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ABSTRACT 

Discrete transformations are widely used in the fields of signal and image 

processing. Applications in the areas of data compression, template matching, signal 

filtering pattern recognition all utilise various discrete transforms. The calculation of 

transformations is a computationally intensive task which in most practical 

applications requires considerable computing resources. This characteristic has 

restricted the use of many transformations to applications with smaller datasets or 

where real-time performance is not essential. 

This restriction can be removed by the application of parallel processing 

techniques to the calculation of discrete transformations. The aim of this thesis is to 

determine efficient parallel algorithms and processor topologies for the 

implementation of the discrete Walsh, cosine, Haar and D4 Daubauchies transforms, 

and to compare the operation of the parallel algorithms running on T800 Transputers 

with the equivalent serial von Neumann type algorithm. This thesis also examines the 

transformations of a number of test functions in order to determine their ability to 

represent various common global and locally defined functions. 

It was found that the parallel algorithms developed during the course of this 

thesis for the discrete Walsh, cosine, Haar and D4 Daubauchies transforms could all 

be efficiently implemented on a hypercube processor topology. 

Development of a number of parallel algorithms also led to the discovery of a 

new parallel algorithm for the calculation of any transformation which can be 

expressed as a Kronecker or tensor product/sum. A hypercube based algorithm was 

devised which converts the Kronecker product to a Hadamard product on a hypercube 

structure. This provides a simple algorithm for parallel implementations. 



Examination of the four sets of transform coefficients for the test functions 

revealed that all the transforms examined were not suitable for representing functions 

with large numbers of discontinuity's such as the chirp function. Also, transforms with 

local basis functions such as the Haar and D4 Daubauchies transforms provided better 

representations of localised functions than transforms consisting of global basis 

function sets such as the discrete Walsh and cosine transformations. 
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CHAPTER 1 

REVIEW OF DISCRETE TRANSFORMATIONS EMPLOYED IN DIGITAL 

IMAGE AND SIGNAL PROCESSING 

1.1 INTRODUCTION 

A transformation can be defined as a rule or mapping which assigns to each 

element of one set a unique element of another set. A more specific definition is given 

by Bracewell[6a] who defines a transform as an operation which is performed on a 

function. The transforms reviewed in this thesis are integral transforms where the 

operation performed consists of multiplying the function by another function known 

as the kernel function and integrating. 

The motivation behind performing transformations is that in many situations 

such as electric potential distribution or heat diffusion (Kevorkian[36]) the solution to 

the problem in the function domain is difficult. Performing a transformation can result 

in a simpler problem in the transform domain. When a solution is found in the 

transform domain the inverse transformation back to the function domain provides a 

solution to the original problem, for example using Laplace transforms to solve linear 

differential equations (Kreyzig[41]). 

Coates[17] shows that with a few exceptions functions can be expressed as the 

sum of a series of simpler basis functions. Integral transforms can be used to 

determine the series coefficients or weighting's required by the basis functions in 

order to represent the input function. For example the Fourier transform provides a set 

of coefficients which can be used to represent a function as the sum of a series of 

weighted trigonometric functions. Other integral transforms such as the Walsh and 

Haar transforms provide coefficients for different families of basis functions. 
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Transforms can therefore be used as a tool for converting information into 

more useful or amenable forms. This has led to their widespread use in the fields of 

feature identification (Schutte[62]) and other image processing techniques, filtering 

(Shynk[63]), speech recognition (Beauchamp[4a]), and data compression (Rao[57b]). 

Performing transformations on an image or a long data sequence is a 

computationally intensive task. A large amount of work has been done to reduce 

transform computation times. Transforms which are widely used such as the discrete 

Fourier and discrete cosine transforms have been implemented as application specific 

integrated circuits (Richards[59],Sun[70]). Software developments have seen the 

evolution of a number of fast transform algorithms (Kou[39], Gertner[24], 

Bracewell[6b],Gupta[28a] and others) which reduce the number of calculations 

required to perform the discrete transform. 

A recent development has been the application of parallel processing 

techniques to speed up transform calculations. Hardware implementations while being 

fast generally operate on small data sets and can only perform a specific transform. 

Software implementations of fast transforms on computer are more general, allowing 

any transform to be performed but are limited by the speed of the processor. 

Performing transformations on parallel multi-processor computers is an alternative 

offering the versatility provided by software implementations with a performance 

exceeding that of a conventional single processor computer. The aim of this thesis is 

to investigate efficient parallel processing topologies for the calculation of 

transformations widely used in the areas of signal and image processing. 
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1.2 T H E F O U R I E R T R A N S F O R M A N D ITS APPLICATION IN O N E 

DIMENSIONAL SIGNAL PROCESSING. 

Orthonormal sets of functions can be used to synthesise any time function, 

enabling a waveform to be represented by the superposition of members of a set of 

basis functions (Beauchamp[4a]). The continuous Fourier transform decomposes a 

waveform into a series of weighted sinusoids. One of the most familiar forms of the 

Fourier transform is that which transforms a time function x(t) into the frequency 

function X(f) and is given by the relationship 

X(f) = f x(t)e-j2rcft^. (1.1) 

If the transformation is to be performed by digital computation the input signal 

will be represented by a data sequence. The data may present itself naturally in 

discrete form, or if the data is continuous it can be discretized by sampling the 

continuous waveform at or above the Nyquist sampling rate (Coates[17]) in order to 

preserve an accurate representation of the continuous waveform. When data is in a 

discrete form machine computation of the Fourier transform can be performed by 

using the discrete Fourier transform, which is defined as 

X ( f ) = ̂ Xx(k)e-j2 r t f k (1.2) 
k=0 

where N is the total number of points in the data sequence. 
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A number of algorithms have been developed to compute the discrete Fourier 

transform. The Cooley-Tukey fast Fourier transform algorithm (Brigham[8]) was the 

catalyst for a large number of FFT algorithms proposing computational improvements 

based on tailoring algorithms to specific data types or processors. For example 

Sorenson et al[67] provide a review of the effectiveness of a number of FFT 

algorithms developed to process real data. Richards[59] and Pei[52] have developed a 

split radix FFT for efficient computation of complex data and efficient VLSI 

implementation. The Winograd Fourier transform is shown by Silverman[65] to 

provide computational efficiencies given specific computer hardware requirements are 

met. More recently fast Fourier transforms have been implemented via other 

transforms (Gupta[28b]) and neural networks (Culhane[18]). 

Most of these algorithms are modifications of the Cooley-Tukey algorithm. 

This algorithm expresses the transform in terms of a series of sparse matrix 

multiplications. How this is done is illustrated by considering a specific example. 

The one dimensional discrete Fourier transform can be expressed as 

X(n) = £x(k)W* (1.3) 
k=0 

.2)t 

where W = e"'* and n = 0,1, ,N-1. 

For values in the range 0 to 3 the variables k and n can be represented in binary form 

as k = (k„k0) = 2ki + k0 and n = (n1,n0) = 2n1 + n0 

For the case N = 4 the binary representation of the discrete Fourier transform is 

X(npn0) = XXx(k1,k0)W
(2a^)(2k'+k»> (1.4) 

k0=0k!=0 

where ni5 k; are the ith bit of the binary representations of n and k. 
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From equation(1.4) it follows that 

1 

X(ni,n0) = £ 
k0=0 

The summation in the [] brackets can be expressed as 

XiK,k0) = Xx^kJW
21* (1.6) 

kj=0 

which can be expressed in matrix notation as 

xx(0,0) 

x,(0,l) 

Xl(l,0) 

x,ai> 

Similarly, the outer summation in (1.5) can be written as 

x(ni>no 

which is expressible as 

X(0,0) 

X(0,1) 

X(1,0) 

X(U) 

The transformation has been reduced to a sequence of matrix multiplications. 

The various stages of the transformation may be equivalently represented as a signal 

flow graph, as shown in figure 1.1. 

k1 =0 _*l 

^ x ( k 1 ? k 0 ) W
2 n ° k l W ( 2 n i + n° ) k° (1.5) 

1 0 W ° 0 x(0,0) 

0 1 0 W ° x(0,l) 

1 0 W 2 0 x(l,0) 

0 1 0 W 2 |_x(l,l) 

i = ^,(nf l,k„)W
( 2 n' +^' 

k„=0 

(1.8) 

1 
1 

0 
0 

W° 0 
W2 0 
0 1 
0 1 

0 ~ 

0 

w 
w3 

'x,(0,0)" 

Xl(0,l) 

Xl(l,0) 

.^(1,1). 

(1.9) 
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Figure 1.1 A signal flow graph of a fast Fourier transform for four data points. 

This is the well known butterfly diagram and represents decimation in time of the 

original signal. 

Many applications use Fourier transforms. Compression of speech and image 

data uses FFT conversion of the temporal or image data to frequency or spatial 

frequency domains in order to emphasise important frequencies and filter others 

(Lookbaugh[45]). The discrete Fourier transform is commonly used in filtering noise 

and signal detection (Shynk[63],Satt[61],Quirk[55]) and in the reconstruction of a 

signal from partial information (Dembo[22]). The restoration of blurred images using 

a wiener filter (Guan[27]), image zoom algorithms (Smit[66]) and cepstrum analysis 

(Wang [74]) are also accomplished using the FFT. 
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Many applications use Fourier transforms to calculate the correlation ( also 

known as the covariance, see Otnes & Enochson[50] ) and convolution functions 

(Beauchamp[4a]). The correlation function determines the degree of similarity 

between two functions (Gonzales & Wintz[25]). The correlation of two continuous 

functions f(x) and g(x) is defined by the relation 

f (x) o g(x) = T f (cc)g(x+a) da (1.10) 
J-oo 

where f signifies the complex conjugate. The discrete equivalent is defined as 

f(x)og(X) = Xf(i)g(x + i). d-11) 
i=0 

It can be shown, for both the discrete and continuous cases, that the correlation 

theorem holds ( Kraniauskas[40]). This is given as 

f(t)og(t)«F(f)G(f) 

f(t)g(t)«F(f)oG(f) 

where G(f) is the Fourier transformation of g(t). From this it can be seen that the 

correlation of two functions can be easily determined by calculating the product of the 

Fourier transformations of the functions. 

Similarly the fast Fourier transform can be used in determining the 

convolution of two functions. The convolution of two functions f(t) and g(t) is defined 

as 

f(t)*g(t)=ff(a)g(t-a)da (1.13) 
J-oo 

with the discrete convolution being given as 
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M-l 

f(t)*g(t) = Xf(m)g(t-m). (1.14) 
m=0 

Similar to the correlation theorem (1.12), the convolution theorem states 

f(t)*g(t)«F(f)G(f) 

f(t)g(t)oF(f)*G(f). 

A n application of correlation is template or prototype matching. Template 

matching attempts to identify a signal by computing a correlation between a known 

signal and an unknown signal. If the correlation of the two functions yields a high 

value the unknown waveform closely matches the known waveform. A c o m m o n use 

of template matching is in determining the location of a sub-image or feature within 

an image (Chou[15],Chakrabarti[ll]). 

The term correlation is also commonly referred to as cross-correlation, that is 

the correlation of two independent functions (Kraniauskas[40]). This term is used to 

distinguish between cross-correlation and auto-correlation which is the correlation of 

a function with itself. As shown in Beauchamp[4a] both cross-correlation and auto­

correlation are widely applied in the fields of image processing (Whitebread[76]), 

signal processing applications such as radar pulse compression (Cenzo[10]) and 

transfer function identification (Fransaer[23]). 

As with correlation, convolution also has a wide application base. Many 

physical systems in the course of their operation perform convolutions of sinusoidal 

functions. Such systems benefit from the application of Fourier transforms. For 

example, in the field of scanning spectrometry deconvolution using FFT's is used 
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when determining the true absorption spectrum from the detected absorption spectrum 

(Marshall[46]). 

When performing systems analysis and simulation a system output is 

determined by convolving a system input signal with the systems impulse response. 

Fourier transforms can be used to determine the convolution also Fourier transforms 

in a Galois field play a role in the study of error correcting codes see Blahut[5]. 

1.3 THE WALSH, HAAR AND DISCRETE COSINE TRANSFORMS 

The widespread use of the Fourier transform in signal processing has resulted 

in the development of a number of other transforms which are either computationally 

faster or more appropriate for a particular application. Examples of such orthonormal 

transforms are the Walsh, cosine and Haar transforms. The Walsh transform is an 

orthogonal transform that is easy to implement digitally and computationally faster 

than the more widely used Fourier transform. However, it has the disadvantage that it 

gives a larger mean square error for low resolution calculations than other commonly 

employed transforms (Beauchamp[4a]). This is a limitation when signal 

reconstruction using the Walsh transform is based on a small dataset. 

1.3.1 THE WALSH TRANSFORM 

The Walsh functions form a set of rectangular waveforms with two amplitude 

values, +1 and -1 defined over a limited time interval. The first three basis functions, 

using sequency (similar to ordering by increasing frequency) or Walsh ordering ( see 

Ahmed & Rao[l]), are shown in figure 1.2. 
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/N /N 

^ t ^ t ^ t 

wal(O.t) wal(1,t) wal(2,t) 

Figure 1.2 The first three sequency ordered Walsh functions. 

One representation of the discrete Walsh function is given in (1.16), in which 

the function g(x,u), having N = 2n terms, is represented as a continued product (see 

Gonzales & Wintz[25]). This representation provides a simple derivation of the fast 

Walsh transform. 

g(x,u)=in(-i)
b<wwu) 

(1.16) 

where x = ordering number 

u = time period 

b; (x) = the ith bit of the binary representation of the value of x. 

The discrete Walsh transform W(u) is given by 

N-l 
W ( u ) = Xf(x)g(x,u). (1.17) 

x=0 

From equation(1.16) it may be noticed that the discrete Walsh transform can be 

represented as 

1 N-l n-l 
w( u)=^Zf( x)ri(-i) b i ( x ) b n i i ( u ) 

N x=0 i=0 

(1.18) 

10 



The fast Walsh transform algorithm can be determined using a similar 

technique to that used in determining the fast Fourier transform. This can be 

demonstrated by considering the case N = 4. Neglecting scaling 

W(u) = £f(x)]1[(-l)bi(x)bl-i(u) (1.19) 
x=0 i=0 

1 

where TT/j^iWi'HW-/ uMnlMn) /_i\bi(x)b0(u) 

i=0 

The binary representation of equation(l. 19) for N = 4 is 

w(Ul,u0) = X£f(Xl,xj(-i)^(-ir°.(i.20) 
X0=0X!=0 

The inner summation of equation(1.20) can be written as 

WlK.Xo) = Xf(Xl,x0)(-ir° d-21) 
X!=0 

with the outer summation being written as 

W(upu0) = X
Wi(uo,x0X-l)

XoUl. <L22) 
x0=0 

Both of the summations in (1.21) and (1.22) can be enumerated in matrix form 

in the same manner as for the fast Fourier transform. When this is done the 

summations can be combined to give a matrix representation of the fast Walsh 

transform as given by equation (1.23). This representation reveals the discrete Walsh 

transform to be a "hard limited" discrete Fourier transform with the sinusoidal 

functions replaced by square waves. 
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W(0,0) 

W(1,0) 

W(0,1) 

W(L1)_ 

1 1 0 0 

1 - 1 0 0 

0 0 1 1 

0 0 1-1 

1 0 1 0 

0 1 0 1 

1 0 - 1 0 

0 1 0 - 1 

f(0,0) 

f(0,l) 

f(l,0) 

_f(U) 

(1.23) 

The various stages of the transformation given in equation(1.23) may also be 

represented by a signal flow graph, as shown in figure 1.3. 

W(0) 

W(2) 

W(l) 

W(3) 

Figure 1.3 A signal flow graph of a fast Walsh transform for four data points. 

The Walsh transform can also be found using Hadamard matrices 

(Beauchamp[4b]). A Hadamard matrix is a square matrix whose elements are only 1 

and -1 arranged so that its rows and columns are orthogonal to one another. The 

lowest order Hadamard matrix is of order two as shown by equation(1.24) 

H 2 = 
1 1 

1 -1 
(1.24) 
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Higher order Hadamard matrices can be obtained from the recursive 

relationship 

H N ~~ H N HU (1.25) 

given N = 2n and ® denotes the Kronecker or tensor product. 

A definition of Kronecker products can be found in Brewer[7]. Given a matrix A of 

size mxn and a matrix B of size p x q the Kronecker or tensor product is a matrix of 

size mp x nq as shown by equation(1.26) 

A ®B = 

anB 

amfi 

alnB 

fl-B 

(1.26) 

The sparse matrix product used when determining the fast Walsh transform as shown 

in equation (1.23) can be combined into a single matrix as shown below 

1 

1 

0 

0 

1 0 

-1 0 

0 1 

0 1 

0] 
0 

1 

-lj 

1 

0 

1 

0 

0 

1 

0 

1 

1 

0 

-1 

0 

0" 

1 

0 

-1_ 

1 

1 

1 

1 

1 

-1 

1 

-1 

1 

1 

-1 

-1 

r 
-1 

-1 

1_ 

(1.26) 

The resultant matrix can be seen to be a Hadamard matrix of order four. The Walsh 

transformation matrices can therefore also be represented as a Hadamard matrix of 

order N. 
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1.3.2 T H E D I S C R E T E C O S I N E T R A N S F O R M 

The cosine transform is based on a sinusoidal kernel function 

K(u),t) = cos(cot). (1.27) 

The discrete cosine transform is therefore defined as 

X(„) = l|x(i) cos(i^±^). (1.28) 

The discrete cosine transform is computationally more efficient than the 

discrete Fourier transform and provides efficient energy compaction similar to that 

found with the optimal Karhunen-Loeve transform (Beauchamp[4a]) and may be 

implemented as a fast transform. This has ensured widespread use in image and 

speech compression (Ngan[49]). A number of discrete cosine transformations have 

been developed (Kou[39]), one of the best is that given by Chen[14]. Because of its 

efficiency at image data compression (Cham[12]) the discrete cosine transform is 

widely used for image coding of video frames (Roese[60]), and is recommended as 

part of the JPEG colour image data compression algorithm (Rao[57a]). Many fast 

algorithms for computing the discrete cosine transform have been developed. A 

review of various discrete cosine transform algorithms is given by Chelemal[13] and 

Hou[35]. These algorithms can be classified into one of the following categories. 

Calculation of the discrete cosine transform via another transform, recursive 

computation, or sparse matrix multiplication. A common implementation is the sparse 

matrix multiplication. A variety of variations of this have been developed most based 

on the DCT-II algorithm given by Rao[57a] and shown in figure 1.6. 
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Ci = cos(LPi) Si = sin(i.Pi) 
16 ~J6 

Figure 1.6 A signal flow diagram for the cosine transform for N = 8. 

1.3.3 T H E H A A R T R A N S F O R M 

The Haar transform is based on a set of periodic rectangular waveforms known as 

Haar functions. These are defined (Ahmed & Rao[l]) as 

h(0,0,t) = 1 t e [0,1) (1.29) 

h(r,m,t) = < 

r 

22 

r 

-V-

0 

m-1 
< t < 

1 
m- — 

2 
1 

m — 
2 
< t < m 

2r 2r 

elsewhere t e[0,l) 

where 0 < r < log2N and 1 < m < 2
r. 
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h(0,0,t) h(0,l,t) 

,0.5 

-2°' 

h(l,l,t) 

1/2 1 
.0.5 

• $ ' • 

Figure 1.4: The first four continuous Haar functions. 

h(l,2,t) 

1/2 

The Walsh, Fourier and cosine transforms all have global basis functions, the 

Haar transform was the first transformation to have both global and local basis 

functions. As shown in figure 4 the first two Haar basis functions are global, all other 

basis functions are local in space. Work by Goupillard, Morlet[29] and others has led 

to the development of families of basis functions known as wavelets (Strang[69]). 

