On Quasi Convex Functions and Hadamard's Inequality

This is the Published version of the following publication

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17841/
ON QUASI CONVEX FUNCTIONS AND HADAMARD’S INEQUALITY

K.-L. TSENG, G.-S. YANG, AND S.S. DRAGOMIR

Abstract. In this paper we establish some inequalities of Hadamard’s type involving Godunova-Levin functions, P-functions, quasi-convex functions, J-quasi-convex functions, Wright-convex functions and Wright-quasi-convex functions.

1. Introduction

If \(f : [a, b] \to \mathbb{R} \) is a convex function, then the inequality
\[
\frac{f(a) + f(b)}{2} \leq \frac{1}{b-a} \int_a^b f(x) dx \leq f\left(\frac{a+b}{2}\right)
\]
is known in the literature as Hadamard’s inequality.

For some results which generalize, improve, and extend this famous integral inequality see [1]–[10], [13]–[15], [18]–[21].

Let \(I \) be an interval in \(\mathbb{R} \), and \(a, b \in I \) with \(a < b \). We recall some definitions and theorems from the standpoint of abstract convexity.

Definition 1. (see [8, 11, 12, 13]) We say that \(f : I \to \mathbb{R} \) is a Godunova-Levin function, or that \(f \) belongs to the class \(Q(I) \), if \(f \) is nonnegative and for all \(x, y \in I \) and \(\lambda \in (0, 1) \), we have
\[
f(\lambda x + (1 - \lambda) y) \leq \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}.
\]

Definition 2. (see [8, 11, 12, 14]) We say that \(f : I \to \mathbb{R} \) is a P-function, or that \(f \) belongs to the class \(P(I) \), if \(f \) is nonnegative and for all \(x, y \in I \) and \(\lambda \in [0, 1] \), we have
\[
f(\lambda x + (1 - \lambda) y) \leq f(x) + f(y).
\]

Dragomir, Pečarić and Persson [8] proved the following two theorems concerning Hadamard type inequalities.

Theorem 1. Let \(f \in Q(I) \cap L_1[a, b] \). Then
\[
f\left(\frac{a+b}{2}\right)(b-a) \leq 4 \int_a^b f(x) dx,
\]
and
\[
\int_a^b \frac{(b-x)(x-a)}{(b-a)^2} f(x) dx \leq \frac{f(a) + f(b)}{2} (b-a).
\]
The constant 4 in (1.2) is the best possible.

Theorem 2. Let \(f \in P(I) \cap L_1[a, b] \). Then

\[
(f(a) + f(b)) (b - a) \leq \int_a^b f(x) \, dx \leq 2 \int_a^b f(x) \, dx \leq 2 \int_a^b f(x) \, dx (b - a).
\]

Both inequalities are the best possible.

Recall some other concepts of convexity.

Definition 3. (see [16, pp. 228-233]) We say that \(f : I \to \mathbb{R} \) is a quasi-convex function, or that \(f \) belongs to the class \(QC(I) \), if, for all \(x, y \in I \) and \(\lambda \in [0, 1] \), we have

\[
f(\lambda x + (1 - \lambda) y) \leq \max(f(x), f(y)).
\]

Definition 4. (see [9]) We say that \(f : I \to \mathbb{R} \) is a \(J \)-quasi-convex function, or that \(f \) belongs to the class \(JQC(I) \), if, for all \(x, y \in I \), we have

\[
f\left(\frac{x + y}{2}\right) \leq \max(f(x), f(y)).
\]

Definition 5. (see [9, 17]) We say that \(f : I \to \mathbb{R} \) is a Wright-convex function, or that \(f \) belongs to the class \(WC(I) \), if, for all \(x, y + \delta \in I \) with \(x < y \) and \(\delta > 0 \), we have

\[
f(x + \delta) + f(y) \leq f(y + \delta) + f(x).
\]

Definition 6. (see [9]) We say that \(f : I \to \mathbb{R} \) is a Wright-quasi-convex function, or that \(f \) belongs to the class \(WQC(I) \), if, for all \(x, y + \delta \in I \) with \(x < y \) and \(\delta > 0 \) we have

\[
\frac{1}{2} [f(x + \delta) + f(y)] \leq \max(f(x), f(y)).
\]

