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ABSTRACT 

 

Climate change influences events such as droughts, floods, extreme temperatures and 

sea level changes and hence affects the global food production, energy generation, and 

water resources adversely. Rising greenhouse gas (GHG) concentrations in the 

atmosphere are considered the dominant cause of climate change. General Circulation 

Models (GCMs) are used for the projection of climate into future, accounting for the 

GHG concentrations. However, the coarse spatial resolution of GCM outputs does not 

permit their direct use in catchment scale studies. Therefore either dynamic or statistical 

downscaling techniques are used for linking GCM outputs to catchment scale 

hydroclimatic variables. 

 

The following issues associated with statistical downscaling were addressed in this 

study; (1) non-homogeneity in inputs used in the development and future projection 

phases of statistical downscaling models (SDMs), (2) propagation of GCM bias to 

outputs of SDMs, (3) varying nature of climate projections produced by SDMs 

depending on the GCM used for providing inputs, (4) complexity of multi-station and 

multi-station multivariate SDMs, and (5) performance comparison of linear regression 

techniques with non-linear regression techniques. 

 

It is the common practice to develop (calibrate and validate) SDMs with reanalysis 

outputs and then use GCM outputs for the subsequent projections of catchment scale 

climate into future. Since these inputs used in the development and future projection 

phases of SDMs originate from two different sources, the inputs are not homogeneous. 

In this study, as a potential solution to the issue of non-homogeneity in inputs, a SDM at 

a point was developed with GCM outputs, in view of using it with the outputs of the 

same GCM for the projection of catchment scale precipitation into future. Despite the 

use of homogeneous sets of inputs to this SDM, it showed limited performance in the 
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development phase, in comparison to another SDM developed with reanalysis outputs 

according to the common practice. 

 

Owing to the assumptions and approximations employed in the GCMs, their outputs 

contain bias, and this bias propagates to the outputs of SDMs. In this study, 

performances of different bias-correction techniques on their application to the outputs 

of a SDM were investigated. Performances of (1) equidistant quantile mapping, (2) 

nested bias-correction, and (3) monthly bias-correction in reducing the bias in the 

precipitation outputs of a SDM were also investigated. It was found that equidistant 

quantile mapping outperformed the other two techniques. 

 

Since the assumptions and approximations used in GCMs differ from one GCM to 

another, they tend to produce different projections of climate into future. Projections of 

a predictand produced into future can vary depending on the GCM used for providing 

inputs to the SDM. As a solution to this issue, a SDM was developed (calibrated and 

validated) and precipitation projections into future were produced, using multi-model 

ensemble (MME) outputs. To generate MME outputs for the development of the SDM, 

the outputs of a set of different GCMs pertaining to the past climate were regressed 

against the corresponding reanalysis outputs. Then the multi-linear regression (MLR) 

equations between the outputs of these GCMs and reanalysis outputs were determined. 

The same MLR equations between the outputs of these GCMs and reanalysis outputs 

were used for deriving the MME outputs pertaining to future climate. A SDM was 

developed and precipitation projections into future were produced using these 

homogeneous sets of MME outputs generated for past and future. This procedure 

enabled producing a single projection of precipitation using the outputs of multiple 

GCMs. 

 

The majority of the current multi-station downscaling techniques capable of 

maintaining the spatial coherence of a predictand among the stations are complex. In 

this study, a relatively simple yet effective multi-station downscaling technique was 

investigated. For this purpose, stations which showed high correlations with the other 

stations in the study area were identified for a predictand of interest, and SDMs were 
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developed (calibrated and validated) and projection of the predictand were produced 

into the future only at those stations. Then the linear regression relationships between 

the stations at which the SDMs were developed and other stations were determined for 

the predictand of interest, using the observations. Thereafter by using the outputs of the 

SDMs on the above linear regression relationships between the stations at which the 

SDMs were developed and other stations, the values of the predictand at other stations 

were determined for the past and the future climate. It was proven that this multi-station 

downscaling approach was capable of preserving the correlation structure of a 

predictand of interest among the stations. This multi-station downscaling approach was 

further extended to downscale multiple predictands at multiple stations concurrently. It 

was proven that the multi-station multivariate downscaling approaches developed in this 

study was capable of preserving the correlation structures among the stations for each 

predictand of interest while maintaining the correlation structures among different 

predictands at individual stations. 

 

In statistical downscaling, both linear and non-linear regression techniques are widely 

used. In this study, a comparison of performances of two SDMs developed using least 

square support vector machine (LS-SVM – non-linear regression) and MLR for 

downscaling reanalysis outputs to monthly streamflows was investigated. It was found 

that LS-SVM is marginally better than MLR. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Impacts of climate change on water resources 

Water is an essential substance for the existence of life on the Earth. For humans, it is 

used for drinking, agriculture, sanitation, industries and required for protecting the 

environment. The majority of the human water uses need freshwater which is quite 

limited. Water resources in the word are unevenly distributed with respect to their 

quantity and also their quality (Vörösmarty et al., 2010). The ever rising global 

population demands more water and hence the per capita freshwater availability has 

shown a reducing trend (http://data.worldbank.org/indicator/). The variations in the 

distribution of surface and groundwater resources are governed by the changes in the 

climatic variables such as precipitation, temperature and evaporation (Chiew, 2007). In 

more elaborated terms, precipitation received by a catchment contributes to its water 

budget, and climatic variables such as evaporation, temperature, wind speed, 

atmospheric water vapour content determine some of the water losses from the 

catchment. The rise in temperature of water can change the rate of chemical reactions 

and hence influence the quality of water. Furthermore, intense precipitation events can 

increase the sediment loads entrained by the rivers and hence affect the quality of water 

(Kundzewicz et al., 2008). 

 

The rising greenhouse gas (GHG) concentrations in the earth’s atmosphere lead to 

global warming and as a result the hydrologic cycle is accelerated (Kunkel et al., 2013). 
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This causes changes in the global climate. As stated in Bates et al. (2008), global 

warming has influenced the hydrologic cycle causing; changes in the spatiotemporal 

patterns of precipitation, changes in the intensity and the extremes of climate variables, 

unusually high levels of melting of snow and ice, rise in the atmospheric water vapour 

content, increase in evaporation and changes in the runoff patterns. Since the climate is 

highly influential on the water resources within a catchment in many different ways as 

described earlier, knowledge of changing climate into the future is crucial for the 

effective management of water resources in a catchment. 

 

Australia is one of the many countries affected by the climate change. The annual mean 

surface air temperature over Australia has shown a rising trend of 0.16˚C per decade 

since 1950 (Commonwealth Scientific and Industrial Research Organisation, 2007). 

Also an increase in the number of days with maximum temperature exceeding 35˚C (hot 

days) and a decrease in the number of days with maximum temperature below 15˚C 

(cold days) have been observed over Australia (Nicholls and Collins, 2006). Since 1950, 

the north-western region of Australia has shown a clear rise in the annual mean 

precipitation, and eastern Australia has experienced a decline in the annual mean 

precipitation (Commonwealth Scientific and Industrial Research Organisation, 2007). 

Since late 1960s, south-western Australia has experienced a significant decline in 

precipitation (Smith et al., 2000). The decrease in precipitation in south-western 

Australia is showing a continuing trend and it has caused an increasing and far greater 

decline in the inflows to the water supply reservoirs located in that region. Cai and 

Cowan (2008) found that a 1˚C rise in the average global temperature would lead to a 

15% reduction in flows in the Murray-Darling Basin which contains the largest river 

system of Australia. The average of the annual precipitation over the southern region of 

south-eastern Australia declined by about 11% from the long-term average during the 

period 1997-2008, causing a much larger decline of 35% in runoff (Chiew et al., 2010). 

 

The Millennium drought which prevailed during the period 1997-2010 over the 

Australian state of Victoria is considered to be the worst drought ever recorded in the 

history of the state (Timbal, 2009). In the period 1998-2007, the annual average 
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precipitation in Victoria declined by about 13% from the long-term average (Victorian 

Government Department of Sustainability and Environment, 2008). During this period, 

many water supply systems in Victoria experienced a large decline in inflows. As 

examples, the inflows to Melbourne’s main water supply reservoirs declined by about 

38% from the long-term average of the period 1913-1996 (Wallis et al., 2009) and the 

inflows to the reservoirs in the Grampians water supply system located in north-western 

Victoria declined by about 75% from the long-term average of the period 1903-1996 

(Water in Drylands Collaborative Research Program, 2009). 

 

General Circulation Models (GCMs) are used to simulate the effect of the rising GHG 

concentrations on the global climate. The simulations produced by GCMs are often in 

the order of a few hundred kilometres and hence cannot explain the local scale 

variability of climate which is more important in terms of water resources in a 

catchment (Tripathi et al., 2006). In other words, though the spatial resolution of GCM 

outputs are sufficient for a reasonably good representation of climate at the global and 

the continental scales, the catchment scale climate which is highly influenced by the 

topography and land use is not simulated adequately (Sachindra et al., 2014a). 

Therefore the direct use of GCM simulations in catchment scale studies such as 

hydrologic modelling and climate impact assessments is not possible (Jeong et al., 

2013). Hence there is a need for translating the coarse scale information in the GCM 

simulations to catchment scale hydroclimatic variables such as precipitation, 

evaporation, temperature and streamflow. For this purpose, either dynamic or statistical 

downscaling techniques are used. 

 

In Figure 1, the concept of downscaling using statistical and dynamic techniques is 

graphically illustrated. As shown in Figure 1, in statistical downscaling, statistical 

relationships are formulated between the coarse resolution GCM outputs and the 

hydroclimatic variables at the points of interest in the catchment. On the other hand, in 

dynamic downscaling, the relationships between the coarse resolution GCM outputs and 

the fine resolution grid of the Regional Climate Model (RCM) are developed 
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considering the physics of the atmosphere. More details on downscaling techniques are 

provided in Chapter 2. 

 

 

Figure 1 Statistical and dynamic downscaling 

 

1.2 Aims of the study 

The main aim of this study was to develop statistical models for downscaling monthly 

GCM outputs to catchment scale monthly precipitation, evaporation, minimum 

temperature, maximum temperature and streamflows at several stations located in the 

north-western region of Victoria, Australia. These stations are located in the operational 
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area of the Grampians Wimmera Mallee Water Corporation (GWMWater). 

Downscaling monthly GCM outputs to climatic variables at monthly temporal scale 

does not permit capturing the variations of them within a month (e.g. wet and dry days, 

extremes of temperature and precipitation). However, still monthly climatic projections 

produced using downscaling models can aid in the management of water resources 

which include operations such as water allocation for crops, domestic and industrial 

needs, and also environmental flows, especially in the planning stage of a water 

resources project. The following specific aims were considered under the main aim of 

the project. 

 

 Analysis of the potential of using outputs of a GCM for the development 

(calibration and validation) of a downscaling model, in view of using the outputs 

of the same GCM for producing projections of catchment scale climate into the 

future. 

 Assessment of different bias-correction techniques in post-processing the 

outputs of downscaling models. 

 Use of a multi-model ensemble approach for generating a set of homogeneous 

inputs from the outputs of multiple GCMs for the development and the 

projection phases of a downscaling model. 

 Development of a relatively simple methodology for downscaling GCM outputs 

to a predictand at multiple stations simultaneously while maintaining the spatial 

coherence. 

 Development of a relatively simple methodology for downscaling GCM outputs 

to multiple predictands at multiple stations simultaneously while maintaining the 

coherence among the predictands and over space. 

 Assessment of linear and non-liner regression techniques in statistical 

downscaling. 
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1.3 Study area 

The aims of this study stated under Section 1.2 were demonstrated through a case study 

in the operational area of the Grampians Wimmera Mallee Water Corporation 

(GWMWater) in north-western Victoria, Australia. The location of the study area is 

shown in Figure 2. The operational area of GWMWater (about 62,000 km2) contains a 

system of large-scale reservoirs which supplies water for domestic, industrial, 

agricultural and environmental requirements (Grampians Wimmera Mallee Water 

Corporation, 2011a). During the period 1997–2008, due to the Millennium drought, the 

inflows to the reservoirs of GWMWater declined by about 75% from the long-term 

average of the period 1903-1996 (Water in Drylands Collaborative Research Program, 

2009). It was realised that the projection of climate into future over the operational area 

of GWMWater will enable the assessment of future availability of water resources in 

the system and enhance the management of its water resources. Therefore, this study 

was focussed on projecting the hydroclimatology of the operational area of GWMWater 

into future accounting for possible climate change. 
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Figure 2 Operational area of the Grampians Wimmera Mallee Water Corporation 

 

1.3.1 Topography 

This study area can be subdivided into two zones based on the topography and 

hydroclimatology; (1) the northern region, and (2) the southern region.  Figure 3 shows 

the topographic map of the study area. The elevation over the study area varies from 

about 25 m to 1200 m (above mean sea level) from north to south. As shown in Figure 

3, the northern region of the study area is relatively flatter and the southern region is 

relatively mountainous. In the southern region, sand dunes and ridges are a distinct 

feature of the landscape (White et al., 2003). 
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Figure 3 Topography of the study area 

 

1.3.2 Land use and agriculture 

The northern region of the study area is largely under the Mallee Catchment 

Management Authority (Mallee CMA), which covers the largest catchment area in 

Victoria (Mallee Catchment Management Authority, 2012). This region contains large 

number of wetlands and some of them are considered to be nationally significant. Also 

it contains a number of national parks such as: the Murray-Sunset national park, the 

Wyperfeld national park, the Hattah-Kulkyne national park and the Murray-Kulkyne 

regional park. In this region cereal crops, citrus, avocados, olives and vegetables are 

cultivated on a large scale. 
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The southern region of the study area is largely under the Wimmera Catchment 

Management Authority (Wimmera CMA) (Murray-Darling Basin Authority, 2010). 

Cereal cultivations, pasture productions for livestock are considered as the main 

agricultural activities. This area also contains large numbers of wetlands including the 

nationally important; Bitter swamp, Heards Lake and White Lake (Department of 

Planning and Community Development, 2012). The Grampians national park, the Little 

desert national park, and the St Arnaud range national park are among the national parks 

located in the region. The land use map of the entire study area is shown in Figure 4. 

The land use data used in Figure 4 were obtained from the website of Australian 

Department of Agriculture, Fisheries and Forestry at http://www.daff.gov.au/. In Figure 

4, it was seen that, the majority of the study area is covered with cropping lands, grazing 

lands and national parks (nature conservations). 
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Figure 4 Land use of the study area 
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1.3.3 Soil 

The northern region of the study area contains surface materials of aeolian origin 

(carried and produced by the action of winds) ranging from sands to clays, and in 

certain areas at greater depths marine deposits are also found along with limestone 

which contains freshwater (Rowan and Downes, 1963). Among the soil types; texture 

contrast soils (Sodosols), cracking clay soils (Vertosols), sandy soils (Rudosols and 

Tenosols), wet soils (Hydrosols) and calcareous soils (Calcarosols) are dominant 

(Department of Environment and Primary Industries, 2013a) in this region. The soil in 

this region is susceptible to erosion caused by winds and also farming practices 

(McRobert and Larsen, 2011). 

The main types of soils in the southern region of the study area are; texture contrast 

soils (Sodosols, Kurosols, Chromosols), soils that lack strong texture contrast 

(Calcarosols), cracking clay soils (Vertosols) and sandy soils (Rudosols and Tenosols) 

(Department of Environment and Primary Industries, 2013b). The soil type map of the 

entire study area is provided in Figure 5. The soil type data used in Figure 5 were 

obtained from the website of the Australian Soil Resource Information System (ASRIS) 

at http://www.asris.csiro.au. Note that this soil classification is in accordance with the 

Australian Soil Classification defined in Isbell (2002). 
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Figure 5 Soil types of the study area 

 

1.3.4 Climate 

The climate over south-eastern Australia which includes the present study area is 

influenced by north-west cloud bands, sub-tropical ridge, cut-off lows, El Nino 

Southern Oscillation, Indian Ocean Dipole (IOD) and the Southern Annular Mode 

(SAM) (Bureau of Meteorology Australia, 2010). The climate of the northern region of 

the study area is persistently dry and warm, while, the southern region is relatively 

wetter (Bureau of Meteorology Australia, 2013). Therefore the gradient of temperature 

and evaporation prevails in the north-south direction over the whole study area. The 
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gradient of precipitation exists in the south-north direction. However, the variations of 

climate within the northern and southern regions are minimal (White et al., 2003). 

