
ASPECTS OF PARALLEL TOPOLOGIES APPLIED TO

DIGITAL TRANSFORMS OF DISCRETE SIGNALS

A Thesis submitted for the degree of Master of Science

by

RJ. White

1994

Department of Computer and Mathematical Sciences

Faculty of Science

Victoria University of Technology

rFTS THESIS
003.83 WHI
text
30001004589976
White, Roderick J
Aspects of parallel
topologies applied to V - . - - -

This thesis contains no material that has been accepted for the award of any other

degree or diploma in any University or Tertiary Institute. To the best of my knowledge

and belief it contains no material published or written by another person, except

where due reference is made in the text of the thesis.

(Signature).

(Name). k-^. WHITE

(Date). 1. %>?.0±.

ABSTRACT

Discrete transformations are widely used in the fields of signal and image

processing. Applications in the areas of data compression, template matching, signal

filtering pattern recognition all utilise various discrete transforms. The calculation of

transformations is a computationally intensive task which in most practical

applications requires considerable computing resources. This characteristic has

restricted the use of many transformations to applications with smaller datasets or

where real-time performance is not essential.

This restriction can be removed by the application of parallel processing

techniques to the calculation of discrete transformations. The aim of this thesis is to

determine efficient parallel algorithms and processor topologies for the

implementation of the discrete Walsh, cosine, Haar and D4 Daubauchies transforms,

and to compare the operation of the parallel algorithms running on T800 Transputers

with the equivalent serial von Neumann type algorithm. This thesis also examines the

transformations of a number of test functions in order to determine their ability to

represent various common global and locally defined functions.

It was found that the parallel algorithms developed during the course of this

thesis for the discrete Walsh, cosine, Haar and D4 Daubauchies transforms could all

be efficiently implemented on a hypercube processor topology.

Development of a number of parallel algorithms also led to the discovery of a

new parallel algorithm for the calculation of any transformation which can be

expressed as a Kronecker or tensor product/sum. A hypercube based algorithm was

devised which converts the Kronecker product to a Hadamard product on a hypercube

structure. This provides a simple algorithm for parallel implementations.

Examination of the four sets of transform coefficients for the test functions

revealed that all the transforms examined were not suitable for representing functions

with large numbers of discontinuity's such as the chirp function. Also, transforms with

local basis functions such as the Haar and D4 Daubauchies transforms provided better

representations of localised functions than transforms consisting of global basis

function sets such as the discrete Walsh and cosine transformations.

CONTENTS

Contents *

Acknowledgements 1V

1. Review of Discrete Transformations employed in
Digital Image and Signal Processing 1

1.1 Introduction 1

1.2 The Fourier Transform and its Application in One
Dimensional Signal Processing 3

1.3 The Walsh, Haar and Discrete Cosine Transforms 9

1.3.1 The Walsh Transform 9

1.3.2 The Discrete Cosine Transform 14

1.3.3 The Haar Transform 15

1.4 Applications of Transforms to Feature Extraction and Data

Compression 1°

1.5 Limitations of Global Transforms when Features Appear at

Number of Scales 20

1.6 Implementation Techniques and Problems with Current

Tranform Methods 21

1.7 Matrix Representation of Transforms and their relationship
to Parallel Implementations of Transforms 22

1.8 Summary 24

2. Review of the Transputer 25

2.1 Introduction 25

2.2 Hardware Design of Transputers 26

2.3 The Transputer System Used 28

2.4 The Parallel C Programming Language 29

i

2.5 A n Example of Transputer Programming: The One Dimensional

Convolution 30

2.6 Summary 35

Parallelising the Discrete Walsh and Cosine Transforms 36

3.1 Introduction 36

3.2 The Walsh Transform and its Relationship to
the Fourier Transform 36

3.3 Initial Attempts to Program Transputers to Perform the
Walsh Transform 37

3.4 Improved Programming Techniques and Comparison
with Earlier Methods 42

3.5 Application of the Walsh Transform to Periodic and

Non-periodic Functions 48

3.6 Comparison of Serial and Parallel Implementations of
the Walsh transform 60

3.7 Discrete Cosine Transform Algorithms 64

3.8 A Parallel Discrete Cosine Transform Algorithm 66

3.9 Application of the Discrete Cosine Transform to Periodic
and Non-Periodic Functions 68

3.10 Comparison of Serial and Parallel Implementations of
the Discrete Cosine Transform 75

3.11 Summary 76

Hypercube Implementations of Transforms 78

4.1 Introduction 78

4.2 Kronecker Decomposition and its Relevance to a Hypercube
Implementation of the Walsh Transform 78

4.3 Summary 88

ii

5. Parallelising the Haar and D 4 Daubauchies Transforms 90

5.1 Introduction 90

5.2 Implementation of the Haar Transform using Transputers .. 90

5.3 Application of the Haar Transform to Periodic and
Non-Periodic Functions 92

5.4 Comparison of Serial and Parallel Implementations of
the Haar Transform 101

5.5 The Haar Transform as a Particular Example of Wavelets .. 102

5.6 Parallel Implementation of a D4 Wavelet Transform and
Comparison with a Serial Implementation 105
5.6.1 Parallel Implementation of a D 4 Wavelet

Transform 105

5.6.2 Comparison of Serial and Parallel Implementations
of the D 4 Wavelet Transform 112

5.6.3 Application of the D4 Wavelet Transform to
Periodic and Non-Periodic Functions 114

5.6 Summary 123

6. Conclusion 124

6.1 Introduction 124

6.2 Conclusions and Suggestions for Future Work 124

References 128

Appendices 136

A. Source Code 136

B. Tables 173

C. Test Functions and Transforms 180

iii

ACKNOWLEDGEMENTS

I would like to thank m y supervisors, Dr. Charles Osborne for his support,

encouragement and guidance throughout the course of my research, and Dr. Nalin Sharda

for his advice and suggestions.

I would also like to thank the Monash University Computer Imaging Group for

their assistance.Thanks are also due to Mr. T.Peachey, Dr.P.Cerone and Mr A.McAndrew

for their time and assistance.

I would especially like to thank my wife Anne for her patience, encouragement

and support, without which this work would not have been possible.

IV

CHAPTER 1

REVIEW OF DISCRETE TRANSFORMATIONS EMPLOYED IN DIGITAL

IMAGE AND SIGNAL PROCESSING

1.1 INTRODUCTION

A transformation can be defined as a rule or mapping which assigns to each

element of one set a unique element of another set. A more specific definition is given

by Bracewell[6a] who defines a transform as an operation which is performed on a

function. The transforms reviewed in this thesis are integral transforms where the

operation performed consists of multiplying the function by another function known

as the kernel function and integrating.

The motivation behind performing transformations is that in many situations

such as electric potential distribution or heat diffusion (Kevorkian[36]) the solution to

the problem in the function domain is difficult. Performing a transformation can result

in a simpler problem in the transform domain. When a solution is found in the

transform domain the inverse transformation back to the function domain provides a

solution to the original problem, for example using Laplace transforms to solve linear

differential equations (Kreyzig[41]).

Coates[17] shows that with a few exceptions functions can be expressed as the

sum of a series of simpler basis functions. Integral transforms can be used to

determine the series coefficients or weighting's required by the basis functions in

order to represent the input function. For example the Fourier transform provides a set

of coefficients which can be used to represent a function as the sum of a series of

weighted trigonometric functions. Other integral transforms such as the Walsh and

Haar transforms provide coefficients for different families of basis functions.

1

Transforms can therefore be used as a tool for converting information into

more useful or amenable forms. This has led to their widespread use in the fields of

feature identification (Schutte[62]) and other image processing techniques, filtering

(Shynk[63]), speech recognition (Beauchamp[4a]), and data compression (Rao[57b]).

Performing transformations on an image or a long data sequence is a

computationally intensive task. A large amount of work has been done to reduce

transform computation times. Transforms which are widely used such as the discrete

Fourier and discrete cosine transforms have been implemented as application specific

integrated circuits (Richards[59],Sun[70]). Software developments have seen the

evolution of a number of fast transform algorithms (Kou[39], Gertner[24],

Bracewell[6b],Gupta[28a] and others) which reduce the number of calculations

required to perform the discrete transform.

A recent development has been the application of parallel processing

techniques to speed up transform calculations. Hardware implementations while being

fast generally operate on small data sets and can only perform a specific transform.

Software implementations of fast transforms on computer are more general, allowing

any transform to be performed but are limited by the speed of the processor.

Performing transformations on parallel multi-processor computers is an alternative

offering the versatility provided by software implementations with a performance

exceeding that of a conventional single processor computer. The aim of this thesis is

to investigate efficient parallel processing topologies for the calculation of

transformations widely used in the areas of signal and image processing.

2

1.2 T H E F O U R I E R T R A N S F O R M A N D ITS APPLICATION IN O N E

DIMENSIONAL SIGNAL PROCESSING.

Orthonormal sets of functions can be used to synthesise any time function,

enabling a waveform to be represented by the superposition of members of a set of

basis functions (Beauchamp[4a]). The continuous Fourier transform decomposes a

waveform into a series of weighted sinusoids. One of the most familiar forms of the

Fourier transform is that which transforms a time function x(t) into the frequency

function X(f) and is given by the relationship

X(f) = f x(t)e-j2rcft^. (1.1)

If the transformation is to be performed by digital computation the input signal

will be represented by a data sequence. The data may present itself naturally in

discrete form, or if the data is continuous it can be discretized by sampling the

continuous waveform at or above the Nyquist sampling rate (Coates[17]) in order to

preserve an accurate representation of the continuous waveform. When data is in a

discrete form machine computation of the Fourier transform can be performed by

using the discrete Fourier transform, which is defined as

X (f) = ̂ Xx(k)e-j2 r t f k (1.2)
k=0

where N is the total number of points in the data sequence.

3

A number of algorithms have been developed to compute the discrete Fourier

transform. The Cooley-Tukey fast Fourier transform algorithm (Brigham[8]) was the

catalyst for a large number of FFT algorithms proposing computational improvements

based on tailoring algorithms to specific data types or processors. For example

Sorenson et al[67] provide a review of the effectiveness of a number of FFT

algorithms developed to process real data. Richards[59] and Pei[52] have developed a

split radix FFT for efficient computation of complex data and efficient VLSI

implementation. The Winograd Fourier transform is shown by Silverman[65] to

provide computational efficiencies given specific computer hardware requirements are

met. More recently fast Fourier transforms have been implemented via other

transforms (Gupta[28b]) and neural networks (Culhane[18]).

Most of these algorithms are modifications of the Cooley-Tukey algorithm.

This algorithm expresses the transform in terms of a series of sparse matrix

multiplications. How this is done is illustrated by considering a specific example.

The one dimensional discrete Fourier transform can be expressed as

X(n) = £x(k)W* (1.3)
k=0

.2)t

where W = e"'* and n = 0,1, ,N-1.

For values in the range 0 to 3 the variables k and n can be represented in binary form

as k = (k„k0) = 2ki + k0 and n = (n1,n0) = 2n1 + n0

For the case N = 4 the binary representation of the discrete Fourier transform is

X(npn0) = XXx(k1,k0)W
(2a^)(2k'+k»> (1.4)

k0=0k!=0

where ni5 k; are the ith bit of the binary representations of n and k.

4

From equation(1.4) it follows that

1

X(ni,n0) = £
k0=0

The summation in the [] brackets can be expressed as

XiK,k0) = Xx^kJW
21* (1.6)

kj=0

which can be expressed in matrix notation as

xx(0,0)

x,(0,l)

Xl(l,0)

x,ai>

Similarly, the outer summation in (1.5) can be written as

x(ni>no

which is expressible as

X(0,0)

X(0,1)

X(1,0)

X(U)

The transformation has been reduced to a sequence of matrix multiplications.

The various stages of the transformation may be equivalently represented as a signal

flow graph, as shown in figure 1.1.

k1 =0 _*l

^ x (k 1 ? k 0) W
2 n ° k l W (2 n i + n°) k° (1.5)

1 0 W ° 0 x(0,0)

0 1 0 W ° x(0,l)

1 0 W 2 0 x(l,0)

0 1 0 W 2 |_x(l,l)

i = ^,(nf l,k„)W
(2 n' +^'

k„=0

(1.8)

1
1

0
0

W° 0
W2 0
0 1
0 1

0 ~

0

w
w3

'x,(0,0)"

Xl(0,l)

Xl(l,0)

.^(1,1).

(1.9)

5

Figure 1.1 A signal flow graph of a fast Fourier transform for four data points.

This is the well known butterfly diagram and represents decimation in time of the

original signal.

Many applications use Fourier transforms. Compression of speech and image

data uses FFT conversion of the temporal or image data to frequency or spatial

frequency domains in order to emphasise important frequencies and filter others

(Lookbaugh[45]). The discrete Fourier transform is commonly used in filtering noise

and signal detection (Shynk[63],Satt[61],Quirk[55]) and in the reconstruction of a

signal from partial information (Dembo[22]). The restoration of blurred images using

a wiener filter (Guan[27]), image zoom algorithms (Smit[66]) and cepstrum analysis

(Wang [74]) are also accomplished using the FFT.

6

Many applications use Fourier transforms to calculate the correlation (also

known as the covariance, see Otnes & Enochson[50]) and convolution functions

(Beauchamp[4a]). The correlation function determines the degree of similarity

between two functions (Gonzales & Wintz[25]). The correlation of two continuous

functions f(x) and g(x) is defined by the relation

f (x) o g(x) = T f (cc)g(x+a) da (1.10)
J-oo

where f signifies the complex conjugate. The discrete equivalent is defined as

f(x)og(X) = Xf(i)g(x + i). d-11)
i=0

It can be shown, for both the discrete and continuous cases, that the correlation

theorem holds (Kraniauskas[40]). This is given as

f(t)og(t)«F(f)G(f)

f(t)g(t)«F(f)oG(f)

where G(f) is the Fourier transformation of g(t). From this it can be seen that the

correlation of two functions can be easily determined by calculating the product of the

Fourier transformations of the functions.

Similarly the fast Fourier transform can be used in determining the

convolution of two functions. The convolution of two functions f(t) and g(t) is defined

as

f(t)*g(t)=ff(a)g(t-a)da (1.13)
J-oo

with the discrete convolution being given as

7

M-l

f(t)*g(t) = Xf(m)g(t-m). (1.14)
m=0

Similar to the correlation theorem (1.12), the convolution theorem states

f(t)*g(t)«F(f)G(f)

f(t)g(t)oF(f)*G(f).

A n application of correlation is template or prototype matching. Template

matching attempts to identify a signal by computing a correlation between a known

signal and an unknown signal. If the correlation of the two functions yields a high

value the unknown waveform closely matches the known waveform. A c o m m o n use

of template matching is in determining the location of a sub-image or feature within

an image (Chou[15],Chakrabarti[ll]).

The term correlation is also commonly referred to as cross-correlation, that is

the correlation of two independent functions (Kraniauskas[40]). This term is used to

distinguish between cross-correlation and auto-correlation which is the correlation of

a function with itself. As shown in Beauchamp[4a] both cross-correlation and auto

correlation are widely applied in the fields of image processing (Whitebread[76]),

signal processing applications such as radar pulse compression (Cenzo[10]) and

transfer function identification (Fransaer[23]).

As with correlation, convolution also has a wide application base. Many

physical systems in the course of their operation perform convolutions of sinusoidal

functions. Such systems benefit from the application of Fourier transforms. For

example, in the field of scanning spectrometry deconvolution using FFT's is used

8

when determining the true absorption spectrum from the detected absorption spectrum

(Marshall[46]).

When performing systems analysis and simulation a system output is

determined by convolving a system input signal with the systems impulse response.

Fourier transforms can be used to determine the convolution also Fourier transforms

in a Galois field play a role in the study of error correcting codes see Blahut[5].

1.3 THE WALSH, HAAR AND DISCRETE COSINE TRANSFORMS

The widespread use of the Fourier transform in signal processing has resulted

in the development of a number of other transforms which are either computationally

faster or more appropriate for a particular application. Examples of such orthonormal

transforms are the Walsh, cosine and Haar transforms. The Walsh transform is an

orthogonal transform that is easy to implement digitally and computationally faster

than the more widely used Fourier transform. However, it has the disadvantage that it

gives a larger mean square error for low resolution calculations than other commonly

employed transforms (Beauchamp[4a]). This is a limitation when signal

reconstruction using the Walsh transform is based on a small dataset.

1.3.1 THE WALSH TRANSFORM

The Walsh functions form a set of rectangular waveforms with two amplitude

values, +1 and -1 defined over a limited time interval. The first three basis functions,

using sequency (similar to ordering by increasing frequency) or Walsh ordering (see

Ahmed & Rao[l]), are shown in figure 1.2.

9

/N /N

^ t ^ t ^ t

wal(O.t) wal(1,t) wal(2,t)

Figure 1.2 The first three sequency ordered Walsh functions.

One representation of the discrete Walsh function is given in (1.16), in which

the function g(x,u), having N = 2n terms, is represented as a continued product (see

Gonzales & Wintz[25]). This representation provides a simple derivation of the fast

Walsh transform.

g(x,u)=in(-i)
b<wwu)

(1.16)

where x = ordering number

u = time period

b; (x) = the ith bit of the binary representation of the value of x.

The discrete Walsh transform W(u) is given by

N-l
W (u) = Xf(x)g(x,u). (1.17)

x=0

From equation(1.16) it may be noticed that the discrete Walsh transform can be

represented as

1 N-l n-l
w(u)=^Zf(x)ri(-i) b i (x) b n i i (u)

N x=0 i=0

(1.18)

10

The fast Walsh transform algorithm can be determined using a similar

technique to that used in determining the fast Fourier transform. This can be

demonstrated by considering the case N = 4. Neglecting scaling

W(u) = £f(x)]1[(-l)bi(x)bl-i(u) (1.19)
x=0 i=0

1

where TT/j^iWi'HW-/ uMnlMn) /_i\bi(x)b0(u)

i=0

The binary representation of equation(l. 19) for N = 4 is

w(Ul,u0) = X£f(Xl,xj(-i)^(-ir°.(i.20)
X0=0X!=0

The inner summation of equation(1.20) can be written as

WlK.Xo) = Xf(Xl,x0)(-ir° d-21)
X!=0

with the outer summation being written as

W(upu0) = X
Wi(uo,x0X-l)

XoUl. <L22)
x0=0

Both of the summations in (1.21) and (1.22) can be enumerated in matrix form

in the same manner as for the fast Fourier transform. When this is done the

summations can be combined to give a matrix representation of the fast Walsh

transform as given by equation (1.23). This representation reveals the discrete Walsh

transform to be a "hard limited" discrete Fourier transform with the sinusoidal

functions replaced by square waves.

11

W(0,0)

W(1,0)

W(0,1)

W(L1)_

1 1 0 0

1 - 1 0 0

0 0 1 1

0 0 1-1

1 0 1 0

0 1 0 1

1 0 - 1 0

0 1 0 - 1

f(0,0)

f(0,l)

f(l,0)

_f(U)

(1.23)

The various stages of the transformation given in equation(1.23) may also be

represented by a signal flow graph, as shown in figure 1.3.

W(0)

W(2)

W(l)

W(3)

Figure 1.3 A signal flow graph of a fast Walsh transform for four data points.

The Walsh transform can also be found using Hadamard matrices

(Beauchamp[4b]). A Hadamard matrix is a square matrix whose elements are only 1

and -1 arranged so that its rows and columns are orthogonal to one another. The

lowest order Hadamard matrix is of order two as shown by equation(1.24)

H 2 =
1 1

1 -1
(1.24)

12

Higher order Hadamard matrices can be obtained from the recursive

relationship

H N ~~ H N HU (1.25)

given N = 2n and ® denotes the Kronecker or tensor product.

A definition of Kronecker products can be found in Brewer[7]. Given a matrix A of

size mxn and a matrix B of size p x q the Kronecker or tensor product is a matrix of

size mp x nq as shown by equation(1.26)

A ®B =

anB

amfi

alnB

fl-B

(1.26)

The sparse matrix product used when determining the fast Walsh transform as shown

in equation (1.23) can be combined into a single matrix as shown below

1

1

0

0

1 0

-1 0

0 1

0 1

0]
0

1

-lj

1

0

1

0

0

1

0

1

1

0

-1

0

0"

1

0

-1_

1

1

1

1

1

-1

1

-1

1

1

-1

-1

r
-1

-1

1_

(1.26)

The resultant matrix can be seen to be a Hadamard matrix of order four. The Walsh

transformation matrices can therefore also be represented as a Hadamard matrix of

order N.

13

1.3.2 T H E D I S C R E T E C O S I N E T R A N S F O R M

The cosine transform is based on a sinusoidal kernel function

K(u),t) = cos(cot). (1.27)

The discrete cosine transform is therefore defined as

X(„) = l|x(i) cos(i^±^). (1.28)

The discrete cosine transform is computationally more efficient than the

discrete Fourier transform and provides efficient energy compaction similar to that

found with the optimal Karhunen-Loeve transform (Beauchamp[4a]) and may be

implemented as a fast transform. This has ensured widespread use in image and

speech compression (Ngan[49]). A number of discrete cosine transformations have

been developed (Kou[39]), one of the best is that given by Chen[14]. Because of its

efficiency at image data compression (Cham[12]) the discrete cosine transform is

widely used for image coding of video frames (Roese[60]), and is recommended as

part of the JPEG colour image data compression algorithm (Rao[57a]). Many fast

algorithms for computing the discrete cosine transform have been developed. A

review of various discrete cosine transform algorithms is given by Chelemal[13] and

Hou[35]. These algorithms can be classified into one of the following categories.

Calculation of the discrete cosine transform via another transform, recursive

computation, or sparse matrix multiplication. A common implementation is the sparse

matrix multiplication. A variety of variations of this have been developed most based

on the DCT-II algorithm given by Rao[57a] and shown in figure 1.6.

14

Ci = cos(LPi) Si = sin(i.Pi)
16 ~J6

Figure 1.6 A signal flow diagram for the cosine transform for N = 8.

1.3.3 T H E H A A R T R A N S F O R M

The Haar transform is based on a set of periodic rectangular waveforms known as

Haar functions. These are defined (Ahmed & Rao[l]) as

h(0,0,t) = 1 t e [0,1) (1.29)

h(r,m,t) = <

r

22

r

-V-

0

m-1
< t <

1
m- —

2
1

m —
2
< t < m

2r 2r

elsewhere t e[0,l)

where 0 < r < log2N and 1 < m < 2
r.

