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ABSTRACT

The steel tube walls of a biaxially loaded thmalled rectangulaiconcretefilled steel tubular
(CFST) slender beawwolumn may be subjected to compressive stress gradients. Local
buckling of the steel tube walls under stress gradients, which significantly reduces the
stiffness and strength of a CFST beaniumn, needs tobe considered in the inelastic
analysis of the slender bearolumn. Existing numerical modelshat do not consider local
buckling effects may overestimate the ultimate strengthkin-walled CFST slender
columns under biaxial load§his paper premts anew multiscale numerical model for
simulating the structural performancef biaxially loaded higtstrengthrectangularCFST
slender beantcolumns accounting for progressive local buckling initial geometric
imperfections,high strength materialand second ordegffects The inelastic behavior of
column crosssections is modeledt the mesoscalkevel using the accurate fiber element
method. Macroscale models are developed to simutaeeloaddeflection responsesand

strength envelopes of thiwalled CFST sleder beancolumns New computational
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algorithms based on the Wker's method are developed to iteratively adjust the depth and
orientation of the neutral axis and the curvature at the columnstenalstain nonlinear
solutions Steel and concrete contribution ratios and strength reduction factor are proposed for
evaluating the performance of CFST slender beanlumns Computational algorithms
developedareshown to be amaccurate aneéfficient computersimulationand design tool for
biaxially loaded higkstrengththin-walled CFST slender beatolumns.The verification of

the multiscale numericahodel and parametric study are preseiresl companion paper.

Keywords:Biaxial bending; ©ncretefilled steel tubg High strengthmaterials Local and

postlocal buckling; Nonlinear analysis; Slender beaoslumns

1. Introduction

High strength thirwalled rectangularconcretefilled steel tubular (CFST) slenddream
columnsin composite frames maye subjeced toaxial load and biasl bending Biaxially
loaded hin-walled CFST slender beaoolumrs with large deptko-thickness ratios are
vulnerable tolocal and globabuckling No numerical models have been developeditier
multiscale inelastic stability analysiof biaxially loaded high strength thimalled CFST
slender beanrcolumns accounting for the effects of progressive local buckling of the steel
tube walls under stress gradients. The difficidtgaused by the interaction between local and
global bucklingand biaxial bending However, i is important to accurately predict the
ultimate strength of a thiwalled CFST slender beaoolumn under biaxial loads because
this strengthis needed in the practical desigrhis paper addresses tmportant issue of
multiscalesimulationof high strength thirwalled rectangularCFST slender beatolumns

under combined axial load and biaxial bending.
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Extensive experimental investigatiotmve been undertaken to determine thBmate
strengthsof short and slender CFSdolumns under axial load or combined axial load and
uniaxial bending1-9]. Test results indicated that the confinement provided by the rectangular
steel tube had little effect on the compressive strength of the concrete core but considerably
improved its ductility.In addition, bcal buckling of the steel tubgvasfoundto remarkably
reducethe ultimate strength and stiffness of Hwalled CFST shortolumnsas reported by

Ge and Usamill0], Bridge and O’Shea [11], Uy [12hd Han [13]As a result, the ultimate
strengths of rectangular CFST shodlumns can be determineoly summation of the
capacities of the steel tube and concrete core, provilatgocal buckling effects are taken

into accountas shown by Liang et al. [L4Yloreover, &perimental results demonstratigt

the confinement effect significantly increased the compressive strength and ductility of the
concrete core in circular CFST short columns. However, this confinement effect wasdound
reducewith increasing the column slendernessillustrated by Knowles and Park [2] and
Liang [15]. In comparisons witlesearchesn CFST columns under axial load and uniaxial
bending, experimental investigationson biaxially loadedrectangularthin-walled CFST

slender bearesoumns have received little attention [18].