Wavelet basis functions consist of translations and dilations of a wavelet function. As 

most of the Haar basis functions are also translations and dilations of a square wave 

the Haar functions are now seen to be a member of the family of wavelet functions. 

A wavelet function \|/ is generated by means of translations and dilations of a 

scaling function (|) (Daubauchies[20]) as given below 

vW = £(-i)k q.^x-k). (1.30) 
k 

The scaling function used to create the wavelet function is determined recursively by 

means of the dilation equation(1.31) 
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4>j(*) = ICktH(2x-k). (1-31) 

The form of a specific wavelet function is dependant upon the choice of <|)0 and the 

coefficients C k. For example, the Haar function can be created using the wavelet 

equations when (|>0 is the box function (Strang[69J). 

Mapping the Haar functions into the discrete domain by sampling the 

continuous functions results in a matrix of discrete values. Equation(1.32) is an 

example of the case N = 8, 

(1.32) 

8 

1 

1 

4~2 
0 

2 

0 

0 

0 

1 

1 

4i 
0 

-2 

0 

0 

0 

1 

1 

-42 
0 

0 

2 

0 

0 

1 

1 

-42 
0 

0 

-2 

0 

0 

1 

-1 

0 

4~2 
0 

0 

2 

0 

1 

-1 

0 

42 
0 

0 

-2 

0 

1 

-1 

0 

-42 
0 

0 

0 

2 

1 
-1 

0 

s 0 
0 

0 

-2 

The Haar transformation X can therefore be expressed as a matrix multiplication such 

as 

X = H a . x (1.33) 

where H a is the N x N Haar matrix and x is a data vector. 

The first two Haar transform coefficients, like the coefficients of the discrete 

Fourier and Walsh transforms, are a function of all the values in the original data 

space. The other Haar transform coefficients are a function of a subset of the original 

data space. This implies that unlike the Fourier and Walsh transformations the Haar 

transform is both globally sensitive and locally sensitive to the data space. 
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A number of algorithms to compute the Haar transform have been developed. 

The algorithm by Andrews[3] is shown as a signal flow diagram in figure 1.5. 

Figure 1.5 A signal flow diagram of the Haar transform for N = 8. 

As can be seen from the signal flow diagram the Haar transform performs 

2(N-1) additions and subtractions and N multiplications as opposed to the Nlog2N 

operations of the fast Walsh and Fourier transforms. The time required to perform the 

Haar transform is therefore linearly proportional to the size of the dataset N, whereas 

the transformation time of the transforms outlined earlier is proportional to Nlog2N. 

1.4 APPLICATIONS OF TRANSFORMS TO FEATURE EXTRACTION AND 

DATA COMPRESSION 

In the context of signal and image processing the transformation operation can 

be interpreted as being a process of feature extraction. When corresponding elements 

of the data vector and the basis function or transformation matrix have similar values 

and signs, a large positive value of the transform coefficient will result. 
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A large transform coefficient value implies that the "shape" of the data vector 

and the basis function are similar. Different transforms can be employed to efficiently 

detect different features in the data vector. For example, the Walsh transform has been 

used to detect straight line roads and rectangular buildings in aerial photographs 

(Beauchamp[4b]). 

Another application of the process of transformation is to use it as a 

mechanism for data compression. When using transform coding techniques for data 

compression the data is converted into the transform domain, transform coefficients 

having comparatively small values are discarded and the remaining coefficients 

representing the compressed data are either transmitted or stored. Reconstruction of 

the original data is carried out by replacing the transform coefficients not transmitted 

or stored with zeros and performing the inverse transformation. 

The choice of a particular transform is dependant upon the level of 

reconstruction error that can be tolerated, and the processing resources and 

requirements. The data compression capabilities of the transforms discussed earlier 

have been studied extensively (Thomas[72]) and it has been found that given a set 

percentage retention of transform coefficients the mean square error introduced into a 

reconstructed image or signal is least when the discrete cosine transform is used. This 

is followed by the Fourier, Walsh and Haar transforms. 
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1.5 LIMITATIONS O F G L O B A L T R A N S F O R M S W H E N F E A T U R E S 

APPEAR AT A NUMBER OF SCALES 

For many different types of signals the important information is carried by 

singularities and sharp variations in magnitude. For example, in the field of image 

processing, points of sudden variation provide the locations of contours or edges in 

satellite and biomedical images (Khanh[37]). Another example is signal processing 

applications such as ECG, where detection of specific fluctuations in heart rate 

(Nandagopal[48]) are required. While in processing a time series it may be important 

to determine both the temporal location of a constituent structure as well as its 

frequency. 

A drawback of global transforms such as the Fourier, cosine and Walsh 

transforms is that they are unable to describe the spatial locations of singularities or 

non-stationary structures within a signal. This is because the basis functions of global 

transforms are expressed over the entire data space and therefore do not possess local 

sensitivity. Transforms which are well adapted to characterise transient phenomena in 

signals are transforms whose basis functions are localised in space and frequency. The 

wavelet transform decomposes a signal on a set of basis functions with compact 

support and thus can represent a signal as a function of both time and frequency. 

The continuous wavelet transform of a function f with respect to the wavelet g 

may be defined as 

1 "U 

F a > b = - f g ( — ) f ( x ) d x , a>0, b e R (1.34) 
aJ a 

The position and magnification of the wavelet basis functions can be specified by the 

values assigned to b and a respectively. Therefore when features appear on a number 

of scales (Grasseau[30]) they may be detected in the transformation to whatever 

accuracy is required by appropriate dilation and translation of the wavelet basis 
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functions. Also a particular wavelet function can be chosen to detect a matching 

feature in the signal or image. 

For example Tuteur[73] uses the inverse Fourier transform of the frequency 

function 

G(f) = e"(af-m)2 (1.35) 

as the analysing wavelet function because of its ability to extract Ventricular late 

potential's from background noise in clinical electrocardiograms, while Grasseau[30] 

studies the local scaling properties of fractal objects by using a Gaussian type wavelet 

function 
-xl 

g(x) = (l-x2)e2 (1.36) 

because of its fast rate of decay. 

1.6 IMPLEMENTATION TECHNIQUES AND PROBLEMS WITH CURRENT 

TRANSFORM METHODS 

There are basically two major methods of implementation of transforms, these 

are software implementations on general purpose computing machines and specialised 

hardware/software implementations. The flexibility and availability of the general 

purpose computer makes software implementation an attractive alternative for 

carrying out fast transform algorithms. Evidence of this popularity can be seen in the 

large number of transform algorithms developed for the general purpose computer 

(Davies[21], Sinha[64]). 

A major drawback of this type of implementation has been that the processing 

time required to perform the transform is too great for many applications; for 

example, high frequency signal analysis or real time video frame processing. This has 

been overcome to a large extent by employing specialised hardware/software 
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solutions (Chou[15],Lewis[44],Healey[31]) where the particular application is time 

critical. Of course such solutions require hardware appropriate to the particular 

application with software often written in an assembler programming language and 

optimised for that specific system. When an implementation takes this form, 

improvement in performance is made at the cost of flexibility and portability of the 

transform. 

If a transform which operates on large datasets is implemented currently on a 

von Neumann type computer a trade-off has to be made. A general algorithm can be 

developed which can be run on many different types of computer but which is 

relatively slow, or a specialised device-specific algorithm can be developed to run 

optimally on a specific machine, providing fast performance but at the cost of being 

unsuitable for implementation on any other platform. 

1.7 MATRDC REPRESENTATION OF TRANSFORMS AND THEIR 

RELATIONSHIP TO PARALLEL IMPLEMENTATIONS OF TRANSFORMS 

The development of the fast transforms as outlined earlier in this chapter indicates 

that a discrete transformation can be represented as a matrix multiplication of a data 

vector (or matrix) with a matrix representing the discrete form of the transform basis 

functions. There are two possible ways that this matrix multiplication can be 

represented. One way is to depict the operation as a matrix multiplication between a 

single densely populated basis function matrix and the data matrix. An example of 

this is the Walsh transform for N=4 shown in equation(1.37). 
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The other method is to represent the transformation as the product of a number 

of comparatively sparse matrices as given by equation(1.23). These representations of 

a discrete transform can indicate possible methods of parallel implementation of the 

transform. 

The sparse matrix form of a discrete transform when viewed as a signal flow 

graph shows clearly any data dependencies in the transform operation and highlights 

independent and hence parallelizable operations. This form of representation is 

particularly valuable when attempting to implement a transform in parallel on a 

MIMD (Multiple Instruction Multiple Data) parallel architecture (Almasi[2]). The 

MIMD parallel processing paradigm is based on independent processors operating in 

parallel and communicating by passing messages. Such a processing architecture can 

be represented schematically by a signal flow graph. Signal flow representation of a 

transform can therefore provide a direct means of determining parallel MIMD 

implementation. 

On the other hand, the transform may be implemented on a massively parallel 

SIMD (Single Instruction Multiple Data) architecture (Almasi[2]). A processor 

topology with all processors executing the same instruction simultaneously on 

different datasets. A common SIMD processor topology is the mesh. Implementing a 

transform on this type of architecture can be a straight forward process which operates 

directly on the dense basis function matrix. From this it can be seen that the various 

ways of representing a transform matrix can provide information about and, in some 

cases, determine optimal parallel implementations. 

As the parallel implementation of a wide variety of discrete transforms was to 

be investigated a transputer based MIMD system was chosen because of the large 

degree of programming flexibility it provides, and because commercially available 

systems allowed a number of different processor topologies to be investigated. 
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1.8 SUMMARY 

This chapter provides a brief review of the Fourier, cosine, Walsh/Hadamard, 

Haar and wavelet transforms. Their application to the fields of data compression and 

feature extraction is outlined. The advantages and disadvantages of a number of 

discrete transform implementations are reviewed and possible techniques for 

implementation of transforms on parallel processing computers are discussed. 
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CHAPTER 2 

REVIEW OF THE TRANSPUTER 

2.1 INTRODUCTION 

Many of the tasks which computers are required to perform such as 

simulations, computer modelling (Kothe[38], Ransom[56]) and signal processing 

(Sousa[68]) are computationally intensive . Tasks of this nature can require significant 

amounts of processing time, even when the fastest microprocessors are used. In an 

attempt to reduce the processing time required to perform these tasks the concept of 

parallel processing was introduced. 

Parallel processing employs a divide and conquer technique. A particular task 

is divided into a number of sub-tasks. These sub-tasks are then distributed among a 

number of processors which execute these tasks concurrently. Many different 

architectures have been designed employing parallel processing techniques. The 

variety of implementations of the parallel processing paradigm is so great that a 

number of parallel processing taxonomies have arisen. The classification system 

proposed by Flynn (Almasi[l]) and foreshadowed in chapter one is widely used. 

The two criteria employed in this system are the number of instruction and 

data streams. The single processor von Neumann computational model would be 

viewed as a single stream of instructions working on a single stream of data. The 

other two classifications of interest are SIMD (single instruction multiple data) and 

MIMD (multiple instruction multiple data). The SIMD classification covers such 

architectures as the vector and array processors. The MIMD model includes any 

architecture that consists of multiple microprocessors operating independently on their 

own individual data streams. The transputer was designed to achieve improved 

processing speed-up by utilising the MIMD computational model. 
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Transputer is a generic name for a family of VLSI components developed by 

INMOS. Each member of the family possesses its own unique characteristics, but all 

conform to the same general architecture. This consists of a single microcomputer 

comprising: processor, system services, RAM, and a number of autonomous serial 

communications links allowing inter-transputer communication. 

First introduced in 1985, the first microprocessor in the transputer series was 

the T414. Since that time the T212, T800, T222, T425, T805 and T9000 have all been 

released, each new release providing some improvement in functionality over its 

predecessor. 

2.2 HARDWARE DESIGN OF TRANSPUTERS 

The transputer is based on the concept of communicating sequential processes. 

The particular transputer that is used in this thesis is the T800. The T800 is a 32 bit 

CMOS microcomputer. It has an on-chip 64 bit floating point unit, 4 Kbytes of on-

chip RAM, a configurable memory interface and four bi-directional INMOS 

communication links. 

Processing speed-up is obtained by hardware multi-tasking and by concurrent 

operation of the CPU and FPU. Fast memory access is available by storing a program 

or data in the on-chip RAM while, if required, a maximum of 4 Gbytes of memory is 

available via the memory interface. 

What makes the transputer particularly distinctive is its four serial 

communications links providing communication between transputers. Operating at 

2.35 Mbytes per second when running bi-directionally these links allow any number 

of transputers to be interconnected in the most appropriate configuration for the 
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particular task. Rapid processing of large tasks can be achieved by dividing the task 

into components and distributing it over the transputer network. 

Transputer systems have been found to be particularly suitable when 

attempting to solve problems in fields such as robotics (Daniel[19]) that benefit from 

the employment of asynchronously operating sophisticated microprocessors, or 

process simulation (Ponton[53]) when processing speed-up is best served by coarse 

grained parallelism. 

Coarse grained parallelism is the term given to the division of a task into a 

small number of relatively large sub-tasks. This technique is easily mapped onto 

MIMD architectures. The alternative is termed fine grained parallelism, which is the 

division of a task into a large number of small sub-tasks. This technique is more 

suitably mapped onto SIMD architectures, such as array processors. An example of 

the former is the division of fast transform operations onto a small number of 

processors as shown later in chapter three, an example of fine grained parallelism is a 

matrix operation where each individual matrix element is distributed to a processor. 

Parallel computing applications tend to be naturally easier to implement in 

one granularity than in the other. As the transputer is a microprocessor that operates 

autonomously and communicates with other transputers by message passing it is more 

amenable and efficient in implementing coarse grained parallel applications. Fine 

grained parallelism would result in a system of great complexity. The complexity 

arising from attempting to operate a large number of autonomous processors each 

communicating by asynchronous message passing. 

When creating a parallel application a conscious decision must be made as to 

what is the most profitable configuration for the application. An image processing 

task for example, may be easier to implement on a SIMD architecture, but most of 
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these architectures exist as specialised stand alone machines. On the other hand, the 

same task may be harder to design in a coarse grained form but can be mapped onto a 

multi-transputer plug-in card attached to a personal computer and so be more 

industrially applicable. Trade-offs such as these must be considered when determining 

what hardware and methodology to employ to perform a particular task. 

2.3 THE TRANSPUTER SYSTEM USED 

The hardware configuration consists of two T800-20 transputers, one with 1 

Mbyte of DRAM and the other with 32 Kbytes of SRAM and 2 Mbytes of DRAM. 

These are attached to a B008 plug in board. 

The B008 board is a transputer motherboard that plugs into one of the 

expansion slots of an IBM compatible PC motherboard. It consists of a 16 bit T212 

transputer that controls a software configurable C004 32 way crossbar link switch and 

associated logic. The board can accommodate up to 10 transputer modules which fit 

into plug-in slots. 

I Personal 

Computer 

0 

1 T800 2 

3 

C004 

Programmable Crossbar switch 

Figure 2.1 Block diagram of the B008 Transputer system. 

Transputer Pipeline 
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Transputer links 1 and 2 are hardwired on each of the slots so that when the 

transputers are plugged in they form a pipeline of processing elements. The remaining 

transputer links can be connected or "softwired" via the IMS C004 programmable link 

switch. The softwired links can be configured by utilising the module/motherboard 

software (mms2) and the hardware description language it provides called HL1. 

2.4 THE PARALLEL C PROGRAMMING LANGUAGE 

As the transputer architecture is based on the communicating sequential 

processes model with on-chip serial communications links, parallel processing 

utilising transputer systems must consist of concurrent sequential processes or tasks 

which communicate with each other. The programming language used for developing 

the application software on the transputer system was Parallel C developed by 3L 

Systems Pty Ltd. Parallel C provides two programming methods for use with 

transputer systems which conform to this processing model, these are the 

communicating task technique and the processor farm technique. 

An application using the communicating task model would consist of a 

collection of independent concurrently executing tasks each with its own input and 

output vectors. The Parallel C programming language includes configuration software 

for the communicating task model which provides a means of mapping the collection 

of software tasks onto the physical network of processors. For the programmer this 

takes the form of a configuration file (see Appendix A) which specifies tasks, their 

interconnection and their placement on physical processors. Each processor can 

support any number of software tasks within the restrictions of available memory. 

Communication between tasks on the same processor being via a designated memory 

location. Communication between tasks placed on different physical processors is via 

the transputer serial links, therefore communications between tasks on different 

processors is limited by the available physical connections. 
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The processor farm technique consists of a single master task and a number of 

identical worker tasks. A copy of the master and worker tasks is placed on the 

transputer which interfaces between the transputer board and the PC, this is known as 

the root transputer. A copy of the worker task is placed on all other transputers in the 

network. The master task disseminates data to, and collects data from, the worker 

tasks. The worker tasks accept data, perform a calculation and return a result. Data is 

automatically routed to any free worker task. The configuration file required for a 

processor farm is minimal, consisting of a listing of master and worker task filenames 

and memory requirements. Also, a processor farm implementation will automatically 

configure itself to run on any transputer network. Therefore, transputers can be added 

to or deleted from the network without recompilation or reconfiguration of the 

application software. 

2.5 AN EXAMPLE OF TRANSPUTER PROGRAMMING: THE ONE 

DIMENSIONAL CONVOLUTION 

One of the most efficient means of determining the convolution of two 

discrete one dimensional functions f(x) and g(x) is by use of the convolution theorem 

(equation(1.15)). This states that given the Fourier transform of the function f(x) is 

F(u) and the Fourier transform of the function g(x) is G(u) then the convolution of 

two functions is given by the inverse transformation of the product of the vectors F(u) 

and G(u). Gonzales[25] shows that the inverse Fourier transformation may be 

calculated by utilising the same algorithm that is used to calculate the Fourier 

transformation. In order to calculate the inverse transform the data vector is run 

through the same algorithm as the Fourier transform the only variation being that the 

resulting vector is divided by N, the size of the dataset. Therefore, both the 

transformation and inverse transformation can be calculated using the same algorithm. 
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A primary consideration when designing a transputer implementation which is 

not a processor farm is the number of transputers available and their possible 

configurations. This can affect both the degree of parallelisation of the algorithm and 

the mapping of software tasks onto the physical system. The following example is 

based on the two transputer system outlined in section 2.3. 

The core task in a one dimensional convolution is the fast Fourier transform, 

so parallelisation of this task will be considered first. The Cooley-Tukey algorithm for 

the fast Fourier transform (Brigham[8]) can be displayed as a signal flow graph as 

given in figure 1.1. A s shown in figure 2.1 this method of depicting the 

transformation provides a means for determining h o w the operation could be 

distributed between two processors. 

Figure 2.2 The division of butterfly operations between two transputers. 

With the operations distributed between two transputers as shown in figure 2.2 

the implementation could take the following form. The data vectors representing the 

functions f(x) and g(x) are sent to the two transputers, each transputer performing the 

operations outlined above. The product of the elements of the transformation vectors 

F(u) and G(u), resident on each transputer are found. These results are then 
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redistributed amongst the transputers and the inverse transformation is performed. 

The results of the inversion are then collected by the root transputer. 

Parallel implementations such as this using the communicating sequential 

processes model can be best exemplified by use of Petri nets (Murata[47]) because 

they clearly represent message passing and operations or state transitions. Figure 2.3 

details a Petri net representation of the one dimensional convolution on a two 

transputer system. 

Once the basic algorithm and its mapping onto a target transputer system is 

determined the next stage is the development of the application software. The 

software development on a B008-transputer system consists of a configuration file 

and the transputer parallel C programs. 

The configuration file is an ASCII file comprising five distinct components. 

