Some Completely Monotonic Functions Involving the Gamma and Polygamma Functions

This is the Published version of the following publication

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18035/
SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING THE GAMMA AND POLYGAMMA FUNCTIONS

FENG QI, BAI-NI GUO, AND CHAO-PING CHEN

Abstract. The function \(\frac{\Gamma(x+1)^{1/x}}{x} (1 + \frac{1}{x}) \) is strictly logarithmically completely monotonic in \((0, \infty)\). The function \(\psi''(x+2) + \frac{1+x^2}{x^2(1+x)^2} \) is strictly completely monotonic in \((0, \infty)\).

1. Introduction

It is well known that the gamma function \(\Gamma(z) \) is defined for \(\text{Re } z > 0 \) as

\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt.
\]

The psi or digamma function \(\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} \), the logarithmic derivative of the gamma function, and the polygamma functions can be expressed for \(x > 0 \) and \(k \in \mathbb{N} \) as

\[
\psi(x) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{1+n} - \frac{1}{x+n} \right),
\]

\[
\psi^{(k)}(x) = (-1)^{k+1} k! \sum_{i=0}^{\infty} \frac{1}{(x+i)^{k+1}},
\]

\[
\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} \, dt,
\]

\[
\psi^{(k)}(x) = (-1)^{k+1} \int_0^\infty \frac{t^k e^{-xt}}{1 - e^{-t}} \, dt,
\]

where \(\gamma = 0.57721566490153286 \cdots \) is the Euler-Mascheroni constant.

2000 Mathematics Subject Classification. Primary 33B15; Secondary 26D07.

Key words and phrases. strictly completely monotonic function, logarithmically completely monotonic function, gamma function, polygamma function.

The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

This paper was typeset using AMSTeX.
A function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I which alternate successively in sign, that is

$$(-1)^n f^{(n)}(x) \geq 0$$

for $x \in I$ and $n \geq 0$. If inequality (6) is strict for all $x \in I$ and for all $n \geq 0$, then f is said to be strictly completely monotonic.

For $x > 0$ and $s \geq 0$, we have

$$\frac{1}{(x+s)^n} = \frac{1}{(n-1)!} \int_0^\infty t^{n-1} e^{-(x+s)t} \, dt, \quad n \in \mathbb{N}. \quad (7)$$

A function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$(-1)^k [\ln f(x)]^{(k)} \geq 0$$

for $k \in \mathbb{N}$ on I. If inequality (8) is strict for all $x \in I$ and for all $k \in \mathbb{N}$, then f is said to be strictly logarithmically completely monotonic.

In [4] it is proved that a (strictly) logarithmically completely monotonic function is also (strictly) completely monotonic. But not conversely, since a convex function may not be logarithmically convex (see Remark. 1.16 at page 7 in [3]).

Completely monotonic functions have applications in many branches. For example, they play a role in potential theory, probability theory, physics, numerical and asymptotic analysis, and combinatorics. Some related references are listed in [1].

It is well known that the function $(1 + \frac{1}{x})^{-x}$ is strictly completely monotonic in $(0, \infty)$. In [1], it is proved that the function $(1 + \frac{a}{x})^{x+b} - e^a$ is completely monotonic with $x \in (0, \infty)$ if and only if $a \leq 2b$, where $a > 0$ and b are real numbers.

Among other things, the following completely monotonic properties are obtained in [4]: For $\alpha \leq 0$, the function $\frac{x^\alpha}{\Gamma(x+1)^{1/\alpha}}$ is strictly completely monotonic in $(0, \infty)$. For $\alpha \geq 1$, the function $\frac{\Gamma(x+1)^{1/\alpha}}{x^\alpha}$ is strictly completely monotonic in $(0, \infty)$.

In [2] the following two inequalities are presented: For $x \in (0, 1)$, we have

$$\frac{x}{\Gamma(x+1)^{1/\alpha}} < \left(1 + \frac{1}{x}\right)^x < \frac{x+1}{\Gamma(x+1)^{1/\alpha}}. \quad (9)$$
For $x \geq 1,$
\[
\left(1 + \frac{1}{x}\right)^x \geq \frac{x + 1}{\Gamma(x + 1)^{1/x}}.
\] (10)
Equality in (10) occurs for $x = 1$.

It is easy to see that
\[
\lim_{x \to \infty} \frac{\Gamma(x + 1)^{1/x}}{x^x} \left(1 + \frac{1}{x}\right)^x = 1.
\] (11)

The main purpose of this paper is to give a strictly logarithmically completely monotonic property of the function $\frac{\Gamma(x + 1)^{1/x}}{x^x} \left(1 + \frac{1}{x}\right)^x$ in $(0, \infty)$ as follows.

Theorem 1. The function $\frac{\Gamma(x + 1)^{1/x}}{x^x} \left(1 + \frac{1}{x}\right)^x$ is strictly logarithmically completely monotonic in $(0, \infty)$.