15

h(0,0,t) h(0,l,t)

,0.5

-2°'

h(l,l,t)

1/2 1
.0.5

• $ ' •

Figure 1.4: The first four continuous Haar functions.

h(l,2,t)

1/2

The Walsh, Fourier and cosine transforms all have global basis functions, the

Haar transform was the first transformation to have both global and local basis

functions. As shown in figure 4 the first two Haar basis functions are global, all other

basis functions are local in space. Work by Goupillard, Morlet[29] and others has led

to the development of families of basis functions known as wavelets (Strang[69]).

Wavelet basis functions consist of translations and dilations of a wavelet function. As

most of the Haar basis functions are also translations and dilations of a square wave

the Haar functions are now seen to be a member of the family of wavelet functions.

A wavelet function \|/ is generated by means of translations and dilations of a

scaling function (|) (Daubauchies[20]) as given below

vW = £(-i)k q.^x-k). (1.30)
k

The scaling function used to create the wavelet function is determined recursively by

means of the dilation equation(1.31)

16

4>j(*) = ICktH(2x-k). (1-31)

The form of a specific wavelet function is dependant upon the choice of <|)0 and the

coefficients C k. For example, the Haar function can be created using the wavelet

equations when (|>0 is the box function (Strang[69J).

Mapping the Haar functions into the discrete domain by sampling the

continuous functions results in a matrix of discrete values. Equation(1.32) is an

example of the case N = 8,

(1.32)

8

1

1

4~2
0

2

0

0

0

1

1

4i
0

-2

0

0

0

1

1

-42
0

0

2

0

0

1

1

-42
0

0

-2

0

0

1

-1

0

4~2
0

0

2

0

1

-1

0

42
0

0

-2

0

1

-1

0

-42
0

0

0

2

1
-1

0

s 0
0

0

-2

The Haar transformation X can therefore be expressed as a matrix multiplication such

as

X = H a . x (1.33)

where H a is the N x N Haar matrix and x is a data vector.

The first two Haar transform coefficients, like the coefficients of the discrete

Fourier and Walsh transforms, are a function of all the values in the original data

space. The other Haar transform coefficients are a function of a subset of the original

data space. This implies that unlike the Fourier and Walsh transformations the Haar

transform is both globally sensitive and locally sensitive to the data space.

17

A number of algorithms to compute the Haar transform have been developed.

The algorithm by Andrews[3] is shown as a signal flow diagram in figure 1.5.

Figure 1.5 A signal flow diagram of the Haar transform for N = 8.

As can be seen from the signal flow diagram the Haar transform performs

2(N-1) additions and subtractions and N multiplications as opposed to the Nlog2N

operations of the fast Walsh and Fourier transforms. The time required to perform the

Haar transform is therefore linearly proportional to the size of the dataset N, whereas

the transformation time of the transforms outlined earlier is proportional to Nlog2N.

1.4 APPLICATIONS OF TRANSFORMS TO FEATURE EXTRACTION AND

DATA COMPRESSION

In the context of signal and image processing the transformation operation can

be interpreted as being a process of feature extraction. When corresponding elements

of the data vector and the basis function or transformation matrix have similar values

and signs, a large positive value of the transform coefficient will result.

18

A large transform coefficient value implies that the "shape" of the data vector

and the basis function are similar. Different transforms can be employed to efficiently

detect different features in the data vector. For example, the Walsh transform has been

used to detect straight line roads and rectangular buildings in aerial photographs

(Beauchamp[4b]).

Another application of the process of transformation is to use it as a

mechanism for data compression. When using transform coding techniques for data

compression the data is converted into the transform domain, transform coefficients

having comparatively small values are discarded and the remaining coefficients

representing the compressed data are either transmitted or stored. Reconstruction of

the original data is carried out by replacing the transform coefficients not transmitted

or stored with zeros and performing the inverse transformation.

The choice of a particular transform is dependant upon the level of

reconstruction error that can be tolerated, and the processing resources and

requirements. The data compression capabilities of the transforms discussed earlier

have been studied extensively (Thomas[72]) and it has been found that given a set

percentage retention of transform coefficients the mean square error introduced into a

reconstructed image or signal is least when the discrete cosine transform is used. This

is followed by the Fourier, Walsh and Haar transforms.

19

1.5 LIMITATIONS O F G L O B A L T R A N S F O R M S W H E N F E A T U R E S

APPEAR AT A NUMBER OF SCALES

For many different types of signals the important information is carried by

singularities and sharp variations in magnitude. For example, in the field of image

processing, points of sudden variation provide the locations of contours or edges in

satellite and biomedical images (Khanh[37]). Another example is signal processing

applications such as ECG, where detection of specific fluctuations in heart rate

(Nandagopal[48]) are required. While in processing a time series it may be important

to determine both the temporal location of a constituent structure as well as its

frequency.

A drawback of global transforms such as the Fourier, cosine and Walsh

transforms is that they are unable to describe the spatial locations of singularities or

non-stationary structures within a signal. This is because the basis functions of global

transforms are expressed over the entire data space and therefore do not possess local

sensitivity. Transforms which are well adapted to characterise transient phenomena in

signals are transforms whose basis functions are localised in space and frequency. The

wavelet transform decomposes a signal on a set of basis functions with compact

support and thus can represent a signal as a function of both time and frequency.

The continuous wavelet transform of a function f with respect to the wavelet g

may be defined as

1 "U

F a > b = - f g (—) f (x) d x , a>0, b e R (1.34)
aJ a

The position and magnification of the wavelet basis functions can be specified by the

values assigned to b and a respectively. Therefore when features appear on a number

of scales (Grasseau[30]) they may be detected in the transformation to whatever

accuracy is required by appropriate dilation and translation of the wavelet basis

20

functions. Also a particular wavelet function can be chosen to detect a matching

feature in the signal or image.

For example Tuteur[73] uses the inverse Fourier transform of the frequency

function

G(f) = e"(af-m)2 (1.35)

as the analysing wavelet function because of its ability to extract Ventricular late

potential's from background noise in clinical electrocardiograms, while Grasseau[30]

studies the local scaling properties of fractal objects by using a Gaussian type wavelet

function
-xl

g(x) = (l-x2)e2 (1.36)

because of its fast rate of decay.

1.6 IMPLEMENTATION TECHNIQUES AND PROBLEMS WITH CURRENT

TRANSFORM METHODS

There are basically two major methods of implementation of transforms, these

are software implementations on general purpose computing machines and specialised

hardware/software implementations. The flexibility and availability of the general

purpose computer makes software implementation an attractive alternative for

carrying out fast transform algorithms. Evidence of this popularity can be seen in the

large number of transform algorithms developed for the general purpose computer

(Davies[21], Sinha[64]).

A major drawback of this type of implementation has been that the processing

time required to perform the transform is too great for many applications; for

example, high frequency signal analysis or real time video frame processing. This has

been overcome to a large extent by employing specialised hardware/software

21

solutions (Chou[15],Lewis[44],Healey[31]) where the particular application is time

critical. Of course such solutions require hardware appropriate to the particular

application with software often written in an assembler programming language and

optimised for that specific system. When an implementation takes this form,

improvement in performance is made at the cost of flexibility and portability of the

transform.

If a transform which operates on large datasets is implemented currently on a

von Neumann type computer a trade-off has to be made. A general algorithm can be

developed which can be run on many different types of computer but which is

relatively slow, or a specialised device-specific algorithm can be developed to run

optimally on a specific machine, providing fast performance but at the cost of being

unsuitable for implementation on any other platform.

1.7 MATRDC REPRESENTATION OF TRANSFORMS AND THEIR

RELATIONSHIP TO PARALLEL IMPLEMENTATIONS OF TRANSFORMS

The development of the fast transforms as outlined earlier in this chapter indicates

that a discrete transformation can be represented as a matrix multiplication of a data

vector (or matrix) with a matrix representing the discrete form of the transform basis

functions. There are two possible ways that this matrix multiplication can be

represented. One way is to depict the operation as a matrix multiplication between a

single densely populated basis function matrix and the data matrix. An example of

this is the Walsh transform for N=4 shown in equation(1.37).

~w0"
w2

w,
w3_

1

1
1
1

1

-1
1
-1

1
1
-1
-1

r
-i

-i

i

X
fi

f2

_f3.

(1.37)

22

The other method is to represent the transformation as the product of a number

of comparatively sparse matrices as given by equation(1.23). These representations of

a discrete transform can indicate possible methods of parallel implementation of the

transform.

The sparse matrix form of a discrete transform when viewed as a signal flow

graph shows clearly any data dependencies in the transform operation and highlights

independent and hence parallelizable operations. This form of representation is

particularly valuable when attempting to implement a transform in parallel on a

MIMD (Multiple Instruction Multiple Data) parallel architecture (Almasi[2]). The

MIMD parallel processing paradigm is based on independent processors operating in

parallel and communicating by passing messages. Such a processing architecture can

be represented schematically by a signal flow graph. Signal flow representation of a

transform can therefore provide a direct means of determining parallel MIMD

implementation.

On the other hand, the transform may be implemented on a massively parallel

SIMD (Single Instruction Multiple Data) architecture (Almasi[2]). A processor

topology with all processors executing the same instruction simultaneously on

different datasets. A common SIMD processor topology is the mesh. Implementing a

transform on this type of architecture can be a straight forward process which operates

directly on the dense basis function matrix. From this it can be seen that the various

ways of representing a transform matrix can provide information about and, in some

cases, determine optimal parallel implementations.

As the parallel implementation of a wide variety of discrete transforms was to

be investigated a transputer based MIMD system was chosen because of the large

degree of programming flexibility it provides, and because commercially available

systems allowed a number of different processor topologies to be investigated.

23

1.8 SUMMARY

This chapter provides a brief review of the Fourier, cosine, Walsh/Hadamard,

Haar and wavelet transforms. Their application to the fields of data compression and

feature extraction is outlined. The advantages and disadvantages of a number of

discrete transform implementations are reviewed and possible techniques for

implementation of transforms on parallel processing computers are discussed.

24

CHAPTER 2

REVIEW OF THE TRANSPUTER

2.1 INTRODUCTION

Many of the tasks which computers are required to perform such as

simulations, computer modelling (Kothe[38], Ransom[56]) and signal processing

(Sousa[68]) are computationally intensive . Tasks of this nature can require significant

amounts of processing time, even when the fastest microprocessors are used. In an

attempt to reduce the processing time required to perform these tasks the concept of

parallel processing was introduced.

Parallel processing employs a divide and conquer technique. A particular task

is divided into a number of sub-tasks. These sub-tasks are then distributed among a

number of processors which execute these tasks concurrently. Many different

architectures have been designed employing parallel processing techniques. The

variety of implementations of the parallel processing paradigm is so great that a

number of parallel processing taxonomies have arisen. The classification system

proposed by Flynn (Almasi[l]) and foreshadowed in chapter one is widely used.

The two criteria employed in this system are the number of instruction and

data streams. The single processor von Neumann computational model would be

viewed as a single stream of instructions working on a single stream of data. The

other two classifications of interest are SIMD (single instruction multiple data) and

MIMD (multiple instruction multiple data). The SIMD classification covers such

architectures as the vector and array processors. The MIMD model includes any

architecture that consists of multiple microprocessors operating independently on their

own individual data streams. The transputer was designed to achieve improved

processing speed-up by utilising the MIMD computational model.

25

Transputer is a generic name for a family of VLSI components developed by

INMOS. Each member of the family possesses its own unique characteristics, but all

conform to the same general architecture. This consists of a single microcomputer

comprising: processor, system services, RAM, and a number of autonomous serial

communications links allowing inter-transputer communication.

First introduced in 1985, the first microprocessor in the transputer series was

the T414. Since that time the T212, T800, T222, T425, T805 and T9000 have all been

released, each new release providing some improvement in functionality over its

predecessor.

2.2 HARDWARE DESIGN OF TRANSPUTERS

The transputer is based on the concept of communicating sequential processes.

The particular transputer that is used in this thesis is the T800. The T800 is a 32 bit

CMOS microcomputer. It has an on-chip 64 bit floating point unit, 4 Kbytes of on-

chip RAM, a configurable memory interface and four bi-directional INMOS

communication links.

Processing speed-up is obtained by hardware multi-tasking and by concurrent

operation of the CPU and FPU. Fast memory access is available by storing a program

or data in the on-chip RAM while, if required, a maximum of 4 Gbytes of memory is

available via the memory interface.

What makes the transputer particularly distinctive is its four serial

communications links providing communication between transputers. Operating at

2.35 Mbytes per second when running bi-directionally these links allow any number

of transputers to be interconnected in the most appropriate configuration for the

26

particular task. Rapid processing of large tasks can be achieved by dividing the task

into components and distributing it over the transputer network.

Transputer systems have been found to be particularly suitable when

attempting to solve problems in fields such as robotics (Daniel[19]) that benefit from

the employment of asynchronously operating sophisticated microprocessors, or

process simulation (Ponton[53]) when processing speed-up is best served by coarse

grained parallelism.

Coarse grained parallelism is the term given to the division of a task into a

small number of relatively large sub-tasks. This technique is easily mapped onto

MIMD architectures. The alternative is termed fine grained parallelism, which is the

division of a task into a large number of small sub-tasks. This technique is more

suitably mapped onto SIMD architectures, such as array processors. An example of

the former is the division of fast transform operations onto a small number of

processors as shown later in chapter three, an example of fine grained parallelism is a

matrix operation where each individual matrix element is distributed to a processor.

Parallel computing applications tend to be naturally easier to implement in

one granularity than in the other. As the transputer is a microprocessor that operates

autonomously and communicates with other transputers by message passing it is more

amenable and efficient in implementing coarse grained parallel applications. Fine

grained parallelism would result in a system of great complexity. The complexity

arising from attempting to operate a large number of autonomous processors each

communicating by asynchronous message passing.

When creating a parallel application a conscious decision must be made as to

what is the most profitable configuration for the application. An image processing

task for example, may be easier to implement on a SIMD architecture, but most of

27

these architectures exist as specialised stand alone machines. On the other hand, the

same task may be harder to design in a coarse grained form but can be mapped onto a

multi-transputer plug-in card attached to a personal computer and so be more

industrially applicable. Trade-offs such as these must be considered when determining

what hardware and methodology to employ to perform a particular task.

2.3 THE TRANSPUTER SYSTEM USED

The hardware configuration consists of two T800-20 transputers, one with 1

Mbyte of DRAM and the other with 32 Kbytes of SRAM and 2 Mbytes of DRAM.

These are attached to a B008 plug in board.

The B008 board is a transputer motherboard that plugs into one of the

expansion slots of an IBM compatible PC motherboard. It consists of a 16 bit T212

transputer that controls a software configurable C004 32 way crossbar link switch and

associated logic. The board can accommodate up to 10 transputer modules which fit

into plug-in slots.

I Personal

Computer

0

1 T800 2

3

C004

Programmable Crossbar switch

Figure 2.1 Block diagram of the B008 Transputer system.

Transputer Pipeline

28

Transputer links 1 and 2 are hardwired on each of the slots so that when the

transputers are plugged in they form a pipeline of processing elements. The remaining

transputer links can be connected or "softwired" via the IMS C004 programmable link

switch. The softwired links can be configured by utilising the module/motherboard

software (mms2) and the hardware description language it provides called HL1.

2.4 THE PARALLEL C PROGRAMMING LANGUAGE

As the transputer architecture is based on the communicating sequential

processes model with on-chip serial communications links, parallel processing

utilising transputer systems must consist of concurrent sequential processes or tasks

which communicate with each other. The programming language used for developing

the application software on the transputer system was Parallel C developed by 3L

Systems Pty Ltd. Parallel C provides two programming methods for use with

transputer systems which conform to this processing model, these are the

communicating task technique and the processor farm technique.

An application using the communicating task model would consist of a

collection of independent concurrently executing tasks each with its own input and

output vectors. The Parallel C programming language includes configuration software

for the communicating task model which provides a means of mapping the collection

of software tasks onto the physical network of processors. For the programmer this

takes the form of a configuration file (see Appendix A) which specifies tasks, their

interconnection and their placement on physical processors. Each processor can

support any number of software tasks within the restrictions of available memory.

Communication between tasks on the same processor being via a designated memory

location. Communication between tasks placed on different physical processors is via

the transputer serial links, therefore communications between tasks on different

processors is limited by the available physical connections.

29

The processor farm technique consists of a single master task and a number of

identical worker tasks. A copy of the master and worker tasks is placed on the

transputer which interfaces between the transputer board and the PC, this is known as

the root transputer. A copy of the worker task is placed on all other transputers in the

network. The master task disseminates data to, and collects data from, the worker

tasks. The worker tasks accept data, perform a calculation and return a result. Data is

automatically routed to any free worker task. The configuration file required for a

processor farm is minimal, consisting of a listing of master and worker task filenames

and memory requirements. Also, a processor farm implementation will automatically

configure itself to run on any transputer network. Therefore, transputers can be added

to or deleted from the network without recompilation or reconfiguration of the

application software.

2.5 AN EXAMPLE OF TRANSPUTER PROGRAMMING: THE ONE

DIMENSIONAL CONVOLUTION

One of the most efficient means of determining the convolution of two

discrete one dimensional functions f(x) and g(x) is by use of the convolution theorem

(equation(1.15)). This states that given the Fourier transform of the function f(x) is

F(u) and the Fourier transform of the function g(x) is G(u) then the convolution of

two functions is given by the inverse transformation of the product of the vectors F(u)

and G(u). Gonzales[25] shows that the inverse Fourier transformation may be

calculated by utilising the same algorithm that is used to calculate the Fourier

transformation. In order to calculate the inverse transform the data vector is run

through the same algorithm as the Fourier transform the only variation being that the

resulting vector is divided by N, the size of the dataset. Therefore, both the

transformation and inverse transformation can be calculated using the same algorithm.

30

A primary consideration when designing a transputer implementation which is

not a processor farm is the number of transputers available and their possible

configurations. This can affect both the degree of parallelisation of the algorithm and

the mapping of software tasks onto the physical system. The following example is

based on the two transputer system outlined in section 2.3.

The core task in a one dimensional convolution is the fast Fourier transform,

so parallelisation of this task will be considered first. The Cooley-Tukey algorithm for

the fast Fourier transform (Brigham[8]) can be displayed as a signal flow graph as

given in figure 1.1. A s shown in figure 2.1 this method of depicting the

transformation provides a means for determining h o w the operation could be

distributed between two processors.

Figure 2.2 The division of butterfly operations between two transputers.

With the operations distributed between two transputers as shown in figure 2.2

the implementation could take the following form. The data vectors representing the

functions f(x) and g(x) are sent to the two transputers, each transputer performing the

operations outlined above. The product of the elements of the transformation vectors

F(u) and G(u), resident on each transputer are found. These results are then

31

redistributed amongst the transputers and the inverse transformation is performed.

The results of the inversion are then collected by the root transputer.

Parallel implementations such as this using the communicating sequential

processes model can be best exemplified by use of Petri nets (Murata[47]) because

they clearly represent message passing and operations or state transitions. Figure 2.3

details a Petri net representation of the one dimensional convolution on a two

transputer system.

Once the basic algorithm and its mapping onto a target transputer system is

determined the next stage is the development of the application software. The

software development on a B008-transputer system consists of a configuration file

and the transputer parallel C programs.

The configuration file is an ASCII file comprising five distinct components.

The first two components are a description of the physical system. The first part is a

list of the physical processors present in the system, allocating each transputer and the

host PC identifying labels (User guide[51]).

e.g. PROCESSOR HOST - the PC

P R O C E S S O R T R A N S 1 - transputers present on the B008 board

P R O C E S S O R T R A N S 2

The next component is a description of the physical communication links

between all processors in the system. Each link is identified by the specifier W I R E

followed by an identifying label for the link, followed by a description of the

processors connected and which processor communication ports are connected.

e.g. W I R E JUMPER1 HOST[0] T R A N S 1[0]

W I R E JUMPER2 TRANS1[2] TRANS2[1]

32

Processor 1 Processor 2

0
y c — Read f (x) & g(x) data

from mass storage.

6
Y v Send f(x) & g(x) data

to Processor 2.

i£ Perform Processor 1
Butterfly.

6
i C Calculate product of Processor 1

transform elements Y(u)=F(u)G(u).

O
Y ^ Receive data X(u) from

Processor 2.

6
,, Send data Y(u) to Processor 2.

o o
\ K Perform Processor 1

Butterfly.

0
Y ^ Receive data

from Processor 2.

O
i <L Write to mass storage.

6

©
^K Receive data from

Processor 1.

\y Pe.rfnrm Processor 2
Butterfly.

i£ Calculate product of
Processor 2 transform

0 elements

X(u)=F(u)G(u).
Y Send results X(u) to

Processor 1.

^ Y Receive results Y(u)
from Processor 1.

6
i £ Eerform Processor 2

6
Butterfly.

NK Send data to

Processor 1.

Figure 2.3 Petri net representation of two transputer one dimensional convolution.

33

After this is a listing of all the parallel C programs, known as tasks, and the

number of logical communication links available to each software task. The tasks

which are incorporated into the system include both the application software which

has been developed and various 3L Parallel C library tasks such as FILTER and

AFSERVER. These tasks are provided in order to facilitate communications between

the transputers, PC and mass storage devices. Detailed information is available from

the 3L Parallel C users manual[51].

e.g. TASK AFSERVER INS=1 OUTS=l

TASK FILTER INS=2 OUTS=2

TASK FOURIER1 INS=3 OUTS=3

The next component of the configuration file is a listing of the placement of all

the software tasks onto the appropriate physical processor.

e.g. PLACE AFSERVER HOST - afserver runs on PC

PLACE FILTER TRANS 1 - filter & fourierl both run on transputer 1

PLACE FOURIER1 TRANS 1

Finally the last section of the configuration file is a listing of the logical

communications links between software tasks. Bi directional links must be

specifically stated as shown below.

e.g. CONNECT ? AFSERVER[0] FILTER[0]

CONNECT ? FILTER[0] AFSERVER[0]

As the transputer system is based on the model of communicating sequential

tasks the parallel C programs are similar to sequential C programs with the addition of

library functions to enable transfer of data between tasks. Examples of the parallel C

programs are given in appendix A.

34

2.6 S U M M A R Y

This chapter introduces the major parallel processing architecture

classifications and provides a general overview of the Transputer. A description of the

Transputer system used in this thesis and the Parallel C programming language is

given. Examination of Transputer systems revealed that the Transputer is most

suitable for implementing parallel algorithms employing "coarse-grained" parallelism.

An example of such an implementation, the one-dimensional convolution is outlined.