 

In this study, 17 climate observation stations located in the study area were considered 

for the projection of monthly precipitation, evaporation, minimum temperature and 

maximum temperature into future. Note that the observation station at Hamilton Airport 

is located slightly outside the study area. The relative spatial locations of the 

observation stations are shown in Figure 6, and their coordinates are provided in Table 

1. 

 

 

Figure 6 Climate observation stations considered in the study 
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Table 1 Locations of observation stations considered in the study 

Name of the station Station ID Latitude Longitude 
Eversley 79014 -37.18 143.15 
Ouyen post office 76047 -35.07 142.32 
Birchip post office 77007 -35.98 142.92 
Swan Hill post office 77042 -35.34 143.55 
Rainbow 77083 -35.90 141.99 
Great Western 79019 -37.18 142.86 
Polkemmet 79023 -36.66 142.07 
Lake Lonsdale 79026 -37.03 142.58 
Longerenong 79028 -36.67 142.30 
Moyston post office 79034 -37.30 142.77 
Wartook reservoir 79046 -37.09 142.43 
Hamilton airport 90173 -37.65 142.06 
Halls Gap post office 79074 -37.14 142.52 
Tottington 79079 -36.79 143.12 
Stawell 79080 -37.07 142.79 
Balmoral post office 89003 -37.25 141.84 
Ararat prison 89085 -37.28 142.98 

Station ID is as defined by the Bureau of Meteorology Australia at http://www.bom.gov.au/climate/data/stations/ 

 

The observation stations located at the Ouyen post office and the Halls Gap post office 

were considered as representative stations of the climate in the northern and southern 

regions of the study area respectively. The averages of precipitation over the period 

1950-2010 at the Ouyen post office (located in the northern region) and the Halls Gap 

post office (located in the southern region) are compared for each calendar month in 

Figure 7. As shown in Figure 7, it was clear that the southern region receives more 

precipitation than the northern region in each calendar month. The annual averages of 

precipitation at the Ouyen post office and the Halls Gap post office are about 340 and 

950 mm respectively for the period 1950-2010. The majority of precipitation over the 

southern region occurs in the period May to October which includes winter (June-

August) and the lowest amount of precipitation occurs in the period December to March 

which includes summer (December-February). However, it was seen that the northern 

region remains persistently dry throughout the year. 
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Figure 7 Average of precipitation over the period 1950-2010 at Ouyen post office and 

Halls Gap post office 

 

In Figure 8, the averages of evaporation over the period 1950-2010 at the Ouyen post 

office and the Halls Gap post office in the study area are presented. It was seen that 

throughout the year, the northern region of the study area has relatively higher 

evaporation compared to that of southern region. The annual averages of evaporation 

over the period 1950-2010 at the Ouyen post office and the Halls Gap post office are 

about 1760 and 1320 mm respectively. Over the entire study area, the lowest amount of 

evaporation occurs in winter and the highest amount of evaporation occurs in summer. 
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Figure 8 Average of evaporation over the period 1950-2010 at Ouyen post office and 

Halls Gap post office 

 

In Figure 9, the averages of the maximum temperature at the Ouyen post office and the 

Halls Gap post office are presented for each calendar month for the period 1950-2010. 

In Figure 10, the averages of the minimum temperature at the two stations are shown for 

each calendar month for the period 1950-2010. It was observed that both the maximum 

and the minimum temperatures at the Ouyen post office are consistently higher than 

those at the Halls Gap post office. This indicated that the northern region of the study 

area is consistently warmer than the southern region. In fact, this aspect of the spatial 

variation of the temperature is responsible for the variations of evaporation across the 

study area discussed earlier. 

 

 

 

 

 

 

 



Chapter 1: Introduction 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 17 

 

0

5

10

15

20

25

30

35

January February March April May June July August September October November December

Ouyen post office

Halls Gap post office

A
ve

ra
ge

 m
ax

im
um

te
m

pe
ra

tu
re

/(C
˚)

 

Figure 9 Average of maximum temperature over the period 1950-2010 at Ouyen post 

office and Halls Gap post office 
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Figure 10 Average of minimum temperature over the period 1950-2010 at Ouyen post 

office and Halls Gap post office 

 

1.3.5 Headworks system and water resources 

The southern region of the study area contains most of the headworks systems of 

GWMWater as shown in Figure 11 (Figure obtained from Mala-Jetmarova et al., 2013). 
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The development of the Grampians based headworks system of GWMWater started 

with the construction of Lake Wartook (capacity = 29.5 GL) in 1887 and completed 

with the construction of Lake Bellfield (78.5 GL) in 1966 (Grampians Wimmera Mallee 

Water Corporation, 2011b). Lake Wartook on the MacKenzie River provides water to 

towns of Horsham and Natimuk and also to the environment. This reservoir is 

considered as a place with high recreational value (e.g. fishing). Lake Bellfield is 

located on Fyans creek and it provides water to towns of Halls Gap and Pomonal and 

also the Wimmera-Mallee pipeline system. This reservoir is known for its excellent 

water quality and low evaporative losses due to its relatively small surface area. The 

current headworks system is quite complex and highly interconnected. The other 

reservoirs included in this system are; Fyans (18.5 GL), Lonsdale (65.5 GL), Moora 

Moora (6.3 GL), Rocklands (348.3 GL), Toolondo (92.4 GL) and Taylors (27 GL). 

Lake Fyans is a relatively small reservoir which supplies water to towns of Ararat, 

Stawell, and Great Western. Lake Lonsdale is a large reservoir fed by the Mount 

William Creek and it is also regarded as an important provider of water to the 

environment. Owing to the relatively large surface area compared to volume held, both 

Lake Lonsdale and Lake Moora Moora experience high evaporative losses. Rocklands 

reservoir located on the Glenelg River is the largest reservoir in the Grampians 

headworks system of GWMWater. Taylors Lake supplies water to Wimmera-Mallee 

pipeline and also to the environment. Similar to Lake Wartook, this reservoir also has a 

high recreational value. 

 

Until the recent past, the headworks system of GWMWater was utilising a network of 

earthen open channels (extending to over 18,000 km in length) for the conveyance of 

water. However this earthen open channel network was replaced at great cost with a 

network of pressurised pipelines (about 9,000km in length) known as the Wimmera-

Mallee pipeline in 2010 (www.gwmwater.org.au). This pipeline reduced the 

evaporation and infiltration losses of the system significantly and aided in increasing the 

overall efficiency of the system. Modifications to GWMWater’s water supply system 

with the Wimmera-Mallee pipeline was intended to provide increased resilience to 

drought and changes in the future climate. For the management of water resources in 
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this system in future, a set of the operating rules which accounts for the likely future 

climate change is needed. This study provides the hydroclimatic information pertaining 

to the future accounting for the likely future climate change needed for the management 

of this water supply system. 

 

 

Figure 11 Headworks system of GWMWater 
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1.4 Research significance 

Climate change influences the availability of water resources in a catchment. The recent 

droughts (e.g. Millennium drought 1997-2010), most likely caused or influenced by 

climate change, led to a large drop in inflows to many of the water supply reservoirs in 

Australia. Melbourne’s water supply reservoirs, reservoirs of the Grampian Wimmera 

Mallee Water Corporation (GWMWater) in north-western Victoria, and reservoirs 

which serve Perth in south-west of Western Australia are good examples of reservoir 

systems affected. Projection of climate into the future accounting for likely climate 

change allows for water resource managers to better consider the planning and operation 

of these reservoirs in the future. As an example, the knowledge of the extreme 

precipitation is useful in the effective management of floods and droughts which 

involves design and construction of dams, reservoirs and flood levees. Furthermore, 

precipitation projections produced into the future aids in the determination of future 

availability of water in a catchment. Hence it is useful in determining the sustainable 

allocation of water and sharing resources for various purposes such as consumptive use, 

recreation and waterway health. Furthermore, the hydroclimatic projections produced in 

this study accounting for climate change, will feed into a parallel study which is focused 

on the development of a set of new operating rules for the management of water 

resources in the water supply systems of GWMWater. 

 

In a conventional downscaling model, calibration and validation (development) are 

performed using some form of reanalysis outputs as inputs to the model. Then the 

projections of catchment scale climate into future are produced by using the outputs of a 

different GCM on the above developed downscaling model. The reanalysis data used in 

the development phase of the downscaling model are outputs of a GCM quality 

controlled and corrected against observations. The outputs of the GCM used for the 

projection of climate into future are not corrected or quality controlled as they refer to 

the future climate. Therefore there is a difference in quality of the inputs used to the 

downscaling model in its development and future projection phases. In such case, since 

the inputs to the downscaling model are obtained from two different sources with 
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different degrees of accuracy, these inputs are not homogeneous. In this study, two 

potential solutions for the above issue were investigated. As the first potential solution 

to the issue of non-homogeneity in inputs to a downscaling model, a statistical 

downscaling model was developed using the outputs of a GCM in view of using the 

outputs of the same GCM pertaining to future for producing projections of catchment 

scale climate into future. According to the knowledge of the author, there are no records 

in the published literature on the development of a downscaling model using GCM 

outputs as inputs prior to this study, possibly owing to the limited performances of such 

downscaling model. As the second potential solution, another statistical downscaling 

model was developed and the projections of catchment scale climate into future were 

produced using multi-model ensemble outputs derived from the outputs of a set of 

different GCMs as inputs to the model. 

 

Furthermore, owing to differences in the structure, different GCMs tend to simulate the 

climate of the future differently. This phenomenon also influences the downscaling 

models, causing them to produce catchment scale projections of climate which vary 

with the GCM used in providing inputs to the downscaling model. As a solution to this 

issue, multi-model ensemble techniques are used in combining the outputs of different 

GCMs into a single projection. In this study, a downscaling model (the latter model 

described previously) was developed with multi-model ensemble outputs derived from 

the outputs of a set of different GCMs. The projections of catchment scale climate into 

the future were produced by introducing the multi-model ensemble outputs generated 

from the outputs of the same set of GCMs pertaining to the future. Hence this approach 

allows using the outputs of different GCM on a downscaling model for producing a 

single prediction at the point of interest in the catchment. 

 

In a statistical downscaling study which involves downscaling at multiple stations, it is 

important to preserve the cross-correlation structure among the stations in the study area 

for a certain predictand and also among different predictands. However, the majority of 

the techniques currently used in multi-station and multi-station multivariate 

downscaling exercises are quite complex. As a solution to the above issue, in the current 
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study relatively simple yet effective approaches for multi-station and multi-station 

multivariate downscaling were developed. Furthermore, in this study downscaling GCM 

outputs directly to streamflows was investigated. This investigation was performed as 

downscaling GCM outputs directly to streamflows enables the making of a quick 

estimate of streamflows and avoids the need of a hydrologic model. Also, this study is 

the first in Australia to use statistical downscaling for the prediction of catchment 

streamflows, and is one of the very few studies across the world. 

 

1.5 Outline of the thesis 

This thesis consists of 7 chapters. The second chapter provides details on the literature 

on downscaling techniques in use and their applications. Also in the second chapter, the 

uncertainties in statistical downscaling arising from different sources such as; GHG 

emission scenarios, GCMs, observations against which downscaling models are 

calibrated, downscaling technique used, method of selection of predictors and how 

predictors are pre-processed are discussed along with some possible solutions such as 

bias-correction, multi-model ensemble techniques and GCM selection techniques. In 

chapters 3, 4, 5 and 6 investigations on the development of improved statistical 

downscaling methodologies for producing catchment scale projections of climate into 

future are presented. 

 

The third chapter details the development (calibration and validation) of two statistical 

downscaling models for monthly precipitation; the first with reanalysis outputs and the 

second with GCM outputs. The first downscaling model was developed in the 

conventional manner using reanalysis outputs and is intended to be used with the 

outputs of another GCM for the projection of precipitation into future. Since inputs to 

this downscaling model during its development and future projection phases are 

obtained from two different sources with different degrees of accuracy, they are not 

homogeneous. As a solution to this issue, the second downscaling model was developed 

with the outputs of a GCM (same GCM used in the first downscaling model) and 
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intended to be used with the outputs of the same GCM for the projection of precipitation 

into future. A performance comparison of the above two downscaling models is 

provided in this chapter. The bias in GCM simulations and its propagation to the outputs 

of downscaling models is also discussed in this chapter. Furthermore this chapter details 

the investigation of the effectiveness of three different bias-corrections techniques in 

reducing the bias in the precipitation outputs of a downscaling model. The precipitation 

projections produced into future are also presented in the same chapter. 

 

In chapter four, use of a multi-model ensemble approach in statistical downscaling is 

presented. Owing to the structural differences in GCMs, they tend to produce different 

projections of climate into the future. This causes the catchment scale projections 

produced by the downscaling model to vary with the GCM used for providing inputs to 

it. As a solution to this issue, this chapter describes the development of a downscaling 

model for monthly precipitation where projections into the future were produced using a 

set of homogeneous multi-model ensemble outputs derived from the outputs of multiple 

GCMs. In deriving multi-model ensemble outputs for the development (calibration and 

validation) phase of the downscaling model, outputs of several GCM were linked to the 

corresponding reanalysis outputs using multi-linear regression equations. The outputs of 

these multi-linear regression equations (multi-model ensemble outputs) were used for 

the development of the downscaling model. The inputs to the downscaling model 

corresponding to the future climate were generated by introducing the outputs of the set 

of GCMs pertaining to the future to the above multi-linear regression equations. The 

performance of this downscaling model during its calibration and validation phases are 

detailed along with the projection of precipitation produced into future. 

 

In the fifth chapter the introduction of a relatively simple yet effective multi-station and 

multi-station multivariate statistical downscaling approaches are presented. In the multi-

station downscaling approach, for a certain predictand, stations which showed high 

correlations with the other stations in the study area were identified, and downscaling 

models were developed (calibrated and validated) only at those stations. Then, linear 

regression equations were developed between the stations at which the downscaling 
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models were developed and the other stations which showed high correlations with 

them, using the observations. Thereafter, by applying the outputs of the above 

downscaling models on the aforementioned linear regression relationships, the values of 

the predictand at other stations were determined. This multi-station downscaling 

approach was further improved to a multi-station multivariate downscaling approach 

which is capable of downscaling GCM outputs to multiple predictands at multiple 

stations simultaneously. In this chapter, the performances of these multi-station and 

multi-station multivariate downscaling approaches were detailed along with the 

projections produced into future. 

In chapter six of this thesis, development of a downscaling model for directly 

downscaling GCM outputs to catchment streamflows is detailed. In this chapter, the use 

of multi-linear regression (a linear regression technique) and least square support vector 

machine regression (non-linear regression technique) in downscaling are investigated. 

The impacts of the use of principal component analysis in pre-processing the inputs to 

downscaling models are also detailed in the same chapter. 

