegő inequality, Rennie inequality, Schweitzer inequality.
2. On Diaz - Metcalf Inequality

In the sequel we will deal with almost surely P bounded real random variable ξ and we will assume the existence of real constants $m, M, m \leq M$ such that

$$P\{m \leq \xi \leq M\} = 1.$$

Of course, there is the possibility to estimate all moments $E\xi^r$, $r > 0$; $m \geq 0$, by the obvious relation $m^r \leq E\xi^r \leq M^r$, while the variance satisfies $D\xi \leq (M - m)^2/4$. In the continuation we list certain more sophisticated results.

First of all we give a result we will need in the equality discussion concerning the Diaz - Metcalf inequality. This theorem was communicated to the author by O.I. Klesov, [5].

Equality Theorem. Let X be a random variable for which there exist two real numbers m, M, $m < M$ such that

$$P(m \leq X \leq M) = 1.$$

Then two conditions are equivalent:

$$E(X - m)(M - X) = 0$$

and

there exist two events A, B such that

$$X = mI_A + MI_B, \quad \text{a.s.}$$

$$P(A \cup B) = 1,$$

$$P(A \cap B) = 0.$$

Proof. Put $\delta = (X - m)(M - X)$. Conditions (3-5) imply condition (2), since $\delta = 0$ almost surely under (3-5).

Conversely, put $A = \{\omega \mid X(\omega) = m\}$ and $B = \{\omega \mid X(\omega) = M\}$. Obviously by (2) we have

$$P(X \in \mathbb{R} \setminus \{m, M\}) = 0,$$

accordingly (3), (4) hold. Since $m < M$ (5) holds too. \qed

Now, we are ready to formulate the Diaz - Metcalf inequality for bounded r.v. case.

Theorem 1. Let ξ, η be real random variables defined on the same probability space (Ω, \mathcal{F}, P). When $P\{m_1 \leq \xi \leq M_1\} = 1, P\{m_2 \leq \eta \leq M_2\} = 1$ with $m_j \leq M_j, m_2 > 0$, it holds true

$$E\xi^2 + \frac{m_1 M_1}{m_2 M_2} E\eta^2 \leq \left(\frac{m_1}{M_1} + \frac{M_1}{m_2}\right) E\xi \eta,$$

and the equality holds iff either (i) $m_1/M_1 = M_1/m_2$ or (ii) $m_1/M_2 < M_1/m_2$ and

$$P\left(\frac{\xi}{\eta} \in \left\{\frac{m_1}{M_2}, \frac{M_1}{m_2}\right\}\right) = 1.$$
Proof. It is easy to see that by the assumptions of the theorem it is
\[
\frac{m_1}{M_2} \leq \frac{\xi}{\eta} \leq \frac{M_1}{m_2}.
\] (8)

Now by monotonicity of \(E\), we have
\[
E\left(\frac{M_1}{m_2} \xi - \xi \right) \leq E\left(\frac{M_1}{m_2} \eta - \eta \right) \leq 0
\] (9)
and since \(E\) is a linear operator we deduce the desired relation (6) from (9).

Now, it remains the equality discussion in (6), i.e. in (9). Since the case (i) is obvious, consider (ii), i.e. \(M_1/m_2 < M_1/m_2\) and (7). But we can write
\[
P(m_2 \xi = M_1 \eta \lor m_2 \xi = m_1 \eta) = 1
\] (10)
instead of (ii). Then in (9) the equality appears for the case (8). Conversely, when (9) becomes equality, that means
\[
P\{M_2 \xi = m_1 \eta \lor m_2 \xi = M_1 \eta\} = 1.
\] (10)

Corollary 1.1 (Diaz - Metcalf Type Weighted Discrete Inequality). Suppose \(m_1 \leq x_k \leq M_1, \ k = \overline{1,n}\) and let \(0 < m_2 \leq y_l \leq M_2, \ l = \overline{1,m}\). Assume \(p_{kl} \geq 0,\) and \(\sum_{k=1}^{n} \sum_{l=1}^{m} p_{kl} = 1.\) Then it holds
\[
\sum_{k=1}^{n} x_k^2 q_k + \frac{m_1 M_1}{m_2 M_2} \sum_{l=1}^{m} y_l^2 r_l \leq \left(\frac{m_1}{M_2} + \frac{M_1}{m_2}\right) \sum_{k=1}^{n} \sum_{l=1}^{m} x_k y_l p_{kl},
\] (11)