35

CHAPTER 3

PARALLELISING THE DISCRETE WALSH AND COSINE TRANSFORMS

3.1 INTRODUCTION

The discrete Walsh and cosine transforms were selected for parallel

implementation because of their widespread use in implementations employing global

transformations. The discrete cosine transform as mentioned in Chapter 1 is widely

used in data compression of images being part of the JPEG standard. The discrete

Walsh transform although not widely used itself has a close similarity to the fast

Fourier transform, enabling any parallel Walsh implementation to be easily applied to

the widely used Fourier transform or any similar transform.

3.2 THE WALSH TRANSFORM AND ITS RELATIONSHIP TO THE

FOURIER TRANSFORM

The Walsh and the Fourier transforms both belong to a class of transforms that

can be expressed in terms of the general relation

F(u)=£f(x)g(x,u). (3.1)
x=0

The function g(x,u) is known as the forward transformation kernel. Also both inverse

transforms assume the same form

f(x) = |>(u)h(x,u) <3-2)
u=0

36

where h(x,u) is the inverse transformation kernel. The nature of the transform is

determined by the properties of its transformation kernel. The Walsh transformation

kernel consists of a series of global basis functions whose values are +1 or -1 whereas

the Fourier transform kernel is based on trigonometric terms.

The Walsh transform can be computed by a fast algorithm identical to the

algorithm used to compute the fast Fourier transform. The difference between the two

being that the exponential terms in the fast Fourier transform are set at either +1 or -1

for the fast Walsh Transform.

3.3 INITIAL ATTEMPTS TO PROGRAM TRANSPUTERS TO PERFORM

THE WALSH TRANSFORM

The fast Walsh transform can be represented as a signal flow graph as depicted

in figure 3.1. Expressed in this manner it becomes apparent that the Walsh transform

could be viewed as a collection of communicating tasks or processes. This provides

an opportunity to implement the transform on a multiple instruction multiple data

system such as a transputer network. One possible software implementation would be

what is commonly termed a "fine - grained" parallel processing approach.

37

x(0) ,

x(1) \ /t

x(2) \ \/ /

x(3) \XX/£
x(4) X X X /
x(5) / X X

x(6) / / \

x(7) / ^

^^ / \ " ̂ *̂"**̂^

^ - ĵ cT"- -

^ 1

J r t(0)

< - * > t(4)

J* t(2)

< ^ t(6)

t(1)

<^t(5)

t(3)

<^t(7)

-1

Figure 3.1 A signal flow graph for an eight datapoint Fast Walsh transform.

This method employs a large number of relatively simple software processes.

The process interconnection topology takes the same form as the signal flow graph.

Each individual process consists of an operation such as single addition or subtraction

and the appropriate message passing instructions.

Once a process topology has been determined the interconnected processes must

be mapped onto the available transputer system. A PC-transputer implementation to

perform the transformation given in figure 3.1 is shown in figure 3.2.

38

AFSERVER

M
U
L
T
I
P

L
E
X
E
R

Figure 3.2 Communicating task transputer implementation of the Walsh
transform for eight datapoints.

Each of the processes w_p_q receive messages via the channels shown,

perform the appropriate addition or subtraction and transmit the result. The 3L

Parallel C programming language which was used requires a transputer memory

allowance of 5 Kbytes for any process which performs file server I/O. The processes

that dispense and receive are interfaced between the library multiplexer process and

the butterfly processes in order to obviate a 5 Kbyte memory requirement for each

initial and final butterfly process and also to reduce process contention for the P C

hard disk when reading and writing data.

This type of implementation can be modified in order to perform on larger

datasets and/or larger transputer networks. The transform can be distributed over

larger networks by cascading multiplexer tasks as shown in figure 3.3. This allows

mapping of the transformation on a range of processor topologies ranging from a few

processors to a massively parallel system.

39

afserver mux 1

mux 2 upper
tasks

mux 3
lower
tasks

Figure 3.3 Cascading multiplexer tasks.

Butterfly processes can be grouped on transputers with I/O being performed by

multiplexer processes. If the transputer network is sufficiently large the network could

be configured with the same processor topology as the signal flow graph with each

transputer running a single process.

In this implementation the actual butterfly task is generic with the application

utilising as many copies as necessary. The connections between the butterfly tasks for

datasets of any size can be generated by the following equation.

40

xn(i) = *n-i(i) + xn.1((j + 2
p-n) m o d 2p"n+1 + k) (3.3)

where 2P = datapoints

n = butterfly number

i = datapoint

j = imod2p-n + 1

k = i-j.

It has been shown earlier in section 1.3.1 that the Walsh transform may also be

expressed as a Hadamard matrix of order N. Therefore the Walsh-Hadamard

transformation may be performed by means of a matrix multiplication as shown in

equation(1.33). The resultant matrix is in bit reversed form. If necessary, it may be

ordered by appropriate row transformations of the coefficient matrix. The Walsh-

Hadamard form of the transform may be implemented on a transputer network

configured as a processor farm.

As discussed in chapter 2 the processor farm implementation consists of a

master task placed on the root transputer and a number of identical worker tasks

which are placed on all transputers in the network. The master task acquires data

containing both the data and basis function matrices from the personal computer mass

storage. It then sends the appropriate row and column of the two matrices to a free

worker task for processing. The worker task calculates a result which is returned to

the master task when the master task is free to receive data. Thus each element in the

resultant matrix can be calculated concurrently.

Another possible implementation which was investigated was mapping the

fast Walsh transform onto the processor farm. This would require the assignment of

the butterfly operation to the worker task and the master task would disseminate the

41

appropriate data pairs and collect the results. It was noted that the worker task

butterfly operation would demand little processing time to complete its task while on

the other hand the master task would be fully employed determining and transmitting

correct data pairs to the worker tasks and receiving and correctly storing results. This

would result in the transputer network suffering from a severely unbalanced

processing load distribution, this approach was therefore discarded.

3.4 IMPROVED PROGRAMMING TECHNIQUES AND COMPARISON

WiTH EARLIER METHODS

The two parallel implementations of the Walsh transform discussed above

possess both a number of advantages and a number of shortcomings. The advantage

of both implementations is, as mentioned earlier, that the transform operation

becomes a very easy task to program. However there are a number of shortcomings

with both implementations.

The "fine-grained" approach of implementing the butterfly operations as a

series of communicating tasks has two drawbacks when mapped on systems

consisting of relatively small numbers of processors. First the configuration file

discussed in chapter 2 becomes large and cumbersome for datasets of a realistic size.

Secondly, for larger datasets a communications bottleneck occurs in the distribution

and collection of data by the dispense and receive tasks when each of the independent

butterfly tasks compete for access both when transmitting and receiving data. This

extends the time spent performing inter-task communications and more than doubles

the total processing time.

When implementing the transform as a processor farm it is not viable to

perform the fast Walsh transform due to unbalanced processor loads. The other

alternative is to perform the transformation as a matrix multiplication, this distributes

42

the processing load more evenly but at the cost of performing N 2 operations rather

than the Nlog2N operations of the fast Walsh transform. There is also the problem of

communications. The processor farm topology usually consists of a pipeline of

processors with the root or PC-interface transputer at one end of the pipeline. It has

been found (Webber[75]) that processor farms suffer from a communications

bottleneck between the root transputer and more distant transputers attached to the

pipeline. This is because distant transputers are required to communicate with the root

transputer via all the intermediary transputers.

Any improved transform computation would have to overcome the

shortcomings of the implementations given earlier. It would have to be comparatively

free of communications bottlenecks and require a compact and straightforward

configuration file. Also the processing load on the transputers in the system should be

evenly balanced.

The mesh and hypercube processor topologies meet these initial criteria, which

of these two is implemented for a particular application is dependant upon a number

of other considerations. The mesh topology is often employed in S I M D architectures

and is commonly used to perform matrix multiplications (Thinking Machines[71]). It

may also be profitably employed using a M I M D architecture.

A study of the process of distributing data over a mesh topology revealed that

the number of steps required to distribute or collect data in a M I M D n x m mesh

processor topology from a single data storage source is given by

2

<

2

n

2

n

2

+

+

m-n

2

m-n

2

43

where the data storage source is connected to a processor whose communication links

are unconstrained by the network topology.

The processor mesh naturally lends itself to matrix operations as the processor

topology matches the structure of the data. Performing the transform operation on a

mesh as a matrix multiplication therefore becomes an easy task to implement, while

suffering from the disadvantage of requiring more operations to perform the matrix

multiplication as opposed to the fast transform method. Whilst this in itself is a

disadvantage it may be counterbalanced by other application specific considerations.

For example, all discrete transforms may be represented as matrix multiplications

while methods of performing fast transforms vary widely. Applications which require

the calculation of a number of different types of transforms may be better served by a

mesh topology matrix multiplication algorithm, its general purpose nature offsetting

any loss of performance when calculating a particular transformation.

The hypercube is another processor topology which presents a number of

benefits when attempting to implement a transform in parallel. Using a hypercube, it

may be shown that access to a mass storage device from the most distant processor in

the network can be achieved in D steps where D is the dimension of the hypercube. A

comparison of the abilities of the two topologies to distribute data is given in

figure 3.4.

44

Number of

Processors

4
8
16
16
32
32
64
64
64

Mesh size
n x m

2x2
2x4
4x4
2x8
4x8
2x16

8x8
4x16

2x32

M a x i m u m required communication
steps

Mesh Hypercube
2
3
4
5
6
9
8
10
17

2
3
4
4
5
5
6
6
6

Figure 3.4 Table of inter-processor communication steps required for mesh and

hypercube processor topologies.

The results in figure 3.4 illustrate that for processor configurations which

contain more than 16 processors the hypercube is more efficient at distributing and

collecting data for a message passing MIMD processor network. The reason for this is

that for 16 processors or less, the number of communications links per processor

utilised by both topologies is the same. For larger numbers of processors the

hypercube generates additional communications links while the mesh processors are

limited to a maximum of four. The T800 series of transputers is limited to four

processor links while the T9000 has six, this limits a straightforward processor

network to a six dimension hypercube. If necessary additional transputers could be

used to provide communications fan-out given a processor rich environment.

A n additional point of interest which may be discerned from figure 3.4 is that

a mesh topology data distribution is more efficient if the mesh is maintained in a

configuration as square as possible. An illustration of data distribution in mesh and

hypercube processor networks can be seen in figure 3.5.

45

Data storage
Data storage

*L \

n The nth step in the communication path.

Figure 3.5 A n example of two possible data communication paths
for eight processor mesh and hypercube processor topologies.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

\

\ \

V
\ >

w
/ /

t» » *(0)

/ \ / ^ X P)
/ y^ /\ ̂ m

VsLSKs** *{{2)

^ / ^ V > < > t(6)
A A * V *- *•

\ A A t(i)

yy^s:><w A • **v y\ & ^

1 -1
• •

Processor 0

Processor 1

Processor 2

Processor 3

Figure 3.6 The distribution of the fast Walsh transform for eight datapoints on a

four processor 2-dimensional hypercube.

The hypercube also possesses the advantage that fast algorithms for global

transformations such as the fast Walsh and Fourier transforms can be easily performed

in parallel on a hypercube processor topology. Figure 3.6 demonstrates a mapping of

the fast Walsh transform onto a two dimensional hypercube processor network.

46

It can be seen from figure 3.7 that if any inter processor communications are

required to perform the fast transform all the communications are between nearest

neighbour processors. This may be maintained for higher dimension hypercubes by

ensuring that the processor addresses as given in figure 3.6 have a binary address one

bit different from all other nearest neighbours (Hillis[33]). Such a distribution of the

fast transform on hypercube processors allows for a high degree of parallelism in the

computation.

Processor 0 (000) Processor 2 (010)

Processor 1 (001)

Processor 5 (101)

Processor 3 (011)

Processor 4 (100)
Processor 6 (110)

Processor 7 (111)

Figure 3.7 Hypercube processor numbering system, decimal and binary

representations.

As the major interest of this study was the performance enhancement of

transform operations the hypercube was considered the most suitable processor

configuration for the implementation of the fast Walsh transform. It avoids the

configuration complexities and the communications bottlenecks of the earlier

implementations and while the programming is more complex the processor load is

balanced and efficient parallelisation of the fast transform is maximised.

47

3.5 A P P L I C A T I O N O F T H E W A L S H T R A N S F O R M T O PERIODIC A N D

NON-PERIODIC FUNCTIONS

The Walsh transform was performed on a number of waveforms in order to

determine its ability to distinguish a number of different periodic or localised features

in a one dimensional signal. The waveforms selected tested the ability of the Walsh

transform to detect smooth and discontinuous periodic functions, smooth non-periodic

functions and time localised functions. The test waveforms and their transforms are

given in figures 3.8-3.18, more detailed representations can be found in appendix C.

The trigonometric functions were used as examples of smooth periodic

waveforms. Their Walsh spectrum is clearly recognisable with a dominant frequency

component. The strong harmonics close to the dominant frequency peak are caused by

the higher frequency square wave basis functions in the series which are required to

smooth the dominant frequency square wave into a more sinusoidal shape. Higher

frequency trigonometric functions cause a shift of the spectrum into higher frequency

ranges.

The step and chirp functions are representative of periodic discontinuous

functions. The step function transforms show that periodic square functions are easily

distinguishable due to their close correspondence to the Walsh basis functions. The

smaller frequency components in the spectrum are generated by the variation between

the initial value of the waveforms and that of the basis functions.

The ability of the Walsh transform to provide distinctive spectra degrades

when the periodic function waveform shape departs significantly from the basis

function set. An example of this is the chirp function transform. If the discontinuities

in the waveform are not present in the basis function set then a large number of

spectral components will be generated, representing the basis function series terms

48

needed lo approximate the waveform discontinuities. This results in a "noisy"

spectrum as evidenced by the chirp function transform.

sine wave N=64

Cosine function N=64

Figure 3.8 Trigonometric test functions.

49

step 1 N=64

m
9

.

100 200 300

X

400 500

step 2 N=64

Figure 3.9 Step test functions.

50

chirp N=64

Iterative function x(n+1)=ax(n)+bx(n-1), x(0)=0.9,x(1)=0.75,a=0.7,b=0.2

Figure 3.10 Chirp and Iteration test functions.

51

Delta function

S

Random data range 0-100

100 200 300 400 500

Figure 3.11 Delta and Random test functions.

52

8-
to

8-
CM

, § •

O

o .
r-

w'r
1

Parallel Walsh transform of sin(x) period = 512

100 200 300 400 500

Parallel Walsh transform of sin(x) period = 64

Figure 3.12 T w o examples of the discrete Walsh transform of the sine function
where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

53

Parallel Walsh of cos(x) period = 512

100 200 300 400 500

Parallel Walsh transform of cos(x) period = 64

100 200 300 400 500

Figure 3.13 T w o examples of the discrete Walsh transform of the cosine function
where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

54

Parallel Walsh transform of stepl period = 512

Parallel Walsh transform of stepl function period = 64

100 200 300 400 500

Figure 3.14 T w o examples of the discrete Walsh transform of the Step 1 function
where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

55

Parallel Walsh transform of step2 period = 512

100 200 300 400 500

Parallel Walsh transform of step2 function period = 64

Figure 3.15 T w o examples of the discrete Walsh transform of the Step 2 function
where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

56

?-

Parallel Walsh transform of chirp function period = 512

100 200 300 400 500

Parallel Walsh transform of chirp function period = 64

Figure 3. W T w o examples of the discrete Walsh transform of the Chirp function
where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

57

Parallel Walsh transform of iteration function

Parallel Walsh transform of delta function

•n «t* ••*• m •»• *n *M **r> m r» «• t* *«« tn m m t It m i <n m n »n m »rr» « m t tvt m * m f i m M R »w» «ft m tnt f* fTT* tit W»

100 200 300 400 500

Figure 3.17 Examples of the discrete Walsh transform of the Iteration and Delta

functions where x = sequency, zero crossings per unit time (Zps) and
y = transform coefficient magnitudes.

58

Parallel Walsh transform of random data

T 1 j 1 1 I '

0 100 200 300 400 500

x

Figure 3.18 The discrete Walsh transform of the Random data function where
x = sequency, zero crossings per unit lime (Zps) and
y = transform coefficient magnitudes.

The iteration and random noise functions are examples of non-periodic

smooth and discontinuous functions. The sharp signal fluctuations in the random

noise waveform result in a spectrum with properties similar to the chirp function. The

large initial spectral component is caused by the random noise data values being

restricted to a range between zero and one hundred. The coefficients used by the

iteration function resulted in a smoothly decaying non-periodic waveform.

Consequently the spectrum exhibits a number of low frequency components dying out

in the higher frequency range.

A transformation of the delta function was performed to observe the Walsh

transform of a function which is localised in time. The Walsh transform of the delta

function produces a complex spectrum with all basis function components

represented. Movement of the waveform pulse in time causes only minor variations in

59

its Walsh transform. Detection of time localised signals using the Walsh transform

would be a difficult task due to the number of basis function coefficients present in

the spectrum and the small variation in the transform caused by the timing of the

transient signal.

These results indicate that the Walsh transform is effective when detecting

waveforms similar to its basis function set but that this effectiveness declines as sharp

variations in amplitude and local signal transients are introduced into the waveform.

3.6 COMPARISON OF SERIAL AND PARALLEL IMPLEMENTATIONS OF

THE WALSH TRANSFORM

The comparison of the serial and parallel implementations of the Walsh

transform can be divided into two categories. Firstly a comparison of the Walsh

transform performed serially on one transputer against both the hypercube and

processor farm parallel implementations on a multi-transputer system. Secondly a

comparison between the transputer implementations and current commercial

microprocessors. The results given in figure 3.19 demonstrate that implementing the

fast Walsh transform on a two transputer system approximately halves the total

processing time required when compared with the single transputer implementation.

Splitting the calculation between two processors should theoretically result in a

halving of the required calculation time. The deviation from this figure by

approximately 2% is due to the time required to communicate data between the

processors as shown figure 3.20.

60

Processor Performance
Fast Walsh Transform

4000 T

3500 --

3000 --

2500 -•

Execution time

mS
2000 -•

1500 ••

fOOO -•

500 •-

500 1000 1500

Dataset size
Double precision floating point numbers

-ONE TRANSPUTER

-TWO TRANSPUTERS

-80386SX

-80386

-JK—80486

2000 2500

Figure 3.19 Serial and parallel processor performance when implementing the fast

Walsh transform.

A factor that must be considered when implementing an algorithm using the

M I M D processing model is the communication overhead incurred when

disseminating and collecting data over the processor network. The results in figure

3.20 show that a large percentage of total processing time is spent performing

transform calculations with very little communications overhead. In the two transputer

implementation the transmission of the entire dataset between the two processors was

necessary, for larger hypercube systems the communication overheads will not be

significantly greater due to the connectivity of the hypercube. As shown in figure 3.4

the number of inter-processor communications required will be N where N is the

dimension of the hypercube. Therefore relatively large numbers of processors can be

interconnected with minimal communication overhead when transmitting data from or

sending data to data storage e.g. a hard disk drive. For example, a seven dimension

hypercube consisting of 128 processors will require only seven sets of inter-processor

communications to distribute data throughout the network. Further the amount of data

61

which has to be distributed will diminish as communication distance from the point of

connection to the data storage increases.

6000 -r

5000 --

4000 --

Execution time
64uS 3000

clock ticks

2000 --

1000 --

16 104

Performance analysis
two transputer fast Walsh transform

5603

El communications time

IS butterfly calculation time

19 bit reversal time

2517

1120

533

63

128,256 and 512 dataset sizes
Double precision floating point numbers

Figure 3.20 A n analysis of computational resource demand by major operations

within a two transputer fast Walsh transform implementation.

A comparison of the performance of the fast Walsh transform on a two

transputer hypercube with a two transputer processor farm implementation of the

Walsh-Hadamard matrix form of the transform was also made. The Hadamard matrix

used by the processor farm was pre-processed, ordering the matrix rows so that a bit

reversal operation was not required. Figure 3.21 indicates that even given the

advantage of pre-processing the performance of the processor farm compares

unfavourably with the fast transform-hypercube implementation for datasets of 64

62

numbers or greater, vindicating the choice of the hypercube configuration for fast

calculation of the Walsh transform.

Configuration-transform implementation performance
fast Walsh transform

180 --

160 --

140 --

120 --

100 --
Execution time

m S
80 --

60 --

40 --

20 --

0 --

0 20 40 60 80 100 120 140

Dataset size
Double precision floating point numbers

Figure 3.21 Performance comparison of Walsh transform implementations on a

two transputer parallel system.

The comparison of the transputer implementations with commercial

microprocessors is given in figure 3.19. Neglecting any minor performance effects

caused by using different C language compilers, figure 3.19 shows that a serial

implementation of the Fast Walsh transform on a single transputer performed at

virtually the same speed as a serial implementation on an Intel 80386SX

microprocessor. The performance of a two transputer parallel implementation was

better than the 80386SX performance and marginally inferior to the Intel 80386 serial

implementation. One of the major objectives of parallel processing is to provide a

level of performance superior to that available with conventional microprocessors.

63

• fast Walsh transform (hypercube)

—H—Walsh-Hadamard transform
(processor farm)

This is clearly not the case in the implementation shown above. The reason for this is

a historical one. The T800-20 transputers used in these performance measurements

were introduced in 1987, making the T800-20 a contemporary of the Intel 80286. By

the standards of the day the transputer possessed significant processing capability in

its own right as well as being able to be linked into a network of transputers further

enhancing performance. The progress of standard microprocessors since that time has

rendered the T800 as a stand alone microprocessor obsolete.

There are two possible ways the operation of a transputer system could be

improved to provide it with a level of performance better than that demonstrated by

the Intel 80486. The first method would be to replace the T800 with the T9000

transputer which is claimed to be significantly faster than the T800 or T805. The

second way to improve the performance of the transputer system would be to increase

the parallelism of the system by adding more transputers to the system. As shown in

figure 3.20 the time required for inter-processor communications when performing the

fast Walsh transform is only a small percentage of the total processing time. An

extrapolation of the results given in figure 3.19 provide an estimate of the

performance enhancement that could be achieved by adding more transputers to the

system. The results given in figure 3.19 indicate that a hypercube system comprising

eight T800-20 transputers would give a performance better than the Intel 80486 serial

implementation.

3.7 DISCRETE COSINE TRANSFORM ALGORITHMS

Due to its widespread use in such areas as image compression (Hein[32])

many algorithms for computing the discrete cosine transform have been developed.