Finally, in chapter seven a summary and the conclusions drawn from the study are 

presented along with some recommendations for future work. Figure 12 shows the 

interconnection between the work described in the papers included in the thesis. 
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Introduction to research detailed in the 
thesis 

Chapter 2: Statistical 
downscaling: issues, challenges 
and potential solutions  

Identification of issues, challenges and 
potential solutions in statistical 
downscaling 

Contains the paper entitled “Statistical 
downscaling of general circulation model 
outputs to catchment scale hydroclimatic 
variables: Issues, challenges and potential 
solutions”

Chapter 3: Statistical 
downscaling of GCM 
outputs to precipitation 
at a station  

Single station downscaling of 
precipitation using 
reanalysis and GCM outputs 
as inputs 

Contains papers entitled 
“Statistical downscaling of 
general circulation model outputs 
to precipitation part 1: Calibration 
and Validation” and “Statistical 
downscaling of general 
circulation model outputs to 
precipitation part 2: Bias-
correction and future projections” 

Chapter 4: Statistical 
downscaling using a 
multi-model ensemble 
approach 

Single station downscaling of 
precipitation using 
reanalysis and multi –model 
ensemble outputs as inputs 

Contains the paper entitled 
“Multi-model ensemble approach 
for statistically downscaling 
general circulation model outputs 
to precipitation” 

Chapter 5: Multi-station 
and multi-station 
multivariate 
downscaling 

Multi-station and multi-
station multivariate 
downscaling of precipitation, 
evaporation and temperature 

Contains papers entitled 
“Statistical downscaling of general 
circulation model outputs to 
precipitation, evaporation and 
temperature using a key-station 
approach” and “Statistical 
downscaling of general circulation 
model outputs to evaporation, 
minimum temperature and 
maximum temperature using a 
key-predictand and key-station 
approach” 

Chapter 6: Statistical 
downscaling of GCM 
outputs to streamflows 

Single station downscaling of 
streamflow 

Contains the paper entitled “Least 
square support vector and multi-
linear regression for statistically 
downscaling general circulation 
model outputs to catchment 
streamflows” 

Chapter 7: Summary, 
conclusion and 
recommendations for future 
work 

Summary and conclusions of 
research detailed in Chapters 3 to 
6 

 
 Figure 12 Interconnection between work described in the thesis 
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CHAPTER 2 

 

STATISTICAL DOWNSCALING: ISSUES, 

CHALLENGES AND POTENTIAL SOLUTIONS 

 

2.1 Introduction 

Changes in the global climate since the 20th century were mostly due to the 

anthropogenic greenhouse gas (GHG) emissions than the natural variability of the 

climate (Crowley, 2000). During the 800,000 year period leading to the industrial 

revolution (1750-1850), the concentration of the atmospheric carbon dioxide which is 

the most dominant GHG, varied between 180 to 280 parts per million (ppm) 

(Tripati et al., 2009). Since then, due to the intense consumption of fossil fuels, the 

average global carbon dioxide concentration in the atmosphere has risen from 280 ppm 

to 397 ppm by May 2013 (Earth System Research Laboratory, 2013). The GHGs in the 

atmosphere absorb some of the radiation reflected by the earth's surface received from 

the sun, and this natural phenomenon is called "the greenhouse effect". The greenhouse 

effect aids the maintenance of the global temperature at a suitable level for the existence 

of the life. The rising GHG concentrations in the atmosphere intensify the natural 

greenhouse effect and cause an imbalance in earth’s radiative energy budget (Trenberth 

et al., 2009) leading to human induced climate change (Hughes, 2003). Increase in the 

global temperature, sea level rise due to melting glaciers, changes in the precipitation 

patterns which cause floods and droughts are some of the impacts of the climate change 

(Intergovernmental Panel on Climate Change, 2000). 
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General Circulation Models (GCMs), based on the laws of physics are regarded as the 

most credible tools available for the projection of global climate hundreds of years into 

future considering the atmospheric GHG concentrations (Maraun et al., 2010). First in 

1904, Bjerknes (1904) stated that, the condition of the atmosphere at a certain time and 

the laws of physics according to which one weather condition develops from another 

should be known, with sufficient accuracy for meteorological predictions. Bjerknes 

formulated a system of equations for seven basic variables of the atmosphere (pressure, 

temperature, density, humidity and the three components of velocity) based on the 

Newton’s laws of motion, mass continuity, ideal gas law, and laws of thermodynamics 

to describe the atmospheric motions and energy flows (Tribbia and Anthes, 1987). 

However, Bjerknes was unable to solve these equations numerically despite his attempts 

of graphical solutions (Lynch, 2008). Richardson (1922) attempted a manual numerical 

solution to these equations for the first time. With the invention of computers in the 

latter half of the 20th century, numerical weather predictions became a reality. Philips 

(1956) performed the first long-range weather forecast up to one month. Since then, the 

increasing knowledge of the atmospheric processes and advances in computer 

technology aided the rapid evolvement of GCMs over time. 

 

Though GCMs are regarded as the best tools available for the projection of the global 

climate hundreds of years into future (Anandhi et al., 2008), their outputs are at coarse 

spatial resolutions in the order of a few hundred kilometers (Tripathi et al., 2006). In 

other words, GCMs are unable to resolve sub-grid scale features such as topography, 

clouds and land use which influence much of the variance of climate at the catchment 

scale (Tisseuil et al., 2010). Therefore the outputs of GCMs cannot be directly used in 

catchment scale climate impact studies, which in general need hydroclimatic data at fine 

spatial resolutions (Willems and Vrac, 2011). As a solution to the mismatch between the 

coarse scale climate presented in GCM outputs and the catchment scale climate, 

downscaling techniques have been developed (Chen et al., 2010). There are two broad 

classes of downscaling techniques; (1) dynamic downscaling techniques and (2) 

statistical downscaling techniques. Sections 2.2 and 2.3 provide an overview on 
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dynamic and statistical downscaling respectively. These two sections contain some of 

the literature that is not discussed in detail in Section 2.5 on the two classes of 

downscaling. In Section 2.5, the issues and challenges associated with statistical 

downscaling approaches are presented along with some potential solutions. 

 

2.2 Dynamic downscaling 

In dynamic downscaling, an atmospheric physics based model called a Regional 

Climate Model (RCM) is nested in a GCM for the simulation of regional climate 

(Murphy, 1998). In this process, the initial and lateral boundary conditions to the RCM 

are provided by the GCM at multiple vertical and horizontal levels (Wilby and Fowler, 

2011). This information is fed into the RCM through a lateral buffer zone (also known 

as the relaxation zone) in which the coarse GCM grid resolution is gradually converted 

into finer grid resolution in the RCM. In the RCM, this information is processed using 

the physics and the dynamics of the atmosphere, and the regional patterns of the climate 

variables are generated (Rummukainen, 2010). In certain cases, the spatial resolution 

gap between the GCM and the RCM can be quite large. As an example, when nesting a 

RCM with a spatial resolution of 10 km in a GCM which has a spatial resolution of 250 

km, the resolution difference between the GCM and the RCM is in the order of 25. In 

such case, multiple nesting which involves downscaling starting from a larger domain 

with coarser spatial resolution and progressively migrating to smaller domains with 

finer spatial resolution (until the desired spatial resolution is attained) is performed 

(Rojas, 2006). 

 

RCMs are widely used in the field of weather prediction, palaeoclimate studies, study of 

effect of land use changes on climate, simulation of plausible future climatic conditions 

in a selected region etc (Mearns et al., 2003). Dynamic downscaling techniques are 

capable of simulating the catchment scale climate at spatial resolution of about 5 - 50 

kilometres (Yang et al., 2012). They produce spatially continuous fields of climate 

variables preserving spatial correlations and physics underlying the climatic processes 
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(Vasiliades et al., 2009). Another advantage of dynamic downscaling is that these 

approaches are capable of simulating the regional climate according to the changes in 

the regional land use. Since RCMs are operated at higher spatial resolutions, the 

improved representation of topographic features such as mountains, water bodies and 

other land features aid in the simulation of local climate more accurately 

(Rummukainen, 2010). 

 

However, the high computational cost associated with the implementation of dynamic 

downscaling is considered to be a major drawback (Haas and Pinto, 2012). The 

selection of the domain size and the grid resolution are regarded as important choices in 

a regional climate simulation performed using a RCM. According to Jones et al. (1995) 

the optimal domain size and the grid resolution may vary depending on the region over 

which the RCM is run. The domain size and the grid resolution are directly related with 

the computational cost of a regional climate simulation (Qian and Lareef, 2010). 

Although the RCMs are operated at relatively finer spatial resolutions, some of the 

topography may be coarsely represented. As an example, even a spatial resolution of 5 

kms may not be sufficient for the proper representation of a rapidly changing 

topography. This causes the RCM to incorrectly simulate the location and intensity of 

precipitation events that are highly influenced by the local topography (Malby et al., 

2007). Also they cannot produce climate simulations at point scale (e.g. at weather 

stations) (Rummukainen, 2010) and the extremes simulated by them may dampen 

compared to those observed at weather stations (Haylock et al., 2008). 

 

Furthermore, the dynamic downscaling techniques are quite sensitive to the initial 

conditions provided by the GCM. Also RCM may take some time called the spin up 

time in order to establish a stable relationship with the GCM (to attain climate 

equilibrium) (Panitz et al., 2013) and the simulations produced by the RCM during this 

period are not considered as credible predictions. Hence the RCM simulations produced 

during the spin up time are disregarded. The spin up time of a dynamic downscaling 

exercise may be in the order of a few months or a few years (Denis et al., 2002). The 

accuracy of RCM simulations depends on both the GCM outputs used as inputs to the 
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RCM and the parameterisation schemes employed in the RCM (Yhang and Hong, 

2008). The bias in GCM boundary conditions propagates into the regional climate 

simulation produced by the RCM leading to erroneous projections of climate (Piani et 

al., 2010). Also the dynamic downscaling techniques are based on the assumption that 

the parameterisation schemes used in the RCMs for the simulation of the past climate 

are equally applicable for the changing climate in future (Sachindra et al., 2014a). 

 

2.3 Statistical downscaling 

Statistical downscaling techniques attempt to develop empirical relationships between 

the GCM outputs (e.g. mean sea level pressure, geopotential heights) and the catchment 

scale hydroclimatic variables (e.g. precipitation, evaporation and streamflows). The 

following advantages of the statistical downscaling techniques have been documented 

in Wilby and Wigly (1997). Statistical downscaling techniques are relatively simple and 

associated with low computational costs in comparison to their counterpart dynamic 

downscaling techniques. Unlike dynamic downscaling, statistical downscaling can 

provide projections at specific points in a catchment (e.g. observation station). 

Furthermore, statistical downscaling methods are capable of downscaling GCM outputs 

to variables such as streamflows, leaf wetness etc that are not simulated by GCMs. 

Statistical downscaling techniques can be easily applied to different regions. Also for 

the development of a statistical downscaling model, a profound knowledge in 

atmospheric physics is not essential (Sachindra et al., 2013a). 

 

Although statistical downscaling techniques posses the above advantages, they are 

associated with the following disadvantages. All statistical downscaling techniques are 

based on the assumption that the relationships determined between the large scale 

atmospheric variables (e.g. GCM or reanalysis outputs) and observations of the 

predictand for the past climate are also valid for the changing climate in future 

(von Storch et al., 2000). Under changing climate this assumption may be less reliable. 

This assumption is similar to that made on the applicability of parameterisation schemes 
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in dynamic downscaling for the future climate. Statistical downscaling techniques in 

general need a long set of observations for the reliable calibration and validation of 

downscaling models (Charles et al., 2004; Sachindra et al., 2014a). Therefore in data 

scarce regions, successful implementation of statistical downscaling models is a 

challenge. Also statistical downscaling models are considerably dependent on the 

predictors that are used as inputs to these models (Fowler et al., 2007). The simulations 

produced by a statistical downscaling model are sensitive to the atmospheric domain for 

which the inputs are extracted (Wilby and Wigly, 2000). The under-estimation of 

extreme events is also documented as a limitation of statistical downscaling techniques 

(D’onofrio et al., 2010). 

 

Statistical downscaling techniques are classified under three categories (1) regression 

based methods, (2) weather classification techniques, and (3) weather generation 

techniques (Wilby et al., 2004). 

 

2.3.1 Regression based methods 

In regression based statistical downscaling methods, empirical relationships between the 

large scale atmospheric variables (e.g. reanalysis outputs, GCM outputs) and the 

observations of catchment scale hydroclimatic variables are developed for the past 

climate using either linear or non-linear regression techniques (Chen et al., 2010). These 

relationships are used with the large scale atmospheric variables simulated by GCMs 

pertaining to future for the projection of catchment scale hydroclimate into future. 

According to Nasseri et al. (2013), regression based methods are considered the most 

widely used statistical downscaling techniques. This is mainly because regression based 

downscaling methods are easy to implement and also several ready to use software 

packages/toolboxes such as SDSM (Statistical DownScaling Model) (Wilby and 

Dawson, 2012), ASD (Automated Statistical Downscaling) (Hessami et al., 2008), 

GeneXproTools (Ferreira, 2006), LS-SVMlab toolbox (De Brabanter et al., 2010) etc 

are available. However, the regression based downscaling methods in general tend to 

poorly simulate the variance in the observations of the predictand of interest. Also the 
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extreme events are under-predicted often by them (Tripathi et al., 2006; Sachindra et al., 

2013a). Furthermore, the linearity assumption of predictor-predictand relationships and 

the assumption of normality of inputs to the downscaling model in linear regression 

techniques may not be true for certain data sets (Wilby and Fowler, 2011). 

 

Joshi et al. (2013) compared the performances of two statistical downscaling models 

developed using the Relevance Vector Machine (RVM – a non-linear regression 

technique) and Multiple Linear Regression (MLR) for downscaling GCM outputs 

directly to low flow indices pertaining to three rivers in eastern Canada. It was found 

that RVM based downscaling model outperforms the MLR based downscaling model in 

the simulation of low flow indices. Furthermore, it was commented that the complexity 

of the RVM technique may have a negative impact on the computation time, 

particularly when the input sample size is considerably large. Sachindra et al. (2013a) 

used Least Square Support Vector Machine (LS-SVM – a non-linear regression 

technique) and MLR for downscaling reanalysis outputs to monthly streamflows at a 

station located in north-western Victoria, Australia. It was found that LS-SVM was 

marginally better than MLR in the simulation of streamflows. Meenu et al. (2013) 

employed MLR and LS-SVM techniques for downscaling GCM outputs to daily 

precipitation and temperature over a catchment in the state of Karnataka, India. The 

downscaled precipitation and temperature were introduced into a hydrologic model for 

simulating streamflows. It was commented that the downscaling models developed 

using the MLR technique were able to simulate the variance of the minimum and the 

maximum temperature much better than that of precipitation, and the LS-SVM based 

downscaling model was able to better capture the precipitation in comparison to the 

models based on MLR. Goyal and Ojha (2012) used Artificial Neural Networks (ANN 

– a non-linear regression technique) and MLR for downscaling GCM outputs to 

monthly mean minimum and maximum temperature at a station located in Rajasthan, 

India. It was concluded that the ANN based downscaling model was much effective in 

comparison to its counterpart model based on MLR in downscaling large scale 

atmospheric variables into monthly mean minimum and maximum temperature at the 

station of interest. In a study conducted by Ghosh and Katkar (2012), which employed 
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MLR, ANN and SVM for downscaling GCM outputs to monthly precipitation, it was 

found that all techniques yield similar performances in the calibration phase of the 

downscaling model. However, the SVM based model was able to simulate the high 

precipitation values better in comparison to the other two models based on ANN and 

MLR techniques. Furthermore, it was stated that the ANN based model was better at 

simulating low and intermediate precipitation values. The ANN and LS-SVM 

techniques were employed by Tripathi et al. (2006) for downscaling GCM outputs to 

monthly precipitation over India. It was stated that both these techniques fail to 

correctly capture the extreme precipitation events seen among the observations. 

 

2.3.2 Weather classification techniques 

Weather classification techniques (weather typing) in statistical downscaling aim at 

classifying the large scale weather conditions into number of discrete states (weather 

types) based on their synoptic similarities, and links them with the observations of 

predictands. Then corresponding to the future states of the large scale weather 

characterised by the climate models, the catchment scale weather pertaining to future is 

derived. In other words, weather classification methods link the occurrences of large 

scale weather patterns with local scale climate. The following advantages and 

disadvantages of weather classification techniques were documented in Huth et al. 

(2008). The main benefit of weather classification techniques is that they are capable of 

downscaling highly non-linear relationships between the predictors and the predictand 

of interest. However, these techniques are dependent on the assumption that a certain 

large scale weather pattern seen in the past will lead to the same local scale weather 

condition in future. Another issue associated with weather classification techniques is 

that if a weather type characterised by the GCM for the future is not found among the 

past weather types, the determination of the local weather becomes chaotic. 

 

In literature, weather classification techniques are grouped into several categories based 

on different attributes. Kalkstein et al. (1996) classified the weather classification 

techniques based on the scale of application (point, regional and continental) and the 
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climatological phenomena (pressure patterns based weather type and thermal and 

moisture properties of air mass). Yarnal (1993) subdivided the weather classification 

techniques into two main categories; (1) manual and (2) automated. Whereas Huth et al. 

(2008) classified weather classification techniques into three types; (1) subjective, (2) 

objective, and (3) mixed (hybrid). The manual and automated methods stated in Yarnel 

(1993) are the same defined in Huth et al. (2008) as subjective and objective weather 

classification techniques respectively. The subjective methods of weather classification 

are also called manual classification techniques and the classification is mainly based on 

the expert knowledge of the physical attributes of the circulations (e.g. visual analysis of 

synoptic charts). Sheridan (2002) documented the following disadvantages of subjective 

weather classification techniques. The classification choices are arbitrary to a large 

degree and also the classification process is time consuming. Another disadvantage is 

that a weather classification scheme defined over a certain region cannot be applied to 

another region. The Lamb weather types (Lamb, 1972) defined over the British Isles is 

one of the early subjective weather classification schemes based on the attributes of the 

air flow direction and the level of cyclonicity. The Hess–Brezowsky weather 

classification by Hess and Brezowsky (1977) is also another subjective weather 

classification scheme based on the circulation patterns (surface pressure) over the 

Europe and the North-East Atlantic region. 