where
\[
\sum_{l=1}^{m} p_{kl} = q_k, \quad k = \overline{1,n}, \quad \sum_{k=1}^{n} p_{kl} = r_l, \quad l = \overline{1,m}.
\] (12)
The equality in (11) is valid iff either (i) \(m_1/M_2 = M_1/m_2\) or (ii) \(m_1/M_2 < M_1/m_2\) and
\[
\sum_{k,l \in I_{x,y}} p_{kl} = 1,
\] (12)
where \(I_{x,y} := \{(k,l) : x_k/y_l \in \{m_1/M_2, M_1/m_2\}\}.
Proof. Let \((\xi, \eta)\) be a twodimensional discrete random variable which coordinates are defined on probability space \((\Omega, \mathcal{P}(\Omega), P)\), \(\eta\) being positive, and \(\mathcal{P}(\Omega) = \{S|S \subseteq \Omega\}\). Set \((\xi, \eta) \sim P\{\xi = x_k, \eta = y_l\} = p_{kl}, \ k = \overline{1,n}, \ l = \overline{1,m}\) and \(\sum_{k=1}^{n} \sum_{l=1}^{m} p_{kl} = 1.\) Now, Theorem 1 by the inequality (6) gives (11). The equality discussion in Theorem 1 clarifies the equality in (11).
Remark 1. Putting \(m = n \) and \(p_{kl} = \frac{1}{n} \delta_{kl} \), \(k,l = \overline{1,n} \), into (11) (such that implies \(q_k = r_l = 1/n \)), we get the original equal - weight Diaz - Metcalf inequality:

\[
\sum_{k=1}^{n} x_k^2 + \frac{m_1 M_1}{m_2 M_2} \sum_{l=1}^{n} y_l^2 \leq \left(\frac{m_1}{M_2} + \frac{M_1}{m_2} \right) \sum_{k=1}^{n} x_k y_k,
\]

published firstly in [2]. Here the equality is valid iff \(x_k/y_l \in \{ m_1/M_2, M_1/m_2 \} \) for all \(k = \overline{1,n} \). This follows from (12), since \(p_{kl} = 0 \) for all \(k \neq l \) and \(p_{kk} = 1/n \).

Extensions to complex \(n \) - tuples were proved by the author couple Diaz - Metcalf in [2], compare the list of references in [6, p.66-67] as well.

Corollary 1.2 (Diaz - Metcalf Weighted Integral Inequality). Let \(f, g \) be Borel - functions, such that

\[
m_1 \leq f(x) \leq M_1, \quad 0 < m_2 \leq g(y) \leq M_2, \quad \text{a.e.} \ (x,y) \in [a,b] \times [c,d]. \tag{13}
\]

Let \(w(x,y) \) be a nonnegative normalized weight function such that \(\text{supp}(w) = [a,b] \times [c,d] \), i.e. \(\int_a^b \int_c^d w(x,y) dx dy = 1 \) and let

\[
\int_c^d w(x,y) dy = w_1(x), \quad \int_a^b w(x,y) dx = w_2(y).
\]

Then it is valid

\[
\int_a^b f^2(x) w_1(x) dx + \frac{m_1 M_1}{m_2 M_2} \int_c^d g^2(y) w_2(y) dy \leq \left(\frac{m_1}{M_2} + \frac{M_1}{m_2} \right) \int_a^b \int_c^d f(x) g(y) w(x,y) dx dy. \tag{14}
\]

In (14) the equality appears iff either (i) \(m_1/M_2 = M_1/m_2 \) or (ii) \(m_1/M_2 < M_1/m_2 \) and

\[
\int_{1_{x,y}} w(x,y) = 1,
\]

where \(1_{x,y} := \{(x,y) : f(x)/g(y) \in \{ m_1/M_2, M_1/m_2 \} \} \).