As a direct consequence of the proof of Theorem 1, we have the following

Corollary 1. The function
\[
\psi''(x) + \frac{x^4 + 5x^3 + 7x^2 + 7x + 2}{x^3(x + 1)^3} = \psi''(x + 2) + \frac{1 + x^2}{x^2(1 + x)^2}
\] (12)
is strictly completely monotonic in $(0, \infty)$.

2. **Proof of Theorem 1**

Define
\[
F(x) = \frac{\Gamma(x + 1)^{1/x}}{x^c} \left(1 + \frac{a}{x}\right)^{x+b}
\] (13)
for $x > 0$ and some fixed real numbers a, b and c.

Taking the logarithm of $F(x)$ defined by (13) and differentiating yields
\[
\ln F(x) = (x + b) \ln \left(1 + \frac{a}{x}\right) + \frac{\ln \Gamma(x + 1)}{x} - c \ln x,
\] (14)
\[
[\ln F(x)]' = \ln \left(1 + \frac{a}{x}\right) - \frac{a(x + b)}{x(x + a)} + \frac{x \psi(x + 1) - \ln \Gamma(x + 1)}{x^2} - \frac{c}{x},
\] (15)
and
\[
[\ln F(x)]^{(n)} = (-1)^{n-1}(n - 1)! \ln \left(1 + \frac{a}{x}\right) - \frac{1}{(x + a)^n} - \frac{1}{x^n}
\]
\[+ (-1)^n(n - 2)! \ln \left(1 + \frac{a}{x}\right)^{n-1} - \frac{1}{x^{n-1}}
\]
\[+ \frac{h_n(x)}{x^{n+1}} + (-1)^n(n - 1)! \frac{c}{x^n},
\]
where \(n \geq 2 \), \(\psi^{(-1)}(x+1) = \ln \Gamma(x + 1) \), \(\psi^{(0)}(x+1) = \psi(x+1) \), and

\[
h_n(x) = \sum_{k=0}^{n} \frac{(-1)^{n-k}k!x^k\psi(k-1)(x+1)}{k!},
\]

(17)

\[
h'_n(x) = x^n\psi^{(n)}(x+1) \begin{cases} > 0, & \text{if } n \text{ is odd,} \\ < 0, & \text{if } n \text{ is even.} \end{cases}
\]

(18)

Therefore, we have

\[
(-1)^n x^{n+1} [\ln F(x)]^{(n)} = (n - 2)! \left\{ (n - 1)(b + c) - x + \frac{x^n[x + na - (n - 1)b]}{(x + a)^n} \right\} x + (-1)^n h_n(x) \tag{19}
\]

and

\[
\frac{d}{dx} \left\{ (-1)^n x^{n+1} [\ln F(x)]^{(n)} \right\} = \begin{align*}
&= (-1)^n x^n \psi^{(n)}(x+1) + (n - 2)! \left\{ (n - 1)(b + c) - 2x \\
&\quad + \frac{x^n[a(b + an + an^2 - bn^2) + (2a + b + 2an - bm)x + 2x^2]}{(x + a)^{n+1}} \right\} \\
&= x^n \left\{ (-1)^n \psi^{(n)}(x+1) + (n - 2)! \left[\frac{(n - 1)(b + c) - 2x}{x^n} \\
&\quad + \frac{a(b + an + an^2 - bn^2) + (2a + b + 2an - bm)x + 2x^2}{(x + a)^{n+1}} \right] \right\} \\
&= x^n \left\{ (-1)^n \psi^{(n)}(x) + \frac{n!}{x^{n+1}} + (n - 2)! \left[\frac{(n - 1)(b + c) - 2x}{x^n} \\
&\quad + \frac{a(b + an + an^2 - bn^2) + (2a + b + 2an - bm)x + 2x^2}{(x + a)^{n+1}} \right] \right\}.
\end{align*}
\]

By letting \(a = c = 1 \) and \(b = 0 \), we have

\[
\frac{d}{dx} \left\{ (-1)^n x^{n+1} [\ln F(x)]^{(n)} \right\} = x^n \left\{ (-1)^n \psi^{(n)}(x) + \frac{n!}{x^{n+1}} \\
&\quad + (n - 2)! \left[\frac{n - 1 - 2x}{x^n} + \frac{n(n + 1) + 2(n + 1)x + 2x^2}{(x + 1)^{n+1}} \right] \right\} \\
&= x^n \left\{ (-1)^n \psi^{(n)}(x) + (n - 2)! \left[\frac{n(n - 1) + (n - 1)x - 2x^2}{x^{n+1}} \\
&\quad + \frac{n(n + 1) + 2(n + 1)x + 2x^2}{(x + 1)^{n+1}} \right] \right\}
\]
\[x^n \{ (-1)^n \psi^{(n)}(x) + (n-2)!g_n(x) + (n-2)!h_n(x) \} \]

By induction, it follows that
\[g'_n(x) = -(n-1)g_{n+1}(x) \quad \text{and} \quad h'_n(x) = -(n-1)h_{n+1}(x), \]

this implies
\[g^{(n-2)}_2(x) = (-1)^n(n-2)!g_n(x) \quad \text{and} \quad h^{(n-2)}_2(x) = (-1)^n(n-2)!h_n(x), \]

therefore
\[\frac{d}{dx} (-1)^{n+1} \ln F(x)^{(n)} = (-1)^n x^n \left[\psi''(x) + g_2(x) + h_2(x) \right]^{-2}. \]