As outlined in Chapter 1 the majority of these algorithms can be classified into three

categories, those that compute the discrete cosine transform through matrix

multiplication or recusive computation (Hou[35],Chen[14],Kou[39],Cho[16b]) and

64

those that compute the cosine transform via another transform such as the fast Fourier

transform (Hein[32],Wu[77],Rao[57a]).

The recursive and matrix algorithms demonstrate a performance similar to that

of the fast Fourier transform (Chen[14]), but a number of problems arise when

parallelisation of these algorithms is attempted. A review of the signal flow diagrams

for the algorithms given in the literature shows that given a dataset distributed over a

number of processors computation of the discrete cosine transform would involve a

large communications overhead owing to the semi-global nature of many of the

transform operations. Also the complexity and lack of signal-flow symmetry in many

of the transform stages lead to complex programming requirements which have a

direct effect on the ease with which any of these algorithms could be scaled onto

larger parallel platforms.

Consequently parallel implementations of the discrete cosine transform have

favoured implementation via other more amenable transforms (Cho[16a]). Such an

algorithm is outlined in Rao[57a]. The cosine transform for N data points is obtained

via an N point fast Fourier transformation. This algorithm requires only a minor

modification of the fast Fourier transform in order to compute the discrete cosine

transform. As the fast Fourier transform has been shown to be easily parallelizable the

parallel computation of the cosine transform using the fast Fourier transform provides

all the advantages of the parallel implementation of the fast Fourier transform at the

minor cost of the increased processing time required to convert the Fourier transform

to the cosine transform.

65

3.8 A P A R A L L E L DISCRETE COSINE T R A N S F O R M A L G O R I T H M

The algorithm for the discrete cosine transform via the fast Fourier transform

developed by Narashima and Peterson (Rao[57a]) is shown in figure 3.22. The

algorithm sorts the N input data into a sequence given by equation (3.5).

Figure 3.22 N-Point discrete cosine transform via the N-point fast Fourier transform.

y(n) = x(2n)

y(N-l-n) = x(2n + l)

N = Dataset.

^ N ,
n = 0,..., — -1

2
(3.5)

N
A fast Fourier transformation is then performed on the rearranged data. The first —

transform results are multiplied by a complex constant given by equation 3.6

z(n) = e~J2N. (3.6)

N
The resulting — real components provide the discrete cosine transform coefficients

N ...
from 0 and the negative imaginary components provide the cosine transform

N
coefficients from N.

2

66

The kernel of this transform algorithm is the fast Fourier transform. It has

been shown earlier in this chapter that a hypercube processor topology provides an

efficient and well proven parallel implementation of the fast Fourier transform. It

would seem appropriate therefore to use this topology to implement the discrete

cosine transform. The additional computational tasks of sorting the input data can be

performed as the data is disseminated throughout the processor network prior to

computation. The post-fast Fourier transform constant multiplication can be

implemented in parallel on the hypercube. The bit-reversal and real-imaginary

component distribution can be performed as the transform coefficients are retrieved

from the processor network. A n example of these operations is given in figure 3.23.

x(0) x(0)
x(l) x(2) Processor 0 v

x(2) x(4)

x(3) x(6) Processor 1

x(4) x(7)

x(5) x(5) Processor 2

x(6) x(3)

x(7) x(l) pr0cessor3

t(0)-^U

t(4)

t(6)

z(p)
->

Bit - Reversal

and

Real/Imaginary

Data

Redistribution

p = m (bit reversed)

Figure 3.23 Parallel four processor hypercube implementation of the discrete

cosine transform via the fast Fourier transform for N = 8 .

67

3.9 A P P L I C A T I O N O F T H E C O S I N E T R A N S F O R M T O PERIODIC A N D

NON-PERIODIC FUNCTIONS

The discrete cosine transform was performed on the test waveforms given in

section 3.5. This was done in order to examine the ability of the discrete cosine

transform with its smooth, global basis functions to distinguish a number of different

features evident in the test functions. The discrete cosine transform of the

trigonometric functions produces a compact spectrum comprising few spectral

components. This is due to the close correlation between the functions and the

transform basis functions.

The periodic discontinuties of the step functions produce a series of

diminishing higher frequency spectral components. The chirp function and the higher

frequency step function transforms demonstrate that as the input function waveform

shape departs from the transform basis function set the ability of the transform to

easily detect features or serve as a means of data compression is reduced.

The discrete cosine transform demonstrated a similar response to the iteration,

delta and random data functions as was seen with the discrete Walsh transform. Non-

periodic, discontinuous waveforms or waveforms localised in time produce "noisy"

spectra with many frequency components which have no easily detectable features

and provide little scope for data compression.

68

Parallel cosine transform of sine function period=512

Parallel cosine transform of sine function period=64

Figure 3.24 1 w o examples of the discrete cosine transform of the sine function
where x = frequency (Hz) and y = transform coefficient magnitudes.

69

Parallel cosine transform of cosine function period=512

200 300 400 500

Parallel cosine transform of cosine function period=64

too 200 300 400 .500

Figure 3.25 T w o examples of the discrete cosine transform of the cosine function
where x = frequency (Hz) and y = transform coefficient magnitudes.

70

Parallel cosine transform of step 1 function period=512

200 300 400 500

Parallel cosine transform of step 1 function period=64

100 200 300 400 500

Figure 3.26 T w o examples of the discrete cosine transform of the step 1 function
where x = frequency (Hz) and y = transform coefficient magnitudes.

71

Parallel cosine transform of step 2 function period=512

Parallel cosine transform of step 2 function period=64

Figure 3.27 T w o examples of the discrete cosine transform of the step 2 function
where x = frequency (Hz) and y = transform coefficient magnitudes.

72

Parallel cosine transform of chirp function period=512

100 200 300 400 500

Parallel cosine transform of chirp function period=64

Figure 3.28 T w o examples of the discrete cosine transform of the chirp function
where x = frequency (Hz) and y = transform coefficient magnitudes.

73

Parallel cosine transform of iteration function

1

l / l

1 f
1

ft

1 1 1 1 • — T — 1

0 100 200 300 400 500

x

Parallel cosine transform of delta function

Figure 3.29 Examples of the discrete cosine transform of the iteration and delta

functions where x ±= frequency (Hz) and y = transform coefficient
magnitudes.

74

Parallel cosine transform of random data

Figure 3.30 The discrete cosine transform of the random data function
where x = frequency (Hz) and y = transform coefficient magnitudes.

3.10 C O M P A R I S O N O F SERIAL A N D PARALLEL IMPLEMENTATIONS OF

THE DISCRETE COSINE TRANSFORM

A comparison of die processor farm and hypercube implementations of

the discrete cosine transform was neglected. The similarity between the parallel Walsh

and cosine implementations would indicate a similar result for the discrete cosine

transform as was found for the discrete Walsh transform.

A comparison of the two Transputer implementation of the discrete cosine

transform versus a range of commercial microprocessors is given in figure 3.31.

75

DISCRETE COSINE TRANSFORM EXECUTION TIMES

1400 -r

1200 --

1000 --

BOO --

TIME (mS)

600 --

400 --

200 --

100 200 300

SIZE OF DATASET

400

™J«S—80486

- # — T W O TRANSPUTERS

• 80386SX-80387

-80386-80387

500 600

Figure 3.31 Serial and parallel processor performance when implementing the

discrete cosine transform.

The microprocessor performance results for the discrete cosine transform are

similar to the Walsh transform performance results. This can be attributed to the

similarity between the discrete Walsh and cosine parallel algorithms. These results

further confirm the obsolescence of the T800 Transputer. The results given in figure

3.31 indicate that a Transputer system consisting of five or more Transputers would

be required to provide a performance better than that of the Intel 80486.

3.11 SUMMARY

The chapter describes a number of possible parallel algorithms for the

discrete Walsh and cosine transforms. Of the possible implementations of the Walsh

transform a hypercube based fast Walsh transform algorithm was found to be the most

76

suitable for a Transputer system. A parallel algorithm for the discrete cosine transform

was also developed. The calculation of the discrete cosine transform via the fast

Fourier transform and implemented on a hypercube processor topology was found to

be the most appropriate for the Transputer system.

A comparison between a parallel Transputer implementation of these

transforms and a sequential implementation on a range of commercial

microprocessors was conducted. Results of these comparisons indicate that the T800

version of the Transputer cannot provide the level of performance found in the current

generation of microprocessors. Transputer systems of four or more Transputers were

required in order to provide a superior performance to the current range of sequential

microprocessors.

The discrete Walsh and cosine transformations were performed on a number

of test waveforms in order to determine their ability to distinguish a number of

periodic or localised signal features. The transform spectra obtained agreed with the

expected behaviour of the transforms. Both transforms providing simple spectra for

input functions which matched the transform basis functions. It was found that both

transforms were unable to provide spectra of any practical value for waveforms which

either contained a large number of discontinuties or were localised in time. The reason

for this being the shape and global nature of the transform basis function set of the

two transforms.

77

CHAPTER 4

HYPERCUBE IMPLEMENTATION OF TRANSFORMS

4.1 INTRODUCTION

It was shown in chapter one that the discrete Walsh transform matrix can be

determined by performing a recursive Kronecker product operation on Hadamard

matrices (equation(1.25)). Granata[26] shows that the discrete Fourier, cosine, and

Hartley transforms can also be expressed in terms of Kronecker products.

This chapter describes a technique which converts Kronecker products to

matrix or Hadamard products and allows Kronecker product derived transforms to be

easily mapped onto hypercube processor topologies, providing an alternative method

of parallel implementation.

4.2 KRONECKER DECOMPOSITION AND ITS RELEVANCE TO A

H Y P E R C U B E I M P L E M E N T A T I O N O F T H E W A L S H T R A N S F O R M

The discrete Walsh transform can be expressed as a matrix multiplication of a

data vector and a transform coefficient matrix. Equation(1.23) shows that the

coefficient matrix can be determined by performing recursive Kronecker products on

Hadamard matrices as shown by equation(1.25). A parallel algorithm for calculating

Kronecker products could therefore be easily adapted to calculate a Walsh

transformation.

Brewer[7] shows that given equation(1.26) the following results

A1A2®B1B2 = (A1®B1)(A2®B2). (4.1)

where A1,A2,B1,B2 are matrices of the type defined above. Choosing

A! = I A , B 2 = I B gives

78

I A A ® B I B = A ® B = (I A ® B) (A ® I B) . (4.2)

Kronecker products are thus expressible as the product of Kronecker products

of the original matrix and the appropriate identity matrix. Thus repeated Kronecker

products can be calculated as matrix products by implementing (4.2) recursively.

Equation (4.2) can be viewed as the product of two matrices which have

undergone a restructuring operation. A n alternative method is available for effecting

the matrix restructuring performed by the identity-matrix Kronecker products shown

in equation(4.2).

The Kronecker product can be expressed as

„ \ B*A* p > m

A ® B H
[A#B # p < m (4.3)

where B * = B for m = l , A * = A f o r q = l, B # = B f o r n = l, A # = A f o r p = l

given that A*, B*, A#, B# are restructured forms of the original matrices A and B.

Equation (4.3) shows that the Kronecker product can be viewed as two distinct

operations, a matrix mapping or restructuring operation and an algebraic operation. If

the matrices can be restructured appropriately the Kronecker product can be reduced

to a matrix multiplication.

Where restructuring is required the structure of the matrices is determined by

altering the binary representation of the matrix row and column indices by adding a

new "dummy" variable with the required number of bits to the row and column

indices to create a matrix of the same size as the Kronecker product resultant matrix.

This is illustrated with the following example.

79

Example 1:

Given A = au a12

.a21 a22.

B =
bll D12

b21 V

The row and column indices of matrix B can be represented in binary form as

R0 = 0 -> 1, C0 = 0 -> 1 as shown in table 1. Addition of the dummy bit x0 to the row

and column indices x0R0 = 00 -> 11, x0C0 = 00 -> 11 creates the matrix B* as shown

in table 2.

Table 1:

Matrix B
Row

R0

0

0

1

1

Column

C0

0

1

0

1

Matrix
Element

b»
b12

b21

D22

Table 2:

Matrix B*
Row
xoR-o
00

10

00

10

01

11

01

11

Column

X0^o

00

10

01

11

00

10

01

11

Matrix
Element

bn

b„
b12

b12

D21

b21

b22

b22

80

Expressing these tables in matrix form gives

B =
bll b12

b21 b22.

B* =

bn
b21

0

0

b12

b22

0

0

0

0
bn
b21

0"

0

b12

b22.

The matrix A* is formed by moving the d u m m y bit one place to the right in the row

and column indices to give R0x0, C0x0. Expressing this in matrix form gives

A =
a n a12

,a21 a22.

A " =
0

a21

0

Ml

l21

"12

0

a22

0

""12

0

a22_

The product of these restructured matrices is B*A* = A ® B.

When p<m the restructuring uses the same technique as for the case p > m

with the exception that the position of the d u m m y bits added to the column index are

reversed in position. For example given

Example 2:

A =
ail ai2

a21 a22>
B = [bu b12]

The matrix B # has the row index R0x0, and the column index x0C0, this gives the

matrix

B # =
'b„ b12 0 0

0 0 b n b12

81

The Kronecker product can then be given as A ® B = AB#. For the case of

square matrices of size 2n the above method can be expressed as

1

C 1 ® C 2 ® . ..®C n = n c; (4.4)
l=n

where the binary row-column indices restructuring is given by

Matrix

cn

c2
c,

Row index

Xj---XoR-i"-Pvo

XjRi...R()...X0

Ri...R0xj...x0

Column index

Xj...x0Ci...C0

xi^i...L;0...x0

U;...L,0Xj...X0

Kronecker products can be reduced to a matrix multiplication of matrices

which have been restructured by the addition of an independent dummy variable to

the row and column index values of the matrix elements. This can be taken a step

further. The introduction of two independent dummy variables in the matrix

restructuring results in the algebraic operations which have to be performed on the

matrices being reduced to a simple element-element multiplication. This is known as

the Hadamard product (Horn[34]).

Example 3.

all

_a21

ai2

a22.

B = ~K
Lb21

b12

b22J

A ® B = B*.A*

given Browindex
 = XlRo' "columnindex = X0^0' Arowjndex = R0Xp Acolunmiadex = C0X0,

where the dot operator represents the Hadamard product.

82

This element mapping results in the matrices given in equation(4.5)

A®B =

K
b21

b„
b21

b12

b22

b J 2

b22

bn
b21

bn
b21

b12

b22

b12

b22.

ail

ail

a21

_a21

ail

ail

a21

a21

ai2

ai2

a22

a22

ai2

ai2

a22

a22

(4.5)

The matrix restructuring operations can be given a geometric interpretation by

combining the matrix row-column indices to give the address of the corresponding

matrix element in a geometric structure. For example the binary representations of the

row and column indices of matrix B in the first example can be considered as the

addresses of the elements on a two-dimensional hypercube.

bll b!2
00 01

10 11
b21 b22

Figure 4.1 Hypercube representation of matrix B.

From this viewpoint the matrix restructuring in this example represents a

mapping of the matrices A and B onto a four dimensional base 2 hypercube, and the

matrix multiplications required to determine the Kronecker product correspond to data

transfers and multiplication of matrix elements or vertex values.

The introduction of the d u m m y variable provides a partial mapping to the

hypercube, requiring a matrix multiplication to perform the Kronecker product. If the

matrices A and B are mapped onto the hypercube using two independent dummy

variables the Kronecker product reduces to a simple multiplication of each of the

83

elements at each hypercube vertex. This can be illustrated using example 3.

Combining the row-column indices of the matrix elements and mapping the elements

onto a four dimensional hypercube results in the structure given in figure 4.2.

a22bll
1010 |

a22 b21
1110 |

al2r514
0010 1

al2b21
0110 J

a21bll
1000 *

all
010

IIOQ4
^2fb2;

b2:

24

lallbll .4
r000Q^^*

r0011
al2bl2

III0111
W 3HJ, DZZ

"^p^iuii
Y\ a22bll
r0001
allbl2

|0101
^aH4j22

w 1111
a22 b22

a21 bl2
| 1001

¥ 1101
a21 b22

Figure 4.2 Mapping of matrix elements of A and B to a four dimensional

hypercube.

The Kronecker product can now be found by multiplying the elements residing on

each node of the cube.

The number of dummy variables required when restructuring a matrix can be

found using equation(4.6)

pq = b,

m n = bB
np+nq

(4.6)

84

where b A = numbering base of matrix A, n m = number of row dummy variables of

matrix A, nn = number of column dummy variables of matrix A. The unit index of a

vector or its transpose are not used in the restructuring process with the dummy

variables for a unit index being set to zero.

Laksmivarahan[42] shows that the hypercube is a member of the family of

(n,b,k) cubes where n is the number of vertices or nodes, b is the base of the node

numbering system and k is the dimension of the cube. A complete cube satisfies

equation (4.7)

n = b \ (4.7)

Kronecker products of matrices of size other than 2a x 2b can be represented

as element wise multiplications on (n,b,k) cubes. The criteria for the choice of cube

being that the (mnpq) elements of the Kronecker product resultant matrix map

efficiently to the nodes of the cube, allowing even balancing of processor workload.

The mapping of a Kronecker product to an incomplete, base three cube is

given in example 4.

Example 4.

Given A =
ln
42lJ

B = [bn b12 b13]

The matrix resulting from the Kronecker product will have mnpq = 6 elements

therefore a cube with six nodes would be optimal, a (6,3,2) incomplete cube provides

the required number of nodes. Restructuring A and B using equation (4.6) gives the

tables shown below.

85

Matrix A

K0X0

00

01

02

10

11

12

Element

an
an
an
a21

&21

a21

Matrix B

xo^o
00

10

01

11

02

12

Element

b„

b„

bi2
b12

b13

b13

The matrix elements can now be mapped to the (6,3,2) cube vertices with the addresses

given in the tables.

a11b13
02

a21b13
12

a21b12

00 01
a11b11 a11b12

Figure 4.3 Mapping of matrix elements A and B to a (6,3,2) cube.

Similarly Kronecker sums can be mapped to hypercube structures, the only

variation in the operation being that the elements mapped to cube nodes are added

rather than multiplied. As the operations performed on each node are the same these

algorithms could be easily ported to either MIMD or SIMD architectures.

86

If the number of processors does not match the size of the resultant matrix

each node m a y be loaded with more element operations by mapping onto the

hypercube the restructured matrices determined for the matrix multiplication

technique.

Example 5.

Calculating a Kronecker product on a four node hypercube

A =
all

a21

&12

a22.

A

B =

®B = B*A'

bn

_b2i

b12

b 2 2

The matrix rows are divided between the available hypercube processors as shown

below.

b„

b2i

0

0

b12

b22

0

0

0

0

bn

b21

0 '

0

bn

b22_

"an
0

a21

0

0

all

0

a21

ai2

0

a22

0

0

ai2

0

a22

Processor 1

Processor 2

Processor 3

Processor 4

Processor 1

all,al2,bll,b!2

a21,a22,bll,bl2

Processor 3

Processor 2

all,al2,b21,b22

Ia21,a22,b21,b22

Processor 4

Figure 4.4 Mapping of matrix rows onto hypercube.

87

Multiplication of elements on each processor results in the following resultant matrix

distributed over the hypercube.

Processor 1

Processor 2

Pr ocessor 3

Processor 4

anbn

anb2i

a21bn

anbi2

anD22

a21b12

a^bn
ai2b2i

a22^n

anbi 2

a12b22

a22D12

a2l'-,21 a21D22 a22b21 a 2 2 D
22.

4.3 S U M M A R Y

To summarise, the Kronecker product can be determined by means of either a

matrix multiplication, or a set of simple matrix element multiplications dependant

upon the structure of the constituent matrices. This ability makes them amenable to

parallel calculation on hypercubes utilising a simple mapping algorithm. The Walsh

transform can then be performed by mapping the data vector elements to the

processors in the same manner as the matrix elements.

The advantages of these techniques are that first, Walsh transforms via

Kronecker products can be calculated in parallel on hypercubes without the need for

application specific processor topologies. Secondly the programming complexity

commonly associated with parallel algorithms is avoided and thirdly the algorithm can

be easily scaled to fit the available processor topology.

The drawback of the Kronecker method of determining the Walsh transform is

that it requires N 4 operations as compared to the N l o g N operations of the fast Walsh

transform. But when creating a parallel implementation other factors should be

considered. For a two transputer system approximately 1 0 % of the processing time

used to perform the fast Walsh transform was taken up performing inter-processor

communications and the bit-reversal. These figures will fluctuate for varying size

datasets and processor topologies. The lack of inter-processor communications or bit-

88

reversal operations for the Kronecker product Walsh transform implies that the

theoretical performance improvement will be proportional to the number of

processors used. Also the mapping of the Kronecker product on a hypercube topology

is less complex than that required for the fast Walsh transform, particularly for large

datasets.

It is undeniable that the fast Walsh transform is a more efficient algorithm,

requiring fewer operations. However given the advantages of the Kronecker algorithm

an investigation of the performance of the two algorithms for varying size datasets

and processor networks would be recommended. The two transputer system used to

implement the fast Walsh algorithm is not large enough to permit valid performance

comparisons.

89

CHAPTER 5

PARALLELISING THE HAAR AND D4 WAVELET TRANSFORMS

5.1 INTRODUCTION

The Haar transform is an example of a transform with both global and local

basis functions. The basis functions of the D4 wavelet transform are all local in

extent. Transforms such as these are being widely used in applications where

detection of transient features is required. Many of these applications would benefit

from the improved computational performance which can be achieved by applying

parallel processing techniques.

5.2 IMPLEMENTATION OF THE HAAR TRANSFORM USING

TRANSPUTERS

The signal flow graph of the one-dimensional Haar transform (figure 1.5)

displays a pyramidal structure. Algorithms for two-dimensional Haar transforms for

image processing have reinforced this pyramidal structure suggesting a matching

parallel implementation on a pyramidal processing topology (Corrioli[9]). This

suggests that for the one-dimensional Haar transform a mapping onto a binary tree

topology may provide a efficient parallel implementation.

Figure 5.1 illustrates a binary tree topology for an eight datapoint Haar

transform, each node performing an addition and subtraction of the data transmitted

from the nodes further up the tree. The results are then multiplied by the appropriate

coefficients. Members of the resulting transform vector appear on the nodes shown,

transmission of these results up the tree would allow the vector to be "assembled" at

the root node by the end of the calculation. Large datasets could be distributed across

smaller binary tree structures by grouping calculations on nodes with a corresponding

90

increase in the complexity of operations required at each node, this could be seen as a

move in the continuum from "fine-grained" parallel processing to a "coarse-grained"

parallel processing approach.

x(0) x(l) x(2) x(3) x(4) x(5) x(6) x(7)

Figure 5.1 Implementation of the Haar transform on a binary tree processor topology.