Proof. Let \((\xi, \eta) > 0 \) be twodimensional continuous r.v. with density function \(w(x,y) \) having \(\text{supp}(w) = [a,b] \times [c,d] \). We conclude \(w_1(x), w_2(y) \) are the marginal density functions of \(\xi, \eta \) respectively. Since \(f, g \) are Borel - functions, they are from \(L^2_{w_1}[a,b], L^2_{w_2}[c,d] \) respectively. Choosing \(m_j, M_j \) in way that \(\mathbb{P}\{m_1 \leq f(\xi) \leq M_1\} = \mathbb{P}\{m_2 \leq g(\eta) \leq M_2\} = 1 \), with the help of Theorem 1, we deduce

\[
\mathbb{E}f^2(\xi) + \frac{m_1 M_1}{m_2 M_2} \mathbb{E}g^2(\eta) \leq \left(\frac{m_1}{M_2} + \frac{M_1}{m_2} \right) \mathbb{E}f(\xi) g(\eta), \tag{15}
\]

or in equivalent notation (14).

The equality is obvious in case (i). Considering

\[
\mathbb{E}f^2(\xi) + \frac{m_1 M_1}{m_2 M_2} \mathbb{E}g^2(\eta) - \left(\frac{m_1}{M_2} + \frac{M_1}{m_2} \right) \mathbb{E}f(\xi) g(\eta) = \mathbb{E} \left(f(\xi) - \frac{M_1}{m_2} g(\eta) \right) \left(f(\xi) - \frac{m_1}{M_2} g(\eta) \right)
\]

by the Equality Theorem we deduce the assertion (ii) of the Corollary. \(\square \)
Remark 2. Take \((\xi, \eta) \sim w(x, y) = (b - a)^{-1} \chi_{[a,b]}(x, y)\delta_{xy}\). This specification results with the classical Diaz - Metcalf equal-weight integral inequality:

\[
\int_a^b f^2(x)dx + \frac{m_1 M_1}{m_2 M_2} \int_a^b g^2(x)dx \leq \left(\frac{m_1}{M_2} + \frac{M_1}{m_2}\right) \int_a^b f(x)g(x)dx,
\]

because of the marginal density functions become \(w_1(x) = (b - a)^{-1} \chi_{[a,b]}(x) = w_2(x)\). The equality holds iff either (i) \(m_1/M_2 = M_1/m_2\) or (ii) \(m_1/M_2 < M_1/m_2\) and

\[
\int_{\mathbb{I}_x} w_1(x)dx = 1,
\]

where \(\mathbb{I}_x \equiv \mathbb{I}_{x,x}, x \in [a, b]\), compare Corollary 1.2 and the article [2](where the inequality appears firstly) as well. See [6, p.64] for further informations on the subject.

\section{On Pólya - Szegő Inequality}

The classical Pólya - Szegő inequality in both cases (discrete and integral) was published in [8, p.57 & pp.213-214]. Here we give the basic probabilistic moment inequality which generalize the classical results to weighted variants.

\begin{theorem}
Let \(\xi, \eta\) be real random variables defined on fixed probability space \((\Omega, \mathcal{F}, P)\). When \(P\{m_1 \leq \xi \leq M_1\} = 1, P\{m_2 \leq \eta \leq M_2\} = 1\) with \(0 < m_j \leq M_j, j = 1, 2\), it is valid

\[
\frac{\mathbb{E}\xi^2\mathbb{E}\eta^2}{(\mathbb{E}\xi\eta)^2} \leq \frac{1}{4} \left(\frac{m_1 m_2}{M_1 M_2} + \frac{M_1 M_2}{m_1 m_2}\right)^2.
\]

(16)

In (16) the equality holds iff

\[
\xi = m_1 \mathcal{I}_A(\omega) + M_1 \mathcal{I}_{\Omega \setminus A}(\omega) \quad \text{a.s.,} \quad \eta = m_2 \mathcal{I}_{\Omega \setminus A}(\omega) + M_2 \mathcal{I}_A(\omega) \quad \text{a.s.,}
\]

(17)

where \(A \in \mathcal{F}\) is chosen so that

\[
P(A) = \frac{M_1 m_2}{m_1 M_2 + M_1 m_2}.
\]

(18)

\end{theorem}

\begin{proof}
Suppose that \(\xi, \eta\) are positive a.s. \(P\) bounded random variables. Then the left-hand expression in the Diaz - Metcalf inequality (6), with the aid of AG - means inequality, becomes

\[
\mathbb{E}\xi^2 + \frac{m_1 M_1}{m_2 M_2} \mathbb{E}\eta^2 \geq 2 \sqrt{\frac{m_1 M_1}{m_2 M_2}} \mathbb{E}\xi^2 \mathbb{E}\eta^2.
\]

(19)

Now, straightforward calculation gives us the asserted result.