 

The objective weather classification techniques are dependent on various numerical 

methodologies. They are also known as automated techniques as these techniques need 

the use of a computer owing to their complexity. Some of the numerical methodologies 

used in the automated weather classification techniques are; correlation coefficients for 

the determination of similarity between weather patterns (Lund, 1963), clustering 

algorithms (Kalkstein et al., 1987; D’onofrio et al., 2010), principal component analysis 

(Huth et al., 2008), self-organizing maps (Cassano et al., 2006), classification and 

regression trees (Cannon et al., 2002), hidden Markov models (Hughes and Guttorp, 

1994), linear discriminant function analysis (Kalkstein et al., 1996), cumulative logistic 

regression and nonlinear regression (Cheng et al., 2011) etc. The objective weather 

classification techniques are easy to apply and computationally effective than the 



Chapter 2: Statistical Downscaling: Issues Challenges and Potential Solutions 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 35 

subjective techniques. However, these techniques are applicable to a single station or a 

region at a time (Sheridan et al., 2002). 

 

The mixed weather classification techniques possess some subjective and objective 

attributes (e.g. James (2007)). Frakes and Yarnal (1997) used a mixed weather 

classification technique in which the sea-level pressure charts over the eastern USA 

were manually classified into several groups and then a correlation coefficient based 

procedure was used for the assignment of local scale weather to each weather group. 

They stated that this hybrid scheme is more reliable than a subjective or an objective 

weather classification technique. 

 

2.3.3 Weather generation techniques 

In weather generation techniques, the weather pertaining to future is generated by 

adjusting the parameters of the weather generator according the changes in the GCM 

outputs pertaining to future (Kou et al., 2007; Wilks, 2010). They are parametric 

stochastic models which generate time series of weather data while preserving the 

statistics of observations such as averages, variances and covariances, frequencies, 

extremes etc (Wilks and Wilby, 1999). The simplest weather generator for daily 

precipitation may have two parameters; (1) the probability of occurrence of a wet day, 

and (2) the amount of precipitation. 

 

In the application of the above weather generator, the values of the two parameters from 

the GCM outputs for the future climate and also for the past climate pertaining to the 

baseline period (simulated by the same GCM) are determined. Then the percentage 

changes of the two parameters in the GCM outputs for the future with respect to those 

simulated for the baseline period are determined. Thereafter the values of the two 

parameters pertaining to the observed precipitation of the baseline period are scaled 

either up or down, corresponding to the above determined changes. These scaled 

parameters are used in the generation of occurrences of wet days and precipitation 

amounts at the station of interest. The most important advantage of weather generators 
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is that they can be used to generate time series of weather data of unlimited length and 

number (Kreienkamp et al., 2013). These synthetic time series of weather data provide a 

way for the assessment of risk involved in the design of water resources systems 

(Mehrotra et al., 2006). However the majority of the weather generators are not capable 

of preserving the spatial correlation structure seen among the observations at multiple 

stations located in the same study area (Baigorria and Jones, 2010). Furthermore, the 

multi-station weather generation techniques capable of preserving the spatial coherence 

among stations are complex and the number of parameters in a multi-station weather 

generator may increase largely with the number of stations (Mehrotra et al., 2006). 

 

Richardson (1981) used a weather generation technique based on the first order Markov 

chains and an exponential distribution for the simulation of daily precipitation and a 

multivariate (multiple variables simulated concurrently) auto-regression model for the 

simulation of daily maximum temperature, minimum temperature and solar radiation. It 

was stated that the simulation of the maximum temperature, the minimum temperature 

and the solar radiation is much effective than that of precipitation, as the observations of 

these climatic variables contain less zeros and their distributions are much less skewed. 

This weather generation techniques proposed in Richardson (1981) is regarded as the 

most popular daily weather generation technique (Wilks and Wilby, 1999). Wilks 

(1992) used the weather generation techniques specified by Richardson (1981) for the 

simulation of catchment scale daily precipitation, maximum temperature, minimum 

temperature and solar radiation using the GCM outputs. Wilks (1998) extended the 

precipitation generation mechanism specified in Richardson (1981) for the generation of 

daily precipitation at multiple stations. Wilks (1999) further extended the weather 

generation models defined in Richardson (1981) for the concurrent simulation of 

precipitation, maximum temperature, minimum temperature and solar radiation at 

multiple stations. Also in the studies by Khalili et al. (2007), Srikanthan and Pegram 

(2009), Jeong et al. (2013), models for the generation of daily precipitation at multiple 

stations are detailed. 
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2.5 Statistical downscaling: issues, challenges and 

potential solutions 

As stated earlier in Section 2.3, statistical downscaling techniques possess number of 

advantages such as the simplicity in structure, low computational cost, ability to 

simulate hydroclimatic variables that are not even simulated by GCMs, point scale 

projections etc. However, these techniques are subjected to a cascade of uncertainties 

originating from different sources such as GHG emission scenarios, GCMs, 

observations against which downscaling models are calibrated, downscaling technique 

used, method of selection of predictors, how predictors are pre-processed etc. Therefore 

in decision making, the catchment scale hydroclimatic projections produced by any 

downscaling model should be used cautiously with an understanding of the uncertainties 

lying beneath the projections. Some of the issues in a downscaling study can also be 

remedied in several ways such as application of a bias-correction, use of long records of 

observations for model calibration, uncertainty analysis of projections using several 

GHG emission scenarios, ensemble approaches for the combination of several 

predictions into one single prediction etc. 

 

In this section the issues and the challenges associated with statistical downscaling of 

GCM outputs to catchment scale hydroclimatic variables are discussed along with some 

of the potential remedies. 

 

This section contains the following journal paper; 

 

1. Sachindra DA, Huang F, Barton AF, Perera BJC. 2013c. Statistical 

downscaling of general circulation model outputs to catchment scale 

hydroclimatic variables: Issues, challenges and potential solutions. Journal of 

Water and Climate. (Article in press). (SCImago journal rank indicator = Q2; 

Impact Factor: 1.000). 
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Abstract 

The aim of this paper is to discuss the issues and challenges associated with statistical 

downscaling of GCM outputs to hydroclimatic variables at catchment scale and also to 

discuss potential solutions to address these issues and challenges. Outputs of GCMs 

(predictors of statistical downscaling models) suffer a considerable degree of 

uncertainty, mainly due to the lack of theoretical robustness caused by the limited 

understanding of various physical processes of the atmosphere and the incomplete 

mathematical representation of those processes in GCMs. The presence of number of 

future GHG emission scenarios with equal likelihood of occurrence leads to scenario 

uncertainty. Outputs of a downscaling study are dependent on the quality and the length 

of the record of field observations, as statistical downscaling models are calibrated and 

validated against these observations of the hydroclimatic variables (predictands of 

statistical downscaling models). The downscaled results vary from one statistical 

downscaling technique to another due to different representations of the predictor-

predictand relationships. Also different techniques used in selecting the predictors for 

statistical downscaling models influence the model outputs. Although statistical 

downscaling faces the above issues, still it is considered as a potential method of 

predicting the catchment scale hydroclimatology from GCM outputs. 

Keywords: Statistical downscaling, General Circulation Model, Greenhouse Gas 

Emission. 
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INTRODUCTION 

 

Anthropogenic climate change caused by the increasing Greenhouse Gases (GHGs) in 

the Earth’s atmosphere is a well-accepted phenomenon (Wilks 2010), alongside the 

natural variability of climate. With the accumulation of the GHGs, the global climate is 

expected to change throughout the 21st century (IPCC 2000; Dessai et al., 2005). In the 

modern world, influences of climate change on water resources have received 

increasing attention (Chen et al., 2010), as water is one of the essential resources for the 

existence of humans, animals and plants. 

 

General Circulation Models (GCMs), based on the laws of physics are regarded as the 

most credible tools available for the projection of global climate, hundreds of years into 

future, considering the possible future atmospheric GHG concentrations defined by 

GHG emission scenarios (Prudhomme et al., 2003). However, GCMs produce their 

outputs at coarse grid resolutions and therefore unable to represent sub-grid scale 

climate properly (Anandhi et al., 2008). Hydroclimatic data at finer resolutions are 

needed for hydrologic studies at the catchment scale (Prudhomme et al., 2003). This 

scale mismatch, between the GCM outputs and the hydroclimatic data needed at the 

catchment level, is addressed by employing downscaling techniques 

(Fowler et al., 2007).  

 

Downscaling techniques are grouped under two broad classes; dynamic downscaling 

and statistical downscaling. In dynamic downscaling, a higher resolution Regional 

Climate Model (RCM) is nested in a coarse resolution GCM, and boundary conditions 

are fed into the RCM from the GCM. RCMs simulate physical processes of the 

atmosphere at the catchment scale unlike the GCMs (Fistikoglu & Okkan 2011). These 

RCMs exhibit reasonable potential in capturing the extremes of climate variables (such 

as precipitation) at the catchment scale (Huntingford et al., 2003). Dynamic 

downscaling generates spatially continuous fields of climate variables preserving spatial 

correlations and physics underlying the climatic processes (Vasiliades et al., 2009). The 

major disadvantages of dynamic downscaling techniques are that, they are 
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computationally expensive and are highly dependent on the boundary conditions 

provided by the GCM (Chu et al., 2010). 

 

Statistical downscaling relies on the empirical relationships derived between the GCM 

outputs (predictors of statistical downscaling models) and catchment scale variables 

(predictands of statistical downscaling models) such as precipitation, streamflow, 

surface air temperature etc (Hay & Clark 2003). Wilby et al. (2004) classified statistical 

downscaling techniques under three categories; regression methods, weather 

classification methods and weather generators. In regression methods, linear or non-

linear mathematical relationships between GCM outputs and catchment level variables 

are derived. In weather classification techniques, predictands are estimated by matching 

the present state of the weather with a past similar state (of the weather) in record 

(Wilby et al., 2004). Weather generators produce weather data for the future by scaling 

their parameters either up or down by the equivalent changes observed in GCM outputs 

for future. They produce synthetic weather sequences, which capture the essential 

features of the observed weather (Kou et al., 2007). This enables the generation of 

catchment scale time series of climate variables, which resembles the larger-scale 

changes in the GCM outputs. Statistical downscaling techniques are simpler and 

computationally less expensive in comparison with dynamic downscaling techniques 

and could be used without profound knowledge of the physical processes of the 

hydrologic cycle. Therefore often GCM outputs are statistically downscaled for the 

assessment of possible impacts of climate change at the catchment scale. All statistical 

downscaling techniques are dependent on the assumptions that, (1) the empirically 

derived predictor-predictand relationships are valid under the changing climate in 

future, (2) predictors (of the statistical downscaling models) used are realistically 

simulated by GCMs, and (3) predictors clearly depict the climate change signal 

(von Storch et al., 2000). 

 

Multiple Linear Regression (MLR) (Chen et al., 2010), Artificial Neural Networks 

(ANN) (Tripathi et al., 2006), Support Vector Machine (SVM) (Anandhi et al., 2008), 

Relevance Vector Machine (RVM) (Ghosh & Mujumdar 2008), and Gene Expression 



Chapter 2: Statistical Downscaling: Issues Challenges and Potential Solutions 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 44 

Programming (GEP) (Hashmi et al., 2009a; Coulibaly 2004) are some of the widely 

used regression based statistical downscaling techniques. Method of meteorological 

analogues (Timbal et al., 2009), recursive partitioning (Schnur & Lettenmaier 1998) and 

nonhomogenous hidden Markov models (Mehrotra et al., 2004) are examples of 

weather classification techniques. Combination of Markov chains and two parameter 

Gamma distribution is an example of a typical weather generator in use 

(Richardson 1981). 

 

Although statistical downscaling approaches possess number of advantages, they are 

susceptible to a cascade of uncertainties and errors introduced at various stages of the 

process. Therefore statistical downscaling is associated with many issues and the 

process faces number of challenges in delivering a reliable output at the catchment 

scale, minimising the cascade of uncertainties. According to Hashmi et al. (2009a), 

there are four major types of issues associated with the projection of catchment scale 

climate into future, which are the uncertainties in; (1) GHG emission scenarios, (2) 

GCMs, (3) observations, and (4) downscaling techniques. Dessai et al. (2005) stated 

that the uncertainties embedded in regional scale climate projections are mainly due to 

the uncertainties in projections of GHG emissions produced into future, the presence of 

different GCMs which employ different internal structures, and the numerous 

downscaling techniques in use.  

 

This paper presents a discussion on some of the issues and challenges associated with 

statistical downscaling of hydroclimatic variables to catchment scale, and also potential 

solutions to these issues and challenges. For better readability, these issues and possible 

solutions are detailed under several sub topics; uncertainties in GCM predictions, 

uncertainties in GHG emission scenarios, issues with observations of hydroclimatic 

variables, issues with statistical downscaling techniques, and issues with the predictors 

of downscaling models.  
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UNCERTAINTIES IN GCM PREDICTIONS  

 

GCMs consider the surface of the Earth, oceans and atmosphere in three dimensional 

grid boxes, in solving the physics based mathematical equations, which are used to 

describe the complex atmospheric motions. On these equations of atmospheric motion, 

different assumptions and approximations are employed by different GCMs. The 

assumptions and approximations, horizontal and vertical grid resolutions and the 

process explicitly modelled in a GCM, could vary from one GCM to another, causing 

differences in their outputs. In other words, due to a variety of model structures based 

on various assumptions and approximations, employed to simplify the complex nature 

of the atmosphere, different GCMs produce different predictions (Yu et al., 2002). As 

an example, GCMs project different rises in global mean surface air temperatures by the 

end of the 21st century in the range of 1.5˚ - 4.5˚ C, when the carbon dioxide 

concentration in the atmosphere is doubled (Covey et al., 2003).  

 

Smith & Chandler (2009) assessed 22 GCMs involved in the Coupled Model 

Intercomparison Project phase 3 (CMIP3), and commented that ECHAM5, GFDL2.0, 

GFDL2.1, MIROC3.2 (high-resolution) and HadCM3 could better represent the 

Australian rainfall and the ENSO phenomena, than the other models. In that study, the 

agreement between the precipitation outputs of GCMs and the observed precipitation 

was assessed using root mean square error (RMSE) and correlation coefficients. 

Hewitson & Crane (2006) assessed the agreement of daily precipitation predictions of 

ECHAM4.5, HadCM3 and CSIRO Mk2 over South Africa, and found that there are 

large differences in predictions among these models. Perkins et al. (2007) used the 

overlap between the Probability Density Functions (PDF) of several GCM outputs and 

the corresponding observations as a measure of prediction skills of 14 GCMs over 

Australia. There, it was realised that BCCR2.0, ECHAM5 and ECHO-G could better 

reproduce the observed precipitation over Australia. Furthermore, it was realised that 

MIROC3.2 (high resolution), MIROC3.2 (medium resolution) and ECHO-G better 

reproduced the maximum temperature, while the minimum temperatures were better 

predicted by GFDL2.1, CSIRO Mk3 and CGCM1. Lambert & Boer (2001) proved that 
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different GCMs could simulate different variables with various levels of accuracies. 

Gleckler et al. (2008) assessed the ability of 21 CMIP3 GCMs in reproducing 22 

different variables under the IPCC 20th century climate experiment, across the entire 

globe, and found that the accuracy of GCMs vary over space and the variable 

considered. According to the above examples, it is clear that different GCMs show 

different levels of sensitivities to the climate over a certain geographic region, and the 

same GCM could better predict some variables than others. 

 

Owing to computational limitations, GCMs are operated at relatively coarse spatial 

resolutions (Ward & Sun 2006). When the spatial resolution of a GCM is halved (e.g. 

when 5.0˚ x 5.0˚ is halved it becomes 2.5˚ x 2.5˚), approximately the model becomes 

ten times slower due to the increased computational load (Tebaldi & Knutti 2010). The 

coarse spatial resolution of GCMs is a major challenge in using their outputs directly at 

the catchment level. At this coarse scale, GCMs fail to correctly represent sub-grid scale 

features such as land use, the development of cold and warm fronts (i.e. convective 

cloud processes), and hurricanes (Parry et al., 2004). With the advancements in 

atmospheric and computer sciences, more GCM outputs at relatively finer spatial 

resolutions are available under Coupled Model Intercomparison Project phase 5 

(CMIP5). The median of the spatial resolution of the CMIP5 GCMs is finer than that of 

CMIP3 GCMs, but the finest resolution of CMIP5 remains the same as that of CMIP3 

(Teng et al., 2012). However, still the spatial resolutions of GCMs are too coarse for the 

direct application of their outputs at the catchment scale. The outputs of 23 CMIP3 and 

over 50 CMIP5 GCMs, produced at different spatiotemporal resolutions are currently 

available to public on the website of Program for Climate Model Diagnosis and Inter-

comparison (PCMDI) at http://www.pcmdi.llnl.gov/. 

