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MONOTONIC PROPERTIES OF DIFFERENCES FOR
REMAINDERS OF PSI FUNCTION

FENG QI, DA-WEI NIU, AND BAI-NI GUO

Abstract. Let Λp,q(x) = λ(px) − qλ(x) and Φp,q(x) = φ(px) − qφ(x) in

x ∈ (0,∞) for p > 0 and q ∈ R, where λ(x) =
∫∞
0

t dt
(t2+x2)(e2πt−1)

and

φ(x) =
∫∞
0

t dt
(t2+4x2)(eπt+1)

are related to ψ(x) and ψ
(
x+ 1

2

)
. In this article,

some sufficient conditions on p > 0 and q ∈ R such that Λp,q(x) and Φp,q(x) are

monotonic in x ∈ (0,∞) are obtained. Moreover, as by-product, an inequality

involving the exponential function is established.

1. Introduction

Recall [7, 11] that a function f is said to be completely monotonic on an interval

I if f has derivatives of all orders and 0 ≤ (−1)kf (k)(x) <∞ for all k ≥ 0 on I. For

our own convenience, the class of completely monotonic functions on I is denoted by

C[I]. The well known Bernstein’s Theorem [11] states that f ∈ C[(0,∞)] if and only

if f(x) =
∫∞
0
e−xt dµ(t), where µ(t) is a nonnegative measure on [0,∞) such that

the integral converges for all x > 0. Note that a completely monotonic function in

(0,∞) which is non-identically zero cannot vanish at any point in (0,∞), see [7, 8]

and the references therein.

The noted Binet’s formula (see [9] and [10, p. 103]) states that for x > 0,

ln Γ(x) =
(
x− 1

2

)
lnx− x+ ln

√
2π + θ(x), (1)

where

θ(x) =
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt (2)

is called the remainder of Binet’s formula (1).
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Let p > 0 and q ∈ R be real numbers and

hp,q(x) = θ(px)− qθ(x) (3)

in (0,∞).

It is clear that h1,q(x) ∈ C[(0,∞)] for q ≤ 1 and −h1,q(x) ∈ C[(0,∞)] for q ≥ 1.

Among other things, the following was proved in [1, 2].

Theorem A ([1, 2]). hp,p(x) ∈ C[(0,∞)] if 0 < p < 1 and −hp,p(x) ∈ C[(0,∞)] if

p > 1.

As a further generalization of Theorem A above, the following conclusion was

obtained recently.

Theorem B ([4]). hp,q(x) ∈ C[(0,∞)] if either q ≤ 1
p ≤ 1 or q ≤ 1 ≤ 1

p and

−hp,q(x) ∈ C[(0,∞)] if either q ≥ 1
p ≥ 1 or q ≥ 1 ≥ 1

p .

In [3, p. 892] and [6, p. 17], it is given that for x > 0,

ψ(x) = lnx− 1
2x
− 2

∫ ∞
0

tdt
(t2 + x2)(e2πt − 1)

(4)

and

ψ
(
x+

1
2

)
= lnx+ 2

∫ ∞
0

tdt
(t2 + 4x2)(eπt + 1)

. (5)

Let

Λp,q(x) = λ(px)− qλ(x) (6)

and

Φp,q(x) = φ(px)− qφ(x) (7)

in x ∈ (0,∞) for p > 0 and q ∈ R, where

λ(x) =
∫ ∞

0

tdt
(t2 + x2)(e2πt − 1)

(8)

and

φ(x) =
∫ ∞

0

tdt
(t2 + 4x2)(eπt + 1)

. (9)

Our main results of this paper are given in the following theorems.
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Theorem 1. The function Λp,q(x) is positive and decreasing in x ∈ (0,∞) if either

p ≥ 1 and q ≤ 0 or 0 < p < 1 and pq ≤ 1; it is negative and increasing in x ∈ (0,∞)

if p ≥ 1 and pq ≥ 1.

The function Φp,q(x) is positive and decreasing in x ∈ (0,∞) if either p ≥ 1 and

q ≤ 0 or 0 < p < 1 and q ≤ 1; it is negative and increasing in x ∈ (0,∞) if p > 1

and q ≥ 1.