The first two components are a description of the physical system. The first part is a 

list of the physical processors present in the system, allocating each transputer and the 

host PC identifying labels (User guide[51]). 

e.g. PROCESSOR HOST - the PC 

P R O C E S S O R T R A N S 1 - transputers present on the B008 board 

P R O C E S S O R T R A N S 2 

The next component is a description of the physical communication links 

between all processors in the system. Each link is identified by the specifier W I R E 

followed by an identifying label for the link, followed by a description of the 

processors connected and which processor communication ports are connected. 

e.g. W I R E JUMPER1 HOST[0] T R A N S 1[0] 

W I R E JUMPER2 TRANS1[2] TRANS2[1] 
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Figure 2.3 Petri net representation of two transputer one dimensional convolution. 
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After this is a listing of all the parallel C programs, known as tasks, and the 

number of logical communication links available to each software task. The tasks 

which are incorporated into the system include both the application software which 

has been developed and various 3L Parallel C library tasks such as FILTER and 

AFSERVER. These tasks are provided in order to facilitate communications between 

the transputers, PC and mass storage devices. Detailed information is available from 

the 3L Parallel C users manual[51]. 

e.g. TASK AFSERVER INS=1 OUTS=l 

TASK FILTER INS=2 OUTS=2 

TASK FOURIER1 INS=3 OUTS=3 

The next component of the configuration file is a listing of the placement of all 

the software tasks onto the appropriate physical processor. 

e.g. PLACE AFSERVER HOST - afserver runs on PC 

PLACE FILTER TRANS 1 - filter & fourierl both run on transputer 1 

PLACE FOURIER1 TRANS 1 

Finally the last section of the configuration file is a listing of the logical 

communications links between software tasks. Bi directional links must be 

specifically stated as shown below. 

e.g. CONNECT ? AFSERVER[0] FILTER[0] 

CONNECT ? FILTER[0] AFSERVER[0] 

As the transputer system is based on the model of communicating sequential 

tasks the parallel C programs are similar to sequential C programs with the addition of 

library functions to enable transfer of data between tasks. Examples of the parallel C 

programs are given in appendix A. 
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2.6 S U M M A R Y 

This chapter introduces the major parallel processing architecture 

classifications and provides a general overview of the Transputer. A description of the 

Transputer system used in this thesis and the Parallel C programming language is 

given. Examination of Transputer systems revealed that the Transputer is most 

suitable for implementing parallel algorithms employing "coarse-grained" parallelism. 

An example of such an implementation, the one-dimensional convolution is outlined. 
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CHAPTER 3 

PARALLELISING THE DISCRETE WALSH AND COSINE TRANSFORMS 

3.1 INTRODUCTION 

The discrete Walsh and cosine transforms were selected for parallel 

implementation because of their widespread use in implementations employing global 

transformations. The discrete cosine transform as mentioned in Chapter 1 is widely 

used in data compression of images being part of the JPEG standard. The discrete 

Walsh transform although not widely used itself has a close similarity to the fast 

Fourier transform, enabling any parallel Walsh implementation to be easily applied to 

the widely used Fourier transform or any similar transform. 

3.2 THE WALSH TRANSFORM AND ITS RELATIONSHIP TO THE 

FOURIER TRANSFORM 

The Walsh and the Fourier transforms both belong to a class of transforms that 

can be expressed in terms of the general relation 

F(u)=£f(x)g(x,u). (3.1) 
x=0 

The function g(x,u) is known as the forward transformation kernel. Also both inverse 

transforms assume the same form 

f(x) = |>(u)h(x,u) <3-2) 
u=0 
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where h(x,u) is the inverse transformation kernel. The nature of the transform is 

determined by the properties of its transformation kernel. The Walsh transformation 

kernel consists of a series of global basis functions whose values are +1 or -1 whereas 

the Fourier transform kernel is based on trigonometric terms. 

The Walsh transform can be computed by a fast algorithm identical to the 

algorithm used to compute the fast Fourier transform. The difference between the two 

being that the exponential terms in the fast Fourier transform are set at either +1 or -1 

for the fast Walsh Transform. 

3.3 INITIAL ATTEMPTS TO PROGRAM TRANSPUTERS TO PERFORM 

THE WALSH TRANSFORM 

The fast Walsh transform can be represented as a signal flow graph as depicted 

in figure 3.1. Expressed in this manner it becomes apparent that the Walsh transform 

could be viewed as a collection of communicating tasks or processes. This provides 

an opportunity to implement the transform on a multiple instruction multiple data 

system such as a transputer network. One possible software implementation would be 

what is commonly termed a "fine - grained" parallel processing approach. 
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Figure 3.1 A signal flow graph for an eight datapoint Fast Walsh transform. 

This method employs a large number of relatively simple software processes. 

The process interconnection topology takes the same form as the signal flow graph. 

Each individual process consists of an operation such as single addition or subtraction 

and the appropriate message passing instructions. 

Once a process topology has been determined the interconnected processes must 

be mapped onto the available transputer system. A PC-transputer implementation to 

perform the transformation given in figure 3.1 is shown in figure 3.2. 
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Figure 3.2 Communicating task transputer implementation of the Walsh 
transform for eight datapoints. 

Each of the processes w_p_q receive messages via the channels shown, 

perform the appropriate addition or subtraction and transmit the result. The 3L 

Parallel C programming language which was used requires a transputer memory 

allowance of 5 Kbytes for any process which performs file server I/O. The processes 

that dispense and receive are interfaced between the library multiplexer process and 

the butterfly processes in order to obviate a 5 Kbyte memory requirement for each 

initial and final butterfly process and also to reduce process contention for the P C 

hard disk when reading and writing data. 

This type of implementation can be modified in order to perform on larger 

datasets and/or larger transputer networks. The transform can be distributed over 

larger networks by cascading multiplexer tasks as shown in figure 3.3. This allows 

mapping of the transformation on a range of processor topologies ranging from a few 

processors to a massively parallel system. 
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Figure 3.3 Cascading multiplexer tasks. 

Butterfly processes can be grouped on transputers with I/O being performed by 

multiplexer processes. If the transputer network is sufficiently large the network could 

be configured with the same processor topology as the signal flow graph with each 

transputer running a single process. 

In this implementation the actual butterfly task is generic with the application 

utilising as many copies as necessary. The connections between the butterfly tasks for 

datasets of any size can be generated by the following equation. 
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xn(i) = *n-i(i) + xn.1((j + 2
p-n) m o d 2p"n+1 + k ) (3.3) 

where 2P = datapoints 

n = butterfly number 

i = datapoint 

j = imod2p-n + 1 

k = i-j. 

It has been shown earlier in section 1.3.1 that the Walsh transform may also be 

expressed as a Hadamard matrix of order N. Therefore the Walsh-Hadamard 

transformation may be performed by means of a matrix multiplication as shown in 

equation(1.33). The resultant matrix is in bit reversed form. If necessary, it may be 

ordered by appropriate row transformations of the coefficient matrix. The Walsh-

Hadamard form of the transform may be implemented on a transputer network 

configured as a processor farm. 

As discussed in chapter 2 the processor farm implementation consists of a 

master task placed on the root transputer and a number of identical worker tasks 

which are placed on all transputers in the network. The master task acquires data 

containing both the data and basis function matrices from the personal computer mass 

storage. It then sends the appropriate row and column of the two matrices to a free 

worker task for processing. The worker task calculates a result which is returned to 

the master task when the master task is free to receive data. Thus each element in the 

resultant matrix can be calculated concurrently. 

Another possible implementation which was investigated was mapping the 

fast Walsh transform onto the processor farm. This would require the assignment of 

the butterfly operation to the worker task and the master task would disseminate the 
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appropriate data pairs and collect the results. It was noted that the worker task 

butterfly operation would demand little processing time to complete its task while on 

the other hand the master task would be fully employed determining and transmitting 

correct data pairs to the worker tasks and receiving and correctly storing results. This 

would result in the transputer network suffering from a severely unbalanced 

processing load distribution, this approach was therefore discarded. 

3.4 IMPROVED PROGRAMMING TECHNIQUES AND COMPARISON 

WiTH EARLIER METHODS 

The two parallel implementations of the Walsh transform discussed above 

possess both a number of advantages and a number of shortcomings. The advantage 

of both implementations is, as mentioned earlier, that the transform operation 

becomes a very easy task to program. However there are a number of shortcomings 

with both implementations. 

The "fine-grained" approach of implementing the butterfly operations as a 

series of communicating tasks has two drawbacks when mapped on systems 

consisting of relatively small numbers of processors. First the configuration file 

discussed in chapter 2 becomes large and cumbersome for datasets of a realistic size. 

Secondly, for larger datasets a communications bottleneck occurs in the distribution 

and collection of data by the dispense and receive tasks when each of the independent 

butterfly tasks compete for access both when transmitting and receiving data. This 

extends the time spent performing inter-task communications and more than doubles 

the total processing time. 

When implementing the transform as a processor farm it is not viable to 

perform the fast Walsh transform due to unbalanced processor loads. The other 

alternative is to perform the transformation as a matrix multiplication, this distributes 
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the processing load more evenly but at the cost of performing N 2 operations rather 

than the Nlog2N operations of the fast Walsh transform. There is also the problem of 

communications. The processor farm topology usually consists of a pipeline of 

processors with the root or PC-interface transputer at one end of the pipeline. It has 

been found (Webber[75]) that processor farms suffer from a communications 

bottleneck between the root transputer and more distant transputers attached to the 

pipeline. This is because distant transputers are required to communicate with the root 

transputer via all the intermediary transputers. 

Any improved transform computation would have to overcome the 

shortcomings of the implementations given earlier. It would have to be comparatively 

free of communications bottlenecks and require a compact and straightforward 

configuration file. Also the processing load on the transputers in the system should be 

evenly balanced. 

The mesh and hypercube processor topologies meet these initial criteria, which 

of these two is implemented for a particular application is dependant upon a number 

of other considerations. The mesh topology is often employed in S I M D architectures 

and is commonly used to perform matrix multiplications (Thinking Machines[71]). It 

may also be profitably employed using a M I M D architecture. 

A study of the process of distributing data over a mesh topology revealed that 

the number of steps required to distribute or collect data in a M I M D n x m mesh 

processor topology from a single data storage source is given by 
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where the data storage source is connected to a processor whose communication links 

are unconstrained by the network topology. 

The processor mesh naturally lends itself to matrix operations as the processor 

topology matches the structure of the data. Performing the transform operation on a 

mesh as a matrix multiplication therefore becomes an easy task to implement, while 

suffering from the disadvantage of requiring more operations to perform the matrix 

multiplication as opposed to the fast transform method. Whilst this in itself is a 

disadvantage it may be counterbalanced by other application specific considerations. 

For example, all discrete transforms may be represented as matrix multiplications 

while methods of performing fast transforms vary widely. Applications which require 

the calculation of a number of different types of transforms may be better served by a 

mesh topology matrix multiplication algorithm, its general purpose nature offsetting 

any loss of performance when calculating a particular transformation. 

The hypercube is another processor topology which presents a number of 

benefits when attempting to implement a transform in parallel. Using a hypercube, it 

may be shown that access to a mass storage device from the most distant processor in 

the network can be achieved in D steps where D is the dimension of the hypercube. A 

comparison of the abilities of the two topologies to distribute data is given in 

figure 3.4. 
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Number of 

Processors 

4 
8 
16 
16 
32 
32 
64 
64 
64 

Mesh size 
n x m 

2x2 
2x4 
4x4 
2x8 
4x8 
2x16 

8x8 
4x16 

2x32 

M a x i m u m required communication 
steps 

Mesh Hypercube 
2 
3 
4 
5 
6 
9 
8 
10 
17 

2 
3 
4 
4 
5 
5 
6 
6 
6 

Figure 3.4 Table of inter-processor communication steps required for mesh and 

hypercube processor topologies. 

The results in figure 3.4 illustrate that for processor configurations which 

contain more than 16 processors the hypercube is more efficient at distributing and 

collecting data for a message passing MIMD processor network. The reason for this is 

that for 16 processors or less, the number of communications links per processor 

utilised by both topologies is the same. For larger numbers of processors the 

hypercube generates additional communications links while the mesh processors are 

limited to a maximum of four. The T800 series of transputers is limited to four 

processor links while the T9000 has six, this limits a straightforward processor 

network to a six dimension hypercube. If necessary additional transputers could be 

used to provide communications fan-out given a processor rich environment. 

A n additional point of interest which may be discerned from figure 3.4 is that 

a mesh topology data distribution is more efficient if the mesh is maintained in a 

configuration as square as possible. An illustration of data distribution in mesh and 

hypercube processor networks can be seen in figure 3.5. 
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Data storage 
Data storage 

*L \ 

n The nth step in the communication path. 

Figure 3.5 A n example of two possible data communication paths 
for eight processor mesh and hypercube processor topologies. 
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Processor 1 

Processor 2 

Processor 3 

Figure 3.6 The distribution of the fast Walsh transform for eight datapoints on a 

four processor 2-dimensional hypercube. 

The hypercube also possesses the advantage that fast algorithms for global 

transformations such as the fast Walsh and Fourier transforms can be easily performed 

in parallel on a hypercube processor topology. Figure 3.6 demonstrates a mapping of 

the fast Walsh transform onto a two dimensional hypercube processor network. 
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It can be seen from figure 3.7 that if any inter processor communications are 

required to perform the fast transform all the communications are between nearest 

neighbour processors. This may be maintained for higher dimension hypercubes by 

ensuring that the processor addresses as given in figure 3.6 have a binary address one 

bit different from all other nearest neighbours (Hillis[33]). Such a distribution of the 

fast transform on hypercube processors allows for a high degree of parallelism in the 

computation. 

Processor 0 (000) Processor 2 (010) 

Processor 1 (001) 

Processor 5 (101) 

Processor 3 (011) 

Processor 4 (100) 
Processor 6 (110) 

Processor 7 (111) 

Figure 3.7 Hypercube processor numbering system, decimal and binary 

representations. 

As the major interest of this study was the performance enhancement of 

transform operations the hypercube was considered the most suitable processor 

configuration for the implementation of the fast Walsh transform. It avoids the 

configuration complexities and the communications bottlenecks of the earlier 

implementations and while the programming is more complex the processor load is 

balanced and efficient parallelisation of the fast transform is maximised. 
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3.5 A P P L I C A T I O N O F T H E W A L S H T R A N S F O R M T O PERIODIC A N D 

NON-PERIODIC FUNCTIONS 

The Walsh transform was performed on a number of waveforms in order to 

determine its ability to distinguish a number of different periodic or localised features 

in a one dimensional signal. The waveforms selected tested the ability of the Walsh 

transform to detect smooth and discontinuous periodic functions, smooth non-periodic 

functions and time localised functions. The test waveforms and their transforms are 

given in figures 3.8-3.18, more detailed representations can be found in appendix C. 

The trigonometric functions were used as examples of smooth periodic 

waveforms. Their Walsh spectrum is clearly recognisable with a dominant frequency 

component. The strong harmonics close to the dominant frequency peak are caused by 

the higher frequency square wave basis functions in the series which are required to 

smooth the dominant frequency square wave into a more sinusoidal shape. Higher 

frequency trigonometric functions cause a shift of the spectrum into higher frequency 

ranges. 

The step and chirp functions are representative of periodic discontinuous 

functions. The step function transforms show that periodic square functions are easily 

distinguishable due to their close correspondence to the Walsh basis functions. The 

smaller frequency components in the spectrum are generated by the variation between 

the initial value of the waveforms and that of the basis functions. 

The ability of the Walsh transform to provide distinctive spectra degrades 

when the periodic function waveform shape departs significantly from the basis 

function set. An example of this is the chirp function transform. If the discontinuities 

in the waveform are not present in the basis function set then a large number of 

spectral components will be generated, representing the basis function series terms 
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needed lo approximate the waveform discontinuities. This results in a "noisy" 

spectrum as evidenced by the chirp function transform. 

sine wave N=64 

Cosine function N=64 

Figure 3.8 Trigonometric test functions. 
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step 1 N=64 

m 
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. 

100 200 300 

X 

400 500 

step 2 N=64 

Figure 3.9 Step test functions. 
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chirp N=64 

Iterative function x(n+1)=ax(n)+bx(n-1), x(0)=0.9,x(1)=0.75,a=0.7,b=0.2 

Figure 3.10 Chirp and Iteration test functions. 
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Delta function 

S 

Random data range 0-100 

100 200 300 400 500 

Figure 3.11 Delta and Random test functions. 
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Parallel Walsh transform of sin(x) period = 512 

100 200 300 400 500 

Parallel Walsh transform of sin(x) period = 64 

Figure 3.12 T w o examples of the discrete Walsh transform of the sine function 
where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh of cos(x) period = 512 

100 200 300 400 500 

Parallel Walsh transform of cos(x) period = 64 

100 200 300 400 500 

Figure 3.13 T w o examples of the discrete Walsh transform of the cosine function 
where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh transform of stepl period = 512 

Parallel Walsh transform of stepl function period = 64 

100 200 300 400 500 

Figure 3.14 T w o examples of the discrete Walsh transform of the Step 1 function 
where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh transform of step2 period = 512 

100 200 300 400 500 

Parallel Walsh transform of step2 function period = 64 

Figure 3.15 T w o examples of the discrete Walsh transform of the Step 2 function 
where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh transform of chirp function period = 512 

100 200 300 400 500 

Parallel Walsh transform of chirp function period = 64 

Figure 3. W T w o examples of the discrete Walsh transform of the Chirp function 
where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh transform of iteration function 

Parallel Walsh transform of delta function 
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100 200 300 400 500 

Figure 3.17 Examples of the discrete Walsh transform of the Iteration and Delta 

functions where x = sequency, zero crossings per unit time (Zps) and 
y = transform coefficient magnitudes. 
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Parallel Walsh transform of random data 

T 1 j 1 1 I ' 

0 100 200 300 400 500 

x 

Figure 3.18 The discrete Walsh transform of the Random data function where 
x = sequency, zero crossings per unit lime (Zps) and 
y = transform coefficient magnitudes. 

The iteration and random noise functions are examples of non-periodic 

smooth and discontinuous functions. The sharp signal fluctuations in the random 

noise waveform result in a spectrum with properties similar to the chirp function. The 

large initial spectral component is caused by the random noise data values being 

restricted to a range between zero and one hundred. The coefficients used by the 

iteration function resulted in a smoothly decaying non-periodic waveform. 

Consequently the spectrum exhibits a number of low frequency components dying out 

in the higher frequency range. 

A transformation of the delta function was performed to observe the Walsh 

transform of a function which is localised in time. The Walsh transform of the delta 

function produces a complex spectrum with all basis function components 

represented. Movement of the waveform pulse in time causes only minor variations in 
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its Walsh transform. Detection of time localised signals using the Walsh transform 

would be a difficult task due to the number of basis function coefficients present in 

the spectrum and the small variation in the transform caused by the timing of the 

transient signal. 

These results indicate that the Walsh transform is effective when detecting 

waveforms similar to its basis function set but that this effectiveness declines as sharp 

variations in amplitude and local signal transients are introduced into the waveform. 

3.6 COMPARISON OF SERIAL AND PARALLEL IMPLEMENTATIONS OF 

THE WALSH TRANSFORM 

The comparison of the serial and parallel implementations of the Walsh 

transform can be divided into two categories. Firstly a comparison of the Walsh 

transform performed serially on one transputer against both the hypercube and 

processor farm parallel implementations on a multi-transputer system. Secondly a 

comparison between the transputer implementations and current commercial 

microprocessors. The results given in figure 3.19 demonstrate that implementing the 

fast Walsh transform on a two transputer system approximately halves the total 

processing time required when compared with the single transputer implementation. 

Splitting the calculation between two processors should theoretically result in a 

halving of the required calculation time. The deviation from this figure by 

approximately 2% is due to the time required to communicate data between the 

processors as shown figure 3.20. 