\end{proof}
To prove the if part of the equality assertion, assume that ξ, η are given by (17) and (18). Consequently, easy calculation gives us

$$\mathbb{E}\xi^2 = \frac{m_1 M_1 (m_1 m_2 + M_1 M_2)}{m_1 M_2 + M_1 m_2},$$

$$\mathbb{E}\eta^2 = \frac{m_2 M_2 (m_1 m_2 + M_1 M_2)}{m_1 M_2 + M_1 m_2},$$

$$\mathbb{E}\xi\eta = \frac{2m_1 m_2 M_1 M_2}{m_1 M_2 + M_1 m_2},$$

which results with equality in (16).

The only if part of the equality in (16) we get when equality holds in Diaz - Metcalf inequality (6) and in the AG - mean inequality (19). Assume at first that $m_1 m_2 < M_1 M_2$ otherwise the theorem is obvious. Then it have to be satisfied

$$\mathcal{P}\left(\frac{\xi}{\eta} \in \left\{ \frac{m_1}{M_2}, \frac{M_1}{m_2} \right\}\right) = 1,$$ \hspace{1cm} (a)

$$\mathbb{E}\xi^2 = m_1 M_1 (m_1 M_2)^{-1}\mathbb{E}\eta^2.$$ \hspace{1cm} (b)

The requirement (a) is satisfied iff there are $A, B \in \mathfrak{F}$, $A \cup B = \Omega$, $A \cap B = \emptyset$, so

$$\xi = m_1 \mathcal{I}_A(\omega) + M_1 \mathcal{I}_B(\omega), \quad \eta = m_2 \mathcal{I}_B(\omega) + M_2 \mathcal{I}_A(\omega).$$ \hspace{1cm} (20)

Replacing (20) into (b) we get

$$\mathcal{P}(A) = \frac{M_1 m_2}{m_1 M_2 + M_1 m_2}, \quad \mathcal{P}(B) = \frac{M_2 m_1}{m_1 M_1 + M_1 m_2}.$$

Therefore (17) and (18) are proved. \qed

Corollary 2.1 (Pólya - Szegő Type Weighted Discrete Inequality). Suppose $0 < m_1 \leq x_k \leq M_1$, $k = \overline{1,n}$ and $0 < m_2 \leq y_l \leq M_2$, $l = \overline{1,m}$. Then let $p_{kl} \geq 0$, and $\sum_{k=1}^{n} \sum_{l=1}^{m} p_{kl} = 1$. It follows

$$\sum_{k=1}^{n} x_k^2 q_k \sum_{l=1}^{m} y_l^2 r_l \leq \frac{1}{4} \left(\sqrt{\frac{m_1 m_2}{M_1 M_2}} + \sqrt{\frac{M_1 M_2}{m_1 m_2}} \right)^2 \left(\sum_{k=1}^{n} \sum_{l=1}^{m} x_k y_l p_{kl} \right)^2.$$ \hspace{1cm} (21)

Here is

$$\sum_{l=1}^{m} p_{kl} = q_k, \quad k = \overline{1,n}; \quad \sum_{k=1}^{n} p_{kl} = r_l, \quad l = \overline{1,m}.$$

The equality in (21) holds iff $m = n$, and

$$\kappa = \frac{M_1 m_2 n}{m_1 M_2 + M_1 m_2} \in \mathbb{N}_0,$$ \hspace{1cm} (22)
PROBABILISTIC DERIVATION OF INEQUALITIES

\(x_1 = \cdots = x_\kappa = m_1, \quad x_{\kappa+1} = \cdots = x_n = M_1, \tag{23} \)
\(y_1 = \cdots = y_\kappa = m_2, \quad y_{\kappa+1} = \cdots = y_n = M_2, \quad i_j \in \{1, \cdots, n\}, \tag{24} \)

\(p_{kl} = 0, \quad (k, l) \in \{i_1, \cdots, i_\kappa\} \times \{i_{\kappa+1}, \cdots, i_n\} \cup \{i_{\kappa+1}, \cdots, i_n\} \times \{i_1, \cdots, i_\kappa\}. \tag{25} \)

Proof. Specify
\[
0 < (\xi, \eta) \sim P\{\xi = x_k, \eta = y_l\} = p_{kl}
\]
with \(\sum_{k=1}^n \sum_{l=1}^m p_{kl} = 1\) on fixed probability space \((\Omega, \mathcal{P}(\Omega), P)\). Easy calculation gives us (21) by means of (16).