Theorem 2. The function Λp,q(x) is positive and decreasing in x ∈ (0,∞) for

either q ≤ 0 or 0 < q = 1
p2 ≤ 1, it is negative and increasing in x ∈ (0,∞) for

1
p2 = q ≥ 1.

The function Φp,q(x) is positive and decreasing in x ∈ (0,∞) for either p2q < 1

and q(p2 − 1)[(1 + 3q)p2 − 4] ≤ 0 or p2q = 1 and 0 < q ≤ 1, it is negative and

increasing in x ∈ (0,∞) for either 4 ≤ p2(1 + 3q) ≤ 1 + 3q or 1
p2 = q ≥ 1.

As by-product, we obtain the following inequality.

Theorem 3. Let τ ∈ R be a nonzero constant. Then inequality

ea+b >
bτeb − aτea

bτ − aτ
(10)

for all a > 0 and b > 0 with a 6= b holds if and only if τ ≥ 1 and reverses if and

only if τ < 0.

In particular, inequality

ea+b >
beb − aea

b− a
(11)

is valid for all a > 0 and b > 0 with a 6= b, which is equivalent to the following

integral inequality

ea+b >
1

a− b

∫ a

b

(1 + u)eu du. (12)

2. Proofs of main results

Proof of Theorem 1. Direct calculation arrives at

Λp,q(x) =
∫ ∞

0

t

t2 + x2

(
1

e2πpt − 1
− q

e2πt − 1

)
dt

=
∫ ∞

0

1
t2 + x2

t

e2πt − 1

(
e2πt − 1
e2πpt − 1

− q
)

dt
(13)
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and

Φp,q(x) =
∫ ∞

0

t

t2 + 4x2

(
1

eπpt + 1
− q

eπt + 1

)
dt

=
∫ ∞

0

1
t2 + 4x2

t

eπt + 1

(
eπt + 1
eπpt + 1

− q
)

dt.
(14)

Let

ωr,s(t) =
ert − 1
est − 1

and χr,s(t) =
ert + 1
est + 1

(15)

in t ∈ (0,∞) for positive real numbers r > 0 and s > 0. The L’Hôspital rule yields

lim
t→0+

ωr,s(t) =
r

s
, lim

t→0+
χr,s(t) = 1, (16)

and

lim
t→∞

ωr,s(t) = lim
t→∞

χr,s(t) =

0, r < s,

∞, r > s.

(17)

Direct differentiation and standard argument gives that

dωr,s(t)
dt

=
(r − s)e(r+s)t − (rert − sest)

(est − 1)2

and

dχr,s(t)
dt

=
(r − s)e(r+s)t − (sest − rert)

(est + 1)2
.

The requirement dωr,s(t)
dt Q 0 is equivalent with

(r − s)e(r+s)t Q rert − sest,

(u− v)eu+v Q ueu − vev,

ueu(ev − 1) Q vev(eu − 1),

ueu

eu − 1
Q

vev

ev − 1
,

where u = rt > 0 and v = st > 0. Since

d
dx

(
xex

ex − 1

)
=
ex(ex − x− 1)

(ex − 1)2
> 0

for x > 0, the function xex

ex−1 is increasing in x ∈ (0,∞). This implies that dωr,s(t)
dt Q

0 in (0,∞) if and only if r Q s, and then ωr,s(t) is

decreasing

increasing
in t ∈ (0,∞) if
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and only if r Q s. Therefore, when p > 1,

−q < e2πt − 1
e2πpt − 1

− q < 1
p
− q;

when 0 < p < 1,

1
p
− q < e2πt − 1

e2πpt − 1
− q <∞.

Thus, if p > 1 and q ≤ 0 or 0 < p < 1 and pq ≤ 1, the function Λp,q(x) is positive

and decreasing; if p > 1 and pq ≥ 1, it is negative and increasing in (0,∞).

The requirement dχr,s(t)
dt Q 0 is equivalent with

(r − s)e(r+s)t Q sest − rert,

(u− v)eu+v Q vev − ueu,

ueu(ev + 1) Q vev(eu + 1),

ueu

eu + 1
Q

vev

ev + 1
,

where u = rt > 0 and v = st > 0. Since

d
dx

(
xex

ex + 1

)
=
ex(ex + x+ 1)

(ex + 1)2
> 0

for x > 0, the function xex

ex+1 is increasing in x ∈ (0,∞). This implies that dχr,s(t)
dt Q

0 in (0,∞) if and only if r Q s, and then χr,s(t) is

decreasing

increasing
in t ∈ (0,∞) if

and only if r Q s. Therefore, when p > 1,

−q < eπt + 1
eπpt + 1

− q < 1− q;

when 0 < p < 1,

1− q < eπt + 1
eπpt + 1

− q <∞.