One of the criticisms of parallel processing algorithms is that many algorithms

require their o w n unique processor topology for optimal operation. In the case of the

Haar transform it is possible to remove this shortcoming by transferring the binary

tree topology to the hypercube processor topology which has already been used for the

parallel implementation of the fast Walsh and fast Fourier transforms. Figure 5.2

shows one way of distributing the Haar transform data across a hypercube and the

data communications that would be required between nodes in order to perform the

Haar transform. It can be seen that there is no communications performance loss when

transferring between topologies In the example given when distributing data there is a

maximum transmission length of three, the dimension of the hypercube and the depth

91

of the binary tree. When performing the transform three sets of inter-nodal

communications are required for both topologies.

». First data movement

_ Second data movement

. _ ^. Third data movement

Figure 5.2 Implementation of an eight datapoint Haar transform on a Hypercube processor topology.

The hypercube data transfers required can be generalised. A data transfer

algorithm expressed as pseudo code was found and is shown below.

PARALLEL

FOR J = 0 T O CUBE_DIMENSION-l

FOR I = 0 T O NUMBER_OF_NODES-2 STEP 2

X(I) <- X(I) - X(2J +1)

E N D PARALLEL

5.3 APPLICATION OF THE HAAR TRANSFORM TO PERIODIC AND

NON-PERIODIC FUNCTIONS

As mentioned in 1.3.3 the Haar transform consists of basis functions some of

which are defined globally over the transformation dataset and some which are

defined locally over the transformation dataset. This gives the Haar transform a

92

sensitivity to local singularities not found in more traditional transformations such as

the Walsh, cosine and Fourier transforms.

The Haar transform was performed on a number of waveforms in order to

observe its response to test data ranging from periodic functions to datasets containing

local singularities.

The Haar transform of the trigonometric functions shown in figures 5.3-5.4

reveal a distinctive spectra with components not as differentiated as equivalent Walsh

transform spectra due to the localised square wave basis functions of the Haar

transform. As with the Walsh transform higher frequency waveforms cause a

spreading of spectra components. The increase in the number of spectral components

for increased signal frequencies is due to the local nature of the basis functions.

Higher frequency global input functions require a number of higher sequency Haar

basis functions to provide an accurate representation. This can be seen using the

example of a simple function such as a square wave. Determine the Haar basis

functions required to represent a simple square wave, then compare this with the basis

functions required to construct the same function at a higher frequency. A greater

number of basis function/spectral components are required due to the local nature of

the basis functions.

The decrease in the amplitude of the Haar transform coefficients when the

input function frequency is increased is due to the increasing amplitude of the higher

sequency Haar basis functions as given by equation(1.29).

93

The Haar transform provides an easily distinguishable spectra for the step

functions similar to the Walsh transform. The prominent periodic sequency

components of the spectra caused by representing a periodic wave train with higher

sequency basis functions which are localised in time.

As with the Walsh transform the Haar transform of the chirp function

produces a complex spectra not easily amenable to detection. The sharp variations in

amplitude of the single cycle chirp function generate many spectra components.

Higher frequency chirp functions give a Walsh transform of unique global spectra

components while the Haar transform shows a repetitive spectral structure because the

basis functions are localised in time and so repeat along the spectrum.

The Haar transform provides a simple spectra for the delta function. The

inclusion in the basis function set of localised square waves allows the delta function

to be represented by a few discrete spectral components. A decaying non-periodic

function such as the iterative function can also be represented by a decaying series of

localised square waves as shown in figure 5.8.

94

Parallel Haar transform of sin(x) period = 512

Parallel Haar transform of sin(x) period = 64

Figure 5.3 T w o examples of the discrete Haar transform of the sine function
where x = Haar basis function sequence number and y = transform
coefficient magnitude.

95

Parallel Haar transform of cos(x) period = 512

Parallel Haar transform of cos(x) period = 64

Figure 5.4 T w o examples of the discrete Haar transform of the cosine function
where x = Haar basis function sequence number and y = transform
coefficient magnitude.

96

Parallel Haar transform of stepl function period = 512

400 500

Parallel Haar transform of stepl function period = 64

'wunilllllll'l 1 1 1 I | 11
— i —

too zoo 300 400 500

Figure 5.5 T w o examples of the discrete Haar transform of the step 1 function

where x = Haar basis function sequence number and y = transform
coefficient magnitude.

97

Parallel Haar transform of step2 function period = 512

§

o *«l | ' |

too 200 300 400 500

Parallel Haar transform of slep2 function period = 64

100 200 300 400 500

Figure 5.6 T w o examples of the discrete Haar transform of the step 2 function

where x = Haar basis function sequence number and y = transform
coefficient magnitude.

98

Parallel Haar transform of chirp function period = 512

too 200 300 400 500

Parallel Haar transform of chirp function period = 64

too 200 300 400 500

Figure 5.7 T w o examples of the discrete Haar transform of the chirp function

where x = Haar basis function sequence number and y = transform
coefficient magnitude.

99

Parallel Haar transform of iteration function

too 200 300 400 500

Parallel Haar transform of delta function

" 500

Figure 5.8 Examples of the discrete Haar transform of the iteration and delta
functions where x = Haar basis function sequence number and

y = transform coefficient magnitude.

100

Parallel Haar transform of random data

Figure 5.9 The discrete Haar transform of the random data function
where x = Haar basis function sequence number and
y = transform coefficient magnitude.

5.4 C O M P A R I S O N O F SERIAL A N D P A R A L L E L H A A R T R A N S F O R M

IMPLEMENTATIONS

The processor performance of the serial and parallel implementations of the

fast Haar transform given in figure 5.10 exhibit the same behaviour as that found for

die other transforms under study. The overall execution time for a given processor of

the Haar transform is faster than that of the Walsh transform but slower than the D4

wavelet transform. This is in keeping with expectations given the observed theoretical

calculation requirements of each of these transforms. The relative performance of the

different serial and parallel implementations is the same as that found for the other

101

transforms. As the parallel algorithms employed for the various transforms are

dissimilar this reinforces the view that the T800 Transputer as a microprocessor has

an inferior performance to the current generation of commercial microprocessors.

350 -r

Execution time

mS

Processor Performance

Fast Haar Transform

200 300

Dataset size

Double precision floating point numbers

400

TWO TRANSPUTERS

80386SX-16Mhz

—£—80486-33Mhz

—5^—80286

Figure 5.10 Serial and parallel processor performance when implementing the fast

Haar transform.

5.5 T H E H A A R T R A N S F O R M A S A P A R T I C U L A R E X A M P L E O F

W A V E L E T S

As was mentioned in section 1.3.3 the basis functions of the Haar transform

can be expressed as a set of periodic rectangular waveforms as given by

equation(1.29), or they can be generated using the techniques devised for developing

wavelet functions. Equation(1.30) shows that a wavelet function sometimes referred

to as a "mother" wavelet is created by the summation of a series of translations and

dilations of a scaling function (j>. The scaling function in turn is determined by the

iteration of an initial scaling function <|)0 (see equation(1.31)).

102

A s outlined by Strang[69] a specific wavelet function is determined by the

choice of the initial scaling function <|>0 and the coefficients C k. For example using the

box function shown in figure 5.11 as the initial scaling function and assigning the

coefficients C 0 = C 1 = 1 to equation (1.31) results in an invariant scaling function

shown by equation(5.1).

<k(x) = (|>0(2x) + (|>0(2x-l). (5.1)

Using (j)j in equation(1.30) generates the wavelet function

\|f(x) = (|)(2x) - <j»(2x-l). (5.2)

Figure 5.12 shows this function to be one of the Haar basis functions.

y A

•>

Figure 5.11 B o x function used as initial scaling function.

103

Vj/(x)

->

Figure 5.12 Haar wavelet function.

Daubechies[20] shows that for a given wavelet basis function families of

wavelet functions consisting of translations and dilations of the basis function may be

generated using equation (5.3)

¥**(*) = 2 > ¥ (2
m x - n) (5.3)

The application of equation(5.3) to the Haar wavelet function produces a family of

equations some of which are given in equation(5.4). Figure 5.13 shows that these

equations represent the Haar basis functions

¥o,o(x) = V(x)

\|/li0(x) = V2\|f(2x)

VyCx) = V2~\|/(2x-l).

(5.4)

104

¥o,o(x)

1

VwOO
s/2-'

Vu(
x)

N/T'

^
1/2

1/2 4

Figure 5.13 First three Haar wavelet functions.

Given these basis functions it is possible to create a discrete matrix of values

(equation(1.32)) which can be employed as the coefficient matrix in the discrete Haar

transform (equation(1.33)). A wide variety of wavelet functions and consequently

wavelet transforms can be created using these techniques.

5.6 PARALLEL IMPLEMENTATION OF A D4 WAVELET TRANSFORM

AND COMPARISON WITH A SERIAL IMPLEMENTATION

5.6.1 PARALLEL IMPLEMENTATION OF A D4 WAVELET TRANSFORM

The development of the wavelet transform is outlined by Strang[69]. The

discrete Daubauchies D4 wavelet transform is shown by Press [54] to be based on the

matrix

105

(5.5)

=>3

0

0

0

'C2

0

0

cl

co

c3

c0

Ci

" C 2

•

c2
c,

•

c3

-c

Cj c0

Co
C3

0 "
0
0
0

Cl

- C 2 _

The one dimensional discrete D 4 wavelet transform consists of a series of

matrix multiplications and vector sort operations. Initially on the full dataset N and

subsequently on successive bisections of the data vector. The transform is completed

when the dataset to be operated on is reduced to a trivial number usually two.

Equation (5.6) demonstrates a D 4 wavelet transform given a dataset size N = 8.

step 1:

(5.6)

0

0

0

0

-c2

0

0

0

0

c3
-c

o

0

0

0

0

^3

-c

Ci

-c2

0

0

0

0

o

0

0

0

0

0

0

C3

- C 0

cl

-c2

0

0

0

0

0

0

Co

0

0

0

0

c3
-c0

Ci

~C2.

xo

xi

X 2

x3

x4

X5

X6

- X 7 _

_

Z0

Zl

z
2

z3

Z 4

Z5

Z6

. Z 7 .

->

Z0

Z
2

Z 4

Z6

Zl

z3

Z5

. Z 7 .

106

step 2:

vi

~c2

c3

-o i] c
3

-c„
[zol
z
2

Z 4

LZ6.

—.

y0
yi

y2

J3.

->

"y0"

y2
y3
y4
zi

z3
Z5

. Z 7 .

The successive halving of the number of operations with each step of the

transform in a similar manner to the Haar transform reveals the pyramidal nature of

the algorithm. This can be seen by representing the D4 wavelet transform for N = 8 as

a signal flow graph as shown in figure 5.14. A graphical representation of the

transform assumes a prism-shaped topology.

The application of the D 4 transform to larger datasets results in a larger prism

consisting of layers of smaller prisms as shown in figure 5.15.

107

aO al a2 a3

Figure 5.14 Signal flow graph of D 4 transform for N = 8.

Multiplication of the data by the appropriate coefficients has been deleted

from figures 5.14 and 5.15 as it is intended to provide a general outline of the

transform operation. A more detailed examination of the operations at each node is

given in figure 5.16.

108

69 68

dO dl 62 63 64 65 d6 61

Figure 5.15 Signal flow graph of D4 transform N = 16.

COdO + Cldl + C2d2 + C3d3

[C3d0 - C2dl + Cld2 - C0d3]

C2d0 + C3dl

CldO - C2dl

CO Cl C2 C3 -C0C1-C2C3

C0d2 + Cld3 +C2d4 + C3d5

[C3d2 - C2d3+ Cld4 - C0d5]

C2d2 + C3d3

Cld2 - C0d3

CO Cl C2 C3

C2d4 + C3d5

Cld4 - C0d5

C0C1-C2C3

Figure 5.16 A detail of the operations performed at two nodes of the D 4 transform.

109

Figure 5.16 shows the operations that would occur at two nodes in the prism

topology. The operations performed at all nodes consist of appropriate coefficient

multiplication as shown and addition of terms. The terms shown in square brackets

travel along their arcs without being multiplied by the coefficient associated with that

are.

A drawback of this implementation of a parallel D4 wavelet transform is that

it requires a relatively exotic processor topology in order to perform the

transformation. Embedding the prism topology in a more widely used topology would

eliminate this problem. Investigations revealed that it is possible to embed the prism

topology in a hypercube structure using a variation on the technique given by

Leighton[43] for embedding binary trees in hypercubes.

In order to describe the algorithm for embedding a prism in a hypercube it is

first necessary to define terms. The front faces of the prism processor structure

resemble a binary tree. It is convenient therefore to borrow from tree terminology and

refer to a node closer to the top of the structure as the ancestor node of the nodes

connected to it further down the prism. The nodes closer to the base of the prism are

descendants of the node to which they are connected higher up the structure.

x
£ - x is an ancestor of y,z

V k
w W - decendants of x

Figure 5.17 Node relationships.

110

Given these definitions the prism embedding algorithm takes the following

form.

a. All ancestor nodes are transferred to a descendant node.

b. Nearest neighbour nodes on the same level within a prism structure must

remain nearest neighbours after embedding (see figure 5.19).

The nearest neighbour continuity criterion is met by transferring an ancestor node to a

descendant node using equation 5.7, given the node numbering system given in

figure 5.18.

-r*+i
n d = 2 n . + — —

nd = Decendant node (5.7)

n„ = Ancestor node

Figure 5.18 Node numbering system for hypercube embedding..

A step by step example of embedding a prism for N = 8 into a hypercube is given in

figure 5.19.

Ill

7 6.11.13 5,10 4

A^7 1,8,12 2,3

Figure 5.19 Embedding of the prism for N = 8 into a hypercube.

The transfer of data through the prism layers is removed by hypercube

embedding as ancestor nodes are transferred to descendant nodes. The number of

concurrent data transfers required was found to be

concurrent data transfers = 2n

n = number of prism layers
(5.8)

For a hypercube implementation of the D 4 wavelet transform the communication

overhead can be seen to grow linearly with the size of the transformation.

112

Therefore the D4 wavelet transform can be performed efficiently in parallel on

the same hypercube topology as was used for the Fourier, Walsh, cosine and Haar

transforms. This means that the discrete D4 wavelet or any semi-circulant matrix

transform can be performed on the widely used hypercube parallel topology which has

also been found to be suitable for the other transforms studied in this thesis.

5.6.2 COMPARISON OF SERIAL AND PARALLEL IMPLEMENTATIONS OF

THE D4 WAVELET TRANSFORM

A comparison of the serial and parallel implementations of the D4 wavelet

transform is given in figure 5.20.

Execution time
(mS)

100

Processor Performance
D4 Wavelet Transform

-•—80486-33

-80286

-*— 80386SX-16

-**~~TWO TRANSPUTERS

200 400 300

Dataset size
Double precision floating point numbers

500 600

Figure 5.20 Serial and parallel processor performance when implementing the D4

wavelet transform.

The processor performance of the serial and parallel implementations of the

D4 wavelet transform are similar to those given for the fast Walsh transform. Overall

performance of all D4 wavelet implementations is better than that given for the fast

Walsh transform. This is understandable given the greater computational effort

113

required to perform the global Walsh transform in comparison to the wavelet

transform which is performed on an ever decreasing scale.

Processor comparisons show once again that two transputers perform faster

than the 80386SX microprocessor. The two transputers although being older

processors, split the task. Also an on-chip floating point unit operating in parallel with

the CPU give it an improved performance over the more modern 80386SX,

particularly in situations such as the wavelet transform where the majority of

calculations are floating point operations.

The performance of the transputer compared with the 80486 which also

possesses on-chip FPU is not impressive. Figure 5.20 shows a marginal improvement

over the fast Walsh transform performance. This can be attributed to the lower

communications overhead of the D4 wavelet transform as shown by comparing figure

5.21 and figure 3.20. Given the linear growth in communication overheads for the

hypercube implementation given in 5.6.1, figure 5.20 indicates that a hypercube

consisting of four or more T800 transputers would give a performance equal to or

better than the 80486 for performing the D4 wavelet transform. This estimate would

be less for the more modern T9000 transputer.

114

Performance analysis

Two Transputer D4 Wavelet transform

256 512 1024 2048

Dataset size

Double precision floating point numbers

Figure 5.21 An analysis of computational resource demand by major operations

within a two transputer D4 Wavelet transform implementation.

5.6.3 APPLICATION O F T H E D 4 W A V E L E T T R A N S F O R M T O

PERIODIC AND NON-PERIODIC FUNCTIONS

In many instances the spectra resulting from the D4 wavelet transformation

were similar to those of the Haar transform. Like the Haar transform the locally

defined basis functions of the D4 wavelet transform provide it with a sensitivity to

local singularities or transient signals. This can be seen in the D4 wavelet transform of

the delta function. In the case of smooth periodic and non-periodic functions such as

the trigonometric and iteration functions the D4 wavelet transform produced more

spectral components than the globally-defined transforms but fewer than the Haar

transform. Consequently the D4 wavelet transform may be better at identifying

transient signals embedded in smooth signal fluctuations. The step function

transforms were not as clear as those from the Haar transform due to the close

115

similarity between the test function and the Haar basis functions. As with all the

transforms examined functions with large numbers of discontinuties such as the chirp

and random noise functions provided a D 4 wavelet transform with many components

and no clearly identifiable features.

Parallel D4 Wavelet transform of random data

§•

i-

,1-

8-
CM

O -

'

WA«4iWly^ Mi
"•IH "i*» [""jp*» 'I'^MUN*'"*"; tit i r i r ' " i p "i «r.***Tr rj*ni

100 zoo 300 400 500

Figure 5.22 D 4 Wavelet transform of random data.

116

Parallel D4 Wavelet transform of sin(x) period = 512

Parallel D4 Wavelet transform of sin(x) period = 64

400 500

Figure 5.23 D 4 Wavelet transfonn of the sine function.

117

Parallel D4 Wavelet transform of cos(x) period = 512

Parallel D4 Wavelet transform of cos(x) period = 64

Figure 5.24 D 4 Wavelet transform of the cosine function.

118

Parallel D4 Wavelet transform of stepl function period = 512

Parallel D 4 Wavelet transform of stepl function period = 64

Figure 5.25 D 4 Wavelet transform of the Step 1 function.

119

Parallel D 4 Wavelet transform of step2 function period = 512

500

Parallel D4 Wavelet transform of step2 function period = 64

Figure 5.26 D 4 Wavelet transform of the Step2 function.

120

Parallel D 4 Wavelet transform of chirp function period = 512

100 200 300 400 500

Parallel D4 Wavelet transform of chirp function period = 64

100 200 300 400 500

Figure 5.27 D 4 Wavelet transform of the Chirp function.

121

Parallel D4 Wavelet transform of iteration function

400 500

Parallel D4 Wavelet transform of delta function

500

Figure 5.28 D 4 Wavelet transform of the Iteration and Delta functions.

122

5.7 S U M M A R Y

This chapter has shown that the Haar transform can be implemented in parallel

using a binary tree topology which can be easily embedded in a hypercube processor

topology. Also the D4 wavelet transform can be represented by a pyramidal or prism

shaped structure which also can be embedded into a hypercube in a manner similar to

that used to embed binary trees.

The performance comparisons of both the D4 wavelet and Haar transforms on

Transputers and commercial microprocessors were similar to that found throughout

this thesis. In order to provide performance superior to standard personal computers

Transputer systems of four or more Transputers are required.

Both transforms demonstrated a capability to identify transient signals as well

as providing interpretable spectra of smooth periodic functions. The D4 wavelet

transform produced a similar spectra to that of the Haar transform. But for most of the

test waveforms produced fewer spectral components, demonstrating a greater ability

to compress data than the Haar transform. Both transforms could not provide a clear

spectra of highly discontinuous functions.

123

CHAPTER 6

CONCLUSION

6.1 INTRODUCTION

The aim of this thesis has been to determine parallel processing

algorithms and architectures for a number of representative discrete transforms in

order to improve transform processing performance. Another aspect was to investigate

the ability of these discrete transforms to detect various types of features in signals.

This chapter details the conclusions drawn from this work and suggests possible areas

of future investigation.

6.2 CONCLUSIONS AND SUGGESTIONS FOR.FUTURE WORK

Discrete transformations can be used to facilitate the detection of features in a

signal. The closer the similarity between the feature being searched for and the

transform basis functions the simpler the spectrum. The ability of a transform to

detect a particular type of feature therefore is dependant upon its basis function set.

This was demonstrated by the spectrum of localised waveforms produced by

transforms with global basis function sets. Transforms with basis function members

which were also local in extent were more successful in detecting localised features.

It has been shown that it is possible to implement discrete transforms either in

software as programs or in hardware as purpose designed microchips. The hardware

implementation has the advantage of speed, being faster than the software

implementation. But hardware designs are dedicated to one transform and operate on

small datasets whereas a software implementation can be more generalised. A number

of different transforms can be implemented in software to allow optimal performance

when attempting to detect different features. The choice between these two

alternatives is dependant upon the application requirements.

124

The software alternative can be increasingly employed in areas currently

requiring a hardware solution by improving its performance. This can be brought

about by applying parallel processing techniques. Investigations conducted during the

course of this thesis have found that a number of different parallel implementations of

transforms are possible, the form of the implementation causing great variations in

processing performance. The major pitfalls in many of the inefficient algorithms being

large communications overheads, communications contention or unbalanced

processor loading. Another common complaint is that even if the parallel algorithm is

efficient and reduces processing time it requires a special machine or processor

topology which is unlikely to find use outside that particular application. This makes

the parallel solution no better than the customised chip alternative.

It was found that the transformations reviewed in this thesis, which are

representative of a wide range of commonly used transforms, were all amenable to

efficient implementation on a hypercube processor topology. A number of parallel

algorithms were developed for this type of architecture with none demonstrating the

contention or load unbalancing problems mentioned above. Also the hypercube is a

common parallel configuration which can be found in a number of commercial

computers. This provides two benefits. Increased processing power, allowing the

execution of signal transforms and associated operations such as template matching in

real time. Secondly the ability to perform a number of transformations concurrently,

enhancing the ability to identify a number of disparate features in a signal or image.

While investigating the parallelisation of transforms a new technique was

found for performing tensor or Kronecker product calculations. This consisted of

converting the tensor product to a Hadamard product by appropriate mapping of the

component matrices onto the processor topology. This was the kernel for a new

125

parallel algorithm for performing any discrete transform which can be expressed as a

Kronecker or tensor product.