Although the performancef CFST columns could be determined by experiments, they are
highly expensive and time consuming. To overcome this limitation, nonlinear analysis
technigueshave been developday researchers fatompositecolumnsunder axial load or
combined axial load and uniaxibending[19-23]. However,only a few numerical models
have been developed to predict the nonlinear inelastiavior of slender composite columns
under biaxial bendingel-Tawil et al [24 and EiTawil and Deierlein [2bproposed a fiber
element model for determining the inelastic monmmisature responses arstrength

envelopes of concretencased composite columns under biaxial bending. The rfioeke]
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which accounted for concrete conferment effects and initialsgsesaused by preloadgas
used to investigate the strength and ductility of conaatased composite colummsfiber
element model waalso developed by Mufioz and Hsu [26] that was capable of simulhiing
behavor of biaxially loaded concretencased slender composite columns. fidlationship
between the curvature and deflection was established bythgigite different method.He
incremental deflection approach was employed to capture the@alstbehavior of slender

concreteencaseaomposite columns.

Lakshmi and Shanmugam [2@resented a serainalytical model for predicting the ultimate
strengths ofCFST slender beamwnlumns under biaxial bending. An incremestatative
numerical scheme based on the generalized displacement control method was employed in the
model to solve nonlinear equilibrium equations. Extensive comparisamwrgfuter solutions

with testresultswere made to examine the accuracy of the seralytical model. However,

the effects of local buckling and concrete tensile strength were not taken into account in the
semtanalyticalmodelthat may overestimatie ultimate streng#of thin-walled rectangular

CFST columnswith large deptko-thickness ratiasRecently, Liang [28,29] developed a
numerical model based dhe fiber element methofbr simulatingthe inelasticload-strain

and momentcurvatureresponsesand strength envelopes of thwalled CFST short beam
columns under axial load and biaxial bending. The effects of local buckling were taken into
account in lhe numerical model by using effective width fotesiproposed by Liang et al.

[14]. Secant method algorithms were developed to obtain nonlinear soluliamgy [29]
reported thathe numerical model was shown to be an accurate and efficient computer
simulation tool for biaxially loaded thiwalled normal and high strength CFST short columns

with largedepthto-thickness ratios.
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This paper extends the numerical madidveloped byiang[21, 28] andPatel et al[22, 23]

to biaxially loaded highstrengthrectangulaiCFSTslender bearcolumnswith large deptkto
-thickness ratiosThe mesoscalenodel is described that determines the ineldstitaviorof
column crosssections incorporaig progressive local bucklingMacroscalemodels are
established for simulatinthe loadeeflection responses and strength envelopes of slender
beamcolumnsunder biaxial bendingNew computational algorithms based on thelldr's
method are developed obtain nonlinear solutions. Stesld concreteontribution ratis and
strength reduction factor are proposed for CFST slender-belmmns.The verification of

the numerical model developeddaits applications are given acompanon papef30].

2. Mesoscale simulation

2.1 Fiber element model

The mesoscale model is developed by utilizing the accurage &élement method [28p
simulate the inelastic behavior of composite cremgions under combined axial load and
biaxial bending. The rectangular CFST beewmiumn section is discretized into firfiber
elementsas depicted in Fig. 1. Each fiber element can be assigned stiffetror concrete
material properties. Fiber stresses are calculated from fiber strains using the material uniaxial

stressstrain relationships.

2.2 Fiber strains in biaxial bending

It is assumed that plane section reragifane under deformation. This résuin a linear

strain distribution throughout the depth of the sectiom.the numerical model, the
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compressive strain is takeas positive while the tensile strain is taken as negativieerF

strains in biaxial bending depend on the degth and orientation 7 of the neutral axisf

the section as illustrated in Fig. Bor 0° d 7 90°, concrete and steel fiber strainan be

calculated by the followig equatios proposed by Laing [28]:

B 9 d, -
. . —(tan7 = 0 1
Yo ‘x 5 @ couT (1)
o/ly; Y,;cosT for y, ty,;
i { (2)
=AY, YnlcosT fory, vy,
in whichB andD are the width and depth of the rectangular column sectgectively x
and y, are the coordinates of fibérand £ is the strain at théth fiber element andy,; is
the distance from the centroid of each fiber to the neutral axis.
When 7 90°, the beancolumn is subjected to uniaxial bending and fiber s¢raan be
calculated by the followingquations given by Liang [28]
%& g d, l for x tx,
H ® o 3)
o IX = d, for x i
° /‘X @ l XX,

where x,; is the distance from the centroid of each fiber element to the neutral axis.