 

Most of the catchment level studies need not only data at fine spatial resolutions but 

also data at fine temporal resolutions, preferably at sub-daily scales. As an example, in 

developing Intensity - Frequency - Duration (IFD) curves accounting for possible 

climate change at a certain location, rainfall data at very fine temporal resolutions (at 

the resolution of few minutes) are needed (Nguyen et al., 2008). However, currently 
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very limited GCM outputs (also valid for CMIP5 GCMs) are available to the public on 

web archives at fine temporal resolutions, even at 3 hour level. Furthermore, GCM data 

are available to public on the web archives (e.g. http://www-pcmdi.llnl.gov/, 

http://www.ipcc-data.org/), only for a limited number of variables at the daily and 

especially at the sub-daily time scales, unlike the monthly time scale. This is because, 

though GCMs are run at fine temporal scales, it will take large amount of computer 

storage space to save the projections corresponding to all time steps. Due to this issue, 

most of the GCM data are aggregated to coarse time steps (e.g. monthly time step) and 

archived on the web.  

 

According to Prudhomme et al. (2002), daily rainfall predictions of GCMs are 

associated with considerable uncertainties, implying that sub-daily scale outputs have 

more uncertainties compared to daily and monthly GCM outputs. Wilby et al. (1998) 

stated that, the use of GCM outputs at catchment scale is not only restricted by their 

coarse spatial resolution but also by the high unreliability at temporal scales finer than 

months. As an example, when the daily precipitation outputs of a GCM are summed to 

obtain monthly precipitation, monthly precipitation amounts could become more 

reliable, since under or over estimations of daily precipitation totals could compensate 

each other in summing. Hence, monthly GCM outputs could have a better reliability 

over daily or sub-daily outputs. During the aggregation of GCM data from finer 

temporal resolutions to coarser temporal resolutions, the amounts might be well 

estimated at the coarser temporal resolution. However, the aggregation of data, results 

in a loss of information on events, which take place at fine temporal scales such as the 

occurrences of daily maximum and minimum temperatures and variations in 

precipitation during a day. Though there is considerable uncertainty in daily and sub-

daily GCM outputs, number of the downscaling exercises have been performed at the 

daily time scale, since the majority of catchment scale investigations (e.g. hydrologic 

modelling) require hydroclimatic inputs at finer temporal resolutions. However, it 

should be noted that finer the temporal resolution of the GCM outputs less reliable they 

are. If a certain downscaling study uses daily or sub-daily GCM outputs (even monthly 

outputs), therefore it is advisable to perform a bias-correction on them. Some of the 
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bias-correction measures applied to GCM outputs stated in the past literature, have been 

summarised below. It is clear that, with the advancement of knowledge on various 

atmospheric processes, the GCM uncertainty is further reduced. Therefore in the future 

more reliable GCM outputs at finer time scales could be expected.  

 

The bias is a quantitative representation of the uncertainty in GCM outputs. Simply, the 

GCM bias is explained as the difference between the GCM outputs and the 

corresponding observations (Salvi et al., 2011). Sharma et al. (2007) stated that, GCM 

outputs often contain bias which hinders their direct use at the catchment level, along 

with the coarse spatial resolution. Ojha et al. (2012) stated that, the bias in GCM outputs 

should be corrected prior to any use. According to Li et al. (2010), GCM bias is due to 

the limited knowledge of the physical processes of the atmosphere and the 

simplification of the naturally complex climate system in the mathematical equations 

used in GCMs. The correction of bias can be done in two ways; (1) application of bias-

correction to raw GCM outputs, and (2) the correction of bias in the outputs of the 

downscaling models which were run with the GCM outputs (Sachindra et al., 2014). 

There are different bias-correction techniques available. The widely used bias correction 

methods are monthly bias-correction (Johnson & Sharma 2012), nested bias-correction 

(Johnson & Sharma 2012), quantile mapping technique (Panofsky & Brier 1968), 

equidistant quantile mapping technique (Li et al., 2010), linear scaling, local intensity 

scaling, power transformation, variance scaling, and delta-change approach 

(Teutschbein & Seibert 2012). These methods can be applied either to the raw 

GCM/RCM outputs or to the outputs of a downscaling model. 

 

The monthly bias-correction is one of the simplest bias-correction techniques in use. In 

this method, for the correction of bias in the hydroclimatic variable (output of a 

GCM/RCM or a downscaling model) for the past climate, the average and the standard 

deviation of the time series of the hydroclimatic variable are replaced with those of 

reference data (e.g. observations or reanalysis outputs) (Johnson & Sharma 2012). The 

correction of bias of the hydroclimatic variable in future climate is based on the 

assumption that, the bias in the variable during the past is the same in the future. Unlike 
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the monthly bias-correction, the nested bias-correction (Johnson & Sharma 2012) is 

capable of correcting the average, the standard deviation and also the lag 1 

autocorrelations of a hydroclimatic variable, simultaneously at monthly and annual time 

scales. It also assumes that, the bias in the variable (to be bias-corrected) for the past 

climate will remain the same in the future (Johnson & Sharma 2012). The monthly and 

the nested bias-corrections were used by Ojha et al. (2012) and Johnson & Sharma 

(2012) for correcting the bias in the monthly precipitation outputs of GCMs, over India 

and Australia respectively. 

 

Another technique used in the bias-correction of hydroclimatic variables is the quantile 

mapping technique (Panofsky & Brier 1968). In this technique, all statistical moments 

of the hydroclimatic variables to be corrected (e.g. outputs of a GCM or a downscaling 

model) are matched with those of a reference set of data (e.g. observations or reanalysis 

outputs) for the past climate. This is achieved by mapping the Cumulative Distribution 

Functions (CDF) of the hydroclimatic variables onto that of reference data. For bias-

correcting the projections produced into future, first, corresponding to the values of the 

hydroclimatic variable for the future projections, the CDF values are extracted from the 

CDF which was derived from the model predictions for the past climate. Then 

pertaining to these CDF values, the bias-corrected values of the hydroclimatic variable 

for the future climate are extracted from the CDF of the reference data set. The quantile 

mapping technique was used by Wood et al. (2004) for correcting the bias in the 

precipitation and temperature outputs of a GCM. Ghosh & Mujumdar (2008) used 

quantile mapping for the bias correction of streamflow downscaled from GCM outputs.  

 

The equidistant quantile mapping technique (Li et al., 2010) is a variant of quantile 

mapping. Similar to quantile mapping, in equidistant quantile mapping, for the bias-

correction of a hydroclimatic variable pertaining to the past climate, its CDF is mapped 

onto the CDF of the reference data set. In the application of the equidistant quantile 

mapping technique for the future climate, the difference between the CDF of the 

hydroclimatic variable and the CDF of the reference data set, of the past climate, is 

subtracted from the CDF of the hydroclimatic variable pertaining to future climate. Li et 
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al. (2010) successfully bias-corrected the precipitation and temperature produced by a 

GCM with equidistance quantile mapping.  

 

A gamma distribution based quantile mapping technique was used by Piani et al. (2010) 

for bias-correction of daily precipitation downscaled using a RCM over Europe. They 

commented that this bias-correction is capable of correcting the statistical moments and 

also the other statistical properties (e.g. intensity, extremes) of daily precipitation with 

good accuracy. According to Lafon et al. (2013), linear scaling, nonlinear scaling, 

gamma distribution based quantile mapping and empirical distribution based quantile 

mapping were able to correct the average and the standard deviation of the variable of 

interest with a good degree of accuracy, but the accuracy of higher order statistical 

moments (i.e. skewness and kurtosis) were found to be sensitive to the correction 

technique and its calibration period. They concluded that empirical distribution based 

quantile mapping performs better than the other bias-correction techniques. Similarly, 

Gudmundsson et al. (2012) analysed the effectiveness of distribution-derived quantile 

mapping, parametric quantile mapping and nonparametric quantile mapping. They also 

commented that empirical (nonparametric) distribution based quantile mapping 

performed better than the other bias-correction techniques used in the study. In 

empirical distribution based quantile mapping, the CDFs of the variable of interest are 

derived from the observations and model simulations, whereas in parametric quantile 

mapping (e.g. based on the gamma distribution) a theoretical distribution is fitted to the 

observations and model simulations. The advantage of using empirical distribution 

based quantile mapping is that, since the CDFs of the variable of interest are derived 

from the observations and the model simulations, the errors associated with fitting a 

theoretical distribution to these data can be avoided (Sachindra et al., 2014). However, 

in using empirical distribution based quantile mapping, frequent interpolation and 

extrapolation of the CDFs may introduce errors to the bias-correction (Li et al., 2010). 

 

Sachindra et al (2014) used equidistant quantile mapping, monthly and nested bias-

corrections on monthly precipitation outputs of a downscaling model. In that study, it 

was found that, when the scatter of the variable is large, the reduction of scatter using 
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any of these techniques is of limited success. Furthermore, Sachindra et al. (2013c) 

found that when the scatter of the climate variable of interest against observations is 

small, monthly bias-correction can reduce the scatter and improve its mean, standard 

deviation and also the time series. It should be noted that in that study only monthly 

bias-correction techniques was used. Both quantile mapping and equidistant quantile 

mapping, attempt to correct the statistical moments of the prediction, as in these 

techniques the correction is applied to the CDFs. On the other hand, monthly and nested 

bias-corrections are focused on correcting some of the statistics of the variable, and no 

explicit measure is taken to correct the CDF. 

 

Ensemble techniques are helpful in combining multiple predictions (e.g. of GCMs or 

downscaling models) into a single prediction. This aids in reducing the uncertainty 

associated with the use of multiple predictions. There are two types of ensembles; (1) 

ensemble of predictions obtained from the same model, and (2) ensemble of predictions 

obtained from a set of different models (Kharin & Zwiers 2002). In ensemble 

modelling, the GCMs which have proven to perform well over the study area should be 

selected as the ensemble members, since this helps in reducing the noise in the 

ensemble prediction (Knutti et al., 2010). Several methods are used in deriving the 

ensemble predictions. These methods are applicable to the outputs of the GCMs, RCMs 

and also to the outputs of downscaling models. Averaging is the simplest method of 

deriving an ensemble prediction (Maqsood et al., 2004). In this technique, the set of 

predictions is added together and the average prediction is calculated. Knutti et al. 

(2010) and Warner et al. (2010) stated that multi-model ensemble average is superior to 

the predictions produced by any single model in the ensemble. In averaging, equal 

weights are assigned to each member of the ensemble. This assumes that, all members 

of the ensemble perform with equal accuracy. However, this assumption is not correct, 

as ensemble members (e.g. different GCMs) perform with different degrees of accuracy 

(Maqsood et al., 2004). 

 

The technique of assigning weights to each member of the ensemble based on their 

individual performances and hence obtaining the weighted average is a better approach, 
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than simply obtaining the average of predictions by assigning equal weights to each 

ensemble member (Zhang & Huang 2013). Ingol-Blanco (2011) determined the weights 

for the members in an ensemble of 5 GCMs by considering their ability in simulating 

the streamflows using a hydrologic model, which was run with the precipitation and 

temperature data downscaled from these GCMs. The ratio between the root mean square 

error of a GCM in reproducing streamflow and the sum of root mean square errors of all 

GCMs in the ensemble in reproducing streamflow, was used in the determination of 

weights for each GCM, in each calendar month. Zhang & Huang (2013) considered 

multiple factors for the assessment of the performances of an ensemble of 4 RCMs, in 

assigning weights to them. The factors considered in that study, included the ability of 

the RCMs to reproduce the inter-annual and seasonal circulation patterns of 

precipitation and temperature, extremes of daily precipitation and temperature, 

precipitation occurrence etc. Then, for each of the factors considered, skill scores were 

derived, and those scores were combined to a single weight value for each RCM. 

However, the determination of weights is dependent on the factors considered in the 

study and how the skill scores of these factors are combined to a single weight. 

Therefore Christensen et al. (2010) stated that the method of assigning weights for 

models, based on their performances is subjective to a certain extent. Min & Hense 

(2006) used Bayesian model averaging and simple arithmetic averaging for ensemble 

predictions of global mean surface temperature from a set of GCMs. In that study, for 

Bayesian model averaging, the Bayes factors (defined in Kass & Raftery 1995) were 

used as the weights for each individual GCM, and in simple arithmetic averaging, equal 

weights were assigned to each GCM. They concluded that a better agreement was seen 

between the observations and the ensemble prediction produced using the Bayesian 

model averaging technique. It was argued that the better performance of the multi-

model ensemble prediction based on the Bayesian model averaging technique was 

possibly due to the fact that Bayes factors assign relatively larger weights to better 

models and smaller weights to models that perform poorly. 

 

Krishnamurti et al. (1999) regressed the outputs of 8 climate models, against the 

corresponding observations, using multi-linear regression (MLR) to obtain ensemble 
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predictions over the entire globe. It was commented by them that, the ensemble 

predictions produced in the above manner are more accurate than the ensemble mean 

and also better than any of the predictions of the individual GCMs which formed the 

ensemble. Kharin & Zwiers (2002) found that in general the forecast produced by 

regressing the mean forecast of an ensemble of models against the observations (using 

simple linear regression relationships) is more skilful than the forecasts produced by 

regressing the forecast of each individual model against observations (using multi-linear 

regression relationships). Furthermore, they found that when the size of the ensemble 

increases (e.g. number of GCMs), the skill of the ensemble forecast produced by the 

former technique levels off and degrades with the latter technique. Sachindra et al. 

(2013b) used multi-linear regression technique to regress the 20th century climate 

experiment outputs of HadCM3, ECHAM5 and GFDL2.0 with NCEP/NCAR reanalysis 

data for producing a set of multi-model ensemble outputs. These multi-model ensemble 

outputs were subsequently used in the calibration and validation of a statistical 

downscaling model. The outputs of HadCM3, ECHAM5 and GFDL2.0 pertaining to 

future climate were then introduced to the above multi-linear regression equations to 

generate multi-model ensemble outputs as inputs to the downscaling model, for 

projecting catchment scale climate into future. This way, the quality mismatches (bias) 

which exist between the NCEP/NCAR reanalysis outputs and GCM outputs are 

minimised, and the model calibration, validation and future projections are performed 

with a relatively homogeneous set of inputs, composed of outputs of multiple GCMs.  

 

Sensible selection of a sub-set of GCMs from the large pool of existing GCMs is a 

possible way of narrowing the uncertainty range in a statistical downscaling exercise. 

For the selection of a sub-set of GCMs, a pool of GCMs should be assessed. Giorgi & 

Mearns (2002) stated that, models can be assessed based on their performances and also 

based on the convergence of their outputs. The model performance refers to how well 

models can reproduce the past climate (e.g. climate of the 20th century) over the area of 

interest. The model convergence refers to the degree of agreement among the models, of 

the climate projections produced by them into future. A subset of GCMs can be selected 

based on their performances in the past and considering the convergence of their 
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projections produced into future. Dessai et al. (2005) assessed the model performance 

and model convergence for monthly precipitation and monthly temperature outputs of 9 

GCMs, using skill scores. Finally the performance and convergence skills scores were 

combined together to obtain a single skill score for each GCM. Johnson & Sharma 

(2009) used the variable convergence scores to measure how well the projections of 

models produced into future, converge with each other, over Australia. The variable 

convergence scores used by them were based on the coefficient of variation of eight 

climatic variables simulated by nine GCMs. They commented that the highest 

agreement between the GCMs was seen for pressure and temperature and the least 

agreement was observed for precipitation. Gleckler et al. (2008) assessed the 

performances of 21 GCMs using the root mean square error computed between the 20th 

century climate experiment outputs of the GCMs and corresponding reanalysis outputs. 