Dragomir and Pearce [9] proved the following two theorems providing Hadamard type inequalities for the functions involved:

Theorem 3. Let \(f \in JQC(I) \cap L_1[a, b] \). Then

\[
(f(a) + f(b)) (b - a) \leq \int_a^b f(x) \, dx + I(a, b)(b - a),
\]

where

\[
I(a, b) := \frac{1}{2} \int_0^1 |f(ta + (1 - t)b) - f((1 - t)a + tb)| \, dt.
\]

Thus

\[
= \frac{1}{2(b - a)} \int_a^b |f(x) - f(a + b - x)| \, dx.
\]

Further, \(I(a, b) \) satisfies the inequalities

\[
0 \leq I(a, b) \leq \frac{1}{b - a} \min \left\{ \int_a^b |f(x)| \, dx, \frac{1}{\sqrt{2}} \left((b - a) \int_a^b f^2(x) \, dx - J(a, b) \right)^{\frac{1}{2}} \right\},
\]
where

\[J(a, b) := (b - a)^2 \int_0^1 f(ta + (1 - t)b)f((1 - t)a + tb)dt \]

\[= (b - a) \int_a^b f(x)f(a + b - x)dx. \]

Theorem 4. Let \(f \in WQC(I) \cap L_1[a, b] \). Then

\[\int_a^b f(x)dx \leq \max\{f(a), f(b)\}(b - a). \]

In this paper, we shall establish some generalizations of Theorem 1-4 for weighted integrals.

Main Results

Throughout this section, let \(s : [a, b] \to \mathbb{R} \) be non-negative, integrable and symmetric to \(\frac{a + b}{2} \) and let \(p : [a, b] \to \mathbb{R} \) be non-negative integrable with

\[p(x) = p\left(\frac{b - a}{2} + x\right) \quad \left(x \in \left[a, \frac{a + b}{2}\right]\right). \]

The following result holds.

Theorem 5. Let \(f \in Q(I) \cap L_1[a, b] \). Then

\[f\left(\frac{a + b}{2}\right) \int_a^b s(x)dx \leq 4 \int_a^b f(x)s(x)dx \]

and

\[\int_a^b \frac{(b - x)(x - a)}{(b - a)^2} f(x)s(x)dx \leq \frac{f(a) + f(b)}{2}. \int_a^b s(x)dx. \]

The constant 4 in (1.11) is the best possible.

Proof. Since \(f \in Q(I) \cap L_1[a, b] \) and \(g \) is nonnegative, symmetric to \(\frac{a + b}{2} \), we have successively

\[f\left(\frac{a + b}{2}\right) \int_a^b s(x)dx = \int_a^b f\left(\frac{a + b}{2}\right) s(x)dx = \int_a^b f\left(\frac{x}{2} + \frac{a + b - x}{2}\right) s(x)dx \]

\[\leq \int_a^b [2f(x) + 2f(a + b - x)]s(x)dx \]

\[= 2 \left(\int_a^b f(x)s(x)dx + \int_a^b f(a + b - x)s(x)dx \right) \]

\[= 2 \left(\int_a^b f(x)s(x)dx + \int_a^b f(a + b - x)s(a + b - x)dx \right) \]

\[= 4 \int_a^b f(x)s(x)dx. \]

This proves (1.11).
Since
\[
\int_a^b \frac{(b-x)(x-a)}{(b-a)^2} f(a+b-x)s(a+b-x)dx = \int_a^b \frac{(b-x)(x-a)}{(b-a)^2} f(x)s(x)dx
\]
and \(s(a+b-x) = s(x)\) for \(x \in [a, b]\), then we have
\[
\int_a^b \frac{(b-x)(x-a)}{(b-a)^2} f(x)s(x)dx = \int_a^b \frac{(b-x)(x-a)}{(b-a)^2} f(x)s(x)dx + \frac{1}{2} \left[f(b-a) \int_a^b s(x)dx \right]
\]
\[
\leq \int_a^b \frac{(b-x)(x-a)}{(b-a)^2} \cdot \frac{1}{2} \left[f(b-a) + f(b) \right] s(x)dx
\]
\[
= \frac{f(a) + f(b)}{2} \int_a^b s(x)dx.
\]

This proves (1.12).