60 



Processor Performance 
Fast Walsh Transform 

4000 T 

3500 --

3000 --

2500 -• 

Execution time 

mS 
2000 -• 

1500 •• 

fOOO -• 

500 •-

500 1000 1500 

Dataset size 
Double precision floating point numbers 

-ONE TRANSPUTER 

-TWO TRANSPUTERS 

-80386SX 

-80386 

-JK—80486 

2000 2500 

Figure 3.19 Serial and parallel processor performance when implementing the fast 

Walsh transform. 

A factor that must be considered when implementing an algorithm using the 

M I M D processing model is the communication overhead incurred when 

disseminating and collecting data over the processor network. The results in figure 

3.20 show that a large percentage of total processing time is spent performing 

transform calculations with very little communications overhead. In the two transputer 

implementation the transmission of the entire dataset between the two processors was 

necessary, for larger hypercube systems the communication overheads will not be 

significantly greater due to the connectivity of the hypercube. As shown in figure 3.4 

the number of inter-processor communications required will be N where N is the 

dimension of the hypercube. Therefore relatively large numbers of processors can be 

interconnected with minimal communication overhead when transmitting data from or 

sending data to data storage e.g. a hard disk drive. For example, a seven dimension 

hypercube consisting of 128 processors will require only seven sets of inter-processor 

communications to distribute data throughout the network. Further the amount of data 
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which has to be distributed will diminish as communication distance from the point of 

connection to the data storage increases. 

6000 -r 

5000 --

4000 --

Execution time 
64uS 3000 

clock ticks 

2000 --

1000 --

16 104 

Performance analysis 
two transputer fast Walsh transform 

5603 

El communications time 

IS butterfly calculation time 

19 bit reversal time 

2517 

1120 

533 

63 

128,256 and 512 dataset sizes 
Double precision floating point numbers 

Figure 3.20 A n analysis of computational resource demand by major operations 

within a two transputer fast Walsh transform implementation. 

A comparison of the performance of the fast Walsh transform on a two 

transputer hypercube with a two transputer processor farm implementation of the 

Walsh-Hadamard matrix form of the transform was also made. The Hadamard matrix 

used by the processor farm was pre-processed, ordering the matrix rows so that a bit 

reversal operation was not required. Figure 3.21 indicates that even given the 

advantage of pre-processing the performance of the processor farm compares 

unfavourably with the fast transform-hypercube implementation for datasets of 64 
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numbers or greater, vindicating the choice of the hypercube configuration for fast 

calculation of the Walsh transform. 

Configuration-transform implementation performance 
fast Walsh transform 

180 --

160 --

140 --

120 --

100 --
Execution time 

m S 
80 --

60 --

40 --

20 --

0 --

0 20 40 60 80 100 120 140 

Dataset size 
Double precision floating point numbers 

Figure 3.21 Performance comparison of Walsh transform implementations on a 

two transputer parallel system. 

The comparison of the transputer implementations with commercial 

microprocessors is given in figure 3.19. Neglecting any minor performance effects 

caused by using different C language compilers, figure 3.19 shows that a serial 

implementation of the Fast Walsh transform on a single transputer performed at 

virtually the same speed as a serial implementation on an Intel 80386SX 

microprocessor. The performance of a two transputer parallel implementation was 

better than the 80386SX performance and marginally inferior to the Intel 80386 serial 

implementation. One of the major objectives of parallel processing is to provide a 

level of performance superior to that available with conventional microprocessors. 
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This is clearly not the case in the implementation shown above. The reason for this is 

a historical one. The T800-20 transputers used in these performance measurements 

were introduced in 1987, making the T800-20 a contemporary of the Intel 80286. By 

the standards of the day the transputer possessed significant processing capability in 

its own right as well as being able to be linked into a network of transputers further 

enhancing performance. The progress of standard microprocessors since that time has 

rendered the T800 as a stand alone microprocessor obsolete. 

There are two possible ways the operation of a transputer system could be 

improved to provide it with a level of performance better than that demonstrated by 

the Intel 80486. The first method would be to replace the T800 with the T9000 

transputer which is claimed to be significantly faster than the T800 or T805. The 

second way to improve the performance of the transputer system would be to increase 

the parallelism of the system by adding more transputers to the system. As shown in 

figure 3.20 the time required for inter-processor communications when performing the 

fast Walsh transform is only a small percentage of the total processing time. An 

extrapolation of the results given in figure 3.19 provide an estimate of the 

performance enhancement that could be achieved by adding more transputers to the 

system. The results given in figure 3.19 indicate that a hypercube system comprising 

eight T800-20 transputers would give a performance better than the Intel 80486 serial 

implementation. 

3.7 DISCRETE COSINE TRANSFORM ALGORITHMS 

Due to its widespread use in such areas as image compression (Hein[32]) 

many algorithms for computing the discrete cosine transform have been developed. 

As outlined in Chapter 1 the majority of these algorithms can be classified into three 

categories, those that compute the discrete cosine transform through matrix 

multiplication or recusive computation (Hou[35],Chen[14],Kou[39],Cho[16b]) and 
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those that compute the cosine transform via another transform such as the fast Fourier 

transform (Hein[32],Wu[77],Rao[57a]). 

The recursive and matrix algorithms demonstrate a performance similar to that 

of the fast Fourier transform (Chen[14]), but a number of problems arise when 

parallelisation of these algorithms is attempted. A review of the signal flow diagrams 

for the algorithms given in the literature shows that given a dataset distributed over a 

number of processors computation of the discrete cosine transform would involve a 

large communications overhead owing to the semi-global nature of many of the 

transform operations. Also the complexity and lack of signal-flow symmetry in many 

of the transform stages lead to complex programming requirements which have a 

direct effect on the ease with which any of these algorithms could be scaled onto 

larger parallel platforms. 

Consequently parallel implementations of the discrete cosine transform have 

favoured implementation via other more amenable transforms (Cho[16a]). Such an 

algorithm is outlined in Rao[57a]. The cosine transform for N data points is obtained 

via an N point fast Fourier transformation. This algorithm requires only a minor 

modification of the fast Fourier transform in order to compute the discrete cosine 

transform. As the fast Fourier transform has been shown to be easily parallelizable the 

parallel computation of the cosine transform using the fast Fourier transform provides 

all the advantages of the parallel implementation of the fast Fourier transform at the 

minor cost of the increased processing time required to convert the Fourier transform 

to the cosine transform. 
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3.8 A P A R A L L E L DISCRETE COSINE T R A N S F O R M A L G O R I T H M 

The algorithm for the discrete cosine transform via the fast Fourier transform 

developed by Narashima and Peterson (Rao[57a]) is shown in figure 3.22. The 

algorithm sorts the N input data into a sequence given by equation (3.5). 

Figure 3.22 N-Point discrete cosine transform via the N-point fast Fourier transform. 

y(n) = x(2n) 

y(N-l-n) = x(2n + l) 

N = Dataset. 

^ N , 
n = 0,..., — -1 

2 
(3.5) 

N 
A fast Fourier transformation is then performed on the rearranged data. The first — 

transform results are multiplied by a complex constant given by equation 3.6 

z(n) = e~J2N. (3.6) 

N 
The resulting — real components provide the discrete cosine transform coefficients 

N ... 
from 0 and the negative imaginary components provide the cosine transform 

N 
coefficients from N. 

2 
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The kernel of this transform algorithm is the fast Fourier transform. It has 

been shown earlier in this chapter that a hypercube processor topology provides an 

efficient and well proven parallel implementation of the fast Fourier transform. It 

would seem appropriate therefore to use this topology to implement the discrete 

cosine transform. The additional computational tasks of sorting the input data can be 

performed as the data is disseminated throughout the processor network prior to 

computation. The post-fast Fourier transform constant multiplication can be 

implemented in parallel on the hypercube. The bit-reversal and real-imaginary 

component distribution can be performed as the transform coefficients are retrieved 

from the processor network. A n example of these operations is given in figure 3.23. 

x(0) x(0) 
x(l) x(2) Processor 0 v 

x(2) x(4) 

x(3) x(6) Processor 1 

x(4) x(7) 

x(5) x(5) Processor 2 

x(6) x(3) 

x(7) x(l) pr0cessor3 

t(0)-^U 

t(4) 

t(6) 

z(p) 
-> 

Bit - Reversal 

and 

Real/Imaginary 

Data 

Redistribution 

p = m (bit reversed) 

Figure 3.23 Parallel four processor hypercube implementation of the discrete 

cosine transform via the fast Fourier transform for N = 8 . 
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3.9 A P P L I C A T I O N O F T H E C O S I N E T R A N S F O R M T O PERIODIC A N D 

NON-PERIODIC FUNCTIONS 

The discrete cosine transform was performed on the test waveforms given in 

section 3.5. This was done in order to examine the ability of the discrete cosine 

transform with its smooth, global basis functions to distinguish a number of different 

features evident in the test functions. The discrete cosine transform of the 

trigonometric functions produces a compact spectrum comprising few spectral 

components. This is due to the close correlation between the functions and the 

transform basis functions. 

The periodic discontinuties of the step functions produce a series of 

diminishing higher frequency spectral components. The chirp function and the higher 

frequency step function transforms demonstrate that as the input function waveform 

shape departs from the transform basis function set the ability of the transform to 

easily detect features or serve as a means of data compression is reduced. 

The discrete cosine transform demonstrated a similar response to the iteration, 

delta and random data functions as was seen with the discrete Walsh transform. Non-

periodic, discontinuous waveforms or waveforms localised in time produce "noisy" 

spectra with many frequency components which have no easily detectable features 

and provide little scope for data compression. 
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Parallel cosine transform of sine function period=512 

Parallel cosine transform of sine function period=64 

Figure 3.24 1 w o examples of the discrete cosine transform of the sine function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 
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Parallel cosine transform of cosine function period=512 

200 300 400 500 

Parallel cosine transform of cosine function period=64 

too 200 300 400 .500 

Figure 3.25 T w o examples of the discrete cosine transform of the cosine function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 
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Parallel cosine transform of step 1 function period=512 

200 300 400 500 

Parallel cosine transform of step 1 function period=64 

100 200 300 400 500 

Figure 3.26 T w o examples of the discrete cosine transform of the step 1 function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 
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Parallel cosine transform of step 2 function period=512 

Parallel cosine transform of step 2 function period=64 

Figure 3.27 T w o examples of the discrete cosine transform of the step 2 function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 
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Parallel cosine transform of chirp function period=512 

100 200 300 400 500 

Parallel cosine transform of chirp function period=64 

Figure 3.28 T w o examples of the discrete cosine transform of the chirp function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 
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Parallel cosine transform of iteration function 
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Parallel cosine transform of delta function 

Figure 3.29 Examples of the discrete cosine transform of the iteration and delta 

functions where x ±= frequency (Hz) and y = transform coefficient 
magnitudes. 
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Parallel cosine transform of random data 

Figure 3.30 The discrete cosine transform of the random data function 
where x = frequency (Hz) and y = transform coefficient magnitudes. 

3.10 C O M P A R I S O N O F SERIAL A N D PARALLEL IMPLEMENTATIONS OF 

THE DISCRETE COSINE TRANSFORM 

A comparison of die processor farm and hypercube implementations of 

the discrete cosine transform was neglected. The similarity between the parallel Walsh 

and cosine implementations would indicate a similar result for the discrete cosine 

transform as was found for the discrete Walsh transform. 

A comparison of the two Transputer implementation of the discrete cosine 

transform versus a range of commercial microprocessors is given in figure 3.31. 
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DISCRETE COSINE TRANSFORM EXECUTION TIMES 
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Figure 3.31 Serial and parallel processor performance when implementing the 

discrete cosine transform. 

The microprocessor performance results for the discrete cosine transform are 

similar to the Walsh transform performance results. This can be attributed to the 

similarity between the discrete Walsh and cosine parallel algorithms. These results 

further confirm the obsolescence of the T800 Transputer. The results given in figure 

3.31 indicate that a Transputer system consisting of five or more Transputers would 

be required to provide a performance better than that of the Intel 80486. 

3.11 SUMMARY 

The chapter describes a number of possible parallel algorithms for the 

discrete Walsh and cosine transforms. Of the possible implementations of the Walsh 

transform a hypercube based fast Walsh transform algorithm was found to be the most 
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suitable for a Transputer system. A parallel algorithm for the discrete cosine transform 

was also developed. The calculation of the discrete cosine transform via the fast 

Fourier transform and implemented on a hypercube processor topology was found to 

be the most appropriate for the Transputer system. 

A comparison between a parallel Transputer implementation of these 

transforms and a sequential implementation on a range of commercial 

microprocessors was conducted. Results of these comparisons indicate that the T800 

version of the Transputer cannot provide the level of performance found in the current 

generation of microprocessors. Transputer systems of four or more Transputers were 

required in order to provide a superior performance to the current range of sequential 

microprocessors. 

The discrete Walsh and cosine transformations were performed on a number 

of test waveforms in order to determine their ability to distinguish a number of 

periodic or localised signal features. The transform spectra obtained agreed with the 

expected behaviour of the transforms. Both transforms providing simple spectra for 

input functions which matched the transform basis functions. It was found that both 

transforms were unable to provide spectra of any practical value for waveforms which 

either contained a large number of discontinuties or were localised in time. The reason 

for this being the shape and global nature of the transform basis function set of the 

two transforms. 
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CHAPTER 4 

HYPERCUBE IMPLEMENTATION OF TRANSFORMS 

4.1 INTRODUCTION 

It was shown in chapter one that the discrete Walsh transform matrix can be 

determined by performing a recursive Kronecker product operation on Hadamard 

matrices (equation(1.25)). Granata[26] shows that the discrete Fourier, cosine, and 

Hartley transforms can also be expressed in terms of Kronecker products. 

This chapter describes a technique which converts Kronecker products to 

matrix or Hadamard products and allows Kronecker product derived transforms to be 

easily mapped onto hypercube processor topologies, providing an alternative method 

of parallel implementation. 

4.2 KRONECKER DECOMPOSITION AND ITS RELEVANCE TO A 

H Y P E R C U B E I M P L E M E N T A T I O N O F T H E W A L S H T R A N S F O R M 

The discrete Walsh transform can be expressed as a matrix multiplication of a 

data vector and a transform coefficient matrix. Equation(1.23) shows that the 

coefficient matrix can be determined by performing recursive Kronecker products on 

Hadamard matrices as shown by equation(1.25). A parallel algorithm for calculating 

Kronecker products could therefore be easily adapted to calculate a Walsh 

transformation. 

Brewer[7] shows that given equation(1.26) the following results 

A1A2®B1B2 = (A1®B1)(A2®B2). (4.1) 

where A1,A2,B1,B2 are matrices of the type defined above. Choosing 

A! = I A , B 2 = I B gives 
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I A A ® B I B = A ® B = ( I A ® B ) ( A ® I B ) . (4.2) 

Kronecker products are thus expressible as the product of Kronecker products 

of the original matrix and the appropriate identity matrix. Thus repeated Kronecker 

products can be calculated as matrix products by implementing (4.2) recursively. 

Equation (4.2) can be viewed as the product of two matrices which have 

undergone a restructuring operation. A n alternative method is available for effecting 

the matrix restructuring performed by the identity-matrix Kronecker products shown 

in equation(4.2). 

The Kronecker product can be expressed as 

„ \ B*A* p > m 

A ® B H 
[A#B # p < m (4.3) 

where B * = B for m = l , A * = A f o r q = l, B # = B f o r n = l, A # = A f o r p = l 

given that A*, B*, A#, B# are restructured forms of the original matrices A and B. 

Equation (4.3) shows that the Kronecker product can be viewed as two distinct 

operations, a matrix mapping or restructuring operation and an algebraic operation. If 

the matrices can be restructured appropriately the Kronecker product can be reduced 

to a matrix multiplication. 

Where restructuring is required the structure of the matrices is determined by 

altering the binary representation of the matrix row and column indices by adding a 

new "dummy" variable with the required number of bits to the row and column 

indices to create a matrix of the same size as the Kronecker product resultant matrix. 

This is illustrated with the following example. 
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Example 1: 

Given A = au a12 

.a21 a22. 

B = 
bll D12 

b21 V 

The row and column indices of matrix B can be represented in binary form as 

R0 = 0 -> 1, C0 = 0 -> 1 as shown in table 1. Addition of the dummy bit x0 to the row 

and column indices x0R0 = 00 -> 11, x0C0 = 00 -> 11 creates the matrix B* as shown 

in table 2. 

Table 1: 

Matrix B 
Row 

R0 

0 

0 

1 

1 

Column 

C0 

0 

1 

0 

1 

Matrix 
Element 

b» 
b12 

b21 

D22 

Table 2: 

Matrix B* 
Row 
xoR-o 
00 

10 

00 

10 

01 

11 

01 

11 

Column 

X0^o 

00 

10 

01 

11 

00 

10 

01 

11 

Matrix 
Element 

bn 

b„ 
b12 

b12 

D21 

b21 

b22 

b22 
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Expressing these tables in matrix form gives 

B = 
bll b12 

b21 b22. 

B* = 

bn 
b21 

0 

0 

b12 

b22 

0 

0 

0 

0 
bn 
b21 

0" 

0 

b12 

b22. 

The matrix A* is formed by moving the d u m m y bit one place to the right in the row 

and column indices to give R0x0, C0x0. Expressing this in matrix form gives 

A = 
a n a12 

,a21 a22. 

A " = 
0 

a21 

0 

Ml 

l21 

"12 

0 

a22 

0 

""12 

0 

a22_ 

The product of these restructured matrices is B*A* = A ® B. 

When p<m the restructuring uses the same technique as for the case p > m 

with the exception that the position of the d u m m y bits added to the column index are 

reversed in position. For example given 

Example 2: 

A = 
ail ai2 

a21 a22> 
B = [bu b12] 

The matrix B # has the row index R0x0, and the column index x0C0, this gives the 

matrix 

B # = 
'b„ b12 0 0 

0 0 b n b12 
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The Kronecker product can then be given as A ® B = AB#. For the case of 

square matrices of size 2n the above method can be expressed as 

1 

C 1 ® C 2 ® . ..®C n = n c; (4.4) 
l=n 

where the binary row-column indices restructuring is given by 

Matrix 

cn 

c2 
c, 

Row index 

Xj---XoR-i"-Pvo 

XjRi...R()...X0 

Ri...R0xj...x0 

Column index 

Xj...x0Ci...C0 

xi^i...L;0...x0 

U;...L,0Xj...X0 

Kronecker products can be reduced to a matrix multiplication of matrices 

which have been restructured by the addition of an independent dummy variable to 

the row and column index values of the matrix elements. This can be taken a step 

further. The introduction of two independent dummy variables in the matrix 

restructuring results in the algebraic operations which have to be performed on the 

matrices being reduced to a simple element-element multiplication. This is known as 

the Hadamard product (Horn[34]). 

Example 3. 

all 

_a21 

ai2 

a22. 

B = ~K 
Lb21 

b12 

b22J 

A ® B = B*.A* 

given Browindex
 = XlRo' "columnindex = X0^0' Arowjndex = R0Xp Acolunmiadex = C0X0, 

where the dot operator represents the Hadamard product. 
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This element mapping results in the matrices given in equation(4.5) 

A®B = 

K 
b21 

b„ 
b21 

b12 

b22 

b J 2 

b22 

bn 
b21 

bn 
b21 

b12 

b22 

b12 

b22. 

ail 

ail 

a21 

_a21 

ail 

ail 

a21 

a21 

ai2 

ai2 

a22 

a22 

ai2 

ai2 

a22 

a22 

(4.5) 

The matrix restructuring operations can be given a geometric interpretation by 

combining the matrix row-column indices to give the address of the corresponding 

matrix element in a geometric structure. For example the binary representations of the 

row and column indices of matrix B in the first example can be considered as the 

addresses of the elements on a two-dimensional hypercube. 

bll b!2 
00 01 

10 11 
b21 b22 

Figure 4.1 Hypercube representation of matrix B. 