From formulas (3), (5) and (7), for \(x \in (0, \infty) \) and any nonnegative integer \(i \), we have
\[\phi(x) \triangleq \psi''(x) + g_2(x) + h_2(x) \]
\[= \psi''(x) + \frac{2 + x - 2x^2}{x^3} + \frac{2(3 + 3x + x^2)}{(x+1)^3} \]
\[= \psi''(x) + \frac{x^4 + 5x^3 + 7x^2 + 7x + 2}{x^3(x+1)^3} \]
\[= \psi''(x) + \frac{2}{x} + \frac{1}{x^2} - \frac{2}{x + (1 + x)} + \frac{2}{(1 + x)^3} + \frac{2}{1 + x} - 2 \sum_{i=2}^{\infty} \frac{1}{(x + i)^3} \]
\[= \psi''(x + 2) + \frac{2}{x^2} - \frac{2}{x + (1 + x)^2} + \frac{2}{(1 + x)^3} + \frac{2}{1 + x} \]
\[= \psi''(x + 2) + \frac{1 + x^2}{x^2(1 + x)^2} \]
\[= \int_0^\infty t e^{-xt} dt - 2 \int_0^\infty e^{-xt} dt + 2 \int_0^\infty t e^{-(x+1)t} dt \]
\[+ 2 \int_0^\infty e^{-(x+1)t} dt - \int_0^\infty t^2 e^{-(x+2)t} dt \]
\[= \int_0^\infty [t - 2 + (t^2 + 2t + 2)e^{-2t}] e^{-xt} dt \]
\[= \int_0^\infty q(t) e^{-xt} dt, \]
\[\phi^{(i)}(x) = (-1)^i \int_0^\infty q(t)t^i e^{-xt} dt, \]
and

\[q'(t) = (2 + 2t + 2t^2 - 3e^t + e^{2t} - te^t)e^{-2t} \]

\[\triangleq p(t)e^{-2t}, \]

\[p'(t) = 2 + 4t - 4e^t + 2e^{2t} - te^t, \]

\[p''(t) = 4 - 5e^t + 4e^{2t} - te^t, \]

\[p'''(t) = (8e^t - t - 6)e^t > 0. \]

Hence, \(p''(t) \) increases in \((0, \infty)\). Since \(p''(0) = 3 > 0 \), we have \(p''(t) > 0 \) and \(p'(t) \) is increasing. Because of \(p'(0) = 0 \), it follows that \(p'(t) > 0 \) in \((0, \infty)\), and then \(p(t) \) is increasing. From \(p(0) = 0 \), it is deduced that \(p(t) > 0 \) and \(q'(t) > 0 \) in \((0, \infty)\), then \(q(t) \) increases. As a result of \(q(0) = 0 \), we obtain \(q(t) > 0 \) in \((0, \infty)\).

Therefore, we have \(\phi(x) > 0 \) in \((0, \infty)\), and then for all nonnegative integer \(i \), we have \((-1)^i\phi^{(i)}(x) > 0 \) in \((0, \infty)\). This means that the function \(\psi''(x) + g_2(x) + h_2(x) \) is strictly completely monotonic on \((0, \infty)\).

Thus the function \((-1)^nx^{n+1}[\ln F(x)]^{(n)}\) is increasing in \(x \in (0, \infty)\). Since

\[
\lim_{x \to 0}\{(-1)^nx^{n+1}[\ln F(x)]^{(n)}\} = 0,
\]

we have \((-1)^nx^{n+1}[\ln F(x)]^{(n)} > 0\), then \((-1)^n[\ln F(x)]^{(n)} > 0\) for \(n \geq 2\) in \((0, \infty)\).

Since \([\ln F(x)]'' > 0\), the function \([\ln F(x)]'\) is increasing. It is not difficult to obtain \(\lim_{x \to \infty}[\ln F(x)]' = 0\), so \([\ln F(x)]' < 0\) and \(\ln F(x)\) is decreasing in \((0, \infty)\).

In conclusion, the function \(\ln F(x)\) is strictly completely monotonic in \((0, \infty)\). The proof is complete.

3. An open problem

Open Problem. Under what conditions on \(a, b\) and \(c\) the function \(F(x)\) defined by (13) is strictly logarithmically completely monotonic in \((0, \infty)\)?

References

SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING POLYGAMMA FUNCTIONS

(F. Qi) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: qifeng@jzit.edu.cn, fengq1618@member.ams.org
URL: http://rgmia.vu.edu.au/qi.html

(B.-N. Guo) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: guobaini@jzit.edu.cn

(Ch.-P. Chen) Department of Applied Mathematics and Informatics and Institute of Applied Mathematics, Jiaozuo Institute of Technology, Jiaozuo City, Henan 454000, CHINA

E-mail address: chenchaoping@sohu.com