Anandhi et al. (2011) used a skill score measure proposed by Perkins et al. (2007) 

which was based on the overlap between then PDF of the model output and the PDF of 

the observations. In many studies, owing to time and resource limitations, only limited 

number of GCMs is employed (Johnson & Sharma 2009). However, prior any statistical 

downscaling study, if the available resources permit, it is advisable to assess multiple 

GCMs and identify the most suitable GCM or GCMs for the study area and the 

catchment scale predictand considered in the study.  

 

UNCERTAINTIES IN GHG EMISSION SCENARIOS 

 

GHG emission scenarios are the pictures of plausible future atmospheric GHG 

concentrations based on literature and assumptions (IPCC 2000). According to Moss et 

al. (2010), emission scenarios describe possible future releases of GHGs and substances 

such as aerosols which influence the radiation balance of the earth, leading to changes 

in climatic conditions. It should be noted that, the GHG emission scenarios are not 

predictions but projections developed with expert judgements on possible conditions of 

the future world. Climate change scenarios obtained by forcing the GCMs with different 

GHG emission scenarios enable the researchers to study the possible future changes in 

the climate system influenced by human activities.  
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In 1990, Intergovernmental Panel on Climate Change (IPCC) formulated four GHG 

emission scenarios and these were followed by a set of six IS92 emission scenarios, 

introduced in 1992. In year 2000, with the release of the Special Report on Emission 

Scenarios (SRES), the IPCC introduced a newer set of GHG emission scenarios 

replacing the IS92 emission scenarios (IPCC 2000). IPCC SRES emission scenarios 

were based on the possible demographic, socio-economic and technological 

developments of the future world. SRES emission scenarios were used in CMIP3, to 

force the 23 GCMs involved in that project. 

 

In the SRES, the IPCC defined several GHG emission scenarios (40 in number) under 

four storylines (or scenario families). The four storylines (A1, A2, B1, and B2) 

described the evolution of the forces driving the global GHG emissions. In brief, the A1 

storyline refers to a world with rapid economic and technological growth; A2 describes 

a world with regional economic development; B1 depicts a world with more cleaner and 

resource efficient technologies; and B2 explains a world oriented to protect the 

environment and the social equity. 

 

Though there are 40 GHG emission scenarios defined by the IPCC, most GCMs have 

produced their outputs under a limited number of scenarios defined as marker scenarios. 

A marker scenario is a scenario in a certain scenario family, illustrative of the storyline 

to which it belongs (IPCC 2000). However, marker scenarios are equally likely to occur 

as the other scenarios. The presence of IPCC SRES marker scenarios reduces the large 

number of scenarios to a manageable number, making the use of GHG emission 

scenarios feasible in climate impact assessments. Details of IPCC SERS marker 

scenarios are provided in Table 1. 
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Table 1 IPCC SRES marker scenarios defined in IPCC (2000) 

Scenario CO2 concentration by 2100 in 
ppm 

Key features of scenario 

A2 850 World with high population growth, high energy use, 
medium to high changes in land use, limited 
availability of resources, slow invention of new 
efficient technology. 

   
A1B 720 World with low population growth, very high energy 

use, limited changes in land use, medium availability of 
resources, rapid invention of new efficient technology. 

   
B2 620 World with low population growth, intermediate level 

of economic growth, use of less fossil fuels and 
increase in the use of cleaner forms of energy. 

   
B1 550 World with low population growth, low energy use, 

high changes in land use, limited availability of 
resources, medium level of  invention of new efficient 
technology. 

 

According to van Vuuren et al. (2011a), there exists a requirement of new GHG 

emission scenarios, for executing the latest GCMs (e.g. CMIP5 GCMs) which need 

more input information than the GCMs developed in the past. Further, there is a rising 

interest among the research community on the scenarios which incorporate climate 

policies which have not been considered in the IPCC SRES. 

 

Representative Concentration Pathways (RCPs) are the latest set of GHG emission 

scenarios used in forcing the 50 (or more) GCMs involved in the CMIP5. RCPs are not 

purely a new set of emission scenarios, but they have been developed considering the 

emission scenarios found in the existing literature (representative of the existing GHG 

emission scenarios in literature).  Four RCPs namely; RCP2.6, RCP4.5, RCP6.0 and 

RCP8.5 have been developed by the research community consisting of modellers of 

climate, ecosystem, integrated assessment and emission inventory experts (van Vuuren 

et al., 2011a). RCP2.6, RCP4.5, RCP6.0 and RCP8.5 refer to possible radiative forcing 

levels of 2.6, 4.5, 6.0 and 8.5 W/m2 respectively, at the end of the 21st century. Both 

IS92 and SRES emission scenarios did not incorporate any possible climate change 

mitigation policies in the future world (no-climate-policy scenarios). However, some of 

the RCPs include climate policies, enabling the investigation of there impacts on the 
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future global climate. RCPs in general, project GHG emission levels up to year 2100 

and their extensions called Extended Concentration Pathways (ECP) project up to year 

2300. These ECP could aid in the study of relatively slow processes such as sea level 

rise (van Vuuren et al., 2011c). Details of RCPs are provided in Table 2. 

 

Table 2 Details of representative concentrative pathways (RCPs) 
Scenario CO2 

concentration by 
2100 in ppm 

Key features of scenario Reference 

RCP2.6 421 Associated with a stringent climate policy, 
resulting relatively low levels of radiative 
forcing caused by very low levels of GHG 
emissions. 
Radiative forces rise to about 3 W/m2 by the 
mid 21st century and declines to about 2.6 W/m2 
by the end of the century. Refer to a global 
mean temperature rise of about 2˚C by the end 
of this century. 

van Vuuren et al. 
(2011b) 

    
RCP4.5 538 Stabilization of radiative forcing at 4.5 W/m2 by 

year 2100, through the implementation of 
climate policies. 

Thomson et al. 
(2011) 

    
RCP6.0 670 Stabilization of radiative forcing at 4.5 and 

6.0 W/m2 by year 2100, through the 
implementation of climate policies. Intervention 
of climate policies is much less compared to 
that of RCP2.6 and RCP4.5. 

Masui et al. (2011) 

    
RCP8.5 936 A scenario which describes a world with high 

population, medium rate of technological 
development, and high energy demand leading 
to higher GHG emissions. Unlike the other 
three RCPs, RCP8.5 does not incorporate any 
climate policies. 

Riahi et al. (2011) 

 

The actual future evolution of the GHG concentrations is largely uncertain due to the 

highly varying nature of the world (van Vuuren & O’Neill 2006). The largest 

uncertainties to a statistical downscaling study are introduced by the GHG emission 

scenarios, and these uncertainties could hardly be eliminated (Giorgi 2010). Since the 

GHG emission scenarios have equal likelihood of occurrence, which scenario will better 

represent the future world is a challenging question. One of the causes of scenario 

uncertainty is the different global population projections employed in different 

scenarios which are based on different assumptions on fertility and mortality 

(Arnell, 2004). According to Tebaldi & Knutti (2010), scenario uncertainty is more 

related to decision making, whereas the GCM uncertainty is linked with the limited 
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understanding of the atmospheric processes and their incomplete representation in 

mathematical equations in the GCMs. Though cannot be eliminated, in certain recent 

studies GHG scenario uncertainty has been handled in innovative manners as discussed 

in the next paragraph. 

 

Prudhomme et al. (2010) proposed a GHG emission “scenario neutral approach” for 

climate change impact studies as an alternative to the widely practised GHG emission 

scenario-led approach. In the conventional emission scenario-led approach, GCM 

outputs pertaining to different GHG scenarios are downscaled to catchment scale and 

then applied to an impact model (e.g. flood simulation model) for quantification of the 

impacts of likely climate change on the environment. However, due to the presence of a 

multitude of emission scenarios, climate impact models produce number of plausible 

realizations of likely impacts on water resources in a catchment. Making decisions on 

the future water resources in a catchment using this large number of plausible 

realizations of likely future impacts becomes a challenge. The scenario neutral approach 

is seen as a potential solution to this issue. According to the scenario neutral approach, 

outputs of GCMs pertaining to multiple GHG emission scenarios are downscaled to 

catchment scale climatic variables such as precipitation and temperature. Then the 

downscaled climate information pertaining to future is used as input to an impact 

model. This process produces an ensemble of plausible simulations on the likely 

impacts of climate change on the environment. Then these simulations are analysed to 

see whether the changes in the future climate can affect any predefined safety margins 

in the catchment (e.g. certain flood level). Application of the scenario neutral approach 

is also found in Bastola et al. (2011). The application of a method similar to the scenario 

neutral approach called “decision scaling technique” is found in Brown et al. (2012). 

 

In the past, researchers have mainly used the GCM outputs under IPCC SRES marker 

scenarios in the statistical downscaling models, for the projection of catchment scale 

hydroclimatology into future (refer to Table 3). Examples are: A1B, A2, B1 and 

COMMIT (Anandhi et al., 2008; 2009), A2, A1B and B1 (Mehrotra & Sharma 2010), 

A2 and B1 (Lavaysse et al., 2012), A2 and B2 (Yang et al., 2012; Chen et al., 2010; 
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Chu et al., 2010; Wetterhall et al., 2009), A2 (Hashmi et al., 2009a; Hewitson & Crane, 

2006), and B2 (Ghosh & Mujumdar 2008). According to the above examples, it was 

understood that many of the statistical downscaling studies have considered the A2 

scenario for the future projection of catchment level hydroclimatology into future, due 

to its pessimistic nature. This allows the identification of the worst possible impacts of 

rising GHG emissions, on the future catchment level hydroclimatology. However, it is 

not advisable to use a single GHG emission scenario to produce the catchment level 

projections, owing to the uncertain nature of the future behaviour of the world, which 

governs the amounts of GHG emissions (e.g. IPCC (2000) recommended the use of a 

variety of SRES GHG scenarios in any study). Sachindra et al. (2014) statistically 

downscaled outputs of HadCM3 pertaining to A2 and B1 GHG emission scenarios to 

monthly precipitation at a station located in Victoria, Australia. It was found that the 

differences of long term seasonal means and standard deviations of precipitation 

pertaining to A2 and B1 scenarios were negligible. However under the A2 GHG 

scenario maximum precipitation was clearly higher than that under B1 GHG scenario. 

Hence it was realised that the use of different GHG scenarios can provide a way for the 

quantification of uncertainty on the extremes of climate. On the other hand, the use of 

multiple GHG emission scenarios is a computationally costly process.  

 

ISSUES WITH OBSERVATIONS OF HYDROCLIMATIC VARIABLES 

 

Statistical downscaling studies need long records of observations of the predictands 

(e.g. hydroclimatic variables such as precipitation, streamflow, temperature, evaporation 

and humidity) for model calibration and validation (Wilby & Wigley, 1997). A longer 

record of observations is highly preferred (Sachindra et al., 2013a) as it exposes the 

downscaling model to a larger range of observations, including extreme values of the 

predictand. In the calibration of a downscaling model, the model parameters are 

adjusted until the model predictions become as close as possible to the observations of 

the predictand. The validation involves the evaluation of the model predictions against 

the observations of the predictand, for a period independent of calibration in which the 

best parameters yielded in calibration are remained fixed. Therefore, the reliability of 
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outputs of a statistical downscaling model is also dependent on the quality of the field 

observations. In many areas of the world, long records of observations of hydroclimatic 

variables are scarce (Feddersen & Andersen, 2005). This issue limits the length of the 

calibration and validation periods causing the model predictions to be less reliable, since 

the model is exposed to a limited data range of the predictand. The unavailability of 

observations at finer temporal resolutions (e.g. sub-daily) and poor spatial coverage of 

observations are also issues encountered in many regions (Hijmans et al., 2005). 

 

Errors in observations of hydroclimatic variables exist due to; technical faults in 

measuring instrument (Domeneghetti et al., 2012), human errors in obtaining the 

observations, poor recording practices caused by negligence, various missing data 

infilling techniques, extrapolation of streamflow rating curves out of their design range 

(Herschy, 2009) etc. Various hydroclimatic variables are measured using instrument 

ranging from simple gauges to complex automatic recording gauges. The instrument 

can have systematic or random errors due to poor maintenance, poor calibration or 

factory faults. The proper maintenance of measuring equipment is quite important since 

this allows keeping the instrument uniform throughout its life span. The instrument 

should be calibrated against an accurate device at regular intervals. 

 

Human observation errors are more likely to take place when the reader is unskilled or 

negligent. When the instrument is a non-recording gauge, a reader has to manually 

obtain the reading from the gauge. In this process, due to incorrect observation practices 

such as not maintaining a horizontal line of sight while obtaining the temperature 

readings from a mercury column thermometer or obtaining the atmospheric pressure 

readings from the incorrect scale of an analogue barometer, observations may become 

erroneous. Due to human negligence, records of hydroclimatic data could also contain 

errors such as decimal dot placed at an incorrect place of the record. 

 

Due to incomplete records of hydroclimatic variables, various missing data infilling 

techniques are practised. Averaging, normal ratio method (Chow et al., 1988), 

interpolation (e.g. inverse distance weighting method used by Simanton & Osborn, 
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1980), and regression techniques (e.g. multi-linear regression used by Terzi, 2012) are 

some of the techniques used in filling the missing data in a record of observations. All 

these infilling techniques introduce uncertainty to the record as these are 

approximations of the actual observations. 

 

When the length of the observed record of the streamflow is limited at a certain station, 

there is a possibility of expanding it with the streamflow record at a neighbouring 

station. This is achievable when the flow data at that station (station with limited 

records) display a high correlation with those at a neighbouring station. In such 

situations, a linear regression relationship could be developed between the nearby 

station and the station with limited records of flow data. This way the limited data set 

could be expanded (Gupta 2008). Anandhi et al. (2009) successfully used this technique 

for extending short records of monthly minimum/maximum temperatures, which were 

subsequently used in the calibration and validation of a statistical downscaling model. 

Hubbard & You (2005) stated that the missing records of hydroclimatic variables could 

be estimated with the data from neighbouring sites using spatial regression test and 

inverse distance weighing methods. Unlike the inverse distance weighing method which 

assigns the largest weight to the nearest station, the spatial regression test assigns the 

largest weight to the station which displays the lowest RMSE with the data of the 

station of interest. 

 

The rating curve is an approximation of the actual discharge-stage (water level of the 

stream with respect to a certain datum) relationship of a stream at a selected location. 

Therefore, there is a certain degree of uncertainty even when the discharge readings are 

obtained within the design range of the rating curve. Errors to streamflow data are 

introduced particularly when the rating curve is extrapolated to obtain, either 

abnormally high or low flows from the observed stage readings (Pelletier 1988). 

According to Herschy (2009) when the upper part of the rating curve is extrapolated to 

predict peak streamflow, logarithmic extrapolation, stage-velocity-area method and 

Manning equation method can be used for the extension of the rating curve. Regular 
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updating of the rating curve and expansion of its range are solutions applicable at the 

field level, for improving the reliability of streamflow records. 

 

Prior to using a record of hydroclimatic observations in the calibration and validation 

phases of a statistical downscaling model, the possible outliers (implausible values) of 

these observations should be identified and eliminated, as these could lead to erroneous 

models. Outliers in a record of hydroclimatic variables (e.g. precipitation, streamflow) 

are difficult to be differentiated from the hydroclimatic extremes such as peak 

streamflows, at a glance. In such instances, it is advisable to compare the extreme value 

which is suspected to be an outlier at a certain observation station, with the 

corresponding values at the nearby stations. If similar extreme or comparably high 

values are found in the records of the nearby stations, it could be argued that the 

extreme value at the station of interest is more a real extreme rather than an outlier. 

Some outliers in a record of observations can be identified relatively easily due to the 

physically impossible nature they possess; e.g. negative precipitation data, and 

improbable zero precipitation values at a certain station while there are records of 

significant levels of precipitation at the neighbouring stations (Einfalt & Michaelides 

2008). 

 

Feng et al. (2004) presented a comprehensive systematic approach for detection and 

correction of errors in observed daily climatic data including precipitation, 

minimum/maximum temperatures, sunshine duration, wind speed, relative humidity and 

evaporation. In this approach, initially the climatic data were checked against possible 

high and low extremes, by comparing them with various possible climatic extremes 

predefined in literature. The climatic data which satisfy the above test were then 

checked for the internal consistency by identifying errors such as the presence of a 

maximum daily temperature which was lower than the minimum daily temperatures. 

Next, the time series of data at the station was subjected to a temporal outlier check, in 

which implausible values of the climatic variable with respect to its values on the 

previous day and the next day were identified. This was followed by a spatial outlier 

check in which the data at the station of interest were compared with those at 
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neighbouring stations to find implausible entries. The missing data and the erroneous 

data identified with the above checks were estimated using the method specified in 

Hubbard (2001), where linear regression equations between the station with missing 

values and its neighbouring stations were used to estimate the missing values. 