From this viewpoint the matrix restructuring in this example represents a 

mapping of the matrices A and B onto a four dimensional base 2 hypercube, and the 

matrix multiplications required to determine the Kronecker product correspond to data 

transfers and multiplication of matrix elements or vertex values. 

The introduction of the d u m m y variable provides a partial mapping to the 

hypercube, requiring a matrix multiplication to perform the Kronecker product. If the 

matrices A and B are mapped onto the hypercube using two independent dummy 

variables the Kronecker product reduces to a simple multiplication of each of the 
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elements at each hypercube vertex. This can be illustrated using example 3. 

Combining the row-column indices of the matrix elements and mapping the elements 

onto a four dimensional hypercube results in the structure given in figure 4.2. 

a22bll 
1010 | 

a22 b21 
1110 | 

al2r514 
0010 1 

al2b21 
0110 J 

a21bll 
1000 * 

all 
010 

IIOQ4 
^2fb2; 

b2: 

24 

lallbll .4 
r000Q^^* 

r0011 
al2bl2 

III0111 
W 3HJ, DZZ 

"^p^iuii 
Y\ a22bll 
r0001 
allbl2 

|0101 
^aH4j22 

w 1111 
a22 b22 

a21 bl2 
| 1001 

¥ 1101 
a21 b22 

Figure 4.2 Mapping of matrix elements of A and B to a four dimensional 

hypercube. 

The Kronecker product can now be found by multiplying the elements residing on 

each node of the cube. 

The number of dummy variables required when restructuring a matrix can be 

found using equation(4.6) 

pq = b, 

m n = bB
np+nq 

(4.6) 
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where b A = numbering base of matrix A, n m = number of row dummy variables of 

matrix A, nn = number of column dummy variables of matrix A. The unit index of a 

vector or its transpose are not used in the restructuring process with the dummy 

variables for a unit index being set to zero. 

Laksmivarahan[42] shows that the hypercube is a member of the family of 

(n,b,k) cubes where n is the number of vertices or nodes, b is the base of the node 

numbering system and k is the dimension of the cube. A complete cube satisfies 

equation (4.7) 

n = b \ (4.7) 

Kronecker products of matrices of size other than 2a x 2b can be represented 

as element wise multiplications on (n,b,k) cubes. The criteria for the choice of cube 

being that the (mnpq) elements of the Kronecker product resultant matrix map 

efficiently to the nodes of the cube, allowing even balancing of processor workload. 

The mapping of a Kronecker product to an incomplete, base three cube is 

given in example 4. 

Example 4. 

Given A = 
ln 
42lJ 

B = [bn b12 b13] 

The matrix resulting from the Kronecker product will have mnpq = 6 elements 

therefore a cube with six nodes would be optimal, a (6,3,2) incomplete cube provides 

the required number of nodes. Restructuring A and B using equation (4.6) gives the 

tables shown below. 
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Matrix A 

K0X0 

00 

01 

02 

10 

11 

12 

Element 

an 
an 
an 
a21 

&21 

a21 

Matrix B 

xo^o 
00 

10 

01 

11 

02 

12 

Element 

b„ 

b„ 

bi2 
b12 

b13 

b13 

The matrix elements can now be mapped to the (6,3,2) cube vertices with the addresses 

given in the tables. 

a11b13 
02 

a21b13 
12 

a21b12 

00 01 
a11b11 a11b12 

Figure 4.3 Mapping of matrix elements A and B to a (6,3,2) cube. 

Similarly Kronecker sums can be mapped to hypercube structures, the only 

variation in the operation being that the elements mapped to cube nodes are added 

rather than multiplied. As the operations performed on each node are the same these 

algorithms could be easily ported to either MIMD or SIMD architectures. 
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If the number of processors does not match the size of the resultant matrix 

each node m a y be loaded with more element operations by mapping onto the 

hypercube the restructured matrices determined for the matrix multiplication 

technique. 

Example 5. 

Calculating a Kronecker product on a four node hypercube 

A = 
all 

a21 

&12 

a22. 

A 

B = 

®B = B*A' 

bn 

_b2i 

b12 

b 2 2 

The matrix rows are divided between the available hypercube processors as shown 

below. 

b„ 

b2i 

0 

0 

b12 

b22 

0 

0 

0 

0 

bn 

b21 

0 ' 

0 

bn 

b22_ 

"an 
0 

a21 

0 

0 

all 

0 

a21 

ai2 

0 

a22 

0 

0 

ai2 

0 

a22 

Processor 1 

Processor 2 

Processor 3 

Processor 4 

Processor 1 

all,al2,bll,b!2 

a21,a22,bll,bl2 

Processor 3 

Processor 2 

all,al2,b21,b22 

Ia21,a22,b21,b22 

Processor 4 

Figure 4.4 Mapping of matrix rows onto hypercube. 
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Multiplication of elements on each processor results in the following resultant matrix 

distributed over the hypercube. 

Processor 1 

Processor 2 

Pr ocessor 3 

Processor 4 

anbn 

anb2i 

a21bn 

anbi2 

anD22 

a21b12 

a^bn 
ai2b2i 

a22^n 

anbi 2 

a12b22 

a22D12 

a2l'-,21 a21D22 a22b21 a 2 2 D 
22. 

4.3 S U M M A R Y 

To summarise, the Kronecker product can be determined by means of either a 

matrix multiplication, or a set of simple matrix element multiplications dependant 

upon the structure of the constituent matrices. This ability makes them amenable to 

parallel calculation on hypercubes utilising a simple mapping algorithm. The Walsh 

transform can then be performed by mapping the data vector elements to the 

processors in the same manner as the matrix elements. 

The advantages of these techniques are that first, Walsh transforms via 

Kronecker products can be calculated in parallel on hypercubes without the need for 

application specific processor topologies. Secondly the programming complexity 

commonly associated with parallel algorithms is avoided and thirdly the algorithm can 

be easily scaled to fit the available processor topology. 

The drawback of the Kronecker method of determining the Walsh transform is 

that it requires N 4 operations as compared to the N l o g N operations of the fast Walsh 

transform. But when creating a parallel implementation other factors should be 

considered. For a two transputer system approximately 1 0 % of the processing time 

used to perform the fast Walsh transform was taken up performing inter-processor 

communications and the bit-reversal. These figures will fluctuate for varying size 

datasets and processor topologies. The lack of inter-processor communications or bit-
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reversal operations for the Kronecker product Walsh transform implies that the 

theoretical performance improvement will be proportional to the number of 

processors used. Also the mapping of the Kronecker product on a hypercube topology 

is less complex than that required for the fast Walsh transform, particularly for large 

datasets. 

It is undeniable that the fast Walsh transform is a more efficient algorithm, 

requiring fewer operations. However given the advantages of the Kronecker algorithm 

an investigation of the performance of the two algorithms for varying size datasets 

and processor networks would be recommended. The two transputer system used to 

implement the fast Walsh algorithm is not large enough to permit valid performance 

comparisons. 
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CHAPTER 5 

PARALLELISING THE HAAR AND D4 WAVELET TRANSFORMS 

5.1 INTRODUCTION 

The Haar transform is an example of a transform with both global and local 

basis functions. The basis functions of the D4 wavelet transform are all local in 

extent. Transforms such as these are being widely used in applications where 

detection of transient features is required. Many of these applications would benefit 

from the improved computational performance which can be achieved by applying 

parallel processing techniques. 

5.2 IMPLEMENTATION OF THE HAAR TRANSFORM USING 

TRANSPUTERS 

The signal flow graph of the one-dimensional Haar transform (figure 1.5) 

displays a pyramidal structure. Algorithms for two-dimensional Haar transforms for 

image processing have reinforced this pyramidal structure suggesting a matching 

parallel implementation on a pyramidal processing topology (Corrioli[9]). This 

suggests that for the one-dimensional Haar transform a mapping onto a binary tree 

topology may provide a efficient parallel implementation. 

Figure 5.1 illustrates a binary tree topology for an eight datapoint Haar 

transform, each node performing an addition and subtraction of the data transmitted 

from the nodes further up the tree. The results are then multiplied by the appropriate 

coefficients. Members of the resulting transform vector appear on the nodes shown, 

transmission of these results up the tree would allow the vector to be "assembled" at 

the root node by the end of the calculation. Large datasets could be distributed across 

smaller binary tree structures by grouping calculations on nodes with a corresponding 
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increase in the complexity of operations required at each node, this could be seen as a 

move in the continuum from "fine-grained" parallel processing to a "coarse-grained" 

parallel processing approach. 

x(0) x(l) x(2) x(3) x(4) x(5) x(6) x(7) 

Figure 5.1 Implementation of the Haar transform on a binary tree processor topology. 

One of the criticisms of parallel processing algorithms is that many algorithms 

require their o w n unique processor topology for optimal operation. In the case of the 

Haar transform it is possible to remove this shortcoming by transferring the binary 

tree topology to the hypercube processor topology which has already been used for the 

parallel implementation of the fast Walsh and fast Fourier transforms. Figure 5.2 

shows one way of distributing the Haar transform data across a hypercube and the 

data communications that would be required between nodes in order to perform the 

Haar transform. It can be seen that there is no communications performance loss when 

transferring between topologies In the example given when distributing data there is a 

maximum transmission length of three, the dimension of the hypercube and the depth 
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of the binary tree. When performing the transform three sets of inter-nodal 

communications are required for both topologies. 

». First data movement 

_ Second data movement 

. _ ^. Third data movement 

Figure 5.2 Implementation of an eight datapoint Haar transform on a Hypercube processor topology. 

The hypercube data transfers required can be generalised. A data transfer 

algorithm expressed as pseudo code was found and is shown below. 

PARALLEL 

FOR J = 0 T O CUBE_DIMENSION-l 

FOR I = 0 T O NUMBER_OF_NODES-2 STEP 2 

X(I) <- X(I) - X(2J +1) 

E N D PARALLEL 

5.3 APPLICATION OF THE HAAR TRANSFORM TO PERIODIC AND 

NON-PERIODIC FUNCTIONS 

As mentioned in 1.3.3 the Haar transform consists of basis functions some of 

which are defined globally over the transformation dataset and some which are 

defined locally over the transformation dataset. This gives the Haar transform a 
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sensitivity to local singularities not found in more traditional transformations such as 

the Walsh, cosine and Fourier transforms. 

The Haar transform was performed on a number of waveforms in order to 

observe its response to test data ranging from periodic functions to datasets containing 

local singularities. 

The Haar transform of the trigonometric functions shown in figures 5.3-5.4 

reveal a distinctive spectra with components not as differentiated as equivalent Walsh 

transform spectra due to the localised square wave basis functions of the Haar 

transform. As with the Walsh transform higher frequency waveforms cause a 

spreading of spectra components. The increase in the number of spectral components 

for increased signal frequencies is due to the local nature of the basis functions. 

Higher frequency global input functions require a number of higher sequency Haar 

basis functions to provide an accurate representation. This can be seen using the 

example of a simple function such as a square wave. Determine the Haar basis 

functions required to represent a simple square wave, then compare this with the basis 

functions required to construct the same function at a higher frequency. A greater 

number of basis function/spectral components are required due to the local nature of 

the basis functions. 

The decrease in the amplitude of the Haar transform coefficients when the 

input function frequency is increased is due to the increasing amplitude of the higher 

sequency Haar basis functions as given by equation(1.29). 
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The Haar transform provides an easily distinguishable spectra for the step 

functions similar to the Walsh transform. The prominent periodic sequency 

components of the spectra caused by representing a periodic wave train with higher 

sequency basis functions which are localised in time. 

As with the Walsh transform the Haar transform of the chirp function 

produces a complex spectra not easily amenable to detection. The sharp variations in 

amplitude of the single cycle chirp function generate many spectra components. 

Higher frequency chirp functions give a Walsh transform of unique global spectra 

components while the Haar transform shows a repetitive spectral structure because the 

basis functions are localised in time and so repeat along the spectrum. 

The Haar transform provides a simple spectra for the delta function. The 

inclusion in the basis function set of localised square waves allows the delta function 

to be represented by a few discrete spectral components. A decaying non-periodic 

function such as the iterative function can also be represented by a decaying series of 

localised square waves as shown in figure 5.8. 
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Parallel Haar transform of sin(x) period = 512 

Parallel Haar transform of sin(x) period = 64 

Figure 5.3 T w o examples of the discrete Haar transform of the sine function 
where x = Haar basis function sequence number and y = transform 
coefficient magnitude. 

95 



Parallel Haar transform of cos(x) period = 512 

Parallel Haar transform of cos(x) period = 64 

Figure 5.4 T w o examples of the discrete Haar transform of the cosine function 
where x = Haar basis function sequence number and y = transform 
coefficient magnitude. 
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Parallel Haar transform of stepl function period = 512 

400 500 

Parallel Haar transform of stepl function period = 64 

'wunilllllll'l 1 1 1 I | 11 
— i — 

too zoo 300 400 500 

Figure 5.5 T w o examples of the discrete Haar transform of the step 1 function 

where x = Haar basis function sequence number and y = transform 
coefficient magnitude. 
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Parallel Haar transform of step2 function period = 512 

§ 

o *«l | ' | 

too 200 300 400 500 

Parallel Haar transform of slep2 function period = 64 

100 200 300 400 500 

Figure 5.6 T w o examples of the discrete Haar transform of the step 2 function 

where x = Haar basis function sequence number and y = transform 
coefficient magnitude. 
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Parallel Haar transform of chirp function period = 512 

too 200 300 400 500 

Parallel Haar transform of chirp function period = 64 

too 200 300 400 500 

Figure 5.7 T w o examples of the discrete Haar transform of the chirp function 

where x = Haar basis function sequence number and y = transform 
coefficient magnitude. 
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Parallel Haar transform of iteration function 

too 200 300 400 500 

Parallel Haar transform of delta function 

" 500 

Figure 5.8 Examples of the discrete Haar transform of the iteration and delta 
functions where x = Haar basis function sequence number and 

y = transform coefficient magnitude. 
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Parallel Haar transform of random data 

Figure 5.9 The discrete Haar transform of the random data function 
where x = Haar basis function sequence number and 
y = transform coefficient magnitude. 

5.4 C O M P A R I S O N O F SERIAL A N D P A R A L L E L H A A R T R A N S F O R M 

IMPLEMENTATIONS 

The processor performance of the serial and parallel implementations of the 

fast Haar transform given in figure 5.10 exhibit the same behaviour as that found for 

die other transforms under study. The overall execution time for a given processor of 

the Haar transform is faster than that of the Walsh transform but slower than the D4 

wavelet transform. This is in keeping with expectations given the observed theoretical 

calculation requirements of each of these transforms. The relative performance of the 

different serial and parallel implementations is the same as that found for the other 
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transforms. As the parallel algorithms employed for the various transforms are 

dissimilar this reinforces the view that the T800 Transputer as a microprocessor has 

an inferior performance to the current generation of commercial microprocessors. 

350 -r 

Execution time 

mS 

Processor Performance 

Fast Haar Transform 

200 300 

Dataset size 

Double precision floating point numbers 

400 

TWO TRANSPUTERS 

80386SX-16Mhz 

—£—80486-33Mhz 

—5^—80286 

Figure 5.10 Serial and parallel processor performance when implementing the fast 

Haar transform. 

5.5 T H E H A A R T R A N S F O R M A S A P A R T I C U L A R E X A M P L E O F 

W A V E L E T S 

As was mentioned in section 1.3.3 the basis functions of the Haar transform 

can be expressed as a set of periodic rectangular waveforms as given by 

equation(1.29), or they can be generated using the techniques devised for developing 

wavelet functions. Equation(1.30) shows that a wavelet function sometimes referred 

to as a "mother" wavelet is created by the summation of a series of translations and 

dilations of a scaling function (j>. The scaling function in turn is determined by the 

iteration of an initial scaling function <|)0 (see equation(1.31)). 
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A s outlined by Strang[69] a specific wavelet function is determined by the 

choice of the initial scaling function <|>0 and the coefficients C k. For example using the 

box function shown in figure 5.11 as the initial scaling function and assigning the 

coefficients C 0 = C 1 = 1 to equation (1.31) results in an invariant scaling function 

shown by equation(5.1). 

<k(x) = (|>0(2x) + (|>0(2x-l). (5.1) 

Using (j)j in equation(1.30) generates the wavelet function 

\|f(x) = (|)(2x) - <j»(2x-l). (5.2) 

Figure 5.12 shows this function to be one of the Haar basis functions. 

y A 

•> 

Figure 5.11 B o x function used as initial scaling function. 

103 



Vj/(x) 

-> 

Figure 5.12 Haar wavelet function. 

Daubechies[20] shows that for a given wavelet basis function families of 

wavelet functions consisting of translations and dilations of the basis function may be 

generated using equation (5.3) 

¥**(*) = 2 > ¥ ( 2
m x - n ) (5.3) 

The application of equation(5.3) to the Haar wavelet function produces a family of 

equations some of which are given in equation(5.4). Figure 5.13 shows that these 

equations represent the Haar basis functions 

¥o,o(x) = V( x) 

\|/li0(x) = V2\|f(2x) 

VyCx) = V2~\|/(2x-l). 

(5.4) 
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¥o,o(x) 

1 

VwOO 
s/2-' 

Vu(
x) 

N/T' 

^ 
1/2 

1/2 4 

Figure 5.13 First three Haar wavelet functions. 

Given these basis functions it is possible to create a discrete matrix of values 

(equation(1.32)) which can be employed as the coefficient matrix in the discrete Haar 

transform (equation(1.33)). A wide variety of wavelet functions and consequently 

wavelet transforms can be created using these techniques. 

5.6 PARALLEL IMPLEMENTATION OF A D4 WAVELET TRANSFORM 

AND COMPARISON WITH A SERIAL IMPLEMENTATION 

5.6.1 PARALLEL IMPLEMENTATION OF A D4 WAVELET TRANSFORM 

The development of the wavelet transform is outlined by Strang[69]. The 

discrete Daubauchies D4 wavelet transform is shown by Press [54] to be based on the 

matrix 
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(5.5) 

=>3 

0 

0 

0 

'C2 

0 

0 

cl 

co 

c3 

c0 

Ci 

" C 2 

• 

c2 
c, 

• 

c3 

-c 

Cj c0 

Co 
C3 

0 " 
0 
0 
0 

Cl 

- C 2 _ 

The one dimensional discrete D 4 wavelet transform consists of a series of 

matrix multiplications and vector sort operations. Initially on the full dataset N and 

subsequently on successive bisections of the data vector. The transform is completed 

when the dataset to be operated on is reduced to a trivial number usually two. 

Equation (5.6) demonstrates a D 4 wavelet transform given a dataset size N = 8. 

step 1: 

(5.6) 

0 

0 

0 

0 

-c2 

0 

0 

0 

0 

c3 
-c 

o 

0 

0 

0 

0 

^3 

-c 

Ci 

-c2 

0 

0 

0 

0 

o 

0 

0 

0 

0 

0 

0 

C3 

- C 0 

cl 

-c2 

0 

0 

0 

0 

0 

0 

Co 

0 

0 

0 

0 

c3 
-c0 

Ci 

~C2. 

xo 

xi 

X 2 

x3 

x4 

X5 

X6 

- X 7 _ 

_ 

Z0 

Zl 

z
2 

z3 

Z 4 

Z5 

Z6 

. Z 7 . 

-> 

Z0 

Z
2 

Z 4 

Z6 

Zl 

z3 

Z5 

. Z 7 . 
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step 2: 

vi 

~c2 

c3 

-o i] c
3 

-c„ 
[zol 
z
2 

Z 4 

LZ6. 

—. 

y0 
yi 

y2 

J3. 

-> 

"y0" 

y2 
y3 
y4 
zi 

z3 
Z5 

. Z 7 . 