Let us consider the function \(f : [a, b] \to \mathbb{R}\) given by
\[
f(x) = \begin{cases}
1, & a \leq x < \frac{a+b}{2} \\
4, & x = \frac{a+b}{2} \\
1, & \frac{a+b}{2} < x \leq b.
\end{cases}
\]

Then \(f \in Q(I) \cap L_1[a, b]\) (see [8, p. 338]), and this proves that the constant 4 in (1.11) is the best possible as the inequality obviously reduces to an equality in this case. This completes the proof. \(\square\)

Remark 1. If we choose \(s(x) \equiv 1\), then Theorem 5 reduces to Theorem 1.

The second result is as follows.

Theorem 6. Let \(f \in P(I) \cap L_1[a, b]\). Then
\[
f \left(\frac{a+b}{2} \right) \int_a^b s(x)dx \leq 2 \int_a^b f(x)s(x)dx \leq 2 \left[f(a) + f(b) \right] \int_a^b s(x)dx.
\]

Both inequalities in (1.13) are sharp.
Proof. Since \(f \in P(I) \cap L_1[a, b] \) and \(s \) is nonnegative, symmetric to \(\frac{a + b}{2} \), we have
\[
\int_a^b f \left(\frac{a + b}{2} \right) s(x) dx = \int_a^b f \left(\frac{a + b}{2} \right) s(x) dx \\
= \int_a^b f \left(\frac{x + a + b - x}{2} \right) s(x) dx \\
\leq \int_a^b [f(x) + f(a + b - x)] s(x) dx \\
= \int_a^b f(x) s(x) dx + \int_a^b f(a + b - x) s(x) dx
\]
\[
= \int_a^b f(x) s(x) dx + \int_a^b f(a + b - x) s(a + b - x) dx \\
= 2 \int_a^b f(x) s(x) dx \\
= 2 \int_a^b f \left(\frac{b - x}{b - a} + \frac{x - a}{b - a} \right) s(x) dx \\
\leq 2 \int_a^b [f(a) + f(b)] s(x) dx \\
= 2 [f(a) + f(b)] \int_a^b s(x) dx.
\]
This proves (1.13).
The functions
\[
f(x) = \begin{cases}
0, & a \leq x < \frac{a + b}{2}, \\
1, & \frac{a + b}{2} \leq x \leq b,
\end{cases}
\]
and
\[
f(x) = \begin{cases}
0, & x = a, \\
1, & a < x \leq b,
\end{cases}
\]
can be employed to show that both inequalities in (1.13) are the best possible. This completes the proof. \(\square\)

Remark 2. If we choose \(s(x) \equiv 1 \), then Theorem 6 reduces to Theorem 2.

The following result incorporating the function \(p \) satisfying (1.10) may be stated as well.

Theorem 7. Let \(f \in P(I) \cap L_1[a, b] \). Then
\[
(1.14) \quad f \left(\frac{a + b}{2} \right) \int_a^b p(x) dx \leq 2 \int_a^b f(x) p(x) dx \leq 2 [f(a) + f(b)] \int_a^b p(x) dx.
\]
Inequalities in (1.14) are the best possible.
Proof. By using (1.10), we have the following identities

\[(1.15) \quad \int_a^b p(x)dx = \int_a^{a+b} p(x)dx + \int_{a+b}^b p(x)dx\]
\[= \int_a^{a+b} p(x)dx + \int_{a+b}^b p \left(\frac{b-a}{2} + \left(x - \frac{b-a}{2} \right) \right) dx\]
\[= \int_a^{a+b} p(x)dx + \int_{a+b}^b p \left(x - \frac{b-a}{2} \right) dx\]
\[= 2 \int_a^{a+b} p(x)dx\]

and

\[(1.16) \quad \int_a^{a+b} \left[f(x) + f \left(\frac{b-a}{2} + x \right) \right] p(x)dx\]
\[= \int_a^{a+b} f(x)p(x)dx + \int_a^{a+b} f \left(\frac{b-a}{2} + x \right) p(x)dx\]
\[= \int_a^{a+b} f(x)p(x)dx + \int_a^{a+b} f \left(\frac{b-a}{2} + x \right) p \left(\frac{b-a}{2} + x \right) dx\]
\[= \int_a^{a+b} f(x)p(x)dx + \int_{a+b}^b f(x)p(x)dx\]
\[= \int_a^b f(x)p(x)dx.\]