The performance of the T800 transputer which was used as the "building

block" of the processor topologies was found to be inadequate, and provided an

example of the short lifetime of microprocessor technology. The age of the T800, and

the unusually long development time of a faster replacement have meant that the T800

as a stand alone microprocessor, or in a "coarse-grained" parallel configuration is no

longer competitive with conventional microprocessors. This means that if a parallel

implementation is to provide better performance than conventional microprocessors

increasing numbers of processors have to be employed. This is a limited solution as

processor communication and economic overheads increase with larger scale

machines.

Given the availability of more powerful processors parallel processing can

provide a powerful tool for performance enhancement of computationally intensive

tasks. The software development performed in the course of this thesis revealed two

drawbacks to parallel processing development. These were the programming

complexity associated with larger M I M D parallel applications and the complexity of

algorithm design.

A possible area of future work would be to investigate the growth of program

complexity in M I M D applications and possible alternatives such as employing S I M D

techniques or the development of more sophisticated programming tools and graphic

user interfaces to aid M I M D parallel program design.

A parallel algorithm was developed for transforms which can be expressed as

Kronecker or tensor products. Further work could be performed to investigate the

126

Parallel processing techniques can bring performance improvements to

computationally intensive tasks. This investigation into parallel algorithms and

architectures has provided an insight into an area of great potential which is being

used at an increasing rate to meet the processing needs of the computing community.

127

REFERENCES

[1] N. Ahmed and K.R. Rao, Orthogonal Transforms for Digital Signal
Processing, Springer - Verlag, 1975.

[2] G. Almasi and A. Gottlieb, Highly Parallel Computing,
Benjamin/Cummings Publishing company, 1989.

[3] H.C. Andrews and K.L. Caspari, A generalised technique for spectral

analysis, IEEE Transactions on Computing, C-19,16-25, 1970.

[4a] K.G. Beauchamp, Transforms for Engineers, A Guide to Signal Processing,
Clarendon Press Oxford, 1987.

[4b] K.G. Beauchamp, Walsh functions and their applications,

Academic Press, 1975.

[5] R.E. Blahut, Theory and Practice of Error Control Codes,
Addison-Wesley, 1984.

[6a] R.N. Bracewell, Numerical Transforms,
Science, Vol. 248, 11 May 1990.

[6b] R.N. Bracewell, The Fast Hartley Transform,
Proceedings of the IEEE, Vol. 72, No. 8, August 1984.

[7] J.W. Brewer, Kronecker Products and Matrix Calculus in System Theory,
IEEE Transactions on Circuits and Systems, Vol. cas-25, No.9, September

1978.

[8] E. Oran Brigham, The fast Fourier transform,

Englewood Cliffs, N.J., Prentice-Hall, 1974.

[9] L. Carrioli, A Pyramidal Haar-Transform implementation,

Proceedings of the Third International Conference on Image Analysis and
Processing, Plenum Press, October 1985.

128

[10] A.D. Cenzo, Transform Lengths for Correlation and Convolution,

IEEE Transactions on Acoustics, Speech and Signal Processing,
Vol. ASSP-35, No. 5, May 1987.

[11] Chaitali Chakrabarti and Joseph F. Jaja, A Parallel Algorithm for Template
Matching on an SIMD mesh connected computer,
IEEE Proceedings 10th International conference on Pattern Recognition
Vol.2, 362-367,1990.

[12] W.K. Cham, Y.T. Chan, Integer Discrete Cosine Transforms,
1st IASTED International Symposium on Signal Processing and its
Applications, 1987.

[13] N. Chelemal, K.R. Rao, Fast Computational Algorithms for the Discrete
Cosine Transform, 9th Annual Asilomar Conference Circuit, Syst,
Comput, Pacific Grove, CA, November 1985).

[14] W. Chen, C. Smith, S. Fralick, A fast computational algorithm for the

discrete cosine transform, IEEE Transactions on Communications,
Com-25, No. 9, 1977.

[15] Chun-Hsien Chou and Yung-Chang Chen, A VLSI architecture for Real-Time
and flexible Image template matching, IEEE Transactions on Circuits

and Systems, Vol. 36, No. 10, October 1989.

[16a] N.I. Cho, S.U. Lee, DCT Algorithms for VLSI Parallel Implementations,
IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 38,
No. 1, January 1990.

[16b] N.I. Cho, S.U. Lee, A Fast 4x4 DCT Algorithm for the Recursive 2-D DCT,
IEEE Transactions on Signal Processing, Vol. 40, No. 9, September 1990.

[17] R.F.W. Coates, Modern Communication Systems,
2nd Ed., 1983, The MacMillan Press Ltd.

[18] A.D. Culhane, M.C. Peckerbar, A Neural Net Approach to Discrete Hartely

and Fourier Transforms, IEEE Transactions on Circuits and Systems
Vol 36, No. 5, May 1989.

[19] R.W. Daniel, P.M. Sharkey, Transputer control of a Puma 560 robot via the
virtual bus, IEEE Proceedings, Vol 137, PtD, No. 4, July 1990.

129

[20] I. Daubechies, Orthonormal Bases of Compactly Supported Wavelets,
Communications of Pure and Applied Mathematics, Vol. 41, 909-996,

1988.

[21] A.R. Davies, R. Wilson, Curve and Corner Extraction using the
Multiresolution Fourier Transform, IEE 4th International Conference

on Image Processing and its applications, 1992.

[22] A. Dembo, Signal Reconstruction from Noisy Partial Information of its

Transform, IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol. 37, No. 1, January 1989.

[23] J. Fransaer, D. Fransaer, Fast Cross-Correlation Algorithm with Application

to Spectral Analysis, IEEE Transactions on Siganl Processing, Vol. 39,

No. 9, September 1991.

[24] I. Gertner, A New Efficient Algorithm to Compute the Two-Dimensional

Discrete Fourier Transform, IEEE Transactions on Acoustics, Speech

and Signal Processing, Vol. 36, No. 7, July 1988.

[25] R. Gonzales and P. Wintz, Digital Image Processing, Addison-Wesley, 1987.

[26] J. Granata, M. Conner, R. Tolimieri, Recursive Fast Algorithms and the Role

of the Tensor Product, IEEE Transactions on Signal Processing, Vol. 40,

No. 12, December 1992.

[27] L. Guan, R.K. Ward, Restoration of Randomly Blurred Images by the Wiener

Filter, IEEE Transactions on Acoustics, Speech and Signal Processing,

Vol. 37, No. 4, April 1989.

[28a] A. Gupta, K.R. Rao, A Fast Recursive Algorithm for the Discrete Sine

Transform, IEEE Transactions on Acoustics, Speech and Signal

Processing, Vol. 38, No. 3, March 1990.

[28b] A. Gupta, K.R. Rao, An efficient FFT Algorithm based on the Discrete Sine
Transform, IEEE Transactions on Acoustics, Speech and Signal Processing,

Vol. 39, No. 2, Feburary 1991.

[29] P. Goupillard, A. Grossman, J. Morlet, Cycle-octave and related transforms

in seismic signal analysis, Geoexploration, 23, 85-102, 1985.

130

[30] G. Grasseau, A. Arneodo, M. Holschneider, Wavelet Transform of

Multifractals, Physical Review Letters, The American Physical Society,
Vol. 61, No. 20, 14 Nov. 1988.

[31] Glenn Healey, Byron Dom, Pattern Classification Algorithms for Real-time

image segmentation, IEEE Proceedings 10th International conference
on Pattern Recognition, Vol 2, 545-550, 1990.

[32] D. Hein, N. Ahmed, On a Real-Time Walsh-Hadamard/Cosine Transform
Image Processor, IEEE Transactions on Electromagnetic Compatibility,
Vol. EMC-20, No. 3, August 1978.

[33] W. Daniel Hillis, The Connection Machine, Scientific American,

Vol. 256pl08-115, June 1987.

[34] R.A. Horn, The Hadamard product, Matrix Theory and Applications,
Proceedings of the Symposia in Applied Mathematics, American
Mathematical Society, Vol. 40.

[35] H.S. Hou, A Fast Recursive Algorithm for Computing the Discrete Cosine

Transform, IEEE Transactions on Acoustics, Speech and Signal Processing,

Vol. ASSP-35, No. 10, October 1987.

[36] J. Kevorkian, J.D. Cole, Pertubation Methods in Applied Mathematics,

Springer-Verlag, 1989.

[37] Khanh Ly, Y. Attikiouzel, Contour Tracing of Biomedical Binary Images,
1st IASTED International Symposium on Signal Processing and its

Applications, 1987.

[38] D. Kothe, J. Baumgardner et al, PAGOSA: A Massively-Parallel Multi-

Material Hydrodynamic Model for Three-Dimensional High-Speed Flow and
High-Rate Material Deformation, SCS Proceedings of the 1993 Simulation
Multiconference on the High Performance Computing Symposium, 1993.

[39] W. Kou, J.W. Mark, A New-Look at DCT-Type Transforms,
IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37,
No. 12, December 1989.

[40] P. Kraniauskas, Transforms in Signals and Systems, Addison-Wesley, 1992.

131

[41] E. Kreyszig, Advanced Engineering Mathematics, Wiley, 1988.

[42] S. Lakshmivarahan, S.K. Dhall, Analysis and Design of Parallel Algorithms,
McGraw-Hill, 1990.

[43] F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes, Morgan Kaufmann, 1992.

[44] A.S. Lewis, G. Knowles, VLSI architecture for 2-D Daubechies wavelet

transform without multipliers, Electronics Letters, Vol 27, n2, 171-173,
January 171991.

[45] T.D. Lookabaugh, M.G. Perkins, Application of the Princen-Bradley Filter

to Speech and Image Compression, IEEE Transactions on Acoustics, Speech
and Signal Processing, Vol. 38, No. 11, November 1990.

[46] A.G. Marshall and F.R. Verdun, Fourier Transforms in NMR, Optical, and
Mass Spectrometry, Elsevier, 1990.

[47] T. Murata, Petri Nets: Properties, Analysis and Applications,
Proceedings of the IEEE, Vol. 77, No. 4, April 1989.

[48] D. Nandagopal, J.S. Packer, J. Singh, Power Spectral Modelling of Heart

Rate Variability, 1st IASTED International Symposium on Signal Processing

and its Applications, 1987.

[49] K.N. Ngan, K.S. Leong, H. Singh, Adaptive Cosine Transform Coding

of Images in Perceptual Domain, IEEE Transactions on Acoustics, Speech and
Signal Processing, Vol. 37No. 11, November 1989.

[50] R.K. Otnes and L. Enochson, Applied Time Series Analysis,
John Wiley and Sons, 1978.

[51] Parallel C User Guide V2.2.2 3L Ltd, 1991.

[52] S .C. Pei, J.L. Wu, Split Vector Radix 2-D Fast Fourier Transform,

IEEE Transactions on Circuits and Systems, Vol. CAS-34, No. 8, August
1987.

132

[53] J.W. Ponton, R. McKinnel, Nonlinear process simulation and control using

transputers, IEEE Proceedings, Vol 137, PtD, No. 4, July 1990.

[54] W.H. Press, Wavelet Transforms, Harvard-Smithsonian Center for
Astrophysics Preprint No. 3184, 1991.

[55] M.P. Quirk, M.F. Garyantes, H.C. Wilck, MJ. Grimm, A Wide-Band

High-Resolution Spectrum Analyzer, IEEE Transactions on Acoustics, Speech
and Signal Processing, Vol. 36, No. 12, December 1988.

[56] V. Ransom, R. Krishnamurthy, Nuclear Plant System Simulation and

Analysis, SCS Proceedings of the 1993 Simulation Multiconference
on the High Performance Computing Symposium, 1993.

[57a] K.R. Rao and P.Yip, Discrete Cosine Transform Algorithms, Advantages,
Applications, Academic Press, 1990.

[57b] K.R. Rao,M. Narasimhan,K. Revuluri, Image Data Processing by Hadamard-

Haar Transform, IEEE Computer Transactions, C-24, pg 888-896, 1975.

[58] S.M. Rezaul Hasan, A New VLSI Architecture for Image Data Rate Discrete
Cosine Transform Processor, IstlASTED International Symposium on Signal
Processing and its Applications, 1987.

[59] M. A. Richards, On Hardware Implementation of the Split-Radix FFT,

IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 36,

No. 10, October 1988.

[60] J.A. Roese, W.K. Pratt, Interframe Cosine Transform Image Coding,

IEEE Transactions on Communications, COM-25:1329-1338, 1977.

[61] A. Satt, D. Malah, Design of Uniform DFT Filter Banks Optimised for

Subband Coding of Speech, IEEE Transactions on Acoustics, Speech and

Signal Processing, Vol. 37, No. 11, November 1989.

[62] H. Schutte, S. Frydrychowicz, J. Schroder, Scene Matching with Translation

Invariant Transforms, Proceedings IEEE 5th International Conference of
Pattern Recognition, 1980.

133

[63] J.J. Shynk, Adaptive HJR Filtering using Parallel-Form Realizations,

IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37,
No. 4, April 1989.

[64] P.K. Sinha, Q.H. Hong, Detection of Vertical Lines and Circles in 3D

Space using Hough Transform Techniques, IEE 4th International Conference
on Image Processing and its applications, 1992.

[65] H.F. Silverman, Programming the WFTA for Two-Dimensional Data,

IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37,
No. 9, September 1989.

[66] T. Smit, M.R. Smith, S.T. Nichols, Efficient Sine Function Interpolation
Technique for Center Padded Data, IEEE Transactions on Acoustics, Speech
and Signal Processing, Vol. 38, No. 1, January 1989.

[67] H.V. Sorenson, D.L. Jones, M.T. Heideman and C.S. Burrus,

Real-Valued Fast Fourier Transform Algorithms, IEEE Transactions on

Acoustics, Speech and Signal Processing, Vol. ASSP-35, No. 6, June 1987.

[68] L. Sousa, J. Barrios, A. Costa, M. Piedade, Parallel Image Processing for
Transputer Based Systems, IEE 4th International Conference on Image

Processing and its Applications, 1992.

[69] G. Strang, Wavelets and Dilation equations: A brief introduction,

SIAMReview, Vol. 31, No. 4, 614-627, December 1989.

[70] M.T. Sun, T.C. Chen, A.M. Gottlieb, VLSI Implementation of a 16x16

Discrete Cosine Transform, IEEE Transactions on Circuits and Systems,
Vol. 36, No. 4, April 1989.

[71] Thinking Machines Corporation, Connection Machine Model CM-2

Technical Summary, Thinking Machines Corporation, 1991.

[72] J.O. Thomas, Digital Imagery Processing,

Issues in Digital Image Processing, 247-90, Noordhoff, Amsterdam, 1980.

[73] F.B. Tuteur, Wavelet transformations in signal detection,

Wavelets Time-Frequency methods and Phase Space, Proceedings of the
International conference, Springer-Verlag, December 1987.

134

[74] F. Wang, P. Yip, Cepstrum Analysis using Discrete Trigonometric
Transforms, IEEE Transactions on Signal Processing, Vol. 39, No. 2,

February 1991.

[75] H.C. Webber, Image processing and transputers, Amsterdam 10S Press, 1992.

[76] P.J. Whitebread, R.E. Bogner, The Use of Pattern Recognition by
Observation Correlation in Image Processing, IstlASTED International
Symposium on Signal Processing and its Applications, 1987.

[77] J.L. Wu, Block Diagonal Structure in Discrete Transforms,
IEEE Proceedings, Vol. 136, Pt. E, No. 4, July 1989.

135

APPENDIX A

TRANSPUTER TRANSFORM SOURCE CODE

Two Transputer Parallel Fourier Transform

Configuration File:

! Configuration file for two transputer fourier transform

! fourier.cfg

processor host ! the PC
processor root ! transputer 0
processor Tl ! transputer 1

wire jumper host[0] root[0]
wire jumper 1 root[2] Tl[l]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
taskfft2p_pl ins=3 outs=3
task fft2p_p2 ins=l outs=l

place afserver host ! afserver runs on PC
place filter root ! filter and wt2p_pl run on root transputer
place fft2p_pl root
place fft2p_p2 Tl

connect ? afserver[0] filter[0]
connect ? filter[0] afserver[0]
connect ? filter[l] fft2p_pl[l]
connect ? fft2p_pl[l] filterfl]
connect ? fft2p_pl[2] fff2p_p2[0]
connect ? fft2p_p2[0] fft2p_pl[2]

136

Processor 0 Program:

/* FFT HOST PROCESSOR PROGRAM */

#include <stdio.h>
#include <stdlib.h>

#include <dos.h>
#include <math.h>
#include <chan.h>

#defme DATASIZE 512
#defineK 6.2831853071796/DATASIZE

#define DATASPLIT DATASIZE/2
#define BUTTERFLIES log(DATASIZE)/log(2)

struct datastruct {
double real;
double imaginary;

};

void Butterfly l(int,int,stract datastruct *);
void Dist_FFT_l (struct datastruct *) ;

void BitReversal(int *) ;

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];

int argc,ins,outs;
char *argv[], *envp[];

{
int i,index[DATASIZE],*indexptr;
char *buffer;
double temp[DATASIZE];
struct datastruct complexresult[DATASIZE],

complextemp [DATASIZE], *complexptr;
FILE *infile, *outfilel,*outfile2;

/* Memory check, File check and read */

buffer = (char *) calloc(DATASIZE,sizeof(struct datastruct));
if(buffer==NULL)

{
printf("Memory allocation failedAn");

137

exit(O);

}
if((infile = fopen("e:\\rod\\trnsfrms\\pfourier\\results\\ltfl8.dat","rb")) ==

N U L L)

{
printf("Unable to open file.\n");
exit(O);

}
fread(temp,sizeof(double),DATASIZE,infile);

fcloserinfile);

for(i=0;i<DATASIZE;i++)

{
complextemp[i] .imaginary = 0.0;
complextemp[i].real = temp[i];

}

/* Data distribution to other processors */

complexptr = DATASPLIT + complextemp;
indexptr = D A T A S P L I T + index;

chan_out_message(sizeof(struct
datastruct)*DATASIZE,complextemp,out_ports[2]);

/* Perform Processor 1 FFT */

Dist_FFT_l (complextemp);

/* Perform Bit Reversal */

BitReversalrindex);

/* Collect data from other processors */

chan_in_message(sizeof(struct
datastruct)*(DATASPLIT),complexptr,in_ports[2]);

chan_in_message(sizeof(int)*(DATASPLIT),indexptr,in_ports[2]);

for(i=0;i<DATASIZE;i++)

complexresult[i] = complextemp[index[i]];

/* Write results to file */

if((outfilel = fopen("e:\\rod\\tmsfrms\\pfourier\\results\\rfftrslt.l8","wb")) ==

N U L L)

{
printf("Unable to open fileAn");

138

exit(O);

}
for(i=0;i<DATASIZE;i++)

temp[i] = complexresult[i].real;
fwrite(temp,sizeof(double),DATASIZE,outfilel);

fclose(outfilel);

if((outfile2 = fopen("e:\\rod\\trnsfrms\\pfourier\Vesults\\ifftrslt.l8","wb")) ==

N U L L)

{
printf("Unable to open file.Xn");
exit(O);

}
for(i=0;i<DATASIZE;i++)

temp[i] = complexresult[i].imaginary;
fwrite(temp,sizeof(double),DATASIZE,outfile2);

fclose(outfile2);

return(0);

}

void Dist_FFT_l (struct datastruct *complextemp)

{
int i,currentsize,j=0,iter=l;
struct datastruct ctemp [DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

ctemp [i] = complextemp [i];

/* Step 1 for Two Processors */

while(j < currentsize)

{
complextemp [j].real = ctemp[j].real + ctemp[j+currentsize].real;
complextemp[j].imaginary = ctemp[j].imaginary

ctemp[j+currentsize] .imaginary;

}
currentsize = currentsize / 2;

/* FFT Butterfly */

while (currentsize >=1)

{
iter++;
Butterflyl(iter,currentsize,complextemp);

139

currentsize /= 2;

}

}

void Butterfly 1 (int iter,int currentsize,struct datastruct *complextemp)

{
intij;
struct datastruct temp [DATASIZE];
double x,y,rl,r2,imag;

for(i=0;i<DATASIZE;i++)
temp[i] = complextempfi];

i = 0;
while(i < DATASPLIT)

{
j = 0;
while (j < currentsize)

{
complextemp [i].real = temp[i].real + temp [i+currentsize] .real;
complextemp [i] .imaginary = temp [i] .imaginary +

temp[i+currentsize] .imaginary;

j++;
i++;

}
3 = 0;
while (j < currentsize)

{
rl = temp[i-currentsize].real - temp[i].real;
r2 = -rl;
imag = temp[i-currentsize].imaginary - temp[i].imaginary;

x = cos(K*j*iter);
y = sin(K*j*iter);
complextemp [i].real = (x*rl) + (y*imag);
complextemp [i] imaginary = (x*imag) + (y*r2);

i++;

}
}

}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=0;x<DATASPLIT;x++)

{
init_pos = x;
while(count < BUTTERFLIES)

{

140

final_pos = final_pos « 1;
fmaLpos = ((init_pos & 1) ? 1:0) + final_pos;
init_pos = init_pos » 1;
count++;

}
index[x] = final_pos;
final_pos = count = 0;

}

}

Processor 1 Program:

/* FFT PROCESSOR 1 PROGRAM */
#include <stdlib.h>
#include <math.h>
#include <chan.h>

#define DATASIZE 512
#define K 6.2831853071796/DATASIZE
#define DATASPLIT DATASIZE/2
#defme BUTTERFLIES log(DATASIZE)/log(2)

struct datastruct {
double real;
double imaginary;

};

void Butterfly2(int,int,struct datastruct *) ;

void Dist_FFT_2(struct datastruct *) ;
void BitReversal(int *) ;

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];

int argc,ins,outs;
char *argv[],*envp[];

{
inti,index[DATASIZE],*indexptr;
struct datastruct complextemp[DATASIZE],*complexptr;

/* Read Data from Host processor */

chan_in_message(sizeof(struct

datastruct)*DATASIZE,complextemp,in_ports[0]);

141

/* Perform Processor 2 FFT */

Disf_FFT_2(complextemp);

/* Perform Bit Reversal */

BitReversal (index);

/* Send data to Host processor */

indexptr = DATASPLIT + index;
complexptr = D A T A S P L I T + complextemp;
chan_out_message (sizeof(struct

datastruct)*DATASPLIT,complexptr,out_ports[0]);
chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]);

}

void Dist_FFT_2(struct datastruct *complextemp)