2.3 Stresses in concrete fibers
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Stresses in concrete fibers are calculated from the uniaxial -strasgs relationship of
concrete. A general stresiain curve for concrete in rectangular CFST columns is shown in
Fig. 2. The stresstrain curve accounts for the effect ainfinenent provided by the steel
tube, which improveshe ductility of the concrete core arectangulaCFST column.The
concrete stress from O to A in the strefi®min curve is calculated based on the equations

given by Mander et a[31] as:

y — ot 4)
o1 34
@’;{1
E, T
@‘g{i
E, 3320/f. 6900 MPa (6)

in which |/ standsfor the compressive concrete stresf, representsthe effective
compressive strength of concretg, denoteghe compressive concrete straify is the strain
at f.. andis between 0.002 and 0.003 depending on the effective compressive strength of

concrete [28 The Young's modulus of concreté, was given by ACI [32] The effective

compressive strength of concretg is taken as/f_, where Jis thestrength reduction factor

proposed by Liang [28p account for the column size effertd is expressed by

J 185D 0% 0.85d.J dLO ) (7
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where D, is taken as the largeroB 2t and D 2t for a rectangular crossection, and

is the thickness of the steel tube wall as shown in Fig. 1.

The parts AB, BC and CD of thérassstrain curve for concrete showm Fig. 2 aredefined

by the following equatiosproposed by Lian{28]:

“foe for 4 A d0.005
|\ @f. 1000015 A f. Ef.  for0.005 A d0.015 X8
—Ef,, for 4 10.015

where £ wasproposed by Liang [28)ased on experimental results provitbgdlommi and

Sakino [33 to account for confinement effects on the posak behavior and is given by

d.0 for% d24
° 1B B

5 —= for24 — d48 9

E & I8 t )
0.5 for% 148

where B; is taken as the larger & and D for a rectangular crossection.

The stresstrain curve for concete in tension is shown in Fig. 2. Thenstitutive model
assumes that the concrete tensile stress increases linearly with the tensile strain up to concrete
cracking. After concrete cracking, the tensile stress of concrete decreases linearly to zero as

the concrete softens. The concrete tensile stress is considered to be zero at the ultimate tensile
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strain which is taken as 10 times of the strain at concrete cracking. The sénesifgh of

concrete is taken 86,/ f . .

2.4 Stresses in steel fibers

Stresses in steel fibers aralculated from uniaxiadtressstrain relationship of steel material.
Steel tubs used in CFST crossectiors are normally made fromhteetypes of structural
steels such as high strength structural steels-foatded steels and mild structural steels
which are considered in the numerical model. Bighows the stressirain relationship for
three types of steelhe steel materiajeneally follows the same stresdrain relationship

under the compression and tension. The roundedpdre stresstrain curvecan be defined

by the equation proposed Hyang [2§. The hardening strai{is assumed to be 0.005 for

high strength and coitbrmed steels and 0 4 for mild structure steels in the numerical

model. The ultimate straifyis taken a$.2 forsteels.

2.5 Initial local buckling

Local buckling significantly reduces the strength and stiffness of wlalhed CFST beam
columnswith large deptko-thickness ratiasTherefore, it is important to account for local
buckling effects in the inelastic analysis of high strength CFST slender-dudamns.
However, most of existing numerical models for thialed CFST bearsolumns have not
considered local buckling effects. This may be attributed to the complexitiyedbcal
instability problem as addressed by Liang et al].[The steel tube whl of a CFST column
under axial load and biaxial bendimgay besubjected to compressive stress gradients as

depicted in Fig. 4Due to the presence of initial geometric imperfections, no bifurcation point