Since

\[0 \leq \frac{2(x-a)}{b-a}, \frac{a+b-2x}{b-a} \leq 1\]

and

\[\frac{2(x-a)}{b-a} + \frac{a+b-2x}{b-a} = 1\]
for \(x \in [a, \frac{a+b}{2}] \), it follows from \(f \in P(I) \cap L_1[a, b] \) and the identities (1.15) and (1.16), that

\[
f \left(\frac{a+b}{2} \right) \int_a^b p(x)dx = 2f \left(\frac{a+b}{2} \right) \int_a^{\frac{a+b}{2}} p(x)dx
\]

\[
= 2 \int_a^{\frac{a+b}{2}} f \left[\frac{2(x-a)}{b-a} x + \frac{a+b-2x}{b-a} \left(\frac{b-a}{2} + x \right) \right] p(x)dx
\]

\[
\leq 2 \int_a^{\frac{a+b}{2}} \left[f(x) + f \left(\frac{b-a}{2} + x \right) \right] p(x)dx
\]

\[
= 2 \int_a^b f(x)p(x)dx
\]

\[
= 2 \int_a^b f \left(\frac{b-x}{b-a} + \frac{x-a}{b-a} \right) p(x)dx
\]

\[
\leq 2 \int_a^b (f(a) + f(b))p(x)dx
\]

\[
= 2(f(a) + f(b)) \int_a^b p(x)dx.
\]

This proves (1.14). The functions

\[
f(x) = \begin{cases}
0, & a \leq x < \frac{a+b}{2}, \\
1, & \frac{a+b}{2} \leq x \leq b,
\end{cases}
\]

and

\[
f(x) = \begin{cases}
0, & x = a, \\
1, & a < x \leq b,
\end{cases}
\]

can be employed to show that both inequalities are the best possible. This completes the proof. \(\square\)

Remark 3. If we choose \(p(x) \equiv 1 \), then Theorem 7 reduces to Theorem 2.

We may now state the following result for quasi-convex functions.

Theorem 8. Let \(f \in QC(I) \cap L_1[a, b] \). Then

\[
(1.17) \quad f \left(\frac{a+b}{2} \right) \int_a^b s(x)dx \leq \int_a^b f(x)s(x)dx + I_1(a, b),
\]

where

\[
I_1(a, b) = \frac{1}{2} \int_a^b |f(x) - f(a + b - x)| s(x)dx.
\]

Further, \(I_1(a, b) \) satisfies the inequalities

\[
(1.18) \quad 0 \leq I_1(a, b)
\]

\[
\leq \min \left\{ \int_a^b |f(x)| s(x)dx, \frac{1}{\sqrt{2}} \left(\int_a^b f^2(x)dx - \int_a^b f(x)f(a + b - x)dx \right)^{\frac{1}{2}} \left(\int_a^b s^2(x)dx \right)^{\frac{1}{2}} \right\}.
\]
Proof. We shall use the fact that max\{c, d\} = \frac{1}{2}(c + d + |d - c|) for c, d ∈ \mathbb{R}. Since \(f \in QC(I) \cap L_1[a, b]\) and s is nonnegative, symmetric to \(\frac{a + b}{2}\), we have

\[
f\left(\frac{a + b}{2}\right) \int_a^b s(x)dx = \int_a^b f\left(\frac{x + a + b - x}{2}\right) s(x)dx
\]

\[
\leq \int_a^b \max\{f(x), f(a + b - x)\} \cdot s(x)dx
\]

\[
= \frac{1}{2} \left[\int_a^b f(x) s(x)dx + \int_a^b f(a + b - x) s(x)dx \right]
\]

\[
+ \frac{1}{2} \int_a^b |f(x) - f(a + b - x)| s(x)dx
\]

\[
= \int_a^b f(x) s(x)dx + \frac{1}{2} \int_a^b |f(x) - f(a + b - x)| s(x)dx.
\]

This proves the inequality (1.17).