{
int i,currentsize,j=0,iter=l;
double x,y,rl,r2,imag;
struct datastruct ctemp[DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

ctemp[i] = complextemp[i];

/* Step 2 for Two Processors */

while (j < currentsize)

{
rl = ctemp[j].real - ctemp[j+currentsize].real;
r2 = -rl;
imag = - ctempU+currentsize] imaginary + ctemp [j].imaginary;
x = cos(K*j*iter);

y = sin(K*j*iter);
complextemp[j+currentsize].real = (x*rl) + (y*imag);
complextemp[j+currentsize] imaginary = (x*imag) + (y*r2);

j++;
}
currentsize = currentsize / 2;

/* FFT Butterfly */

while (currentsize >=1)

{

142

iter++;

Butterfly2(iter,currentsize,complextemp);
currentsize = currentsize / 2;

}

}

void Butterfly2(int iter,int currentsize,struct datastruct *complextemp)

{
int i,j;
struct datastruct temp[DATASIZE];
double x,y,rl,r2,imag;

for(i=0;i<DATASIZE;i++)
temp[i] = complextemp[i];

i = D A T A S P L I T ;
while(i < D A T A S I Z E)

{
j = 0;
while(j < currentsize)

{
complextemp[i].real = temp[i].real + temp[i+currentsize].real;
complextemp[i].imaginary = temp [i]. imaginary +

temp[i+currentsize] imaginary;

j++;
i++;

}
j = 0;
while(j < currentsize)

{
rl = -temp[i].real + temp[i-currentsize].real;
r2 = -rl;
imag = temp[i-currentsize].imaginary - temp[i]imaginary;

x = cos(K*j*iter);
y = sin(K*j*iter);
complextemp[i].real = (x*rl) + (y*imag);
complextemp[i] imaginary = (x*imag) + (y*r2);

i++;

)

}
}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=DATASPLIT;x<DATASIZE;x-H-)

{
init_pos = x;

143

}

while(count < BUTTERFLIES)

{
final_pos = final_pos « 1;
final_pos = ((init_pos & 1) ? 1:0) + final_pos;
init_pos = init_pos » 1;
count++;

1
index[x] = final_pos;
final_pos = count = 0;

144

T w o Transputer Parallel Cosine Transform

Configuration File:

! Configuration file for two transputer cosine transform

! cosine.cfg

processor host ! the PC
processor root ! transputer 0
processor Tl ! transputer 1

wire jumper host[0] root[0]
wire jumper 1 root[2] Tl[l]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
task dctfftpl ins=3 outs=3
task dctfftp2 ins=l outs=l

place afserver host ! afserver runs on PC
place filter root ! filter and wt2p_pl run on root transputer
place dctfftpl root
place dctfftp2 Tl

connect ? afserver[0] filter[0]
connect ? filter[0] afserver[0]
connect ? filter[l] dctfftpl[l]
connect ? dctfftpl[1] filter[l]
connect ? dctfftpl[2] dcffftp2[0]
connect ? dctfftp2[0] dctfftpl[2]

145

Processor 0 Program:

/* DCT HOST PROCESSOR PROGRAM */

#include <stdio.h>
#include <stdlib.h>

#include <dos.h>
#include <math.h>
#include <chan.h>
#include <time.h>

#defme DATASIZE 8
#define K 6.2831853071796/DATASIZE
#define DATASPLIT DATASIZE/2
#define BUTTERFLIES log(DATASIZE)/log(2)

struct datastruct {
double real;
double imaginary;

};

void Butterfly l(int,int,struct datastruct *);
void Dist_FFT_l (struct datastruct *) ;
void BitReversal(int *) ;
void Sort(double *,struct datastruct *) ;
void Kmult(struct datastruct *,struct datastruct *,int *) ;

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];

int argc,ins,outs;
char *argv[],*envp[];

{
inti,index[DATASIZE],*indexptr,tstart,tend;
char *buffer;
double temp[DATASIZE];
struct datastruct complexresultfDATASIZE],

complextemp [DATASIZE], *complexptr;
FILE *infile, *outfile;

/* Memory check, File check and read */

buffer = (char *) calloc(DATASIZE,sizeof(struct datastruct));
if(buffer==NULL)

146

{
printf("Memory allocation failed.\n");
exit(O);

}
if((infile = fopen("b:\\fdata8.dat","rb"))==NULL)

{
printf("Unable to open fileAn");
exit(O);

}
fread(temp,sizeof(double),DATASIZE,infile);

fclose(infile);

/* Sort Input Data */

tstart = timer_now();
Sort(temp,complextemp);

/* Data distribution to other processors ..

complexptr = DATASPLIT + complextemp;

indexptr = D A T A S P L I T + index;
chan_out_message (sizeof(struct

datastruct)*DATASIZE,complextemp,out_ports[2]);

/* Perform Processor 1 FFT

Dist_FFT_l (complextemp);

/* Perform Bit Reversal

BitReversal(index);

/* Multiply by exponent */

Kmult(complextemp,complexresult,index);

/* Collect data from other processors */

chan_in_message(sizeof(struct
datastruct)*(DATASPLIT),complexptr,in_ports[2]);

chan_in_message(sizeof(int)*(DATASPLIT),indexptr,in_ports[2]);

for(i=0;i<DATASIZE;i++)
complexresult[i] = complextemp[index[i]];

tend = timer_now();
printf("Execution time was %d\n",tend-tstart);

*/

*/

*/

147

/* Write results to file */

if((outfile = fopen(,,b:\\cosine.rlt","w"))==NULL)

{
printf("Unable to open fileAn");
exit(O);

}
for(i=0;i<DATASIZE/2;i++)

fprintf(outfile," %lf\n" ,complexresult[i] .real);
for(i=0;i<DATASIZE/2;i++)

fprintf (outfile," %lf\n" ,complexresult[i] .imaginary);

fclose(outfile);

return(O);

}

void Dist_FFT_l (struct datastruct *complextemp)

{
int i,currentsize,j=0,iter=l;
struct datastruct ctemp [DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

ctemp[i] = complextemp [i];

/* Step 1 for Two Processors */

while(j < currentsize)

complextemp[j].real = ctempfjj.real + ctemp[j+currentsize].real;

complextemp[j].imaginary = ctemplj]. imaginary

ctemp|j+currentsize].imaginary;

j++;

}
currentsize = currentsize / 2;

/* FFT Butterfly */

while(currentsize >=1)

{
iter++;
Butterfly 1 (iter,currentsize,complextemp);
currentsize /= 2;

}

}

148

void Butterfly 1 (int iter,int currentsize,struct datastruct *complextemp)

{
intij;
struct datastruct temp [DATASIZE];
double x,y,rl,r2,imag;

for(i=0;i<DATASIZE;i++)
temp[i] = complextemp [i];

i = 0;
while(i < D A T A S P L I T)

{
j = 0;
while(j < currentsize)

{
complextemp [i].real = temp[i].real + temp[i+currentsize].real;
complextemp [i] imaginary = temp [i] imaginary +

temp[i+currentsize] imaginary;

i++;

}
j=0;
while (j < currentsize)

{
rl = temp[i-currentsize].real - temp[i].real;
r2 = -rl;
imag = temp[i-currentsize].imaginary - temp[i]imaginary;

x = cos(K*j*iter);
y = sin(K*j*iter);
complextemp[i].real = (x*rl) + (y*imag);
complextemp[i] imaginary = (x*imag) + (y*r2);

i++;

}
}

}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=0;x<DATASPLIT;x++)

{
init_pos = x;
while(count < BUTTERFLIES)

{
final_pos = final_pos « 1;
final_pos = ((init_pos & 1) ? 1:0) + final_pos;
init_pos = init_pos » 1;

149

count++;
}
indexfx] = final_pos;
fmal_pos = count = 0;

}
}

void Sort(double *temp,struct datastruct *complextemp)

{

for(i=0;i<DATASIZE/2;i++)

{
complextemp[i].real = temp[2*i];
complextemp[i] imaginary = 0.0;
complextemp[DATASIZE-l-i].real = temp[2*i+l];
complextemp [DATASIZE-1-i] imaginary = 0.0;

}
}

void Kmult(struct datastruct *complextemp,struct datastruct *complexresult,int
*index)

{
inti;
double c,s;

for(i=0;i<DATASIZE/4;i++)

{
c = cos(i * K * 0.25);
s = sin(i * K * 0.25);
complexresult[i].real = complextemp[index[iJ].real * c +

complextemp[index[i]] imaginary * s;
complexresult[i]imaginary = -complextemp[index[i]].imaginary * c +

complextemp[index[i]].real * s;

}
}

150

Processor 1 Program:

/* DCT PROCESSOR 1 PROGRAM */
#include <stdlib.h>
#include <math.h>
#include <chan.h>

#defme DATASIZE 8

#define K 6.2831853071796/DATASIZE
#defme DATASPLIT DATASIZE/2
#define BUTTERFLIES log(DATASIZE)/log(2)

struct datastruct {

double real;
double imaginary;

};

void Butterfly2(int,int,struct datastruct *) ;
void Dist_FFT_2(struct datastruct *) ;
void BitReversalrint *) ;
void Kmult(struct datastruct *,struct datastruct *,int *) ;

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[], *out_ports[];

int argc,ins,outs;
char *argv[],*envp[];

{
int i,index[DATASIZE],*indexptr;
struct datastruct

complextemp[DATASIZE], *complexptr,complexresult[DATASIZE];

/* Read Data from Host processor */

chan_in_message(sizeof(struct
datastruct) *DATASIZE,complextemp,in_ports[0]);

/* Perform Processor 2 FFT */

Dist_FFT_2(complextemp);

/* Perform Bit Reversal */

BitReversalrindex);

151

/* Multiply by exponent */

Kmult(complextemp ,complexresult,index);

/* Send data to Host processor */

indexptr = DATASPLIT + index;
complexptr = D A T A S P L I T + complextemp;
chan_out_message (sizeof(struct

datastruct)*DATASPLIT,complexptr,out_ports[0]);

chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]);

}

void Dist_FFT_2(struct datastruct *complextemp)

{
int i,currentsize,j=0,iter=l;
double x,y,rl,r2,imag;
struct datastruct ctemp [DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

ctemp [i] = complextemp [i];

/* Step 2 for Two Processors */

while (j < currentsize)

{
rl = ctemp[j].real - ctemp[j+currentsize].real;
r2 = -rl;
imag = - ctempfj+currentsize] imaginary + ctempfj] imaginary;
x = cos(K*j*iter);
y = sin(K*j*iter);
complextemp[j-i-currentsize].real = (x*rl) + (y*imag);
complextemp[j-i-currentsize] imaginary = (x*imag) + (y*r2);

}
currentsize = currentsize / 2;

/* FFT Butterfly */

while (currentsize >=1)

{
iter++;
Butterfly2(iter,currentsize,complextemp);
currentsize = currentsize / 2;

}

152

}

void Butterfly2(int iter,int currentsize,struct datastruct *complextemp)

{
intij;
struct datastruct temp [DATASIZE];
double x,y,rl,r2,imag;

for(i=0;i<DATASIZE;i++)

temp[i] = complextemp [i];
i = DATASPLIT;
while(i< D A T A S I Z E)

{
1 = 0;
while (j < currentsize)

{
complextemp[i].real = temp[i].real + temp[i+currentsize].real;
complextemp[i].imaginary = temp[i].imaginary +

temp[i+currentsize] imaginary;

i++;

I
j = 0;
while (j < currentsize)

{
rl = -temp[i].real + temp[i-currentsize].real;
r2 = -rl;
imag = temp[i-currentsize].imaginary - temp[i]imaginary;
x = cos(K*j*iter);
y = sin(K*j*iter);
complextemp[i].real = (x*rl) + (y*imag);
complextemp[i] imaginary = (x*imag) + (y*r2);

j++;
i++;

}
}

}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=DATASPLIT;x<DATASIZE;x++)

{
init_pos = x;
while(count < BUTTERFLIES)

{
final_pos = final_pos « 1;
final_pos = ((init_pos & 1) ? 1:0) + final_pos;

153

init_pos = init_pos » 1;
count++;

}
index[x] = final_pos;
final_pos = count = 0;

}
}

void Kmult(stract datastruct *complextemp,struct datastruct *complexresult,int
*index)

{
inti;
double c,s;

for(i=DATASPLIT;i<DATASPLIT+DATASIZE/4;i++)

{
c = cos(i * K * 0.25);
s = sin(i * K * 0.25);
complexresult[i].real = complextemp[index[i]].real * c +

complextemp[index[i]]imaginary * s;
complexresult[i] imaginary = -complextemp [index[i]] imaginary * c +

complextemp[index[i]].real * s;

}
}

154

T w o Transputer Parallel Walsh Transform

Configuration File:

i

! Configuration file for two transputer walsh transform
i

! walsh.cfg

processor host ! the PC

processor root ! transputer 0
processor Tl ! transputer 1

wire jumper host[0] root[0]
wire jumper 1 root[2] Tl[l]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
taskwt2p_pl ins=3 outs=3
taskwt2p_p2 ins=l outs=l

place afserver host ! afserver runs on PC
place filter root ! filter and wt2p_pl run on root transputer
place wt2p_pl root
place wt2p_p2 Tl

connect ? afserver[0] filter[0]
connect ? filterfO] afserver[0]
connect ? filterfl] wt2p_pl[l]
connect ? wt2p_pl[l] filter[l]
connect ? wt2p_pl[2] wt2p_p2[0]
connect ? wt2p_p2[0] wt2p_pl[2]

155

Processor 0 Program:

/* W A L S H TRANSFORM HOST PROCESSOR PROGRAM

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <math.h>
#include <chan.h>

#defme DATASIZE 2048
#define DATASPLIT DATASIZE/2
#define BUTTERFLIES log(DATASIZE)/log(2)

void Butterfly l(int,double *);
void Dist_FWT_l(double *) ;
void BitReversal(int *) ;

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];

int argc,ins,outs;
char *argv[],*envp[];

{
int i,index[DATASIZE],*indexptr;
char *buffer;
double walshresult[DATASIZE], walshtemp[DATASIZE],*walshptr;

FILE *infile, *outfile;

/* Memory check, File check and read */

buffer = (char *) calloc(DATASIZE,sizeof(double));

if (buffer == N U L L)

{
printf("Memory allocation failedAn");
exit(0);

}
if((infile = fopen("a:\\wdat2048.dat","r")) == N U L L)

{
printf("Unable to open file.Xn");
exit(0);

}
fread(walshtemp,sizeof(double),DATASIZE,infile);
fclose(infile);

156

/* Data distribution to other processors */

walshptr = DATASPLIT + walshtemp;
indexptr = D A T A S P L I T + index;

chan_out_message(sizeof(double)*DATASIZE,walshtemp,out_ports[2]);

/* Perform Processor 1 FWT */

Dist_FWT_l (walshtemp);

/* Perform Bit Reversal */

BitReversal(index);

/* Collect data from other processors */

chan_in_message(sizeof(double)*DATASPLIT,walshptr,in_ports[2]);
chan_in_message(sizeof(int)*DATASPLIT,indexptr,in_ports[2]);

/* Combine data from all procrssors */

for(i=0;i<DATASIZE;i++)
walshresultfi] = walshtemp[index[i]];

/* Write results to file */

if((outfile = fopen(,,a:\\fresults.dat","w")) == NULL)

{
printf("Unable to open file.Vn");
exit(O);

}
fwrite(walshresult,sizeof(double) ,D ATASIZE,outfile);
fclose(outfile);

return(O);

}

void Dist_FWT_l (double * walshtemp)

{
int i,currentsize,j=0;
double wtemp[DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

wtempfi] = walshtemp[i];

/* Step 1 for Two Processors */

157

while (j < currentsize)

{
walshtempQ] = wtemp[j] + wtemp[j+currentsize];

}
currentsize = currentsize / 2;

/* FWT Butterfly */

while(currentsize >=1)

{
Butterfly 1 (currentsize,walshtemp);
currentsize = currentsize / 2;

}
}

void Butterfly 1 (int currentsize,double *walshtemp)

{
int i,j;
double wtemp[DATASIZE];

for(i=0;i<DATASIZE;i++) /* for(i=0;i<currentsize;i++) */
wtemp[i] = walshtemp [i];

i = 0;
while(i < (DATASPLIT))

{
j = 0;
while (j < currentsize)

{
walshtemp [i] = wtemp[i] + wtemp[i+currentsize];

i++;

}
j = 0;
while (j < currentsize)

{
walshtempfi] = wtempfi-currentsize] - wtempfi];

i++;

}
}

}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=0;x<DATASPLIT;x-t-+)

158

{
init_pos = x;

while(count < BUTTERFLIES)

{
final_pos = final_pos « 1;
final_pos = ((init_pos & 1) ? 1:0) + final_pos;
init_pos = init_pos » 1;
count++;

}
index[x] = final_pos;
final_pos = count = 0;

}

}

Processor 1 Program:

/* WALSH TRANSFORM PROCESSOR 1 PROGRAM */

#include <stdlib.h>
#include <math.h>
#include <chan.h>

#define DATASIZE 2048
#define DATASPLIT DATASIZE/2
#define BUTTERFLIES log(DATASIZE)/log(2)

void Butterfly2(int,double *) ;
void Dist_FWT_2(double *) ;
void BitReversal(int *) ;

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs)
C H A N *in_ports[],*out_ports[];
int argc,ins,outs;

char *argv[],*envp[];

{
int i,index[DATASIZE],*indexptr;
double walshtemp[DATASIZE] ,*walshptr;

/* Read Data from Host processor */

chan_in_message(sizeof(double)*DATASIZE,walshtemp,in_ports[0]);

/* Perform Processor 2 FWT */

Dist_FWT_2(walshtemp);

159

BitReversal(index);

/* Send data to Host processor */
indexptr = D A T A S P L I T + index;
walshptr = D A T A S P L I T + walshtemp;
chan_out_message(sizeof(double)*DATASPLIT,walshptr,out_ports[0]);
chan_out_message(sizeof(int)*DATASPLIT,indexptr,out_ports[0]);

}

void Dist_FWT_2(double *walshtemp)

{
int i,currentsize,j=0;
double wtemp[DATASIZE];

currentsize = DATASPLIT;
for(i=0;i<DATASIZE;i++)

wtemp[i] = walshtempfij;

/* Step 2 for Two Processors */

whilefj < currentsize)

{
walshtemp rj+currentsize] = wtempfj] - wtemp[j+currentsize];

}
currentsize = currentsize / 2;

/* FWT Butterfly */

while (currentsize >=1)

{
Butterfly2(currentsize,walshtemp);
currentsize = currentsize / 2;

}
}

void Butterfly2(int currentsize,double *walshtemp)

{
intij;
double wtemp[DATASIZE];

for(i=0;i<DATASIZE;i++)
wtemp[i] = walshtemp[i];

i = DATASPLIT;
while(i < (DATASIZE))

{
j = 0;

160

while(j < currentsize)

{
walshtemp [i] = wtemp[i] + wtemp[i+currentsize];

i++;

}
j = 0;

while(j < currentsize)

{
walshtemp [i] = wtemp[i-currentsize] - wtemp[i];

i++;

}
}

}

void BitReversal(int *index)

{
intcount=0,final_pos=0,init_pos=0,x;

for(x=DATASPLIT;x<DATASIZE;x++)

{
init_pos = x;
while(count < BUTTERFLIES)

{
final_pos = final_pos « 1;
final_pos = ((init_pos & 1) ? 1:0) + final_pos;
init_pos = init_pos » 1;
count++;

}
index[x] = final_pos;
final_pos = count = 0;

}
}

161

T w o Transputer Parallel Haar Transform

Configuration File:

! Configuration file for two transputer haar transform

! haar.cfg

processor host ! the PC

processor root ! transputer 0
processor Tl ! transputer 1

wire jumper host[0] root[0]
wire jumper 1 root[2] Tl[l]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
taskphaarpl ins=3 outs=3
task phaarp2 ins=l outs=l

place afserver host ! afserver runs on PC

place filter root ! filter and phaarpl run on root transputer
place phaarpl root
place phaarp2 Tl

connect ? afserver[0] filter[0]
connect ? filter[0] afserver[0]
connect ? filterfl] phaarpl[1]
connect ? phaarpl[1] filter[l]
connect ? phaarpl[2] phaarp2[0]
connect ? phaarp2[0] phaarpl[2]

162

Processor 0 Program:

/* TWO PROCESSOR HOST TRANSPUTER PARALLEL HAAR
TRANSFORM */

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <chan.h>

#define D A T A S I Z E 16
#define D A T A S P L I T DATASIZE/2
#defme R M A X log(DATASIZE)/log(2)

void Dist_HT_l(double *) ;
void Multipliers(double *) ;

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];
char * ar g v [], * envp [];
int argc,ins,outs;

{
inti,j,k=l;
double Haarresultl [DATASIZE] ,Haarresult2[D ATASPLIT];

double *Hptr;
double Haarfinal[DATASIZE];
char *buffer;
FILE *infile,*outfile;

/* Memory check, File check and read */

buffer = (char *)calloc(DATASIZE,sizeof(double));

if(buffer==NULL)

{
printf("Memory allocation failedAn");
exit(O);

}

if((infile = fopen("a:\\Hdatal6.dat","rb"))==NULL)

{
printf("Unable to open data fileAn");

163

exit(O);

}

fread(Haarresultl,sizeof(double),DATASIZE,infile);
fclose(infile);

/* Data distribution */

Hptr = Haarresultl + DATASPLIT;

chan_out_message(sizeof(double)*DATASPLIT,Hptr,out_ports[2]);

/* Perform processor 1 Haar Transform */

Dist_HT_l (Haarresultl);

Multipliers(Haarresultl);

/* Collect data from other processors */

chan_in_message(sizeof(double)*DATASPLtT,Haarresult2,in_ports[2]);

Haarfinal[0] = Haarresultl [0] +Haarresult2[0];
Haarfinal[l] = Haarresultl[0] - Haarresult2[0];

for(i=2;i<=DATASPLIT;i+=i)

{
for(j=i/2;j<i;j++)

{
k++;
Haarfinal[k] = Haarresultl [j];

}
for(j=i/2;j<i;j++)

{
k++;
Haarfinal[k] = Haarresult2[j];

}
}

/* Write results to file */

if((outfile = fopen("a:\\Hrsltl6,dat","wb")) == NULL)

{

164

printf("Unable to open result file.\n");
exit(O);

}
fwrite(Haarfinal,sizeof(double),DATASIZE,outfile);
fclose(outfile);

return(0);

}

void Dist_HT_l (double *Haarresultl)