The successive halving of the number of operations with each step of the 

transform in a similar manner to the Haar transform reveals the pyramidal nature of 

the algorithm. This can be seen by representing the D4 wavelet transform for N = 8 as 

a signal flow graph as shown in figure 5.14. A graphical representation of the 

transform assumes a prism-shaped topology. 

The application of the D 4 transform to larger datasets results in a larger prism 

consisting of layers of smaller prisms as shown in figure 5.15. 
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Figure 5.14 Signal flow graph of D 4 transform for N = 8. 

Multiplication of the data by the appropriate coefficients has been deleted 

from figures 5.14 and 5.15 as it is intended to provide a general outline of the 

transform operation. A more detailed examination of the operations at each node is 

given in figure 5.16. 
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Figure 5.15 Signal flow graph of D4 transform N = 16. 

COdO + Cldl + C2d2 + C3d3 

[C3d0 - C2dl + Cld2 - C0d3] 

C2d0 + C3dl 

CldO - C2dl 

CO Cl C2 C3 -C0C1-C2C3 

C0d2 + Cld3 +C2d4 + C3d5 

[C3d2 - C2d3+ Cld4 - C0d5] 

C2d2 + C3d3 

Cld2 - C0d3 

CO Cl C2 C3 

C2d4 + C3d5 

Cld4 - C0d5 

C0C1-C2C3 

Figure 5.16 A detail of the operations performed at two nodes of the D 4 transform. 
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Figure 5.16 shows the operations that would occur at two nodes in the prism 

topology. The operations performed at all nodes consist of appropriate coefficient 

multiplication as shown and addition of terms. The terms shown in square brackets 

travel along their arcs without being multiplied by the coefficient associated with that 

are. 

A drawback of this implementation of a parallel D4 wavelet transform is that 

it requires a relatively exotic processor topology in order to perform the 

transformation. Embedding the prism topology in a more widely used topology would 

eliminate this problem. Investigations revealed that it is possible to embed the prism 

topology in a hypercube structure using a variation on the technique given by 

Leighton[43] for embedding binary trees in hypercubes. 

In order to describe the algorithm for embedding a prism in a hypercube it is 

first necessary to define terms. The front faces of the prism processor structure 

resemble a binary tree. It is convenient therefore to borrow from tree terminology and 

refer to a node closer to the top of the structure as the ancestor node of the nodes 

connected to it further down the prism. The nodes closer to the base of the prism are 

descendants of the node to which they are connected higher up the structure. 

x 
£ - x is an ancestor of y,z 

V k 
w W - decendants of x 

Figure 5.17 Node relationships. 
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Given these definitions the prism embedding algorithm takes the following 

form. 

a. All ancestor nodes are transferred to a descendant node. 

b. Nearest neighbour nodes on the same level within a prism structure must 

remain nearest neighbours after embedding (see figure 5.19). 

The nearest neighbour continuity criterion is met by transferring an ancestor node to a 

descendant node using equation 5.7, given the node numbering system given in 

figure 5.18. 

-r*+i 
n d = 2 n . + — — 

nd = Decendant node (5.7) 

n„ = Ancestor node 

Figure 5.18 Node numbering system for hypercube embedding.. 

A step by step example of embedding a prism for N = 8 into a hypercube is given in 

figure 5.19. 
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A^7 1,8,12 2,3 

Figure 5.19 Embedding of the prism for N = 8 into a hypercube. 

The transfer of data through the prism layers is removed by hypercube 

embedding as ancestor nodes are transferred to descendant nodes. The number of 

concurrent data transfers required was found to be 

concurrent data transfers = 2n 

n = number of prism layers 
(5.8) 

For a hypercube implementation of the D 4 wavelet transform the communication 

overhead can be seen to grow linearly with the size of the transformation. 
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Therefore the D4 wavelet transform can be performed efficiently in parallel on 

the same hypercube topology as was used for the Fourier, Walsh, cosine and Haar 

transforms. This means that the discrete D4 wavelet or any semi-circulant matrix 

transform can be performed on the widely used hypercube parallel topology which has 

also been found to be suitable for the other transforms studied in this thesis. 

5.6.2 COMPARISON OF SERIAL AND PARALLEL IMPLEMENTATIONS OF 

THE D4 WAVELET TRANSFORM 

A comparison of the serial and parallel implementations of the D4 wavelet 

transform is given in figure 5.20. 

Execution time 
(mS) 

100 

Processor Performance 
D4 Wavelet Transform 

-•—80486-33 

-80286 

-*— 80386SX-16 

-**~~TWO TRANSPUTERS 

200 400 300 

Dataset size 
Double precision floating point numbers 

500 600 

Figure 5.20 Serial and parallel processor performance when implementing the D4 

wavelet transform. 

The processor performance of the serial and parallel implementations of the 

D4 wavelet transform are similar to those given for the fast Walsh transform. Overall 

performance of all D4 wavelet implementations is better than that given for the fast 

Walsh transform. This is understandable given the greater computational effort 
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required to perform the global Walsh transform in comparison to the wavelet 

transform which is performed on an ever decreasing scale. 

Processor comparisons show once again that two transputers perform faster 

than the 80386SX microprocessor. The two transputers although being older 

processors, split the task. Also an on-chip floating point unit operating in parallel with 

the CPU give it an improved performance over the more modern 80386SX, 

particularly in situations such as the wavelet transform where the majority of 

calculations are floating point operations. 

The performance of the transputer compared with the 80486 which also 

possesses on-chip FPU is not impressive. Figure 5.20 shows a marginal improvement 

over the fast Walsh transform performance. This can be attributed to the lower 

communications overhead of the D4 wavelet transform as shown by comparing figure 

5.21 and figure 3.20. Given the linear growth in communication overheads for the 

hypercube implementation given in 5.6.1, figure 5.20 indicates that a hypercube 

consisting of four or more T800 transputers would give a performance equal to or 

better than the 80486 for performing the D4 wavelet transform. This estimate would 

be less for the more modern T9000 transputer. 
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Performance analysis 

Two Transputer D4 Wavelet transform 

256 512 1024 2048 

Dataset size 

Double precision floating point numbers 

Figure 5.21 An analysis of computational resource demand by major operations 

within a two transputer D4 Wavelet transform implementation. 

5.6.3 APPLICATION O F T H E D 4 W A V E L E T T R A N S F O R M T O 

PERIODIC AND NON-PERIODIC FUNCTIONS 

In many instances the spectra resulting from the D4 wavelet transformation 

were similar to those of the Haar transform. Like the Haar transform the locally 

defined basis functions of the D4 wavelet transform provide it with a sensitivity to 

local singularities or transient signals. This can be seen in the D4 wavelet transform of 

the delta function. In the case of smooth periodic and non-periodic functions such as 

the trigonometric and iteration functions the D4 wavelet transform produced more 

spectral components than the globally-defined transforms but fewer than the Haar 

transform. Consequently the D4 wavelet transform may be better at identifying 

transient signals embedded in smooth signal fluctuations. The step function 

transforms were not as clear as those from the Haar transform due to the close 
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similarity between the test function and the Haar basis functions. As with all the 

transforms examined functions with large numbers of discontinuties such as the chirp 

and random noise functions provided a D 4 wavelet transform with many components 

and no clearly identifiable features. 

Parallel D4 Wavelet transform of random data 

§• 
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CM 
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' 
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"•IH "i*» [ ""jp*» 'I'^MUN*'"*"; tit i r i r ' " i p "i «r.***Tr rj*ni 

100 zoo 300 400 500 

Figure 5.22 D 4 Wavelet transform of random data. 
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Parallel D4 Wavelet transform of sin(x) period = 512 

Parallel D4 Wavelet transform of sin(x) period = 64 

400 500 

Figure 5.23 D 4 Wavelet transfonn of the sine function. 
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Parallel D4 Wavelet transform of cos(x) period = 512 

Parallel D4 Wavelet transform of cos(x) period = 64 

Figure 5.24 D 4 Wavelet transform of the cosine function. 
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Parallel D4 Wavelet transform of stepl function period = 512 

Parallel D 4 Wavelet transform of stepl function period = 64 

Figure 5.25 D 4 Wavelet transform of the Step 1 function. 
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Parallel D 4 Wavelet transform of step2 function period = 512 

500 

Parallel D4 Wavelet transform of step2 function period = 64 

Figure 5.26 D 4 Wavelet transform of the Step2 function. 
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Parallel D 4 Wavelet transform of chirp function period = 512 

100 200 300 400 500 

Parallel D4 Wavelet transform of chirp function period = 64 

100 200 300 400 500 

Figure 5.27 D 4 Wavelet transform of the Chirp function. 
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Parallel D4 Wavelet transform of iteration function 

400 500 

Parallel D4 Wavelet transform of delta function 

500 

Figure 5.28 D 4 Wavelet transform of the Iteration and Delta functions. 
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5.7 S U M M A R Y 

This chapter has shown that the Haar transform can be implemented in parallel 

using a binary tree topology which can be easily embedded in a hypercube processor 

topology. Also the D4 wavelet transform can be represented by a pyramidal or prism 

shaped structure which also can be embedded into a hypercube in a manner similar to 

that used to embed binary trees. 

The performance comparisons of both the D4 wavelet and Haar transforms on 

Transputers and commercial microprocessors were similar to that found throughout 

this thesis. In order to provide performance superior to standard personal computers 

Transputer systems of four or more Transputers are required. 

Both transforms demonstrated a capability to identify transient signals as well 

as providing interpretable spectra of smooth periodic functions. The D4 wavelet 

transform produced a similar spectra to that of the Haar transform. But for most of the 

test waveforms produced fewer spectral components, demonstrating a greater ability 

to compress data than the Haar transform. Both transforms could not provide a clear 

spectra of highly discontinuous functions. 

123 



CHAPTER 6 

CONCLUSION 

6.1 INTRODUCTION 

The aim of this thesis has been to determine parallel processing 

algorithms and architectures for a number of representative discrete transforms in 

order to improve transform processing performance. Another aspect was to investigate 

the ability of these discrete transforms to detect various types of features in signals. 

This chapter details the conclusions drawn from this work and suggests possible areas 

of future investigation. 

6.2 CONCLUSIONS AND SUGGESTIONS FOR.FUTURE WORK 

Discrete transformations can be used to facilitate the detection of features in a 

signal. The closer the similarity between the feature being searched for and the 

transform basis functions the simpler the spectrum. The ability of a transform to 

detect a particular type of feature therefore is dependant upon its basis function set. 

This was demonstrated by the spectrum of localised waveforms produced by 

transforms with global basis function sets. Transforms with basis function members 

which were also local in extent were more successful in detecting localised features. 

It has been shown that it is possible to implement discrete transforms either in 

software as programs or in hardware as purpose designed microchips. The hardware 

implementation has the advantage of speed, being faster than the software 

implementation. But hardware designs are dedicated to one transform and operate on 

small datasets whereas a software implementation can be more generalised. A number 

of different transforms can be implemented in software to allow optimal performance 

when attempting to detect different features. The choice between these two 

alternatives is dependant upon the application requirements. 
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The software alternative can be increasingly employed in areas currently 

requiring a hardware solution by improving its performance. This can be brought 

about by applying parallel processing techniques. Investigations conducted during the 

course of this thesis have found that a number of different parallel implementations of 

transforms are possible, the form of the implementation causing great variations in 

processing performance. The major pitfalls in many of the inefficient algorithms being 

large communications overheads, communications contention or unbalanced 

processor loading. Another common complaint is that even if the parallel algorithm is 

efficient and reduces processing time it requires a special machine or processor 

topology which is unlikely to find use outside that particular application. This makes 

the parallel solution no better than the customised chip alternative. 

It was found that the transformations reviewed in this thesis, which are 

representative of a wide range of commonly used transforms, were all amenable to 

efficient implementation on a hypercube processor topology. A number of parallel 

algorithms were developed for this type of architecture with none demonstrating the 

contention or load unbalancing problems mentioned above. Also the hypercube is a 

common parallel configuration which can be found in a number of commercial 

computers. This provides two benefits. Increased processing power, allowing the 

execution of signal transforms and associated operations such as template matching in 

real time. Secondly the ability to perform a number of transformations concurrently, 

enhancing the ability to identify a number of disparate features in a signal or image. 

While investigating the parallelisation of transforms a new technique was 

found for performing tensor or Kronecker product calculations. This consisted of 

converting the tensor product to a Hadamard product by appropriate mapping of the 

component matrices onto the processor topology. This was the kernel for a new 
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parallel algorithm for performing any discrete transform which can be expressed as a 

Kronecker or tensor product. 

The performance of the T800 transputer which was used as the "building 

block" of the processor topologies was found to be inadequate, and provided an 

example of the short lifetime of microprocessor technology. The age of the T800, and 

the unusually long development time of a faster replacement have meant that the T800 

as a stand alone microprocessor, or in a "coarse-grained" parallel configuration is no 

longer competitive with conventional microprocessors. This means that if a parallel 

implementation is to provide better performance than conventional microprocessors 

increasing numbers of processors have to be employed. This is a limited solution as 

processor communication and economic overheads increase with larger scale 

machines. 

Given the availability of more powerful processors parallel processing can 

provide a powerful tool for performance enhancement of computationally intensive 

tasks. The software development performed in the course of this thesis revealed two 

drawbacks to parallel processing development. These were the programming 

complexity associated with larger M I M D parallel applications and the complexity of 

algorithm design. 

A possible area of future work would be to investigate the growth of program 

complexity in M I M D applications and possible alternatives such as employing S I M D 

techniques or the development of more sophisticated programming tools and graphic 

user interfaces to aid M I M D parallel program design. 

A parallel algorithm was developed for transforms which can be expressed as 

Kronecker or tensor products. Further work could be performed to investigate the 
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Parallel processing techniques can bring performance improvements to 

computationally intensive tasks. This investigation into parallel algorithms and 

architectures has provided an insight into an area of great potential which is being 

used at an increasing rate to meet the processing needs of the computing community. 
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APPENDIX A 

TRANSPUTER TRANSFORM SOURCE CODE 

Two Transputer Parallel Fourier Transform 

Configuration File: 

! Configuration file for two transputer fourier transform 

! fourier.cfg 

processor host ! the PC 
processor root ! transputer 0 
processor Tl ! transputer 1 

wire jumper host[0] root[0] 
wire jumper 1 root[2] Tl[l] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
taskfft2p_pl ins=3 outs=3 
task fft2p_p2 ins=l outs=l 

place afserver host ! afserver runs on PC 
place filter root ! filter and wt2p_pl run on root transputer 
place fft2p_pl root 
place fft2p_p2 Tl 

connect ? afserver[0] filter[0] 
connect ? filter[0] afserver[0] 
connect ? filter[l] fft2p_pl[l] 
connect ? fft2p_pl[l] filterfl] 
connect ? fft2p_pl[2] fff2p_p2[0] 
connect ? fft2p_p2[0] fft2p_pl[2] 
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Processor 0 Program: 

/* FFT HOST PROCESSOR PROGRAM */ 

#include <stdio.h> 
#include <stdlib.h> 

#include <dos.h> 
#include <math.h> 
#include <chan.h> 

#defme DATASIZE 512 
#defineK 6.2831853071796/DATASIZE 

#define DATASPLIT DATASIZE/2 
#define BUTTERFLIES log(DATASIZE)/log(2) 

struct datastruct { 
double real; 
double imaginary; 

}; 

void Butterfly l(int,int,stract datastruct *); 
void Dist_FFT_l (struct datastruct * ) ; 

void BitReversal(int * ) ; 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 

int argc,ins,outs; 
char *argv[], *envp[]; 

{ 
int i,index[DATASIZE],*indexptr; 
char *buffer; 
double temp[DATASIZE]; 
struct datastruct complexresult[DATASIZE], 

complextemp [DATASIZE], *complexptr; 
FILE *infile, *outfilel,*outfile2; 

/* Memory check, File check and read */ 

buffer = (char *) calloc(DATASIZE,sizeof(struct datastruct)); 
if(buffer==NULL) 

{ 
printf("Memory allocation failedAn"); 
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exit(O); 

} 
if((infile = fopen("e:\\rod\\trnsfrms\\pfourier\\results\\ltfl8.dat","rb")) == 

N U L L ) 

{ 
printf("Unable to open file.\n"); 
exit(O); 

} 
fread(temp,sizeof(double),DATASIZE,infile); 

fcloserinfile); 

for(i=0;i<DATASIZE;i++) 

{ 
complextemp[i] .imaginary = 0.0; 
complextemp[i].real = temp[i]; 

} 

/* Data distribution to other processors */ 

complexptr = DATASPLIT + complextemp; 
indexptr = D A T A S P L I T + index; 

chan_out_message(sizeof(struct 
datastruct)*DATASIZE,complextemp,out_ports[2]); 

/* Perform Processor 1 FFT */ 

Dist_FFT_l (complextemp); 

/* Perform Bit Reversal */ 

BitReversalrindex); 

/* Collect data from other processors */ 

chan_in_message(sizeof(struct 
datastruct)*(DATASPLIT),complexptr,in_ports[2]); 

chan_in_message(sizeof(int)*(DATASPLIT),indexptr,in_ports[2]); 

for(i=0;i<DATASIZE;i++) 

complexresult[i] = complextemp[index[i]]; 

/* Write results to file */ 

if((outfilel = fopen("e:\\rod\\tmsfrms\\pfourier\\results\\rfftrslt.l8","wb")) == 

N U L L ) 

{ 
printf("Unable to open fileAn"); 
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exit(O); 

} 
for(i=0;i<DATASIZE;i++) 

temp[i] = complexresult[i].real; 
fwrite(temp,sizeof(double),DATASIZE,outfilel); 

fclose(outfilel); 

if((outfile2 = fopen("e:\\rod\\trnsfrms\\pfourier\Vesults\\ifftrslt.l8","wb")) == 

N U L L ) 

{ 
printf("Unable to open file.Xn"); 
exit(O); 

} 
for(i=0;i<DATASIZE;i++) 

temp[i] = complexresult[i].imaginary; 
fwrite(temp,sizeof(double),DATASIZE,outfile2); 

fclose(outfile2); 

return(0); 

} 

void Dist_FFT_l (struct datastruct *complextemp) 

{ 
int i,currentsize,j=0,iter=l; 
struct datastruct ctemp [DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

ctemp [i] = complextemp [i]; 

/* Step 1 for Two Processors */ 

while(j < currentsize) 

{ 
complextemp [j].real = ctemp[j].real + ctemp[j+currentsize].real; 
complextemp[j].imaginary = ctemp[j].imaginary 

ctemp[j+currentsize] .imaginary; 

} 
currentsize = currentsize / 2; 

/* FFT Butterfly */ 

while (currentsize >=1) 

{ 
iter++; 
Butterflyl(iter,currentsize,complextemp); 
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currentsize /= 2; 

} 

} 

void Butterfly 1 (int iter,int currentsize,struct datastruct *complextemp) 

{ 
intij; 
struct datastruct temp [DATASIZE]; 
double x,y,rl,r2,imag; 

for(i=0;i<DATASIZE;i++) 
temp[i] = complextempfi]; 

i = 0; 
while(i < DATASPLIT) 

{ 
j = 0; 
while (j < currentsize) 

{ 
complextemp [i].real = temp[i].real + temp [i+currentsize] .real; 
complextemp [i] .imaginary = temp [i] .imaginary + 

temp[i+currentsize] .imaginary; 

j++; 
i++; 

} 
3 = 0; 
while (j < currentsize) 

{ 
rl = temp[i-currentsize].real - temp[i].real; 
r2 = -rl; 
imag = temp[i-currentsize].imaginary - temp[i].imaginary; 

x = cos(K*j*iter); 
y = sin(K*j*iter); 
complextemp [i].real = (x*rl) + (y*imag); 
complextemp [i] imaginary = (x*imag) + (y*r2); 

i++; 

