Complete Monotonicity of Logarithmic Mean

This is the Published version of the following publication

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17527/
COMPLETE MONOTONICITY OF LOGARITHMIC MEAN

FENG QI

Abstract. In the article, the logarithmic mean is proved to be completely monotonic and an open problem about the logarithmically complete monotonicity of the extended mean values is posed.

1. Introduction

Recall [11, 28] that a function \(f \) is said to be completely monotonic on an interval \(I \) if \(f \) has derivatives of all orders on \(I \) and \((-1)^n f^{(n)}(x) \geq 0 \) for \(x \in I \) and \(n \geq 0 \).

Recall [2] that if \(f^{(k)}(x) \) for some nonnegative integer \(k \) is completely monotonic on an interval \(I \), but \(f^{(k-1)}(x) \) is not completely monotonic on \(I \), then \(f(x) \) is called a completely monotonic function of \(k \)-th order on an interval \(I \). Recall also [17, 18, 20] that a function \(f \) is said to be logarithmically completely monotonic on an interval \(I \) if its logarithm \(\ln f \) satisfies \((-1)^k[\ln f(x)]^{(k)} \geq 0 \) for \(k \in \mathbb{N} \) on \(I \). It has been proved in [3, 10, 17, 18] and other references that a logarithmically completely monotonic function on an interval \(I \) is also completely monotonic on \(I \). The logarithmically completely monotonic functions have close relationships with both the completely monotonic functions and Stieltjes transforms. For detailed information, please refer to [3, 10, 11, 21, 28] and the references therein.

For two positive numbers \(a \) and \(b \), the logarithmic mean \(L(a, b) \) is defined by

\[
L(a, b) = \begin{cases}
\frac{b - a}{\ln b - \ln a}, & a \neq b; \\
\frac{a}{a}, & a = b.
\end{cases}
\]

This is one of the most important means of two positive variables. See [4, 6, 12, 16] and the list of references therein. It is cited on 13 pages at least in [4], see [4, p. 532]. However, any complete monotonicity on mean values is not founded in the authoritative book [4].

The main aim of this paper is to prove the complete monotonicity of the logarithmic mean \(L \).

Our main result is as follows.

Theorem 1. The logarithmic mean \(L_{s,t}(x) = L(x+s, x+t) \) is a completely monotonic function of first order in \(x > \min\{s, t\} \) for \(s, t \in \mathbb{R} \) with \(s \neq t \).

As by-product of the proof of Theorem 1 the following logarithmically completely monotonic property of the function \((x+s)^{1-u}(x+t)^u \) for \(s, t \in \mathbb{R} \) with \(s \neq t \) and \(u \in (0, 1) \) is deduced.

2000 Mathematics Subject Classification. 26A48, 26A51.
Key words and phrases. completely monotonic function, logarithmically completely monotonic function, logarithmic mean, extended mean values.

This paper was typeset using \texttt{AMS-\LaTeX}.
Corollary 1. Let \(s, t \in \mathbb{R}\) with \(s \neq t\) and \(u \in (0, 1)\). Then \((x + s)^{1-u}(x + t)^u\) is a completely monotonic function of first order in \(x > -\min\{s, t\}\). More strongly, the function \(\frac{\partial ((x + s)^{1-u}(x + t)^u)}{\partial x} = (\frac{x+t}{x+s})^u \left[1 + \frac{u(s-t)}{x+t}\right]\) is logarithmically completely monotonic in \(x > -\min\{s, t\}\).

The extended mean values \(E(r, s; x, y)\) can be defined by:

\[
E(r, s; x, y) = \left[\frac{r}{s} \cdot \frac{y^s - x^s}{y^r - x^r} \right]^{1/(s-r)}, \quad rs(r-s)(x-y) \neq 0;
\]

\[
E(r, 0; x, y) = \left[1 + \frac{1}{r} \cdot \frac{y^r - x^r}{\ln y - \ln x} \right]^{1/r}, \quad r(x-y) \neq 0;
\]

\[
E(r, r; x, y) = \frac{1}{e^{1/r}} \left[\frac{x^{(1/r)-y^{(1/r)}}}{y^{(1/r)}} \right], \quad r(x-y) \neq 0;
\]

\[
E(0, 0; x, y) = \sqrt{xy}, \quad x \neq y;
\]

\[
E(r, s; x, x) = x, \quad x = y;
\]

where \(x\) and \(y\) are positive numbers and \(r, s \in \mathbb{R}\). Its monotonicity, Schur-convexity, logarithmic convexity, comparison, generalizations, applications and history have been investigated in many articles such as [4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 19, 22, 23, 24, 25, 26, 27, 29, 30, 31] and the references therein, especially the book [4] and the expository paper [16].