9
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can be observed on the loddflection curves for real thin steel plates. The classical elastic
local buckling theory [34tannot be used to determine the initial local buckling stressabf
steelplates withimperfections. Liang et al. [14roposed famulasfor estimatingthe initial

local buckling stresses of thin ste¢hfes under stress gradieiitg considering the effects of
geometric imperfections and residual stressEeir formulas are incorporated in the
numerical model to account for initilmical buckling of biaxially loaded CFSdeamcolumns

with large depthe-thickness ratios

2.6. Postlocal buckling

The effective width concept is commoniged to describthe postlocal buckling behavior of
a thin steel platas illustrated in Fig. 4.iang et al. [14 proposed effectivevidth and strength
formulas for determining the pekical budling strengths of the steel tube walls of thin
walled CFST bearsolumns under axial load and biaxial bendingheir formulas are
incorporated in the numerical model to account for the-ljpasi buckling effects of the steel

tube walls under compressive stress gradiditits.effective widthdy,, andb,, of a steel plate

unde stress gradients akown in Fig. 4 are given by Liang et dl4] as

- 2 3
0.277 0.01019§3' 1.972 w0 * $- 9.605uL0 ’ ®- foR 10.0
b, ° @t @ 1 @ !
= ® . . (19
b o 7§) . gj ) g) .
0.4186 0.002047=  5355uU0°=  4.685u0’ = forR 0.0
- @ 1 @1 @ 1
b,, b
e 2 e 11
b 1) b (11)

10
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in which b is the clear wdth of a steel flange or web af CFST column section, and the

stress gradient coefficie® 4/ V¥, where i is the minimum edge stress acting te

plate and I is the maximum edge stress actingtbe plate.

Liang et al. [14 suggestedhat the effective widtlof a steel plate in the nonlinear analysis
can be calculated based on the maximum stre®s Wathin the steel plate usinthpe linear
interpolationmethod.The effective width concept implies that a steel plate attains its ultimate
strength when thmaximum edge stresacting on the plate reachiesyield strength. esses

in geel fiber elements within the ineffective aremsshown in Fig. 4 araken as zero after

the maximum edge stres¥ reachesghe initial local buckling stress/, for a steel plate with
a b/t ratio greater than 30If the total effective width of a platdo, b,, is greater than its

width b , the effectivestrength formilas proposed by Liang et al. [14] are employed in the

numerical model to determine the ultimate strength of the tube walls.

2.7 Stress resultants

Theinternalaxial force and bending momeracting on &FST beanrtolumn section under

axial load and biaxial bending aretdrmined as stress resultaimtshe section as follows:

P T yA, T YA, ) (2
i i1
Mo L GAY | GAY, ) (13
i j
M, ':1 Vi A% ':1 VA X ) (14
i i

11
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in which P stands for the axial forceM, and M arethe bending momesgbout the xand

y axes |/, denoteghe stress of steel fiber A, ; representshe area of steel fibar, I/, is

]
the stress of concrete fibey, A ; is the area of concrete fibey, x and y, are the
coordinates of steel elementx; and y; stand for the coordinates of concrete elemignhs

is the total number of steel fiber elements amd is the total number of concrete fiber

elements.

2.8 Inelastic mmentcurvature response

The inelastic momenturvature responses afCFST beartolumn section can be obtained
by incrementally increasing the curvature and solving for the corresponding moment value for

a given axial load(P,) applied at a fixed load andlé#). For eachcurvature incrementhe
depth of the neutral axis is iteraly adjustedor an initial orientation of the neutral axi§

until the force equilibriumcondition is satisfied The moments ofM,and M are then
computed and the equilibrium conditiontain O M /M is checked. If this condition is not

satisfied, the orientation of the neutral aisigdjusted and th&bove process is repeated until

both equilibrium conditions are met. The effects of local buckling are taken into account in
the calculation of the stress resultants. The depth and orientation of the neutral axis of the
section can be adjusted bgingthe secant method algorithms developed by Liang [28] or the
Mulfer's method [35] algorithmswhich are discussed in Section 4. A detailed computational
procedurdor predicting the inelastic momeatwvature responses of composite sections was

given by Liang [28].