We omit the equality proof since the descriptionary character of the Corollary formulation in displays (22-25) with \(m = n\).

Special case of the discrete weighted Pólya - Szegő inequality is the Kantorovich inequality, see [4]. If we set \(m = n\); \(x_j^2 = \gamma_j, \quad y_k^2 = \gamma_k^{-1}\) we deduce \(0 < \sqrt{\mu} \leq \gamma_k \leq \sqrt{M}\) where \(m_1 = \mu, M_1 = M\). Moreover if
\[
p_{kl} = \frac{u_k^2}{\sum_{j=1}^m u_j^2} \delta_{kl}, \quad k, l = \overline{1, n}, \tag{26}
\]
where at least one \(u_k \neq 0\), we deduce from (21) the Kantorovich inequality, reads as follows
\[
\frac{1}{n} \sum_{j=1}^n \gamma_j u_j^2 \left(\sum_{j=1}^n \gamma_j u_j^2\right) \leq \frac{1}{4} \left(\frac{\mu}{M} + \sqrt{\frac{M}{\mu}}\right)^2 \left(\sum_{j=1}^n u_j^2\right)^2,
\]
see [6, p.61] too.

Putting \(m = n\) and specifying \(p_{kl}\) in manner like (26) we get
\[
\frac{1}{n} \sum_{k=1}^n x_k^2 u_k^2 \left(\sum_{k=1}^n y_k^2 u_k^2\right) \leq \frac{1}{4} \left(\sqrt{\frac{m_1 m_2}{M_1 M_2}} + \sqrt{\frac{M_1 M_2}{m_1 m_2}}\right)^2 \left(\sum_{k=1}^n x_k y_k u_k^2\right)^2,
\]
which is exactly the result by Greub and Rheinboldt, compare [3], [6, p.61].

Taking \(m = n\) and \(p_{kl} = n^{-1} \delta_{kl}\), the weighted discrete Pólya - Szegő inequality (21) becomes the classical one:
\[
\frac{1}{n} \sum_{k=1}^n x_k^2 \sum_{k=1}^n y_k^2 \leq \frac{1}{4} \left(\sqrt{\frac{m_1 m_2}{M_1 M_2}} + \sqrt{\frac{M_1 M_2}{m_1 m_2}}\right)^2 \left(\sum_{k=1}^n x_k y_k\right)^2, \tag{27}
\]
for all positive real \(n\) - tuples \(\{x_k\}, \{y_k\}, k = \overline{1, n}\), having bounds mentioned in Corollary 2.1, see e.g. [6, pp.60-61.], [8].

The equality condition is now somewhat simpler then in the Corollary 2.1., i.e. (27) becomes equality under (22-24).
Corollary 2.2 (Pólya - Szegő Weighted Integral Inequality). Let \(f, g \) be positive Borel functions, such that
\[
0 < m_1 \leq f(x) \leq M_1, \quad 0 < m_2 \leq g(y) \leq M_2, \quad \text{a.s.} \ (x, y) \in [a, b] \times [c, d]. \tag{28}
\]
Let \(w(x, y) \) be a nonnegative weight function such that \(\text{supp}(w) = [a, b] \times [c, d] \), and let
\[
\int_c^d w(x, y)dy = w_1(x), \quad \int_a^b w(x, y)dx = w_2(y).
\]
Then it is valid
\[
\frac{\int_a^b f(x)^2dx \int_c^d g(y)^2w_2(y)dy}{\left(\int_a^b \int_c^d f(x)g(y)w(x, y)dxdy \right)^2} \leq \frac{1}{4} \left(\sqrt{\frac{m_1m_2}{M_1M_2}} + \sqrt{\frac{M_1M_2}{m_1m_2}} \right)^2. \tag{29}
\]
The equality in (29) holds if and only if the following conditions are fulfilled:
\[
[a, b] \equiv [c, d] \quad \text{and} \quad f(x) = m_1 \chi_{S(x)} + M_1 \chi_{[a, b] \setminus S(x)} \quad \text{and} \quad g(y) = M_2 \chi_{[a, b]} + m_2 \chi_S(y), \tag{30}
\]
for a Borel set \(S \subseteq [a, b] \) of Lebesgue measure
\[
|S| = \frac{M_1m_2(b - a)}{m_1M_2 + M_1m_2}, \tag{31}
\]
moreover
\[
w(x, y) = 0, \quad \forall (x, y) \in S^2 \cup ([a, b] \setminus S)^2. \tag{32}
\]

Since the proof of the inequality (29) is very similar to the proof of the Corollary 1.2 and Corollary 2.1, it is omitted.