{
int i,j,currentsize;
double Htemp[DATASPLIT];

for(i=0;i<DATASPLIT;iH-+)
Htempfi] = Haarresultl [i];

currentsize = DATASPLIT/2;

while (currentsize >= 1)

{
i = 0;
for(j=0;j <currentsize ;j++)

{
Haarresultl [j] = Htemp[i] + Htemp[i+1];
Haarresultl [j+currentsize] =Htemp[i] -Htemp[i+1];
i+=2;

}
for(i=0;i<DATASPLIT;i++)

Htemp[i] = Haarresultl [i];
currentsize/=2;

}

}

void Multipliers(double *Haarresultl)

{
int m,i=l;
double Haarmult[DATASPLIT],r;

for(r=l ;r<RMAX;r++)

{
for(m=l ;m<=(pow(2,r)/2);m++)

{
Haarmult[i] = pow(2,r/2);
i++;

}

165

}
for(i=l ;i<DATASPLIT;i++)

Haarresultl [i] = Haarmult[i] * Haarresultl [i];

}

Processor 1 Program:

/* TWO PROCESSOR TRANSPUTER 1 PARALLEL HAAR TRANSFORM
*/

#include <stdlib.h>
#include <math.h>
#include <chan.h>

#defme D A T A S I Z E 16
#define D A T A S P L I T DATASIZE/2
#define R M A X log(DATASIZE)/log(2)

void Dist_HT_2(double *) ;
void Multipliers(double *) ;

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];
char *argv[],*envp[];
int argc,ins,outs;

{
inti;
double Haarresult[DATASPLIT];
char *buffer;

/* Collect Data */

chan_in_message(sizeof(double)*DATASPLIT,Haarresult,in_ports[0]);

/* Perform processor 2 Haar Transform */

Dist_HT_2(Haarresult);

Multipliers(Haarresult);

166

/* Distribute data */

chan_out_message(sizeof(double)*DATASPLIT,Haarresult,out_ports[0]);
return(O);

}

void Dist_HT_2(double *Haarresult)

{
int i,j,currentsize;
double Htemp[DATASPLIT];

for(i=0;i<DATASPLIT;i++)

Htemp[i] =Haarresult[i];

currentsize = DATASPLIT/2;

while (currentsize >= 1)

{
i = 0;
for(j=0;j<currentsize;j++)

{
Haarresult[j] = Htemp[i] + Htemp[i+1];
Haarresultrj+currentsize] = Htemp[i] - Htemp[i+1];
i+=2;

}
for(i=0;i<DATASPLIT;i++)

Htemp[i] = Haarresult[ij;
currentsize/=2;

}

}

void Multipliers(double *Haarresult)

{
intm,i=l;
double Haarmult[DATASPLIT],r;

for(r=l;r<RMAX;r++)
for(m=1 ;m<=(pow(2,r)/2) ;m++)

{
Haarmult[i] = pow(2,r/2);
i++;

1

for(i=l ;i<DATASPLTT;i++)
Haarresult[i] = Haarmultfi] * Haarresult[i];

}

167

T w o Transputer Parallel D 4 Wavelet Transform

Configuration File:

! Configuration file for two transputer D4 Wavelet transform

! pwav.cfg

processor host ! the PC
processor root ! transputer 0
processor Tl ! transputer 1

wire jumper host[0] root[0]
wire jumper 1 root[2] Tl[l]

task afserver ins=l outs=l
task filter ins=2 outs=2 data=10k
task pwavpO ins=3 outs=3
taskpwavpl ins=l outs=l

place afserver host ! afserver runs on PC
place filter root ! filter and pwavpO run on root transputer
place pwavpO root
place pwavpl Tl

connect ? afserver[0] filter[0]
connect ? filter[0] afserver[0]
connect ? filter[l] pwavpO[l]
connect ? pwavpO[l] filter[l]
connect ? pwavp0[2] pwavpl[0]
connect ? pwavpl[0] pwavp0[2]

168

Processor 0 Program:

/* D4 Wavelet Transform Host Processor Program */

#include <stdio.h>

#include <math.h>
#include <stdlib.h>
#mclude <chan.h>

#define D A T A S I Z E 8
#defme D A T A S P L I T DATASIZE/2
#defme CO (l+sqrt(3))/(4*sqrt(2))
#define Cl (3+sqrt(3))/(4*sqrt(2))
#defme C 2 (3-sqrt(3))/(4*sqrt(2))
#defme C3 (l-sqrt(3))/(4*sqrt(2))

intmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];

int argc,ins,outs;
char *argv[],*envp[];

{
int i,n,currentsize;
double temp[DATASPLIT],result[DATASIZE],x[DATASIZE];

char *buffer;
FILE *infile,*outfile;

/* Memory check, File check and read */

buffer = (char *)calloc(DATASIZE,sizeof(double));

if(buffer==NULL)

{
prinff("Memory allocation failedAn");
exit(O);

}

if((infile = fopen("c:\\trnsfrms\\data\\fdata.dat","rb"))==NULL)

{
printf("Unable to open data fileAn");
exit(O);

}

169

fread(x,sizeof(double),DATASIZE,infile);
fclose(infile);

/* Perform transform */

chan_out_message(sizeof(double) *DATASIZE,x,out_ports[2]);

currentsize = DATASIZE;

while (currentsize >= 4)

{
for(n=0;n<currentsize/2;n++)

{
if(n != (currentsize/2)-l)

temp[n] = (C0*x[2*n]) + (Cl*x[(2*n)+1]) +
(C2*x[(2*n)+2]) + (C3*x[(2*n)+3]);

else

temp[n] = (C2*x[0]) + (C3*x[l]) + (CO*x[currentsize-
2]) + (Cl*x[currentsize-1]);

}

currentsize /= 2;

chan_out_message(sizeof(double)*currentsize,temp,out_ports[2]);

for(n=0;n<currentsize ;n++)
x[n] = temp[n];

}

chan_in_message(sizeof(double) * D A T ASIZE,result,in_ports[2]);

/* Write results to file */

if((outfile = fopen("c:\\trnsfrms\\pwavelet\\results\\frslt.dat","wb")) = NULL)

{
printf("Unable to open result file.Vn");
exit(O);

}
fwrite(result,sizeof(double),DATASIZE,outfile);
fclose(outfile);
return(O);

}

170

Processor 1 Program:

/* D4 Wavelet Transform Processor 1 Program
*/

#include <stdlib.h>

#include <math.h>
#include <chan.h>

#defme DATASIZE 8
#define D A T A S P L I T DATASIZE/2

#define CO (l+sqrt(3))/(4*sqrt(2))
#define Cl (3+sqrt(3))/(4*sqrt(2))

#define C 2 (3-sqrt(3))/(4*sqrt(2))
#define C3 (l-sqrt(3))/(4*sqrt(2))

voidmain(argc,argv,envp,in_ports,ins,out_ports,outs)

CHAN *in_ports[],*out_ports[];
int argc,ins,outs;
char *argv[],*envp[];

{
int i,n,currentsize;
double temp[DATASPLrT],result[DATASIZE],x[DATASIZE];

chan_in_message(sizeof(double)*DATASIZE,x,in_ports[0]);

currentsize = DATASIZE;

while(currentsize >= 4)

{
for(n=0;n<currentsize/2;n++)

{
if(n != (currentsize/2)-l)

temp[n] = (C3*x[2*n]) - (C2*x[(2*n)+1]) +

(Cl*x[(2*n)+2]) - (C0*x[(2*n)+3]);
else

temp[n] = (Cl*x[0]) - (C0*x[l]) + (C3*x[currentsize-

2]) - (C2*x[currentsize-1]);

1

currentsize /= 2;

for(n=0;n<currentsize ;n++)
result[n+currentsize] = temp[n];

171

chan_in_message(sizeof(double)*currentsize,x,in_ports[0]);
}

for(n=0;n<2;n++)
resultfn] = x[n];

chan_out_message(sizeof(double)*DATASIZE,result,out_ports[0]);

}

172

APPENDIX B

TABLES OF EXPERIMENTAL RESULTS

Note: Any data omitted from execution time tables has been excluded on the grounds of
either being superflous to requirements or being unable to be measured with the software
compilers available.

1. Processor farm implementation of the Walsh-Hadamard matrix form of the Walsh
transform.

Dataset size
double precision floating

point numbers

8
16
32
64
128

Execution time

64uS Clock ticks mS

33
75
207
673
2583

2.112

4.8
13.25

43.07

165.31

2. Serial implementations of the fast Walsh transform.

Processor: 80386SX

Dataset size
double precision floating point numbers

8
16
32
64
128
256
512
1024

2048

Execution time
mS

4.779

11.986

28.728

L 67.267

153.172

344.897

767.104

1688.445

3686.403

173

Processor: 80386

Dataset size

double precision floating point numbers

8
16
32
64
128
256 _j

512
1024

2048

Execution time
mS

2.032

5.112

12.285

28.677

65.663

147.983

329.781

726.636

1587.159

Processor: 80486

Dataset size
double precision floating point numbers

8
16
32
64
128
256
512
1024

2048

Execution time
mS

0.846

2.114

5.071

11.826

27.067

61.032

135.944

300.744

656.776

One transputer

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512
1024

2048

Execution time

64uS Clock ticks mS

75
186
488
1043

2394

5381

11961

26396

57635

4.8
11.904

31.232

66.752

153.216

344.384

765.504

1687.616

3688.640

174

3. T w o transputer hypercube implementation of the fast Walsh transform.

Dataset size

double precision floating

point numbers

8
16
32
64
128
256
512
1024

2048

Execution time

64uS Clock ticks m S

40
98
233
543
1244

2794

6194

13623

29744

2.56

6.72

14.91

34.75

79.62

178.82

396.42

871.87

1903.62

4. T w o transputer fast Walsh transform computing resource demands.

Dataset size
double precision
floating point

numbers

128
256
512

Execution time
64 uS clock ticks

communications time butterfly calc. time bit reversal
calc.time

16
32
63

104
242
533

1120

2517

5603

5. T w o transputer fast Fourier transform.

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512
1024

2048

Execution time

64uS Clock ticks m S

49
128
313

L 745

1728

3935

L _ 8831

19560

42948

3.136

8.192

20.032

47.680

110.592

251.840

565.184

1251.840

2748.672

175

6. T w o transputer fast Haar transform.

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512
1024

2048

Execution time

64uS Clock ticks m S

31
77
164
331
659
1312

2631

5277

10576

1.984

4.928

10.496

21.184

42.176

83.968

168.384

337.728

676.864

7. Two transputer D 4 wavelet transform.

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512

Execution time

64uS Clock ticks m S

21
48
103
214
432
871
1744

1.344

3.072

6.592

13.696

27.648

55.744

111.616

8. Serial D 4 Wavelet transform 80286

Dataset size
double precision floating

point numbers

8
16
32
64
128
256

Execution time

64uS Clock ticks m S
54.945

27.4725

49.4505

104.3956

208.7912

423.0769

176

9. Serial D 4 Wavelet transform 80386SX- 16Mhz

Dataset size
double precision floating

point numbers

8
16
32
64
128
256

Execution time

64uS Clock ticks m S
-

-

-

54.945

109.890

219.780

10. Serial D 4 Wavelet transform 80486-33Mhz

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512

Execution time

64uS Clock ticks m S
-

-

-

-

-

-

54.945

11. T w o transputer D 4 Wavelet transform computing resource demands.

Dataset size
double precision
floating point

numbers

256
512

Execution time
64 uS clock ticks

comms time calc. time

36
73

835
1675

177

12. Serial implementation of the Haar Transform

80286

Dataset size Double precision floating

point numbers

8
16
32
64

Execution time
mS

54.945

109.890

164.835

329.670

80386SX-16Mhz

Dataset size Double precision floating

point numbers

128
256
512

Execution time
mS

54.945

109.890

164.835

80486-33 Mhz

Dataset size Double precision floating
point numbers

512

Execution time
mS

54.945

13. Serial Implementation of the Cosine Transform via the FFT.

80486-33 Mhz

Dataset size Double precision floating
point numbers

256
512
1024

Execution time
mS
60
110
280

80386-33 Mhz

Dataset size Double precision floating
point numbers

64
128
256
512

Execution time
mS
50
110
170
330

178

80386SX
Dataset size Double precision floating

point numbers

32
64
128
256
512

Execution time
mS
60
110
270
610
1270

14. Two transputer cosine transform.

Dataset size
double precision floating

point numbers

8
16
32
64
128
256
512
1024

Execution time

64uS Clock ticks m S

53
136
332
781
1801

4083

9104 |

20173

3.4
8.7
21.2

50
115
261
583
1290

179

APPENDIX C

TEST FUNCTIONS AND TRANSFORMS

180

c
o
"••-»

o
c

CTJ
+-»

Q

o
o

o
o

o
o
CO

o
o
CM

O

o

- o

CM
•

O
II

.Q
d
n
co

PS

LO
•

o
X
of

•

o

X

+

X
crj

+
c

o
o

CD
>

"cS
0

o
o

o
o

o
o
CO

o
o
CM

o
o

CD
II

O

c

0
c
'co

o
O

o
o
in

o
o

o
o
CO

o
o
CM

o
o

- o

"3-

co
II

0
>
CO
<:
0
C
'c/3

o
o
in

o
o

o
o
co

o
o
CM

o
o

- o

OH Q'O O'O

A

9"0- O'l-

co

Q_
0
CO

- o

CD
II

z
CM
Q-
0
j—<

CO

- o

CM

LO

c
o
o
c

O

o
h o

in

o
o

o
o
co

o
o
CM

o
h O

- o

OH 9"0 0"0

A

S"0- O'l-

CD

QL

O

o
h O

m

o
h O

O

o
CO

o
h O
CM

O

- O

OH 9-0 0"0

A

9'0- 0H-

o
o
0

c
CO
CO
* — »

CO
"O

E
o
C
CO

DC

o
o
m

o
o

o
o
CO

o
o
CM

o
o

- o

001. 08 09 0t> 02
T"

0

o -

o
o

O
O

03
O

o

O
O

Ol
O
O

o
o

rv>
o
o

co
o
o

o
o

o
o

o -

o
o

ro
o
o

co
o
o

o
o

en
o
o

100

"0

CD

CO
D"
r-«-
— J

CD
CO
—*

o
3
o
o
o
CO "a
CD

o'
Q.
C5
4^

o -

"0

0)_

CD

§
03_
CO

03

CO

CO

0

o'
o_
II

ro

o -

"TJ
03
-^
03_
CD

03

o
3
o
CO

x̂
•a

0

o -

03

CD

03_
CO

03
•D

%

O
-^

3
o
—h

CO
CD
"O
TJ
0

cb~

03

CO

100 200

o -

Tl
03
— J

03_
CD

03_

CO

zr
-^
03
13
CO
—+1

o
— J

3
o
CO
CD
•a
l\D
•a

0

o -
o

o
o

co
o
o

o
o

en
o H
o

-40
_j

-20 0 20 40

10000 15000 20000 25000

o
o

ro
o
o

co
o
o

o
o

en
o
o

o
"«4—'

o
c
CO
0

O
» ^

CO

c
CO
1—

0
c
"co
o
o
0
"co
CO
CL

o
o

o
h o

o
o
CO

o
o
CM

o
h O

- o

90'0 W O 20"0 O'O

A

— i 1 r —

30"0- WO- 90"0-

c
o
o
c
c
o
4—'

CO
1—

0
4—«
I H i

H—

o
E
o
CO

c
CO
1—

0
c
'co
o
o
0
"CO
CO

CM
T—

LO

II
•o

o
0
QL

o
c
0
c
"co
o
o
o

E
i_

o
co
c
CO

* — «

0
c
'co
o
o
0
"CO
1_

CO

CL

o
o

o
o
•sr

o
o
co

o
o
CM

O

o

- o

CD
II
"O
O
• •«••

V.

0
Q_
O
c
0
c
'co

o
o
o
E
o
'co
c
CO
0

c
'co

o
o
0
"CO
i—

CO
CL

o
o
m

o
o

o
o
CO

o
o
CM

O
O

- O

CM

II
•D

O
's—
0
Q_
C

o
'•*—>

o
c
0
c
"co

o
E
o
CO

c
CO
J —

+-»

0
c
'co

o
o
0
"co
i _

CO

CL

o
o
in

o
o

o
o
co

o
o
CM

o
o

CD
II
"O
O

' 5 —

0
Q.
C
.0
o
c
0
C
'co
O

E
o
CO

c
CO
5 —
4—<

0
c
'co
o
o
0
05
1—

co
Q.

CM

m
n
O
• M B

0
Q.
C
o
o
c
3 CL
0
"co

o
E
o
*+—

CO

c
CO
s—.

• (— '

0
c
'co
o
o
15
"CO
J _

CO

CL

o
o
m

o
o

o
o
co

o
o
CM

o
o

- o

-si-
CD
II

O
"i—

0
Q.
C
o

• ""I«•

4—'

o
Q_
0
CO

o

CO

c
CO
5—
4-<

0
c
'co
o
o
0
"co
CO

CL

o
o
in

o
o

o
o
co

x '•

o
o
CM

O
O

- O

CM

LO

II
•D

O
"i_

0
CL
C

o
o CM
CL
0
+-*
CO

o
E
o
CO

c
CO
1_

0
c
'co

o
o
0
"co
s —

CO

CL

o
o
m

o
o

o
o
co

X;

o
o
CM

o
o

- o

^-
CD
II
T3
O

" i _

0
CL

C
o
"4—<

o CM
CL
0
4-<

CO

o
'co
c
CO
i_
4—"

0
c
'co
o
o
0
"co
co
CL

o
o
m

o
o

o
o
co

o
o
CM

O
O

- o

CM

LO

II
"D
O
• ••••

0
CL

O
C

O

O
£
o
•4—

CO

c
CO
V—
4—"

0
c
'co
o
o
0
75
CO

CL

o
o
m

o
o

a
o
co

o
o
CM

o
o

- o

0

•si-
CD
II
"D
O

• M i

0
CL

c
o
4-»

o
c
13
CL

O
O
E
o
•4—

CO

c
CO
i_
4-*

0
c
'co

o
o
0
To
1—

CO

CL

- o

CO
4-^

CO
•a

o
•a

c
CO o
E
s_

o
To
c
CO
i_
4—<

0
c
'co
o
o
0
To
1—

CO
CL

o
o

o
o

o
o
co

o
o
CM

o
o

- o

0031- 0001- 008 009 OOfr 002

o -

o
o

ro
o
o

CO

o
o

o
o

01

o
o

o -

o
o

ro
o
o

CO

o
o

•Ft

O
o

en
o
o

-50
y

o 50

o -

o H
o

"D
03
03.
0

I
03
03

o
o

CO

o
o

03

CO
—•»

O

3
o
— t i

o
o
CO

o
o

0

5'
Q.

03

en
o
o

o -

o
o

ro
o
o

co
o
o

o
o

en
o
o

o -

Tl
03
—^

0

I
03
03

03
Z3
CO
—*l

o
3
o
CO

D'

0

o'
a
O)
4»

o -

o
o

o
o

CO

o
o

-pt

o
o

en
o
o

o -

o -

TJ
03

0

03
03

03

CO
—*\

o
3
o
-4i

CO
0
TO

ro
c
o
o"
•a

0
o
a
n
Ol

50 100 150
i

o -

o -
o

TJ
0
03_

0

I
0
03

o
o

co
o
o

o
o

0

CO

o
3
o
CO
r—»•

0
•a

ro
—**

c
O
1-4-

o'
3
T3
0

o'
o.
n
03
4>

en
o
o

-40
_j

-20
y

o 20
i _ _

40
i

o -

o H
o

ro
o H
o

co
o
o

o
o

en
o H
o

o -

10000 15000 20000 25000

T
03
03_

0

I
0
0
1-4-
—I

0
CO^

o*
3
o
—I

0

a
o
3
a
0
i — • •

0

c
o
4—'

o
c

>4—

0
4—«

0
"D
>+—

O

E
i_

o
CO

c
CO

_0
0
>
CO

Q
0
To
5 —

0
CL

- o

o
o
m

O
c

«4—

c
o
4-*

0
i_

0
<4—

o
E
i_

o
> 4 —

CO

c
0

o
o

o
o
CO

0
0
>

0

o
o
CM

Q
0
To
i —

0
CL

o
o

OH 9"0 O'O 9'0-

CM

0
Q_

CO

O
O
o
E
o
•4—

CO

c
0
i_
4—<

0
>

0
Q
0
To
i _

0
DL

CD

T5

g
0
Q.

s
To"
o
o
o

E
i_

o
To
c
0

0)
0
>

0

Q
0
To
0
CL

- o

CM

in

n
o
0
CL

'co

o
E
i_

o
» + —

CO

c
0
0
0
>

0

Q

To
i—

0
CL

o
o
in

o
o

o
o
CO

o
o
CM

O

o

- o

CD

II

•D

o
0
CL

'co
•4—

o
E
i_

o
•4—

CO

c
0
0
0
>

0

Q
0
To
s —

0
CL

o
o
m

o
o

o
o
CO

o
o
CM

o
o

- o

CM

LO
II
"O
O
0

Q.
C
o
4—"

o
c
0
CO
**—

o
E
i_

o
»•—

CO

c
0
i—

0
0
>

0
^*

Q
0
To
i _

0
CL

o
o
m

o
o

o
o
CO

o
o
CM

o
o

- o

CD

O
0

O
C
3
Q_
0
To

0
c
0
_0
0
>

0

Q
^0
To
0
Q_

o
o
m

o
o

o
o
co

o
o
CM

o
o

- o

CM

in

•o

o
0
CL
C
o
o
c
3
*•—

CM
CL

0
4—<

0
O

« 4 —

0
c
0 0
0
>

0

Q
]|
To
co
CL

o
o
m

o
o
•si-

o
o
CO

o
o
CM

o
o

- o

CD

o
o
m

•D

O
"i_

0
CL

c
g
4—'

o
c
3
>4—

CM
CL

0
4—•

0
<4—

o
E
i_

o
To
c
0

0
0
>

0

Q
0
To
i_

0
CL

o
o

o
o
co

o
o
CM

O

o

z 0 z-

CM

m
n
g
0
CL

c
o
4—•

o
c
3 o
T5
E
i_

o
«4—

0
c
0 0
>

0

Q
0
To
0
CL

- o

-3-
co
II
•o

o
0
CL

c
o
o
c
3
o
o
E
i —

o
« 4 —

0
C
0
0
0
>

0

Q
0
To
0
CL

- o

0
4—>

0
TJ

E
o
TJ
C
0
**—

o
E
i _

o
< 4 —

0
C
0

0
0
>

0

Q
0
To
0
CL