3. Macroscale simulation

12
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3.1 Macroscale modébr simulating loaddeflection responses

The pinended beanrcolumn model is schematically depicted in Figlt3s assumed that the
deflected shape of the slender beatumn is part of a sine wave. Thageral deflection of

the bearrcolumn can belescribedy the following displacement function:
u u, sin32 ) (15
o 1

where L stands for the eftgive length of the bearoolumn andu,, is the lateral deflection at

the midheight of the beansolumns.

The curvature at the nyideigtt of the beantolumn can be obtained as
Y ) @6

For a beantolumn subjected to an axial load at an eccentricityad depicted in Fig. &nd

an initial geometric imperfectioru, at the midheight of the bearsolumn, the external

moment at the mitheight of the bearsolumn can be calculated by

Pe u

° (17)

me

To capture the complete loa@flection curve for a CFST slender beaatumn under biaxial

loads, the deflection control method is used in the numenalel. In the analysisthe

13
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deflection at the midheight u,of the slender beamolumn is gradually ineased.The

curvature /, at the midheight of the beancolumn can bealculatedrom the deflectionu,, .

For this curvature hie neutral axis depth and orientation are adjusted to achieve the moment

equilibrium at the midheight of the beartolumn. The equilibrium state for biaxial bending

requires that the following equations mustshtisfied:

Peu u M_. O ) (18

<

tanDM—y 0 ) (19

in which M _;is the resultant internal moment which is calculatetigs (M7 M .

The macroscale modgicorporating the mesoscale model is implemented by a computational
procedure. A computer flowchart is shown in Fig. 6 to implicitty demonstrate the
computationabrocedure for loadleflection responsed’he main steps of the computational

procedure are described as follows:

(1) Input data.

(2) Discretize the composite section into fine fiber elements.

(3) Initialize the midheight deflectiorof the bearcolumnu,, ‘'u,,.
(4) Calculate the curvaturé, at thre midheight of the bearsolumn.
(5) Adjust the depth of the neutral axi$, using theMulfer's method.

(6) Compute stress resultarfisand M, considering local buckling

(7) Computetheresidual moment, M M

me mi *

14
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(8) Repeat steps (H)) until |r?

H.

(9) Compute bending momenid, and M, .

(10) Adjust the orientation of the neutral axi§ using the Milfer's method.

. M
(11) Calculate the residual mometjt tan D M—y :

X

(12) Repeat steps [§11) until \rrg\ A.
(13) Increase the deflection at the rfidight of the bearsolumn byu,, u, 'u,.

(14) Repeat steps (41L3) until the ultimate axial load?, is obtained or the deflection

limit is reached.

(15) Plot the loaedeflection curve.

In the above procedurekis the convergence tolerance and takerl@$in the numerical

analysis.
3.2 Macroscale modébr simulating strength envelopes

In design practice, it is required to check for the design capacities of CFST slender beam
columns under design actions such as the design axial force and bending moments, which
have been determined from structural analysis. For this design purpose,ighdéoaok

momentstrengthinteraction curves (strength envelopes) need to be developed for the beam

columns. For a given axial load appli€B,)at a fixed load anglel, the ultimate bending

strength of a slender bearnlumn is determined as the maximum moment that can be applied
to the column endsThe moment equilibrium is maintained at tméd-height of the beam

column. The external moment at the rhigight of the sleder bearrcolumn is given by

15
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M M, P u

me e n

m Uy (20

in which M is the moment at the column ends. The deflection at thehaght of the

slender beareolumn can be calculated from the curvature as

(22)

To generate the strength envelope, the curvdtyreat the midheight of the bearsolumn is

gradually increased. For each curvature increment, the corresponding internal moment

capacity(M ., ) is computed by the inelastimomentcurvature responsescussed in Section

2.8. The curvature at the column erfds) is adjusted and the corresponding moment at the

column ends is calculated until theaximum moment at the column endslstained. The
axial load is increased and the strength envelope can be generated by repeating the above
process. For a CFST slender beemtumn under combined axial load and bending, the

following equilibrium equations must be satisfied:

P PO ) (22
M

tanD —~ 0 ) (23
M X

M e I:)n (um uo) M mi O ) (24

Fig. 7shows a computer flowchart that implicitly illustrates doenputationaprocedure for
developing the strength envelop&he main steps of the computationaocedure are

described as follows:

16
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(1) Input data.
(2) Discretize the composisection intdine fiber elements.