Remark 3. When \([a, b] = [c, d] \) and \((\xi, \eta) \sim w(x, y) = (b - a)^{-1} \chi_{(a, b]} \delta_{xy}, \) we get
\[
\frac{\int_a^b f(x)^2dx \int_a^b g(x)^2dx}{\left(\int_a^b f(x)g(x)dx \right)^2} \leq \frac{1}{4} \left(\sqrt{\frac{m_1m_2}{M_1M_2}} + \sqrt{\frac{M_1M_2}{m_1m_2}} \right)^2, \tag{33}
\]
for all \(f, g \in L^2[a, b] \) satisfying
\[
0 < m_1 \leq f(x) \leq M_1, \quad 0 < m_2 \leq g(x) \leq M_2.
\]
When \(f, g \) satisfy (30) and (31), then (33) becomes equality and vice versa. The inequality (33) originates back to Pólya and Szegő, compare \([8, \text{p.81 \\ & pp.251-252, Problem 93}] \) where no equality analysis was given.

4. On Rennie and Schweitzer Inequalities

In this section we give some generalizations of Rennie and Schweitzer inequalities to probabilistic setting. We can do this in two directions: 1. applying the linearity and monotonicity of the expectation operator \(\mathbb{E}; \) 2. direct use of Diaz - Metcalf and Pólya - Szegő inequalities respectively.
Let \(\zeta \) be a.s. \(P \) bounded, positive random variables, i.e. \(P\{0 < m \leq \zeta \leq M\} = 1 \). Then it is clear that
\[
E(M\zeta^{-1} - 1)(\zeta - m) \geq 0.
\]
Therefore we deduce
\[
E\zeta + mM E\zeta^{-1} \leq m + M.
\]
This is the Rennie - type inequality for positive, bounded random variables. Now, the AG - mean inequality, applied to the left side term in Rennie inequality gives us
\[
2\sqrt{mM E\zeta E(1/\zeta)}
\]
and we finish the derivation with
\[
E\zeta E\zeta^{-1} \leq \frac{(m + M)^2}{4mM},
\]
which is the Schweitzer - type inequality.

Theorem 3. Let \(\zeta \) be positive, a.s. \(P \) bounded random variable defined on the probability space \((\Omega, \mathcal{F}, P) \) and \(P\{0 < m \leq \zeta \leq M\} = 1 \). Then
\[
E\zeta + mM E\zeta^{-1} \leq m + M,
\]
where the equality holds iff \(\zeta = mI_A(\omega) + M I_{\Omega\setminus A}(\omega) \), for certain \(A \in \mathcal{F} \) and
\[
E\zeta E\zeta^{-1} \leq \frac{(m+M)^2}{4mM},
\]
where the equality is valid iff \(\zeta = mI_A(\omega) + M I_{\Omega\setminus A}(\omega) \), for \(A \in \mathcal{F} \), \(P(A) = 1/2 \).

Proof. Take \(\xi^2 = \zeta = \eta^{-2} \) in (6) and (16) respectively.

The following result is given in [9], without any equality quotation, compare [6, p.63] as well.

Corollary 3.1 (Discrete Rennie Inequality). Let \(\{x_j\} \) be a positive, real \(n \) - tuple, \(\pi_j \geq 0, \sum_{j=1}^n \pi_j = 1 \). Then
\[
\sum_{j=1}^n x_j \pi_j + mM \sum_{j=1}^m \frac{\pi_j}{x_j} \leq m + M,
\]
where \(m, M \) are the minimal, maximal element of \(\{x_j\} \) respectively.

The equality holds in (36) for \(x_j \in \{m, M\}, j = \overline{1,n} \).

Proof. Take \(\zeta \sim P\{\zeta = x_j\} = \pi_j \). By (34) we get the desired result (36) immediately.