} 
} 

} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=0;x<DATASPLIT;x++) 

{ 
init_pos = x; 
while(count < BUTTERFLIES) 

{ 
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final_pos = final_pos « 1; 
fmaLpos = ((init_pos & 1) ? 1:0) + final_pos; 
init_pos = init_pos » 1; 
count++; 

} 
index[x] = final_pos; 
final_pos = count = 0; 

} 

} 

Processor 1 Program: 

/* FFT PROCESSOR 1 PROGRAM */ 
#include <stdlib.h> 
#include <math.h> 
#include <chan.h> 

#define DATASIZE 512 
#define K 6.2831853071796/DATASIZE 
#define DATASPLIT DATASIZE/2 
#defme BUTTERFLIES log(DATASIZE)/log(2) 

struct datastruct { 
double real; 
double imaginary; 

}; 

void Butterfly2(int,int,struct datastruct * ) ; 

void Dist_FFT_2(struct datastruct * ) ; 
void BitReversal(int * ) ; 

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 

int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
inti,index[DATASIZE],*indexptr; 
struct datastruct complextemp[DATASIZE],*complexptr; 

/* Read Data from Host processor */ 

chan_in_message(sizeof(struct 

datastruct)*DATASIZE,complextemp,in_ports[0]); 
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/* Perform Processor 2 FFT */ 

Disf_FFT_2(complextemp); 

/* Perform Bit Reversal */ 

BitReversal (index); 

/* Send data to Host processor */ 

indexptr = DATASPLIT + index; 
complexptr = D A T A S P L I T + complextemp; 
chan_out_message (sizeof(struct 

datastruct)*DATASPLIT,complexptr,out_ports[0]); 
chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]); 

} 

void Dist_FFT_2(struct datastruct *complextemp) 

{ 
int i,currentsize,j=0,iter=l; 
double x,y,rl,r2,imag; 
struct datastruct ctemp[DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

ctemp[i] = complextemp[i]; 

/* Step 2 for Two Processors */ 

while (j < currentsize) 

{ 
rl = ctemp[j].real - ctemp[j+currentsize].real; 
r2 = -rl; 
imag = - ctempU+currentsize] imaginary + ctemp [j].imaginary; 
x = cos(K*j*iter); 

y = sin(K*j*iter); 
complextemp[j+currentsize].real = (x*rl) + (y*imag); 
complextemp[j+currentsize] imaginary = (x*imag) + (y*r2); 

j++; 
} 
currentsize = currentsize / 2; 

/* FFT Butterfly */ 

while (currentsize >=1) 

{ 
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iter++; 

Butterfly2(iter,currentsize,complextemp); 
currentsize = currentsize / 2; 

} 

} 

void Butterfly2(int iter,int currentsize,struct datastruct *complextemp) 

{ 
int i,j; 
struct datastruct temp[DATASIZE]; 
double x,y,rl,r2,imag; 

for(i=0;i<DATASIZE;i++) 
temp[i] = complextemp[i]; 

i = D A T A S P L I T ; 
while(i < D A T A S I Z E ) 

{ 
j = 0; 
while(j < currentsize) 

{ 
complextemp[i].real = temp[i].real + temp[i+currentsize].real; 
complextemp[i].imaginary = temp [i]. imaginary + 

temp[i+currentsize] imaginary; 

j++; 
i++; 

} 
j = 0; 
while(j < currentsize) 

{ 
rl = -temp[i].real + temp[i-currentsize].real; 
r2 = -rl; 
imag = temp[i-currentsize].imaginary - temp[i]imaginary; 

x = cos(K*j*iter); 
y = sin(K*j*iter); 
complextemp[i].real = (x*rl) + (y*imag); 
complextemp[i] imaginary = (x*imag) + (y*r2); 

i++; 

) 

} 
} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=DATASPLIT;x<DATASIZE;x-H-) 

{ 
init_pos = x; 
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} 

while(count < BUTTERFLIES) 

{ 
final_pos = final_pos « 1; 
final_pos = ((init_pos & 1) ? 1:0) + final_pos; 
init_pos = init_pos » 1; 
count++; 

1 
index[x] = final_pos; 
final_pos = count = 0; 
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T w o Transputer Parallel Cosine Transform 

Configuration File: 

! Configuration file for two transputer cosine transform 

! cosine.cfg 

processor host ! the PC 
processor root ! transputer 0 
processor Tl ! transputer 1 

wire jumper host[0] root[0] 
wire jumper 1 root[2] Tl[l] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
task dctfftpl ins=3 outs=3 
task dctfftp2 ins=l outs=l 

place afserver host ! afserver runs on PC 
place filter root ! filter and wt2p_pl run on root transputer 
place dctfftpl root 
place dctfftp2 Tl 

connect ? afserver[0] filter[0] 
connect ? filter[0] afserver[0] 
connect ? filter[l] dctfftpl[l] 
connect ? dctfftpl[1] filter[l] 
connect ? dctfftpl[2] dcffftp2[0] 
connect ? dctfftp2[0] dctfftpl[2] 
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Processor 0 Program: 

/* DCT HOST PROCESSOR PROGRAM */ 

#include <stdio.h> 
#include <stdlib.h> 

#include <dos.h> 
#include <math.h> 
#include <chan.h> 
#include <time.h> 

#defme DATASIZE 8 
#define K 6.2831853071796/DATASIZE 
#define DATASPLIT DATASIZE/2 
#define BUTTERFLIES log(DATASIZE)/log(2) 

struct datastruct { 
double real; 
double imaginary; 

}; 

void Butterfly l(int,int,struct datastruct *); 
void Dist_FFT_l (struct datastruct * ) ; 
void BitReversal(int * ) ; 
void Sort(double *,struct datastruct * ) ; 
void Kmult(struct datastruct *,struct datastruct *,int * ) ; 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 

int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
inti,index[DATASIZE],*indexptr,tstart,tend; 
char *buffer; 
double temp[DATASIZE]; 
struct datastruct complexresultfDATASIZE], 

complextemp [DATASIZE], *complexptr; 
FILE *infile, *outfile; 

/* Memory check, File check and read */ 

buffer = (char *) calloc(DATASIZE,sizeof(struct datastruct)); 
if(buffer==NULL) 
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{ 
printf( "Memory allocation failed.\n"); 
exit(O); 

} 
if((infile = fopen("b:\\fdata8.dat","rb"))==NULL) 

{ 
printf("Unable to open fileAn"); 
exit(O); 

} 
fread(temp,sizeof(double),DATASIZE,infile); 

fclose(infile); 

/* Sort Input Data */ 

tstart = timer_now(); 
Sort(temp,complextemp); 

/* Data distribution to other processors .. 

complexptr = DATASPLIT + complextemp; 

indexptr = D A T A S P L I T + index; 
chan_out_message (sizeof(struct 

datastruct)*DATASIZE,complextemp,out_ports[2]); 

/* Perform Processor 1 FFT 

Dist_FFT_l (complextemp); 

/* Perform Bit Reversal 

BitReversal(index); 

/* Multiply by exponent */ 

Kmult(complextemp,complexresult,index); 

/* Collect data from other processors */ 

chan_in_message(sizeof(struct 
datastruct)*(DATASPLIT),complexptr,in_ports[2]); 

chan_in_message(sizeof(int)*(DATASPLIT),indexptr,in_ports[2]); 

for(i=0;i<DATASIZE;i++) 
complexresult[i] = complextemp[index[i]]; 

tend = timer_now(); 
printf("Execution time was %d\n",tend-tstart); 

*/ 

*/ 

*/ 
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/* Write results to file */ 

if((outfile = fopen(,,b:\\cosine.rlt","w"))==NULL) 

{ 
printf("Unable to open fileAn"); 
exit(O); 

} 
for(i=0;i<DATASIZE/2;i++) 

fprintf(outfile," %lf\n" ,complexresult[i] .real); 
for(i=0;i<DATASIZE/2;i++) 

fprintf (outfile," %lf\n" ,complexresult[i] .imaginary); 

fclose(outfile); 

return(O); 

} 

void Dist_FFT_l (struct datastruct *complextemp) 

{ 
int i,currentsize,j=0,iter=l; 
struct datastruct ctemp [DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

ctemp[i] = complextemp [i]; 

/* Step 1 for Two Processors */ 

while(j < currentsize) 

complextemp[j].real = ctempfjj.real + ctemp[j+currentsize].real; 

complextemp[j].imaginary = ctemplj]. imaginary 

ctemp|j+currentsize].imaginary; 

j++; 

} 
currentsize = currentsize / 2; 

/* FFT Butterfly */ 

while(currentsize >=1) 

{ 
iter++; 
Butterfly 1 (iter,currentsize,complextemp); 
currentsize /= 2; 

} 

} 
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void Butterfly 1 (int iter,int currentsize,struct datastruct *complextemp) 

{ 
intij; 
struct datastruct temp [DATASIZE]; 
double x,y,rl,r2,imag; 

for(i=0;i<DATASIZE;i++) 
temp[i] = complextemp [i]; 

i = 0; 
while(i < D A T A S P L I T ) 

{ 
j = 0; 
while(j < currentsize) 

{ 
complextemp [i].real = temp[i].real + temp[i+currentsize].real; 
complextemp [i] imaginary = temp [i] imaginary + 

temp[i+currentsize] imaginary; 

i++; 

} 
j=0; 
while (j < currentsize) 

{ 
rl = temp[i-currentsize].real - temp[i].real; 
r2 = -rl; 
imag = temp[i-currentsize].imaginary - temp[i]imaginary; 

x = cos(K*j*iter); 
y = sin(K*j*iter); 
complextemp[i].real = (x*rl) + (y*imag); 
complextemp[i] imaginary = (x*imag) + (y*r2); 

i++; 

} 
} 

} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=0;x<DATASPLIT;x++) 

{ 
init_pos = x; 
while(count < BUTTERFLIES) 

{ 
final_pos = final_pos « 1; 
final_pos = ((init_pos & 1) ? 1:0) + final_pos; 
init_pos = init_pos » 1; 
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count++; 
} 
indexfx] = final_pos; 
fmal_pos = count = 0; 

} 
} 

void Sort(double *temp,struct datastruct *complextemp) 

{ 

for(i=0;i<DATASIZE/2;i++) 

{ 
complextemp[i].real = temp[2*i]; 
complextemp[i] imaginary = 0.0; 
complextemp[DATASIZE-l-i].real = temp[2*i+l]; 
complextemp [DATASIZE-1-i] imaginary = 0.0; 

} 
} 

void Kmult(struct datastruct *complextemp,struct datastruct *complexresult,int 
*index) 

{ 
inti; 
double c,s; 

for(i=0;i<DATASIZE/4;i++) 

{ 
c = cos(i * K * 0.25); 
s = sin(i * K * 0.25); 
complexresult[i].real = complextemp[index[iJ].real * c + 

complextemp[index[i]] imaginary * s; 
complexresult[i]imaginary = -complextemp[index[i]].imaginary * c + 

complextemp[index[i]].real * s; 

} 
} 
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Processor 1 Program: 

/* DCT PROCESSOR 1 PROGRAM */ 
#include <stdlib.h> 
#include <math.h> 
#include <chan.h> 

#defme DATASIZE 8 

#define K 6.2831853071796/DATASIZE 
#defme DATASPLIT DATASIZE/2 
#define BUTTERFLIES log(DATASIZE)/log(2) 

struct datastruct { 

double real; 
double imaginary; 

}; 

void Butterfly2(int,int,struct datastruct * ) ; 
void Dist_FFT_2(struct datastruct * ) ; 
void BitReversalrint * ) ; 
void Kmult(struct datastruct *,struct datastruct *,int * ) ; 

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[], *out_ports[]; 

int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
int i,index[DATASIZE],*indexptr; 
struct datastruct 

complextemp[DATASIZE], *complexptr,complexresult[DATASIZE]; 

/* Read Data from Host processor */ 

chan_in_message(sizeof(struct 
datastruct) *DATASIZE,complextemp,in_ports[0]); 

/* Perform Processor 2 FFT */ 

Dist_FFT_2(complextemp); 

/* Perform Bit Reversal */ 

BitReversalrindex); 
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/* Multiply by exponent */ 

Kmult(complextemp ,complexresult,index); 

/* Send data to Host processor */ 

indexptr = DATASPLIT + index; 
complexptr = D A T A S P L I T + complextemp; 
chan_out_message (sizeof(struct 

datastruct)*DATASPLIT,complexptr,out_ports[0]); 

chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]); 

} 

void Dist_FFT_2(struct datastruct *complextemp) 

{ 
int i,currentsize,j=0,iter=l; 
double x,y,rl,r2,imag; 
struct datastruct ctemp [DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

ctemp [i] = complextemp [i]; 

/* Step 2 for Two Processors */ 

while (j < currentsize) 

{ 
rl = ctemp[j].real - ctemp[j+currentsize].real; 
r2 = -rl; 
imag = - ctempfj+currentsize] imaginary + ctempfj] imaginary; 
x = cos(K*j*iter); 
y = sin(K*j*iter); 
complextemp[j-i-currentsize].real = (x*rl) + (y*imag); 
complextemp[j-i-currentsize] imaginary = (x*imag) + (y*r2); 

} 
currentsize = currentsize / 2; 

/* FFT Butterfly */ 

while (currentsize >=1) 

{ 
iter++; 
Butterfly2(iter,currentsize,complextemp); 
currentsize = currentsize / 2; 

} 
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} 

void Butterfly2(int iter,int currentsize,struct datastruct *complextemp) 

{ 
intij; 
struct datastruct temp [DATASIZE]; 
double x,y,rl,r2,imag; 

for(i=0;i<DATASIZE;i++) 

temp[i] = complextemp [i]; 
i = DATASPLIT; 
while(i< D A T A S I Z E ) 

{ 
1 = 0; 
while (j < currentsize) 

{ 
complextemp[i].real = temp[i].real + temp[i+currentsize].real; 
complextemp[i].imaginary = temp[i].imaginary + 

temp[i+currentsize] imaginary; 

i++; 

I 
j = 0; 
while (j < currentsize) 

{ 
rl = -temp[i].real + temp[i-currentsize].real; 
r2 = -rl; 
imag = temp[i-currentsize].imaginary - temp[i]imaginary; 
x = cos(K*j*iter); 
y = sin(K*j*iter); 
complextemp[i].real = (x*rl) + (y*imag); 
complextemp[i] imaginary = (x*imag) + (y*r2); 

j++; 
i++; 

} 
} 

} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=DATASPLIT;x<DATASIZE;x++) 

{ 
init_pos = x; 
while(count < BUTTERFLIES) 

{ 
final_pos = final_pos « 1; 
final_pos = ((init_pos & 1) ? 1:0) + final_pos; 
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init_pos = init_pos » 1; 
count++; 

} 
index[x] = final_pos; 
final_pos = count = 0; 

} 
} 

void Kmult(stract datastruct *complextemp,struct datastruct *complexresult,int 
*index) 

{ 
inti; 
double c,s; 

for(i=DATASPLIT;i<DATASPLIT+DATASIZE/4;i++) 

{ 
c = cos(i * K * 0.25); 
s = sin(i * K * 0.25); 
complexresult[i].real = complextemp[index[i]].real * c + 

complextemp[index[i]]imaginary * s; 
complexresult[i] imaginary = -complextemp [index[i]] imaginary * c + 

complextemp[index[i]].real * s; 

} 
} 
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T w o Transputer Parallel Walsh Transform 

Configuration File: 

i 

! Configuration file for two transputer walsh transform 
i 

! walsh.cfg 

processor host ! the PC 

processor root ! transputer 0 
processor Tl ! transputer 1 

wire jumper host[0] root[0] 
wire jumper 1 root[2] Tl[l] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
taskwt2p_pl ins=3 outs=3 
taskwt2p_p2 ins=l outs=l 

place afserver host ! afserver runs on PC 
place filter root ! filter and wt2p_pl run on root transputer 
place wt2p_pl root 
place wt2p_p2 Tl 

connect ? afserver[0] filter[0] 
connect ? filterfO] afserver[0] 
connect ? filterfl] wt2p_pl[l] 
connect ? wt2p_pl[l] filter[l] 
connect ? wt2p_pl[2] wt2p_p2[0] 
connect ? wt2p_p2[0] wt2p_pl[2] 
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Processor 0 Program: 

/* W A L S H TRANSFORM HOST PROCESSOR PROGRAM 

#include <stdio.h> 
#include <stdlib.h> 
#include <dos.h> 
#include <math.h> 
#include <chan.h> 

#defme DATASIZE 2048 
#define DATASPLIT DATASIZE/2 
#define BUTTERFLIES log(DATASIZE)/log(2) 

void Butterfly l(int,double *); 
void Dist_FWT_l(double * ) ; 
void BitReversal(int * ) ; 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 

int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
int i,index[DATASIZE],*indexptr; 
char *buffer; 
double walshresult[DATASIZE], walshtemp[DATASIZE],*walshptr; 

FILE *infile, *outfile; 

/* Memory check, File check and read */ 

buffer = (char *) calloc(DATASIZE,sizeof(double)); 

if (buffer == N U L L ) 

{ 
printf("Memory allocation failedAn"); 
exit(0); 

} 
if((infile = fopen("a:\\wdat2048.dat","r")) == N U L L ) 

{ 
printf("Unable to open file.Xn"); 
exit(0); 

} 
fread(walshtemp,sizeof(double),DATASIZE,infile); 
fclose(infile); 
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/* Data distribution to other processors */ 

walshptr = DATASPLIT + walshtemp; 
indexptr = D A T A S P L I T + index; 

chan_out_message(sizeof(double)*DATASIZE,walshtemp,out_ports[2]); 

/* Perform Processor 1 FWT */ 

Dist_FWT_l (walshtemp); 

/* Perform Bit Reversal */ 

BitReversal(index); 

/* Collect data from other processors */ 

chan_in_message(sizeof(double)*DATASPLIT,walshptr,in_ports[2]); 
chan_in_message(sizeof(int)*DATASPLIT,indexptr,in_ports[2]); 

/* Combine data from all procrssors */ 

for(i=0;i<DATASIZE;i++) 
walshresultfi] = walshtemp[index[i]]; 

/* Write results to file */ 

if((outfile = fopen(,,a:\\fresults.dat","w")) == NULL) 

{ 
printf("Unable to open file.Vn"); 
exit(O); 

} 
fwrite(walshresult,sizeof(double) ,D ATASIZE,outfile); 
fclose(outfile); 

return(O); 

} 

void Dist_FWT_l (double * walshtemp) 

{ 
int i,currentsize,j=0; 
double wtemp[DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

wtempfi] = walshtemp[i]; 

/* Step 1 for Two Processors */ 
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while (j < currentsize) 

{ 
walshtempQ] = wtemp[j] + wtemp[j+currentsize]; 

} 
currentsize = currentsize / 2; 

/* FWT Butterfly */ 

while(currentsize >=1) 

{ 
Butterfly 1 (currentsize,walshtemp); 
currentsize = currentsize / 2; 

} 
} 

void Butterfly 1 (int currentsize,double *walshtemp) 

{ 
int i,j; 
double wtemp[DATASIZE]; 

for(i=0;i<DATASIZE;i++) /* for(i=0;i<currentsize;i++) */ 
wtemp[i] = walshtemp [i]; 

i = 0; 
while(i < (DATASPLIT)) 

{ 
j = 0; 
while (j < currentsize) 

{ 
walshtemp [i] = wtemp[i] + wtemp[i+currentsize]; 

i++; 

} 
j = 0; 
while (j < currentsize) 

{ 
walshtempfi] = wtempfi-currentsize] - wtempfi]; 

i++; 

} 
} 

} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=0;x<DATASPLIT;x-t-+) 
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{ 
init_pos = x; 

while(count < BUTTERFLIES) 