 

Effect of the wind (usually leads to an underestimation of precipitation), wetting of the 

funnel which guides rain into the rain gauge, evaporation losses, partial or full clogging 

and poor maintenance are some of the common causes of systematic errors associated 

with precipitation gauges (Sciuto et al., 2009). Corrections to these errors have been 

discussed in Sevruk & Klemm (1989) & Zhang et al. (2004). 

 

ISSUES WITH STATISTICAL DOWNSCALING TECHNIQUES 

 

There exists a multitude of different statistical downscaling techniques starting from 

relatively simple ones such as the method of meteorological analogues, proceeding up 

to highly complex non-linear regression techniques like Artificial Neural Networks 

(ANN), Support Vector Machine (SVM), Relevance Vector Machine (RVM) and Gene 

Expression Programming (GEP). These statistical downscaling techniques approximate 

the actual predictor-predictand relationship. The uncertainties associated with different 

statistical downscaling techniques (e.g. linear, non-linear, weather generation etc.) are 

mainly due to different representations of the relationships between the GCM outputs 

and catchment level hydroclimatic variables. Table 3 contain the GCMs, GHG emission 

scenarios and downscaling techniques used in some of the past studies along with the 

major conclusions drawn on the downscaling techniques. 
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Table 3 GCMs, GHG scenarios and downscaling techniques used in past studies 

GCMs  GHG emission 
scenario  

Predictands  Downscaling 
techniques 

Major 
conclusions on 
techniques 

Reference 

BCM2.0, 
CNRM-
CM3,CNRM-
CM4; 
MIROC3.2, 
CGCM2.3.2 

A1B, A2 and B1 Monthly precipitation MLR, ANN and 
SVM 

ANN better captured 
low and medium 
precipitation values. 
SVM better captured 
high precipitation 
values. 

Ghosh & Katkar 
(2012) 

CGCM2 IS92 Monthly precipitation LS-SVM, ANN LS-SVM performed 
slightly better than 
ANN. Both 
techniques failed to 
correctly reproduce 
the extremes of 
observed 
precipitation. ANN 
can trap at a locally 
optimum solution, 
but SVM is free of 
this issue. 

Tripathi et al. 
(2006) 

HadCM3 A2, B2 Daily precipitation MARS, MT, 
KNN, GA-
SVM, MLR  

Performances of 
downscaling models 
were sensitive to the 
techniques used in 
modelling the 
occurrences and the 
amounts of 
precipitation. 

Nasseri et al. 
(2013) 

POAMA N/A Daily precipitation Metrological 
analogues  

Analog downscaling 
method reduced the 
bias in the statistics 
of seasonal 
precipitation and the 
number of wet days 
in the precipitation 
output of the GCM. 

Charles et al. 
(2013) 

CGCM3.1 COMMIT, A1B, 
A2 and B1 

Daily precipitation Nonparametric 
kernel 
regression, 
KNN, CRF 
method, weather 
generator by 
Wilks (1999) 

Temporal variability 
and extremes of 
precipitation were 
better captured by 
nonparametric kernel 
regression. 

Kannan & 
Ghosh (2013) 

CGCM3, 
ECHAM5 

A1B, A2 and B1 Daily precipitation MLR, GLM, 
NHMM 

NHMM based model 
was more capable in 
preserving the spatial 
correlation structure 
among stations. 

Hu et al. (2013) 

MLR = multi-linear regression, ANN = artificial neural network, SVM = support vector machine, LS-SVM = least square support 
vector machine, GA-SVM = genetic algorithm-optimized support vector machine, MARS = multivariate adaptive regression splines, 
MT = model tree, KNN = k-nearest neighbor, CRF = conditional random field, GLM = generalised linear model, NHMM = non-
homogeneous hidden Markov model. 

 

 

 

 



Chapter 2: Statistical Downscaling: Issues Challenges and Potential Solutions 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 65 

Table 3 Continued 
GCMs  GHG emission 

scenario  
Predictands  Downscaling 

techniques 
Major 
conclusions on 
techniques 

Reference 

NCEP/NCAR N/A Daily precipitation MLR, CCA, 
SCA 

Differences of 
performances 
between the three 
techniques when 
used with the same 
set of predictors are 
small. However 
when each 
individual technique 
is used with 
different sets of 
predictors greater 
differences of 
performances seen. 

Lutz et al. 
(2012) 

NCEP/NCAR N/A Daily precipitation  MLR, GEP  GEP showed better 
performances than 
MLR in both 
calibration and 
validation periods. 

Hashmi et al. 
(2011) 

HadCM3 A2 Daily precipitation MLR, a 
stochastic 
weather 
generator 
(LARS-WG), 
GEP 

When the 
precipitation outputs 
of the three 
downscaling models 
were combined 
using a Bayesian 
approach (Tebaldi et 
al. 2005) to obtain a 
weighted multi-
model ensemble 
prediction 
(WMME), it was 
found that WMME 
was superior to all 
individual 
techniques. 

Hashmi et al. 
(2009) 

 CGCM1 IS92a Daily precipitation and 
daily 
minimum/maximum 
temperatures 

MLR, a 
stochastic 
weather 
generator 
(LARS-WG), 
ANN 

In the simulation of 
average daily 
precipitation, 
LARS-WG 
produced the least 
error. Both MLR 
and LARS-WG 
reproduced the 
variance of 
precipitation far 
better than that by 
ANN. It was 
concluded that 
LARS-WG was the 
best technique in 
downscaling all 
three predictands 
and ANN was the 
worst. 

Khan et al. 
(2006) 

SCA = simulated annealing and diversified randomization cluster analysis, CCA = canonical correlation analysis, GEP = gene 
expression programming, LARS-WG = Long Ashton research station weather generator. 
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Table 3 Continued 
GCMs  GHG 

emission 
scenario  

Predictands  Downscaling 
techniques 

Major 
conclusions on 
techniques 

Reference 

NCEP/NCAR N/A Daily precipitation and 
daily 
minimum/maximum 
temperatures 

MLR, a 
stochastic 
weather 
generator 
(LARS-WG) 

Weather generator 
displayed a much 
higher skill in 
reproducing the 
monthly mean wet and 
dry spell lengths in 
comparison with those 
produced by MLR. 
Both techniques 
reproduced the means 
of precipitation and 
minimum/maximum 
temperature with good 
accuracy. 

Dibike & 
Coulibaly 
(2005) 

NCEP/NCAR N/A Daily precipitation  NHMM, KNN KNN technique could 
better preserve the 
spatial correlations of 
precipitation 
occurrences. NHMM 
could reproduce the 
total number of wet 
days per season with a 
better accuracy. 
Neither of the 
techniques adequately 
reproduced the solitary 
wet days per season. 

Mehrotra et al. 
(2004) 

NCEP/NCAR N/A Daily and monthly 
precipitation 

Analogue, CCA, 
CART, ANN 

Relatively simple 
analogue method 
produced better results 
than CCA, CART and 
far better results than 
the complex ANN 
technique. 

Zorita & von 
Storch (1999) 

CART = classification and regression trees 
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Table 3 Continued 
GCMs  GHG emission 

scenario  
Predictands  Downscaling 

techniques 
Major 
conclusions on 
techniques 

Reference 

NCEP/NCAR N/A Monthly streamflows LS-SVM, MLR Very comparable 
performances for 
both LS-SVM and 
MLR. However, 
LS-SVM showed 
slightly better 
capabilities in 
downscaling 
streamflows. Both 
techniques failed to 
properly capture the 
high streamflows in 
calibration and 
validation. 

Sachindra et al. 
(2013a) 

CCSR B2 Monthly streamflows SVM, RVM RVM outperformed 
SVM. Even RVM 
cannot properly 
capture the extreme 
values of 
streamflows. SVM  
is prone to severe 
overfitting. 

Ghosh & 
Mujumdar 
(2008) 

CGCM3 COMMIT, A1B, A2 
and B1 

Monthly 
maximum/minimum 
temperature and 
evaporation  

PLS, ANN Very comparable 
performances for 
both ANN and PLS 
seen. However, 
ANN showed 
marginally better 
performances in 
calibration. 

Goyal & Ojha 
(2011) 

ECHAM5 A2 Monthly 
maximum/minimum 
temperature and 
evaporation 

MLR High degree of 
accuracy was seen 
in simulating the 
statistics and the 
time series of the 
three predictands. 

Sachindra et al. 
(2013c) 

CGCM3.1 A1B, A2 and B1 Daily minimum and 
maximum temperature 

Single 
conjunctive rule 
learner, 
Decision table, 
MT, and 
REPTree 

MT showed 
superior 
performances 
compared to those 
of other three 
techniques for both 
predictands. 

Goyal et al. 
(2012) 

RVM = relevance vector machine, PLS = Partial least square regression, REPTree = decision/regression tree 
algorithm. 

 

In the Statistical and Regional Dynamical Downscaling of Extremes for European 

regions (STARDEX) project, it was concluded that the skills of statistical downscaling 

techniques vary non-systematically from station to station, season to season, predictand 

to predictand and also method to method (STARDEX, 2005). It was also commented 

that, the means of climatic variables were better reproduced than the extremes. 

Furthermore, compared to the intensity of the precipitation extremes, their occurrences 
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and persistence were better captured by statistical downscaling techniques. Also, 

according to the findings of the STARDEX project, statistical downscaling techniques 

displayed better skills in downscaling GCM outputs to temperature than downscaling 

GCM outputs to precipitation. Under the STARDEX project, 10 indices of extreme 

precipitation and temperature were defined, which could be used in evaluating the skill 

of downscaling models, in reproducing the extreme climatic events. Wang et al. (2012) 

successfully used these indices for the assessment of the outputs of several statistical 

downscaling models. 

 

An inherent issue with statistical downscaling is its failure of properly capturing the 

peaks of the hydroclimatic variables. This is due to the inability of statistical 

downscaling techniques in explaining the entire range of variance of a certain 

hydroclimatic variable (Tripathi et al., 2006). Sachindra et al. (2013a) reported that high 

streamflows in time series are not properly reproduced even by a complex non-linear 

statistical downscaling technique such as LS-SVM or by relatively simple MLR 

technique. Ghosh & Mujumdar (2008) discovered that RVM (complex non-linear 

downscaling technique) was also not able to capture the peaks successfully in a time 

series of streamflow.  

 

Weather generators have been widely used in the simulation of weather sequences from 

observations (e.g. Richardson, (1981)) and also in downscaling large scale atmospheric 

variables to catchment scale predictands (e.g. Wilks, (1999)). Weather generators can 

produce any number of sequences of any desired length for a climate variable. Also 

weather generators are capable of downscaling GCM outputs to catchment scale 

predictands, while preserving the changes in the statistics characterised in the GCM 

outputs (Fowler et al., 2007). In the past studies, the capability of weather generators in 

downscaling large scale atmospheric variables to daily climatic variables at the 

catchment scale has been detailed. Some of those studies are discussed below. 

 

Min et al. (2011) used the combination of first order two state Markov chains (for the 

simulation of occurrences) and skewed normal distribution (for the simulation of 
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amounts) in generating daily precipitation time series at 8 stations in Korea. They found 

that this weather generation technique reproduces the higher quartiles and the maximum 

of daily precipitation with good accuracy. However it was realised that rare extreme 

precipitation events with return periods in the order of few hundreds of years were not 

properly captured by this weather generator. Chen et al. (2011) also reported that 

weather generator based downscaling methods are suitable for the simulation of 

extremes of temperature. In a study by Hashmi et al. (2009b) which used LARS-WG 

weather generator (uses a semi-empirical distribution for precipitation amounts), it was 

commented that annual maximum series of daily precipitation simulated by the weather 

generator and corresponding observations are of the same order. However, the 

agreement between each individual observed and model simulated annual maximum 

daily precipitation was small. Chen et al. (2006) employed a weather generator based on 

the first order two state Markov chains and gamma distribution for downscaling daily 

precipitation at 17 stations in China. They used 32 years of observations to determine 

the parameters of the weather generator for each station, which were then used in the 

weather generator to generate multiple series of precipitation. It was found that there is 

a close agreement between the observed and generated time series of precipitation at the 

daily and monthly time scales. 

 

Downscaling at several observation stations can be performed either at individual 

stations separately (e.g. Anandhi et al. (2008)) or at multiple stations concurrently (e.g. 

Jeong et al. (2012a)). When downscaling is performed at individual stations in a study 

area, no explicit measure is taken for the preservation of the cross-correlation structure 

among the stations for the predictand of interest, unlike when downscaling is performed 

at multiple stations concurrently which enables the plausible representation of spatial 

variations of the predictand of interest over space. While maintaining the cross-

correlation structure among the stations for each predictand, the preservation of cross-

correlation structures between different predictands is also considered to be an 

important task. This enables the plausible representation of relationships between 

different predictands at individual stations and among different stations (e.g. Khalili et 

al. (2011)). 
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The multivariate multi-linear regression (MMLR) technique was used by Jeong et al. 

(2012b) for downscaling GCM simulations to daily maximum and minimum 

temperature concurrently at 9 observation stations. First they used MMLR for 

downscaling GCM outputs to deterministic time series of daily maximum and minimum 

temperature. Then the spatially correlated random noise (generated from the 

multivariate normal distribution) between the two predictands and the stations was 

added to the deterministic time series. It was concluded that the addition of spatially 

correlated random noise to the deterministic time series of the predictands improved the 

reproduction of cross-correlation structures between the predictands at individual 

stations and the cross-correlation structures between stations for each individual 

predictand. 

 

Khalili et al. (2011) used a multi-station multivariate downscaling strategy for 

downscaling reanalysis outputs to daily minimum and maximum temperature at 10 

stations in Canada. In that study, for each predictand and each station, separate multi-

linear regression relationships between reanalysis outputs and the predictands of interest 

were developed. Then the residuals of the multi-linear regression relationships 

pertaining to the minimum temperature and the maximum temperature were determined 

using a multivariate spatial moving average process. It was concluded that this 

downscaling approach was able to accurately simulate the spatiotemporal variations of 

daily minimum and maximum temperature. 

 

Srinivas et al. (2013) used the least square support vector machine (LS-SVM) 

regression for simultaneous downscaling of GCM outputs to daily maximum and 

minimum temperature at 4 stations in India. In that study, the stations were separated 

into clusters based on the cross-correlation structures of each individual predictand. For 

each cluster, a representative station which showed high correlations with other stations 

was identified for each individual predictand, and LS-SVM based inter-station 

relationships between the representative station and the other stations were developed 
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using observations. Then LS-SVM based downscaling models were developed for each 

predictand at the representative stations using observations. Finally the outputs of the 

downscaling models developed at the representative stations were introduced to the 

inter-station relationships to determine daily maximum and minimum temperature at 

other stations. It was stated that this multi-station statistical downscaling methodology 

produced better performances than the multi-station multivariate downscaling 

approaches used by Khalili et al. (2011) and Jeong et al. (2012b). However, it should be 

noted that in the approach used by Srinivas et al. (2013), no explicit measure was taken 

to preserve the cross-correlation structure between different predictands. 

 

Sachindra et al. (2013c) proposed a multi-station multivariate downscaling 

methodology for simultaneous downscaling of GCM outputs using a key-predictand and 

key-station approach. In this approach, first the predictands which showed high 

correlations with other predictands at each individual station were identified (these 

predictands were called key-predictands). Then for each key-predictand, the stations 

which showed high correlations with all predictands at other stations were identified 

(these stations were called the key-stations). The MLR based relationships were 

developed between key-predictands and other predictands at key-stations (called intra-

station regression relationships) and also between the key-predictands at key-stations 

and all predictands at other stations (called inter-station regression relationships). 

Downscaling models using the MLR technique were built at the key-stations for key-

predictands. Using the outputs of these downscaling models on the intra and inter-

station regression relationships, values of all predictands at all stations were determined. 

The effectiveness of this key-predictand and key-station approach was demonstrated by 

its application to evaporation, minimum temperature and maximum temperature at 4 

stations in Victoria, Australia. 

 

Ghosh & Katkar (2012) found that ANN is more capable of simulating low and medium 

values of precipitation, whereas SVM is better in capturing high precipitation values. 