Now, let \(I \subseteq \{1, \cdots, n\} \). Put \(x_j = m, j \in I \) and \(x_j = M \) when \(j \notin I \). As
\[
\sum_{j=1}^n x_j \pi_j + mM \sum_{j=1}^m \frac{\pi_j}{x_j} = m \sum_{j \in I} \pi_j + M \sum_{j \notin I} \pi_j + mM \left(\frac{1}{m} \sum_{j \in I} \pi_j + \frac{1}{M} \sum_{j \notin I} \pi_j\right) = m + M,
\]
the Corollary 3.1. is proved.
Corollary 3.2 (Integral Rennie Inequality). Let \(f, 1/f \in L^1_w[a, b] \), where \(w(x) \geq 0 \) and \(\int_a^b w(x)dx = 1 \). When \(0 < m \leq f(x) \leq M \) for all \(x \in [a, b] \), then
\[
\int_a^b f(x)w(x)dx + mM \int_a^b \frac{w(x)}{f(x)}dx \leq m + M;
\]
here the equality is valid iff \(f(x) = m\chi_S(x) + M\chi_{[a,b]\setminus S}(x) \), for some Borel \(S \subseteq [a, b] \).

Corollary 3.3 (Weighted Discrete Schweitzer Inequality). Let \(0 < m \leq x_j \leq M \), \(\pi_j \geq 0 \), \(j = 1, n \) where \(\sum_{j=1}^n \pi_j = 1 \). Then
\[
\sum_{j=1}^n x_j \pi_j \sum_{j=1}^m \pi_j x_j \leq \frac{(m + M)^2}{4mM}.
\]
The equality appears iff \(n \) is even (\(n = 2\lambda \)), \(\sum_{j=1}^\lambda \pi_j = 1/2 \) and
\[
x_{j_1} = \cdots = x_{j_\lambda} = m, \quad x_{j_{\lambda+1}} = \cdots = x_{j_n} = M, \quad j_t \in \{1, \cdots, n\}.
\]

Corollary 3.4 (Weighted Integral Schweitzer Inequality). Let \(f, 1/f \in L^1_w[a, b] \), where \(w(x) \geq 0 \) and \(\int_a^b w(x)dx = 1 \). When \(0 < m \leq f(x) \leq M \) for all \(x \in [a, b] \), then
\[
\int_a^b f(x)w(x)dx \int_a^b \frac{w(x)}{f(x)}dx \leq \frac{(m + M)^2}{4mM}
\]
and the equality is valid iff \(f(x) = m\chi_S(x) + M\chi_{[a,b]\setminus S}(x) \), for certain Borel \(S \subseteq [a, b] \) which possesses Lebesgue measure equal \(|S| = (b-a)/2\).

The Schweitzer inequalities (in both cases, discrete and integral) we can find in [10]. More precisely, when we specify on certain probability space \((\Omega, \mathcal{P}(\Omega), \mathcal{P})\) the equal weight case by \(\xi \sim \mathcal{P}\{\xi = x_j\} = \pi_j = 1/n \), \(j = 1, n \) in (34), we get
\[
\sum_{j=1}^n x_j \sum_{j=1}^n \frac{1}{x_j} \leq \frac{(m + M)^2 n^2}{4mM},
\]
which is the original discrete Schweitzer result.

Additionally, taking \(\xi \sim \mathcal{U}[a, b] \), i.e. \(w(x) = (b-a)^{-1}\chi_{[a,b]}(x) \) in (39), we deduce
\[
\int_a^b f(x)dx \int_a^b \frac{dx}{f(x)} \leq \frac{(m + M)^2}{4mM} (b-a)^2.
\]
This inequality is originally proved by Schweitzer in [10] too. Further informations about the subject can be found in [6, pp.60-61], [8, pp.80-81 & pp.250-251].

ACKNOWLEDGEMENT. It is the authors pleasure to thank Oleg I.Klesov, Kyiv for the suggested Equality Theorem and its consequences which precise the equality analysis in Diaz - Metcalf and Pólya - Szegő inequalities. Many thanks are also due to Tamás F. Móri, Budapest for discussions on the subject and for the manuscript of his article [1], where further generalizations and improvements are realized on moment inequalities.
References

Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Studentska 2, Croatia
E-mail address: poganj@brod.pfri.hr