Thus, if p > 1 and q ≤ 0 or 0 < p < 1 and q ≤ 1, the function Φp,q(x) is positive

and decreasing; if p > 1 and q ≥ 1, it is negative and increasing in (0,∞). The

proof of Theorem 1 is complete. �
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Proof of Theorem 2. Straightforward computation yields

Λp,q(x) =
∫ ∞

0

t

e2πt − 1

(
1

t2 + p2x2
− q

t2 + x2

)
dt

=
∫ ∞

0

t

e2πt − 1
(1− q)t2 + (1− p2q)x2

(t2 + p2x2)(t2 + x2)
dt

,
∫ ∞

0

t

e2πt − 1
ρp,q;t(x) dt,

(18)

Φp,q(x) =
∫ ∞

0

t

eπt + 1

(
1

t2 + 4p2x2
− q

t2 + 4x2

)
dt

=
∫ ∞

0

t

eπt + 1
(1− q)t2 + 4(1− p2q)x2

(t2 + p2x2)(t2 + 4x2)
dt

,
∫ ∞

0

t

eπt + 1
%p,q;t(x) dt.

(19)

By standard argument, we have

dρp,q;t(x)
dx

=
2xt4[p2(p2q − 1)u2 + 2p2(q − 1)u+ (q − p2)]

(t2 + p2x2)2(t2 + x2)2
,

d%p,q;t(x)
dx

=
2xt4[16p2(p2q − 1)u2 + 8p2(q − 1)u+ (4q − p2 − 3p2q)]

(t2 + p2x2)2(t2 + 4x2)2
,

where u =
(

x
t

)2
> 0. Hence, if either

p
2q − 1 ≶ 0

q ≤ 0
or


p2q − 1 = 0

q − 1 Q 0

q − p2 Q 0,

then the derivative dρp,q;t(x)
dx Q 0; if either

p
2q − 1 ≶ 0

q(p2 − 1)[(1 + 3q)p2 − 4] ≤ 0
or


p2q − 1 = 0

q − 1 Q 0

4q − p2 − 3p2q Q 0,

then the derivative d%p,q;t(x)
dx Q 0.

Consequently, if either q ≤ 0 or 0 < q = 1
p2 ≤ 1 and p4 ≥ 1 then dρp,q;t(x)

dx ≤ 0

and the function Λp,q(x) is decreasing in x ∈ (0,∞); if q = 1
p2 ≥ 1 and p4 ≤ 1

then dρp,q;t(x)
dx ≥ 0 and the function Λp,q(x) is increasing in x ∈ (0,∞); if either

p2q < 1 and q(p2− 1)[(1+3q)p2− 4] ≤ 0 or p2q = 1 and 0 < q ≤ 1 then d%p,q;t(x)
dx ≤

0 and the function Φp,q(x) is decreasing in x ∈ (0,∞); if either p2q > 1 and
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(p2−1)[(1+3q)p2−4] ≤ 0 or p2q = 1 and q ≥ 1 then d%p,q;t(x)
dx ≥ 0 and the function

Φp,q(x) is increasing in x ∈ (0,∞). The proof of Theorem 2 is complete. �

Proof of Theorem 3. Without loss of generality, assume b > a > 0 in (10). Then it

can be rearranged as
bτeb

eb − 1
>

aτea

ea − 1
.

Direct calculation gives

d
dx

(
xτex

ex − 1

)
=
xτ−1ex

(
τ − x

ex−1

)
ex − 1

.

It is easy to see that the function x
ex−1 is decreasing in (0,∞), with

lim
x→0+

x

ex − 1
= 1 and lim

x→∞

x

ex − 1
= 0.

Hence, the function xτ ex

ex−1 is increasing (or decreasing, respectively) in x ∈ (0,∞) if

and only if τ ≥ 1 (or τ < 0, respectively). Inequality (10) follows. �
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