{ 
final_pos = final_pos « 1; 
final_pos = ((init_pos & 1) ? 1:0) + final_pos; 
init_pos = init_pos » 1; 
count++; 

} 
index[x] = final_pos; 
final_pos = count = 0; 

} 

} 

Processor 1 Program: 

/* WALSH TRANSFORM PROCESSOR 1 PROGRAM */ 

#include <stdlib.h> 
#include <math.h> 
#include <chan.h> 

#define DATASIZE 2048 
#define DATASPLIT DATASIZE/2 
#define BUTTERFLIES log(DATASIZE)/log(2) 

void Butterfly2(int,double * ) ; 
void Dist_FWT_2(double * ) ; 
void BitReversal(int * ) ; 

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs) 
C H A N *in_ports[],*out_ports[]; 
int argc,ins,outs; 

char *argv[],*envp[]; 

{ 
int i,index[DATASIZE],*indexptr; 
double walshtemp[DATASIZE] ,*walshptr; 

/* Read Data from Host processor */ 

chan_in_message(sizeof(double)*DATASIZE,walshtemp,in_ports[0]); 

/* Perform Processor 2 FWT */ 

Dist_FWT_2(walshtemp); 
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BitReversal(index); 

/* Send data to Host processor */ 
indexptr = D A T A S P L I T + index; 
walshptr = D A T A S P L I T + walshtemp; 
chan_out_message(sizeof(double)*DATASPLIT,walshptr,out_ports[0]); 
chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]); 

} 

void Dist_FWT_2(double *walshtemp) 

{ 
int i,currentsize,j=0; 
double wtemp[DATASIZE]; 

currentsize = DATASPLIT; 
for(i=0;i<DATASIZE;i++) 

wtemp[i] = walshtempfij; 

/* Step 2 for Two Processors */ 

whilefj < currentsize) 

{ 
walshtemp rj+currentsize] = wtempfj] - wtemp[j+currentsize]; 

} 
currentsize = currentsize / 2; 

/* FWT Butterfly */ 

while (currentsize >=1) 

{ 
Butterfly2(currentsize,walshtemp); 
currentsize = currentsize / 2; 

} 
} 

void Butterfly2(int currentsize,double *walshtemp) 

{ 
intij; 
double wtemp[DATASIZE]; 

for(i=0;i<DATASIZE;i++) 
wtemp[i] = walshtemp[i]; 

i = DATASPLIT; 
while(i < (DATASIZE)) 

{ 
j = 0; 
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while(j < currentsize) 

{ 
walshtemp [i] = wtemp[i] + wtemp[i+currentsize]; 

i++; 

} 
j = 0; 

while(j < currentsize) 

{ 
walshtemp [i] = wtemp[i-currentsize] - wtemp[i]; 

i++; 

} 
} 

} 

void BitReversal(int *index) 

{ 
intcount=0,final_pos=0,init_pos=0,x; 

for(x=DATASPLIT;x<DATASIZE;x++) 

{ 
init_pos = x; 
while(count < BUTTERFLIES) 

{ 
final_pos = final_pos « 1; 
final_pos = ((init_pos & 1) ? 1:0) + final_pos; 
init_pos = init_pos » 1; 
count++; 

} 
index[x] = final_pos; 
final_pos = count = 0; 

} 
} 
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T w o Transputer Parallel Haar Transform 

Configuration File: 

! Configuration file for two transputer haar transform 

! haar.cfg 

processor host ! the PC 

processor root ! transputer 0 
processor Tl ! transputer 1 

wire jumper host[0] root[0] 
wire jumper 1 root[2] Tl[l] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
taskphaarpl ins=3 outs=3 
task phaarp2 ins=l outs=l 

place afserver host ! afserver runs on PC 

place filter root ! filter and phaarpl run on root transputer 
place phaarpl root 
place phaarp2 Tl 

connect ? afserver[0] filter[0] 
connect ? filter[0] afserver[0] 
connect ? filterfl] phaarpl[1] 
connect ? phaarpl[1] filter[l] 
connect ? phaarpl[2] phaarp2[0] 
connect ? phaarp2[0] phaarpl[2] 
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Processor 0 Program: 

/* TWO PROCESSOR HOST TRANSPUTER PARALLEL HAAR 
TRANSFORM */ 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <chan.h> 

#define D A T A S I Z E 16 
#define D A T A S P L I T DATASIZE/2 
#defme R M A X log(DATASIZE)/log(2) 

void Dist_HT_l(double * ) ; 
void Multipliers(double * ) ; 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 
char * ar g v [], * envp []; 
int argc,ins,outs; 

{ 
inti,j,k=l; 
double Haarresultl [DATASIZE] ,Haarresult2[D ATASPLIT]; 

double *Hptr; 
double Haarfinal[DATASIZE]; 
char *buffer; 
FILE *infile,*outfile; 

/* Memory check, File check and read */ 

buffer = (char *)calloc(DATASIZE,sizeof(double)); 

if(buffer==NULL) 

{ 
printf( "Memory allocation failedAn"); 
exit(O); 

} 

if((infile = fopen("a:\\Hdatal6.dat","rb"))==NULL) 

{ 
printf("Unable to open data fileAn"); 
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exit(O); 

} 

fread(Haarresultl,sizeof(double),DATASIZE,infile); 
fclose(infile); 

/* Data distribution */ 

Hptr = Haarresultl + DATASPLIT; 

chan_out_message(sizeof(double)*DATASPLIT,Hptr,out_ports[2]); 

/* Perform processor 1 Haar Transform */ 

Dist_HT_l (Haarresultl); 

Multipliers(Haarresultl); 

/* Collect data from other processors */ 

chan_in_message(sizeof(double)*DATASPLtT,Haarresult2,in_ports[2]); 

Haarfinal[0] = Haarresultl [0] +Haarresult2[0]; 
Haarfinal[l] = Haarresultl[0] - Haarresult2[0]; 

for(i=2;i<=DATASPLIT;i+=i) 

{ 
for(j=i/2;j<i;j++) 

{ 
k++; 
Haarfinal[k] = Haarresultl [j]; 

} 
for(j=i/2;j<i;j++) 

{ 
k++; 
Haarfinal[k] = Haarresult2[j]; 

} 
} 

/* Write results to file */ 

if((outfile = fopen("a:\\Hrsltl6,dat","wb")) == NULL) 

{ 
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printf("Unable to open result file.\n"); 
exit(O); 

} 
fwrite(Haarfinal,sizeof(double),DATASIZE,outfile); 
fclose(outfile); 

return(0); 

} 

void Dist_HT_l (double *Haarresultl) 

{ 
int i,j,currentsize; 
double Htemp[DATASPLIT]; 

for(i=0;i<DATASPLIT;iH-+) 
Htempfi] = Haarresultl [i]; 

currentsize = DATASPLIT/2; 

while (currentsize >= 1) 

{ 
i = 0; 
for(j=0;j <currentsize ;j++) 

{ 
Haarresultl [j] = Htemp[i] + Htemp[i+1]; 
Haarresultl [j+currentsize] =Htemp[i] -Htemp[i+1]; 
i+=2; 

} 
for(i=0;i<DATASPLIT;i++) 

Htemp[i] = Haarresultl [i]; 
currentsize/=2; 

} 

} 

void Multipliers(double *Haarresultl) 

{ 
int m,i=l; 
double Haarmult[DATASPLIT],r; 

for(r=l ;r<RMAX;r++) 

{ 
for(m=l ;m<=(pow(2,r)/2);m++) 

{ 
Haarmult[i] = pow(2,r/2); 
i++; 

} 
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} 
for(i=l ;i<DATASPLIT;i++) 

Haarresultl [i] = Haarmult[i] * Haarresultl [i]; 

} 

Processor 1 Program: 

/* TWO PROCESSOR TRANSPUTER 1 PARALLEL HAAR TRANSFORM 
*/ 

#include <stdlib.h> 
#include <math.h> 
#include <chan.h> 

#defme D A T A S I Z E 16 
#define D A T A S P L I T DATASIZE/2 
#define R M A X log(DATASIZE)/log(2) 

void Dist_HT_2(double * ) ; 
void Multipliers(double * ) ; 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 
char *argv[],*envp[]; 
int argc,ins,outs; 

{ 
inti; 
double Haarresult[DATASPLIT]; 
char *buffer; 

/* Collect Data */ 

chan_in_message(sizeof(double)*DATASPLIT,Haarresult,in_ports[0]); 

/* Perform processor 2 Haar Transform */ 

Dist_HT_2(Haarresult); 

Multipliers(Haarresult); 
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/* Distribute data */ 

chan_out_message(sizeof(double)*DATASPLIT,Haarresult,out_ports[0]); 
return(O); 

} 

void Dist_HT_2(double *Haarresult) 

{ 
int i,j,currentsize; 
double Htemp[DATASPLIT]; 

for(i=0;i<DATASPLIT;i++) 

Htemp[i] =Haarresult[i]; 

currentsize = DATASPLIT/2; 

while (currentsize >= 1) 

{ 
i = 0; 
for(j=0;j<currentsize;j++) 

{ 
Haarresult[j] = Htemp[i] + Htemp[i+1]; 
Haarresultrj+currentsize] = Htemp[i] - Htemp[i+1]; 
i+=2; 

} 
for(i=0;i<DATASPLIT;i++) 

Htemp[i] = Haarresult[ij; 
currentsize/=2; 

} 

} 

void Multipliers(double *Haarresult) 

{ 
intm,i=l; 
double Haarmult[DATASPLIT],r; 

for(r=l;r<RMAX;r++) 
for(m=1 ;m<=(pow(2,r)/2) ;m++) 

{ 
Haarmult[i] = pow(2,r/2); 
i++; 

1 

for(i=l ;i<DATASPLTT;i++) 
Haarresult[i] = Haarmultfi] * Haarresult[i]; 

} 
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T w o Transputer Parallel D 4 Wavelet Transform 

Configuration File: 

! Configuration file for two transputer D4 Wavelet transform 

! pwav.cfg 

processor host ! the PC 
processor root ! transputer 0 
processor Tl ! transputer 1 

wire jumper host[0] root[0] 
wire jumper 1 root[2] Tl[l] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
task pwavpO ins=3 outs=3 
taskpwavpl ins=l outs=l 

place afserver host ! afserver runs on PC 
place filter root ! filter and pwavpO run on root transputer 
place pwavpO root 
place pwavpl Tl 

connect ? afserver[0] filter[0] 
connect ? filter[0] afserver[0] 
connect ? filter[l] pwavpO[l] 
connect ? pwavpO[l] filter[l] 
connect ? pwavp0[2] pwavpl[0] 
connect ? pwavpl[0] pwavp0[2] 
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Processor 0 Program: 

/* D4 Wavelet Transform Host Processor Program */ 

#include <stdio.h> 

#include <math.h> 
#include <stdlib.h> 
#mclude <chan.h> 

#define D A T A S I Z E 8 
#defme D A T A S P L I T DATASIZE/2 
#defme CO (l+sqrt(3))/(4*sqrt(2)) 
#define Cl (3+sqrt(3))/(4*sqrt(2)) 
#defme C 2 (3-sqrt(3))/(4*sqrt(2)) 
#defme C3 (l-sqrt(3))/(4*sqrt(2)) 

intmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 

int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
int i,n,currentsize; 
double temp[DATASPLIT],result[DATASIZE],x[DATASIZE]; 

char *buffer; 
FILE *infile,*outfile; 

/* Memory check, File check and read */ 

buffer = (char *)calloc(DATASIZE,sizeof(double)); 

if(buffer==NULL) 

{ 
prinff("Memory allocation failedAn"); 
exit(O); 

} 

if((infile = fopen("c:\\trnsfrms\\data\\fdata.dat","rb"))==NULL) 

{ 
printf("Unable to open data fileAn"); 
exit(O); 

} 
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fread(x,sizeof(double),DATASIZE,infile); 
fclose(infile); 

/* Perform transform */ 

chan_out_message(sizeof(double) *DATASIZE,x,out_ports[2]); 

currentsize = DATASIZE; 

while (currentsize >= 4) 

{ 
for(n=0;n<currentsize/2;n++) 

{ 
if(n != (currentsize/2)-l) 

temp[n] = (C0*x[2*n]) + (Cl*x[(2*n)+1]) + 
(C2*x[(2*n)+2]) + (C3*x[(2*n)+3]); 

else 

temp[n] = (C2*x[0]) + (C3*x[l]) + (CO*x[currentsize-
2]) + (Cl*x[currentsize-1]); 

} 

currentsize /= 2; 

chan_out_message(sizeof(double)*currentsize,temp,out_ports[2]); 

for(n=0;n<currentsize ;n++) 
x[n] = temp[n]; 

} 

chan_in_message(sizeof(double) * D A T ASIZE,result,in_ports[2]); 

/* Write results to file */ 

if((outfile = fopen("c:\\trnsfrms\\pwavelet\\results\\frslt.dat","wb")) = NULL) 

{ 
printf("Unable to open result file.Vn"); 
exit(O); 

} 
fwrite(result,sizeof(double),DATASIZE,outfile); 
fclose(outfile); 
return(O); 

} 
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Processor 1 Program: 

/* D4 Wavelet Transform Processor 1 Program 
*/ 

#include <stdlib.h> 

#include <math.h> 
#include <chan.h> 

#defme DATASIZE 8 
#define D A T A S P L I T DATASIZE/2 

#define CO (l+sqrt(3))/(4*sqrt(2)) 
#define Cl (3+sqrt(3))/(4*sqrt(2)) 

#define C 2 (3-sqrt(3))/(4*sqrt(2)) 
#define C3 (l-sqrt(3))/(4*sqrt(2)) 

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs) 

CHAN *in_ports[],*out_ports[]; 
int argc,ins,outs; 
char *argv[],*envp[]; 

{ 
int i,n,currentsize; 
double temp[DATASPLrT],result[DATASIZE],x[DATASIZE]; 

chan_in_message(sizeof(double)*DATASIZE,x,in_ports[0]); 

currentsize = DATASIZE; 

while(currentsize >= 4) 

{ 
for(n=0;n<currentsize/2;n++) 

{ 
if(n != (currentsize/2)-l) 

temp[n] = (C3*x[2*n]) - (C2*x[(2*n)+1]) + 

(Cl*x[(2*n)+2]) - (C0*x[(2*n)+3]); 
else 

temp[n] = (Cl*x[0]) - (C0*x[l]) + (C3*x[currentsize-

2]) - (C2*x[currentsize-1]); 

1 

currentsize /= 2; 

for(n=0;n<currentsize ;n++) 
result[n+currentsize] = temp[n]; 
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chan_in_message(sizeof(double)*currentsize,x,in_ports[0]); 
} 

for(n=0;n<2;n++) 
resultfn] = x[n]; 

chan_out_message(sizeof(double)*DATASIZE,result,out_ports[0]); 

} 
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APPENDIX B 

TABLES OF EXPERIMENTAL RESULTS 

Note: Any data omitted from execution time tables has been excluded on the grounds of 
either being superflous to requirements or being unable to be measured with the software 
compilers available. 

1. Processor farm implementation of the Walsh-Hadamard matrix form of the Walsh 
transform. 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 

Execution time 

64uS Clock ticks mS 

33 
75 
207 
673 
2583 

2.112 

4.8 
13.25 

43.07 

165.31 

2. Serial implementations of the fast Walsh transform. 

Processor: 80386SX 

Dataset size 
double precision floating point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 
mS 

4.779 

11.986 

28.728 

L 67.267 

153.172 

344.897 

767.104 

1688.445 

3686.403 
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Processor: 80386 

Dataset size 

double precision floating point numbers 

8 
16 
32 
64 
128 
256 _j 

512 
1024 

2048 

Execution time 
mS 

2.032 

5.112 

12.285 

28.677 

65.663 

147.983 

329.781 

726.636 

1587.159 

Processor: 80486 

Dataset size 
double precision floating point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 
mS 

0.846 

2.114 

5.071 

11.826 

27.067 

61.032 

135.944 

300.744 

656.776 

One transputer 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 

64uS Clock ticks mS 

75 
186 
488 
1043 

2394 

5381 

11961 

26396 

57635 

4.8 
11.904 

31.232 

66.752 

153.216 

344.384 

765.504 

1687.616 

3688.640 
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3. T w o transputer hypercube implementation of the fast Walsh transform. 

Dataset size 

double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 

64uS Clock ticks m S 

40 
98 
233 
543 
1244 

2794 

6194 

13623 

29744 

2.56 

6.72 

14.91 

34.75 

79.62 

178.82 

396.42 

871.87 

1903.62 

4. T w o transputer fast Walsh transform computing resource demands. 

Dataset size 
double precision 
floating point 

numbers 

128 
256 
512 

Execution time 
64 uS clock ticks 

communications time butterfly calc. time bit reversal 
calc.time 

16 
32 
63 

104 
242 
533 

1120 

2517 

5603 

5. T w o transputer fast Fourier transform. 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 

64uS Clock ticks m S 

49 
128 
313 

L 745 

1728 

3935 

L _ 8831 

19560 

42948 

3.136 

8.192 

20.032 

47.680 

110.592 

251.840 

565.184 

1251.840 

2748.672 
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6. T w o transputer fast Haar transform. 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

2048 

Execution time 

64uS Clock ticks m S 

31 
77 
164 
331 
659 
1312 

2631 

5277 

10576 

1.984 

4.928 

10.496 

21.184 

42.176 

83.968 

168.384 

337.728 

676.864 

7. Two transputer D 4 wavelet transform. 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 

Execution time 

64uS Clock ticks m S 

21 
48 
103 
214 
432 
871 
1744 

1.344 

3.072 

6.592 

13.696 

27.648 

55.744 

111.616 

8. Serial D 4 Wavelet transform 80286 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 

Execution time 

64uS Clock ticks m S 
54.945 

27.4725 

49.4505 

104.3956 

208.7912 

423.0769 
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9. Serial D 4 Wavelet transform 80386SX- 16Mhz 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 

Execution time 

64uS Clock ticks m S 
-

-

-

54.945 

109.890 

219.780 

10. Serial D 4 Wavelet transform 80486-33Mhz 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 

Execution time 

64uS Clock ticks m S 
-

-

-

-

-

-

54.945 

11. T w o transputer D 4 Wavelet transform computing resource demands. 

Dataset size 
double precision 
floating point 

numbers 

256 
512 

Execution time 
64 uS clock ticks 

comms time calc. time 

36 
73 

835 
1675 
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12. Serial implementation of the Haar Transform 

80286 

Dataset size Double precision floating 

point numbers 

8 
16 
32 
64 

Execution time 
mS 

54.945 

109.890 

164.835 

329.670 

80386SX-16Mhz 

Dataset size Double precision floating 

point numbers 

128 
256 
512 

Execution time 
mS 

54.945 

109.890 

164.835 

80486-33 Mhz 

Dataset size Double precision floating 
point numbers 

512 

Execution time 
mS 

54.945 

13. Serial Implementation of the Cosine Transform via the FFT. 

80486-33 Mhz 

Dataset size Double precision floating 
point numbers 

256 
512 
1024 

Execution time 
mS 
60 
110 
280 

80386-33 Mhz 

Dataset size Double precision floating 
point numbers 

64 
128 
256 
512 

Execution time 
mS 
50 
110 
170 
330 
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80386SX 
Dataset size Double precision floating 

point numbers 

32 
64 
128 
256 
512 

Execution time 
mS 
60 
110 
270 
610 
1270 

14. Two transputer cosine transform. 

Dataset size 
double precision floating 

point numbers 

8 
16 
32 
64 
128 
256 
512 
1024 

Execution time 

64uS Clock ticks m S 

53 
136 
332 
781 
1801 

4083 

9104 | 

20173 

3.4 
8.7 
21.2 

50 
115 
261 
583 
1290 
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APPENDIX C 

TEST FUNCTIONS AND TRANSFORMS 
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