Prediction error property of the lasso estimator and its generalization

Full text for this resource is not available from the Research Repository.

Huang, Fuchun (2003) Prediction error property of the lasso estimator and its generalization. Australian & New Zealand Journal of Statistics, 45 (2). pp. 217-228. ISSN 1369-1473


The lasso procedure is an estimator-shrinkage and variable selection method. This paper shows that there always exists and interval of tuning parameter values such that the cor-responding mean spuared prediction error for the lasso estimator is smaller than for the ordinary least spuares estimator. For an estimator satisfying some condition such as unbi-asedness, the paper defines the corresponding generalized lasso estimator. Its mean squared prediction error is shown to be smaller than that of the estimator for values of the tuning parameter in some interval. This implies that all unbiased estimators are not admissible. Simulation results for five models support the theoretical results.

Dimensions Badge

Altmetric Badge

Item type Article
DOI 10.1111/1467-842X.00277
Official URL
Subjects Historical > RFCD Classification > 290000 Engineering and Technology
Keywords admissibility, generalized lasso estimator, lasso-shrinkable condition, least squares estimator
Citations in Scopus 6 - View on Scopus
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login