(3) The loaddeflection analysis procedui® used to emputethe ultimate axial loadP ,
of the axially loaded slender bearalumn with local buckling effects.

(4) Initialize the applied axial loa®?, 0.

(5) Initialize the curvature at the migeight of the bearsolumn [, ' /.

(6) Compute the mitheight deflectionu, from the curvature/,.

(7) Adjust the depth of the neutral axts, using theMulfer's method.

(8) Calculate resultant forcB considering local buckling.

(9) Compute the residual foreg P, P.

(10) Repeat stef®)-(9) until

C
rm

H.
(11) Compute bending momeiM, andM, .

(12) Adjust the orientation of the neutral axi§ using the Milfer's method.

M
(13) Calculate the residual mometjt tan D M—y

(14) Repeat steps J{13) until ‘rn:" h.

(15) Compute the internal resultant momévhi. .

(16) Adjust the curvature at the column erjdusing the Milfer's method.

(17) Compute the momer!, at the column ends accounting for local buckling effects.

(18) Computer? M M

me mi *

(19) Repeat steps (3418) until |r>

H.

e

(20) Increase the curvature at the ahieight of the bearmsolumn by /., /

m

17
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(21) Repeat steps 20) until the ultimate bending strengtM, M at the column

emax

ends is obtained.

(22) Increase the axial load by, P, 'P,,where'P, P,/10.

(23) Repeat steps J%22) until the maximum load increment is reached.

(29) Plot the axial loasmoment interaction diagram.

4. Numerical solution scheme

4.1 General

As discussed in the preceding sectiohs, depth and orientation of the neutral axis dmed t
curvature at theolumnend reedto be iterativelyadjustedto satisfy the force anchoment
equilibrium conditionsin the inelastic analysis of a slender beamtumn For this purpose,
computationablgorithmsbased on the secant method have leseloped by Liang [21, 28].
Although the secant method algorithms are shown to be efficient and reliatibtéoming
converged solutions, computational algorithms based on the Miller's method [35], which is a
generalization of the secant method, are developed in the present study to determine the true

depth and orientation of the neutral axis and the curvature at the column ends.

4.2 The MQfer's method

In general, lte depth(d,) and orientatiof 7 of the neutral axis antthe curvaturg( /,) at the

column ends of a slender beamwlumnare design variables which are denoted hdrgiz.

The Miuller's methd requires three starting valuet the design variableg, Z, and Z.

The corresponding force or moment functigns r,,, and r, ;are calculated based on the

m,2

18
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three initial design variables. The new design varialgéhat approaches the true valig

determined by the following equations:

Z 2Zcm ) (25
b, r\/bm 4a.c,.
a 4 4 T Tas 4 4 Tnp Tag ) (26
4 4 4 4 45 4
bm g % ’ rm2 Tms % % ’ rm,1 rm,3 )(27
Z 2 4 4 4 %
Cm rm,3 ) (28

When adjusting the neutraxis depth and orientation, the sighthe square root e in the

denominator of Eq. (25) is takeéo be the same as thaft b,,. However, this sign is taken as

positive whenadjustingthe curvature at the column endas order to obtain converged

solutions, the values of, Zand Z and correspondinggsidualforces or momensr, ., r,.,
andr_,need to be exchanged discussed by Patel et al. [22q. (25) and the exchange of

design variables and force or moment functionseaeeuted iteratively until the convergence

criterion of |r His satisfied.

nl

In the numerical modethree initial values of the neutral axis degth, d,, andd, , are
taken as D/4, D and d,, d,, /2 respectively; he orientation®f the neutral axis7, T
and 7 are initialized to J4, Land T 7 /2 respectively; and the curvature at the column

ends /

el

/.5 and /,, are initialized tal0 *°,10° and £, /, /2respectively.