Since s is symmetric, it follows that

\[
0 \leq I_1(a, b) \leq \frac{1}{2} \left[\int_a^b |f(x)| s(x)dx + \int_a^b |f(a + b - x)| s(x)dx \right]
\]

\[
= \frac{1}{2} \left[\int_a^b |f(x)| s(x)dx + \int_a^b |f(a + b - x)| s(a + b - x)dx \right]
\]

\[
= \int_a^b |f(x)| s(x)dx.
\]

On the other hand, by the Cauchy-Schwarz inequality, we have

\[
I_1(a, b) = \frac{1}{2} \int_a^b |f(x) - f(a + b - x)| s(x)dx
\]

\[
\leq \frac{1}{2} \left(\int_a^b (f(x) - f(a + b - x))^2 dx \right)^{\frac{1}{2}} \left(\int_a^b s^2(x)dx \right)^{\frac{1}{2}}
\]

\[
= \frac{1}{2} \left(\int_a^b (f(x)^2 + f^2(a + b - x) - 2f(x)f(a + b - x)) dx \right)^{\frac{1}{2}}
\]

\[
\times \left(\int_a^b s^2(x)dx \right)^{\frac{1}{2}}
\]
\[
= \frac{1}{2} \left(2 \int_a^b f(x)^2 \, dx - 2 \int_a^b f(x)f(a + b - x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b s^2(x) \, dx \right)^{\frac{1}{2}} \\
= \frac{1}{\sqrt{2}} \left(\int_a^b f^2(x) \, dx - \int_a^b f(x)f(a + b - x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b s^2(x) \, dx \right)^{\frac{1}{2}}.
\]

The inequality (1.18) then follows from (1.19) and (1.20). This completes the proof. \[\square\]

Similarly, we have the following theorem:

Theorem 9. Let \(f \in JQC(I) \cap L_{1}[a, b] \). Then the inequalities (1.17) and (1.18) also hold.

Remark 4. If we choose \(s(x) \equiv 1 \), then Theorem 9 reduces to Theorem 3.

The corresponding result for the mapping \(p \) reads as:

Theorem 10. Let \(f \in QC(I) \cap L_{1}(a, b) \). Then

\[
(1.21) \quad f \left(\frac{a + b}{2} \right) \int_a^b p(x) \, dx \leq \int_a^b f(x)p(x) \, dx + I_2(a, b),
\]

where

\[
I_2(a, b) = \frac{1}{2} \int_a^b \left| f \left(\frac{x + a}{2} \right) - f \left(\frac{x + b}{2} \right) \right| p \left(\frac{x + a}{2} \right) \, dx.
\]

Further,

\[
(1.22) \quad 0 \leq I_2(a, b) \leq \min \left\{ \int_a^b |f(x)|p(x) \, dx , \frac{1}{\sqrt{2}} \left(\int_a^b f^2(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b p^2(x) \, dx \right)^{\frac{1}{2}} \right\}.
\]

Proof. We have

\[
0 \leq \frac{2(x - a)}{b - a} \cdot \frac{a + b - 2x}{b - a} \leq 1
\]

and

\[
\frac{2(x - a)}{b - a} + \frac{a + b - 2x}{b - a} = 1
\]
for $x \in \left[a, \frac{a+b}{2} \right]$. By $f \in \text{QC}(I) \cap L_1[a,b]$ and the identities (1.15) and (1.16), we may state that