For \(x, y > 0\) and \(r, s \in \mathbb{R}\), let \(E_{r, s; x, y}^{[1]}(w) = E(r + w, s + w; x, y)\) with \(w \in \mathbb{R}\), \(E_{r, x, y}^{[2]}(w) = E(r, s; x + w, y + w)\) and \(E_{r, x, y}^{[3]}(w) = E(r + w, s + w; x + w, y + w)\) with \(w > -\min\{x, y\}\). Motivated by Theorem 1, it is natural to pose an open problem: What about the (logarithmically) complete monotonicity of the functions \(E_{r, s; x, y}^{[i]}(w)\) in \(w\) for \(1 \leq i \leq 3\)?

2. Proofs of Theorem 1 and Corollary 1

Proof of Theorem [7]. In [4] p. 386, an integral representation of the logarithmic mean \(L(a, b)\) for positive numbers \(a\) and \(b\) is given:

\[
L(a, b) = \int_0^1 a^{1-u}b^u \, du. \tag{2}
\]

From this, it follows easily that

\[
L_{s,t}(x) = \int_0^1 (x + s)^{1-u}(x + t)^u \, du \tag{3}
\]

and

\[
\frac{dL_{s,t}(x)}{dx} = \int_0^1 \left(\frac{x + t}{x + s} \right)^u \frac{x + us}{x + t} \, du > 0. \tag{4}
\]

This means that the function \(L_{s,t}(x)\) is increasing, and then it is not completely monotonic in \(x > -\min\{s,t\}\).

In [11] p. 230, 5.1.32, it is listed that

\[
\ln \frac{b}{a} = \int_0^\infty e^{-au} - e^{-bu} \, du. \tag{5}
\]
Taking logarithm on both sides of equation (4) and utilizing (5) yields
\[
\ln \frac{\partial \left((x + s)^{1-u} (x + t)^u\right)}{\partial x} = u \ln \frac{x + t}{x + s} + \ln \frac{x + (1 - u)t + us}{x + t} = \int_0^\infty \frac{e^{-(x+s)v} - e^{-(x+t)v}}{v} dv + \int_0^\infty \frac{e^{-(x+t)v} - e^{-(x+(1-u)t+us)v}}{v} dv.
\]
Employing the well known Jensen's inequality [4, p. 31, Theorem 12] for convex functions and considering that the function \(e^{-x}\) is convex gives
\[q_{s,t;u,v}(x) = ue^{-(x+s)v} + (1-u)e^{-(x+t)v} - e^{-(x+(1-u)t+us)v} > 0.\]
Hence, for positive integer \(m \in \mathbb{N}\),
\[(-1)^m \frac{\partial^m}{\partial x^m} \ln \frac{\partial \left((x + s)^{1-u} (x + t)^u\right)}{\partial x} = \int_0^\infty v^{m-1}q_{s,t;u,v}(x) \, dv > 0.\]
This implies that the function \(\frac{\partial \left((x + s)^{1-u} (x + t)^u\right)}{\partial x}\) is logarithmically completely monotonic in \(x > -\min\{s,t\}\). Further, since a logarithmically completely monotonic function is also completely monotonic (see [3, 10, 11, 17, 18, 20, 21] and the references therein), the function \(\frac{\partial \left((x + s)^{1-u} (x + t)^u\right)}{\partial x}\) is completely monotonic in \(x > -\min\{s,t\}\). Therefore, the function
\[\frac{dL_{s,t}(x)}{dx} = \int_0^1 \frac{\partial \left((x + s)^{1-u} (x + t)^u\right)}{\partial x} \, du\]
is completely monotonic in \(x > -\min\{s,t\}\). Theorem 1 is proved. \(\square\)

Proof of Corollary 1. This follows from the proof of Theorem 1 directly. \(\square\)

References

(F. Qi) Research Institute of Mathematical Inequality Theory, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China.

E-mail address: qifeng@hpu.edu.cn, qifeng618@hotmail.com, qifeng618@msn.com, qifeng618@qq.com.