19
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5. Pelformance indicesfor CFST slender beamcolumns

Performance indices are used ¢waluatethe contributions of the concrete and steel
componentdo the ultimate stregths of CFST slender beamolumns ando quantify the
strength reduction caused by the section and column slenderness, loading eccentricity and
initial geometric imperfections. These performance indices can be used to investigate the cost

effective designs of CFST slender beaniumns under biaxial loads.

5.1 Steel contribution ratio/,

The steel contribution ratio is used to deterntim= contrbution of the hollow steel tubular
beamcolumn to the ultimate strength of the CFST slender be@lomnunder axial load and

biaxial bending, which is given by

) (29

where P, is the ultimate axial strength of the CFST slender bealnimn andP,is the ultimate
axial strength of the hollow steel tubular beaotumn, which iscalculated by setting the
concrete compressive strendtlto zero n the numerical angsis while other conditions of

the hollow steel tubular beaoolumnremainthe same as those of tR#ST bearcolumn.

The effects of local buckling are taken into account in the determination d? (aotéP, .

5.2 Qoncrete contribution ratio /.
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The concrete contribution ratguantifiesthe contributionof the concete componento the
ultimate axial strength of a CFST slender beatumn. The slender concrete core beam
column without reinforcement carries very low loading and does not represents the concrete
core in a CFST slender bearmalumn.Portolés et al.[9] used the capacity of the hollow dtee

tubular beanrcolumn to definghe concrete cdnbution ratio (CCR), which is given by

ccr & ) (30

Eq. (30) is an inverse of the steel contribution ratmml may not accurately quantitiie
concrete contribution. To evaluate the contribution of the concrete component to the ultimate
axial strength of a CFST slender beaatlumn, a new concrete contribution ratsoproposed

as

/(': n S ) (31

It can be seen from Eq. (31) that the concrete contribution to the ultimate axial strength of a
CFST slender beawolumn is tle difference between the ultimate axial strength of the CFST

column and that of the hollow steel column.

5.3 Strength reduction factor?

The ultimate axial strengtlof a CFST shortcolumn under axial loading is reduced by
increasingthe section and column slenderness, loading eccentricity, and initial geometric
imperfections. To reflect on these effecks strengthreduction factors defined as
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Pn
R P ) (32

where P, is the ultimate axial strengtbf the columncrosssectionunder axial compression.

The ultimate axial strengths d? and P, are determinedby considering the effesbf local

buckling of the steel tubes
6. Conclusions

This paper has presented a newltiscale numerical model for the nonlinear inelastic
analysis of high strength thin-walled rectangular CFST slender beawmumns under
combined axial load and biaxial bendi#g the mesoscale levehé inelastic axial loadtrain

and momenturvature responses of column crssstions sbjected to biaxial loads are
modeled using the accurate fiber element metheldich accounts forthe effects of
progressivdocal buckling of the steel tube walls under stress gradibhasroscale models
together with computational procedures have been described that sithelagial load
deflection responses and strength envelope€RST slender beawolumns under biaxial
bending Initial geometric imperfections and second order effects between axial load and
deformationsare taken into account in the macroscale models. $ddutionalgorithms based

on the Miller's method have been developed and implemented in the numerical model to

obtain converged solutions.

The computer program that implementise multiscale numerical model developed an
efficient and powerful computer simulation and design tool that can be used to detbemine

structural performancef biaxially loaded high strength rectangular CFST slendamb
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columns made of compact, nocempact or slender steel sections. This coeres the
limitations of experiments which are extremely expensive and time consuming. Moreover, the
multiscalenumerical modetan be implemented in frame analysis programs for the nonlinear
analysis of composite frames. Steeld concrete contributiontras and strength reduction
factor proposed can be used to study the optimal designs of high strength CFST beam
columns. The verification of the numerical model and parametric study are givem in

companion paper [30].
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Fig. 1. Fiber element discretizatiaand strain distribution of CFST bearolumn section.
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Fig. 2. Sressstrain curve for confined concrete in rectangular CFST columns
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