$$
\int_a^b f(x) p(x) dx
= 2 \int_a^{a+b/2} f(x) p(x) dx
= 2 \int_a^{a+b/2} f \left[\frac{2(x-a)}{b-a} x + \frac{a+b-2x}{b-a} \left(\frac{b-a}{2} + x \right) \right] p(x) dx
\leq 2 \int_a^{a+b/2} \max \left\{ f(x), f \left(\frac{b-a}{2} + x \right) \right\} p(x) dx
= \int_a^{a+b/2} \left[f(x) + f \left(\frac{b-a}{2} + x \right) \right] p(x) dx
\leq \int_a^{a+b/2} f(x) p(x) dx + \int_a^{a+b/2} f \left(\frac{b-a}{2} + x \right) p \left(\frac{b-a}{2} + x \right) dx
+ \int_a^{a+b/2} \left| f(x) - f \left(\frac{b-a}{2} + x \right) \right| p(x) dx
= \int_a^b f(x) p(x) dx + \int_a^{a+b/2} \left| f(x) - f \left(\frac{b-a}{2} + x \right) \right| p(x) dx
= \int_a^b f(x) p(x) dx + \int_a^b \left| f \left(\frac{x+a}{2} \right) - f \left(\frac{x+b}{2} \right) \right| p \left(\frac{x+a}{2} \right) dx.
$$

This proves (1.21).

A similar argument as in the proof of the inequality (1.18) implies the inequality (1.22). This completes the proof. □

Corollary 1. Let $f \in \text{QC}(I) \cap L_1[a,b]$. Then

$$
\left(\frac{a+b}{2} \right) (b-a) \leq \int_a^b \left| f(x) - f(a+b-x) \right| dx,
\int_a^b \left| f \left(\frac{x+a}{2} \right) - f \left(\frac{x+b}{2} \right) \right| dx.
$$

Proof. This follows from Theorem 8 and Theorem 10 by choosing $s(x) = p(x) = 1$. □

Theorem 11. Let $f \in \text{WC}(I) \cap L_1[a,b]$. Then

$$
\int_a^b f(x) s(x) dx \leq \frac{f(a) + f(b)}{2} \int_a^b s(x) dx.
$$

The inequality is the best possible.
Proof. Since \(f \in WC(I) \cap L_1[a,b] \) and \(s \) is nonnegative symmetric to \(\frac{a+b}{2} \), we have

\[
\int_a^b f(x)s(x)dx = \frac{1}{2} \left[\int_a^b f(x)s(x)dx + \int_a^b f(a+b-x)s(a+b-x)dx \right]
\]

\[
= \frac{1}{2} \int_a^b [f(x) + f(a+b-x)]s(x)dx
\]

\[
= \frac{1}{2} \int_a^b [f(a + (x-a)) + f(a+b-x)]s(x)dx
\]

\[
\leq \frac{1}{2} \int_a^b [f((a + b - x) + (x-a)) + f(a)]s(x)dx
\]

\[
= \frac{f(a) + f(b)}{2} \int_a^b s(x)dx.
\]

This proves the inequality (1.23), which reduces to an equality for \(f(x) \equiv 1 \).
This completes the proof. \(\square \)

Finally, we may state

Theorem 12. Let \(f \in WQC(I) \cap L_1[a,b] \). Then

(1.24) \[
\int_a^b f(x)s(x)dx \leq \max\{f(a), f(b)\} \int_a^b s(x)dx.
\]

The inequality is the best possible.

Proof. Since \(f \in WQC(I) \cap L_1[a,b] \) and \(s \) is nonnegative symmetric to \(\frac{a+b}{2} \), we have

\[
\int_a^b f(x)s(x)dx = \frac{1}{2} \left[\int_a^b f(x)s(x)dx + \int_a^b f(a+b-x)s(a+b-x)dx \right]
\]

\[
= \int_a^b \frac{1}{2} [f(x) + f(a+b-x)]s(x)dx
\]

\[
= \int_a^b \frac{1}{2} [f(a + (x-a)) + f(a+b-x)]s(x)dx
\]

\[
\leq \int_a^b \max\{f(a), f((a + b - x) + (x-a))\}s(x)dx
\]

\[
= (\max\{f(a), f(b)\}) \int_a^b s(x)dx.
\]

This proves the inequality (1.24), which reduces to an equality for \(f(x) \equiv 1 \).
This completes the proof. \(\square \)

Remark 5. If we choose \(g(x) \equiv 1 \), then Theorem 12 reduces to Theorem 4.

References

Department of Mathematics, Aletheia University, Tamsui, Taiwan 25103.
E-mail address: kltseng@email.au.edu.tw

Department of Mathematics, Tamkang University, Tamsui, Taiwan 25137.

School of Computer Science and Mathematics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.
E-mail address: sever@matilda.vu.edu.au