Tripathi et al. (2006) commented that LS-SVM is slightly more capable than ANN in 
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downscaling GCM outputs to precipitation. However, both techniques failed to 

correctly capture the extreme values of precipitation. Similarly, Ghosh & Mujumdar 

(2008) commented that both RVM and SVM fail to reproduce the extremes of monthly 

streamflows, and unlike RVM, the SVM technique was subject to severe over-fitting. 

According to the above findings, it was realised that it is impossible to identify a certain 

technique as the best or the worst in downscaling. However, it could be recommended 

to use a relatively simple downscaling technique such as MLR or method of analogue 

and analyse its ability in reproducing the observations of the predictand, and if the 

results are not satisfactory, then a more complex downscaling technique could be 

experimented. The development of downscaling models for each calendar month 

separately, can aid in better capturing the seasonal variations of the predictand 

(Sachindra et al., 2013b). 

 

The major assumption involved in statistical downscaling is that the relationships which 

existed between the large scale atmospheric variables and catchment scale 

hydroclimatic variables in the past are valid for the changing climate in future. In other 

words, the predictor-predictand relationships are stationary over time. However, under 

changing climate this assumption may not be valid. 

 

Hewitson & Crane (2006) stated that the proper selection of large scale atmospheric 

variables which reliably describe the climate of the past could increase the confidence 

of the predictor-predictand stationarity assumption. Sachindra et al. (2013a) used a 

technique for the selection of predictors that are consistently correlated with the 

predictand over time (for details refer to “issues with the selection of predictors”). The 

use of consistently correlated predictors in a downscaling model allows developing 

consistent relationships between the predictors and predictand over time hence supports 

the predictor-predictand stationarity assumption. 

 

Duan et al. (2012) used a relatively simple approach for the analysis of uncertainty in 

the predictor-predictand relationship under changing climate. In that study, MLR based 
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models were used to downscale 150 years of observations of atmospheric variables to 

monthly precipitation. For each 30 year time slice, a separate downscaling model was 

calibrated. The regression coefficients of MLR equations were plotted considering a 30 

year running window, for visualisation of the variation of the coefficients. Furthermore, 

the five 30 year time slices were used to determine whether the changes in the 

regression coefficients form one time slice to another was statistically significant. It was 

found that the coefficients and the constants of the MLR relationships show statistically 

significant variations over time indicating that predictor-predictand relationships are not 

stationary. Projections of precipitation were produced using the outputs of five GCMs 

on each of the five downscaling models. This process enabled the quantification of 

uncertainty introduced by the non-stationarity of the predictor-predictand relationships 

and also by different GCMs. 

 

Change in the frequency of occurrence of modes of natural climate variability 

(atmospheric circulation regimes) is considered as a result of climate change (Corti et 

al., 1999). Considering this feature, Raje & Mujumdar (2010) proposed a methodology 

for accounting the non-stationarity in the predictor-predictand relationship. They used 

PCA and k - mean clustering for identification of modes of natural climate variability in 

GCM simulated 500hpa geopotential heights. Then pertaining to each mode of natural 

variability, a separate streamflow downscaling model was developed using the 

conditional random field (CDF) technique (different predictor-predictand relationship 

for each mode of natural climate variability). Thereafter using the outputs of GCMs 

corresponding to each mode of natural climate variability (identified previously), on the 

downscaling models, streamflow was projected into future. The streamflow projected 

into future by each downscaling model for each GHG emission scenario and GCM was 

converted to standardised streamflow indices and combined together. 
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ISSUES ASSOCIATED WITH PREDICTORS 

Issues associated with the predictors of statistical downscaling techniques can be 

subdivided into two categories; (a) issues with the method of selection of predictors, 

and (b) issues with processing the selected predictors, prior to their application in the 

downscaling model. In the next two sub-sections, these two categories are described. 

Issues with the selection of predictors 

One possible cause of uncertainty associated with statistical downscaling is the method 

of selection of predictor variables. In general, probable variables for any statistical 

downscaling study are selected based on the past literature and physics related to the 

processes underlying the hydrologic cycle (Sachindra et al., 2013a). The selection of 

potential variables from the pool of probable variables is performed in many different 

ways. 

Dibike & Coulibaly (2005) used Pearson correlation coefficients and scatter plots 

between probable predictor data (NCEP/NCAR reanalysis outputs) and observations of 

daily precipitation and daily minimum/maximum temperatures (predictands), for 

identification of potential predictors in a statistical downscaling exercise. It was found 

that, the correlations between the predictors and daily precipitation were quite low 

compared to those for daily minimum/maximum temperatures. It was further realised 

that, the strength of the correlations between a certain predictor and a predictand varied 

from one calendar month to another. 

Anandhi et al. (2008) also used Pearson, Spearman and Kendall’s Tau correlation 

coefficients and scatter plots for selecting potential predictors from a pool of probable 

predictors. In that investigation, considering the seasonal variations of the predictor-

predictand relationships, potential predictors were selected for dry and wet seasons 

separately. They stated that, the selection of too few potential predictors by imposing a 

stringent threshold on the correlation between predictors and predictand, could lead to 



Chapter 2: Statistical Downscaling: Issues Challenges and Potential Solutions 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 75 

poor characterisation of the atmospheric processes in the downscaling model. On the 

other hand, the selection of too many potential predictors by imposing a very low 

threshold on the predictor-predictand correlations could introduce noise to the 

downscaling model. 

 

In downscaling NCEP/NCAR reanalysis outputs to monthly catchment streamflows, 

Sachindra et al. (2013a) used the Pearson correlation coefficients to identify potential 

predictors for each calendar month from a pool of probable variables. Unlike in the 

previous studies (e.g. Anandhi et al., 2008; 2009) which considered correlations 

between the predictors and predictand for the whole period of the study, in the study 

performed by Sachindra et al. (2013a), the correlations between the monthly 

streamflows and the probable predictors were calculated for three 20 year time slices 

(covering the whole period of the study) and the whole period of the study. The 

predictors which displayed good statistically significant (p ≤ 0.05) correlations 

consistently with streamflows in the three 20 year time slices and the whole period were 

selected for calibration and validation of the downscaling model. These predictors were 

ranked according to the strength of the correlations they maintained with the predictand, 

over the whole period of the study. Initially, the predictors with ranks 1, 2 and 3 

(predictors which have the strongest correlations with the predictand) were introduced 

to the downscaling model and the model performance in validation was measured with 

the Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe 1970). Then the next predictors 

with ranks 4, 5, 6 etc were introduced to the model one at a time, until the model 

performance in terms of NSE is maximised. The set of predictors which maximised the 

downscaling model performance in validation were retained as the final set of predictors 

for each calendar month. With each of these 12 sets of predictors, 12 (one for each 

calendar month) statistical downscaling models were developed. 

 

It should be noted that the correlation coefficient analysis is only capable in identifying 

the linear relationships between the predictors and predictands (Sharma 2000). 

However, the use of scatter plots along with correlation coefficients is a more effective 

way of identifying the dependence structures (e.g. linear or non-linear) of predictands 
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on predictors. This is because the scatter plots provide a graphical representation of the 

predictor-predictand relationships which is useful in recognising a non-linear 

relationship which is not captured correctly by the correlation coefficients. Tripathi et 

al. (2006) stated that Classification and Regression Trees (CART) and graphical 

sensitivity analysis (Cannon & Mckendry 2002) are more capable techniques in 

determining non-linear relationships, existing between GCM predictors and catchment 

level predictands. To select potential predictors from a pool of NCEP/NCAR probable 

variables, in downscaling 6h surface wind fields, Faucher et al. (1999) applied CART. 

They stated that it is important to have physically meaningful relationships between 

probable predictors and predictands for successful implementation of the CART 

technique. 

 

Partial Mutual Information (PMI) criterion is another technique that had been used in 

identifying the potential predictors for a hydroclimatic prediction model. Sharma (2000) 

stated that the process of using PMI for the selection of potential predictors is successful 

in identifying potential predictors that either have linear or non-linear dependence 

structures with the predictand considered. In that approach, the probable predictor 

which showed the highest PMI score with the predictand was identified first. Then the 

PMI scores were recalculated by randomly rearranging (boot strapping) the values of 

the above selected predictor, and the predictand. The 95th percentile of the PMI scores, 

calculated from the randomly rearranged samples of the predictor variable, were 

compared with the PMI score calculated earlier. If the PMI score of the selected 

predictor was higher than the 95th percentile of the PMI scores calculated from 

randomly rearranged samples, then this predictor was selected as a potential predictor 

and it was removed from the pool of probable variables. The above steps were repeated 

until all potential predictors were identified. 

 

In statistical downscaling, a variety of predictors are used for predicting number of 

predictands. In general, GCMs simulate a large number of climatic variables (predictors 

of downscaling models). The combinations of predictors used in statistical downscaling 

models vary depending on the predictand, geographic region and also the season. 
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Among the variety of predictands, precipitation could be regarded as the most widely 

predicted climatic variable in downscaling (e.g. Hewitson & Crane 2006; Anandhi et 

al., 2008). Minimum/mean/maximum temperatures, evaporation, humidity, streamflow 

etc have also been predicted with statistical downscaling techniques. Tables 4, 5, 6 and 

7 provide some of the predictor-predictand combinations used in the previous statistical 

downscaling studies, in different geographic regions of the world. It should be 

understood that the sets of predictors shown in Tables 4, 5, 6 and 7 should be treated as 

probable predictors. Therefore it is advisable to use a suitable technique to identify the 

potential predictors before using them as inputs to a statistical downscaling model. A 

good predictor should (a) have a physically meaningful association with the predictand, 

which should be stable and stationary over time, (b) be able to explain low frequency 

variability and trends (e.g. year to year or multi year), and (c) be at an appropriate 

spatial scale and reliably simulated by the GCMs (STARDEX 2005). 
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Table 4 Predictors used in the previous studies for downscaling precipitation 

 
Predictors used in the downscaling study Region Time step Reference 

Specific humidity at 850hPa and 925hPa 
pressure levels, Air temperatures at 200hPa, 
500hPa, 700hPa and 925hPa pressure 
levels, Geopotential heights at 200hPa and 
925hPa pressure levels, Zonal wind speeds 
at 200hPa and 925hPa pressure levels, 
Precipitable water content 

India Monthly Anandhi et al.(2008) 

    
Specific humidity near earth surface, 
Surface skin and near surface air 
temperatures, Air temperatures at 200hPa, 
500hPa and 850hPa pressure levels, 
Geopotential heights at 500hPa and 850hPa 
pressure levels, Zonal wind speeds near 
earth surface and 850hPa pressure level, 
Meridional wind speeds near earth surface, 
200hPa, 500hPa and 850hPa pressure 
levels, Downwelling shortwave flux near 
earth surface, Total precipitation, 
Convective precipitation, Snow area 
fraction, Snow depth, Mean sea level 
pressure, Total soil moisture content 

USA Monthly Najafi et al. (2011) 

    
Relative humidity near earth surface, 
500hPa and 850hPa pressure levels, Surface 
air temperature, Geopotential height at 
500hPa pressure level, Zonal wind speed at 
500hPa pressure level, Vorticity at 500hPa 
pressure level, Mean sea level pressure 

China Daily Yang et al. (2012) 

    
Specific humidity at 850hpa pressure level, 
Maximum air temperatures at 2m height 
and at 850hPa pressure level, Zonal wind 
speed at 850hPa pressure level, Meridional 
wind speed at 850hPa pressure level, Mean 
sea level pressure, Total precipitation 

Australia Daily Timbal et al. (2009) 

    
Geopotential heights at 500hPa and 700hPa 
pressure levels, 500-1000hPa Geopotential 
height thickness, Mean sea level pressure, 
Vertical pressure velocity at 500hPa  

Turkey  
 

Monthly Tatli et al. (2004) 

    
Specific humidity near earth surface and 
700hPa pressure level, Relative humidity 
near earth surface and 700hPa pressure 
level, Surface air temperature, Zonal and 
meridional wind speeds near earth surface 
and 700hPa pressure levels 

South 
Africa 
 

Daily Hewitson and Crane 
(2006) 
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Table 5 Predictors used in the previous studies for downscaling minimum/maximum 

temperature 

 
Predictors used in the downscaling study Region Time step Reference 

Air temperature at 925hPa pressure level, 
Zonal and meridional wind speeds at 
925hPa pressure level, Shortwave radiation, 
Longwave radiation, Sensible heat net flux 
at earth surface 

India Monthly Anandhi et al.(2009) 

    
Specific humidity near earth surface, at 
500hPa and 850hPa pressure levels, 
Geopotential heights at 500hPa and 850hPa 
pressure levels, Mean air temperature, 
Mean sea level pressure, Zonal wind speed 
at 850hPa pressure level, Meridional wind 
speeds near earth surface and at 500hPa 
pressure level, Divergence near earth 
surface and at 850hPa pressure level, Near 
surface vorticity 

Canada  Daily Coulibaly et al.(2005) 

    
Specific humidity at 500hPa, 850hPa and 
1000hPa pressure levels, Mean air 
temperature at 2m height, Mean sea level 
pressure, Zonal and meridional wind speeds 
near earth surface, at 500hPa and 850hPa 
pressure levels, Sensible heat flux, Latent 
heat flux 

Chile  Daily Souvignet and 
Heinrich (2011) 

    
Specific humidity at 850hPa pressure level, 
Maximum air temperature at 2m height, Air 
temperature at 850hPa pressure level, Zonal 
and meridional wind speeds at 850hPa 
pressure level, Mean sea level pressure 

Australia Daily Timbal et al. (2009) 

    
Geopotential heights at 500hPa and 850hPa 
pressure levels, Zonal wind speed at 
500hPa pressure level, Mean air 
temperature at 2m height, Mean sea level 
pressure 

China  Daily Wang et al. (2012) 
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Table 6 Predictors used in the previous studies for downscaling evaporation 

Predictors used in the downscaling study Region Time step Reference 

Relative humidity at 850hPa and 925hPa 
pressure levels, Maximum air temperature 
at 2m height, Air temperature at 850hPa 
pressure level, Mean sea level pressure 

Australia Daily Timbal et al. (2009) 

    
Relative and specific humidity near earth 
surface, Zonal wind speed near earth 
surface, Geopotential height at 500hPa 
pressure level, Surface air temperature, 
Mean sea level pressure 

China Daily Yang et al. (2012) 

    
Zonal and meridional wind speeds at 
925hPa pressure level, Geopotential heights 
at 200hPa and 500hPa pressure levels, Air 
temperature at 200hPa, 500hPa and 925hPa 
pressure levels 

India Monthly Goyal and Ojha 
(2011) 
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Table 7 Predictors used in the previous studies for downscaling streamflow 

Predictors used in the downscaling study Region Time step Reference 

Relative humidity at 750hPa pressure level, 
Geopotential heights at 200hPa, 500hPa, 
700hPa and 850hPa pressure levels, 
500hPa-200hPa and 850hPa-500hPa 
Geopotential height thicknesses 

South 
Africa 

Monthly Landman et al. 
(2001) 

    
Specific humidity at 850hPa pressure level, 
Geopotential height at 500hPa pressure 
level, 1000hPa-500hPa Geopotential height 
thickness, Mean sea level pressure 

Canada 5 day 
average 

Cannon and 
Whitfield (2002) 

    
Specific humidity near earth surface, 
Geopotential height at 500hPa pressure 
level, Air temperature at 2m height, Mean 
sea level pressure 

India Monthly Ghosh and Mujumdar 
(2008) 

    
Specific humidity and Relative humidity at 
500hPa, 850hPa and 1000hPa pressure 
levels, Geopotential heights at 500hPa, 
850hPa and 1000hPa pressure levels, Land 
skin temperature, Air temperature at 
500hPa, 850hPa and 1000hPa pressure 
levels, Convective precipitation rate at 
surface, Precipitation rate at surface, Mean 
sea level pressure, Surface pressure, 
Sensible heat net flux at surface, Latent 
heat net flux at surface, Clear sky 
downward longwave flux at surface, Clear 
sky downward solar flux at surface, Clear 
sky upward solar flux at surface, 
Downward longwave radiation flux at 
surface, Downward solar radiation flux at 
surface, Upward longwave radiation flux at 
surface, Upward solar radiation flux at 
surface, Total cloud cover 

France Daily Tisseuil et al. (2010) 

    
Specific humidity at 850hPa pressure level, 
Relative humidity at 700hPa, 850hPa and 
1000hPa pressure levels, Geopotential 
heights at 500hPa, 700hPa and 850hPa 
pressure levels, Volumetric soil moisture 
contents in 0 to 10 cm and 10 to 200 cm 
soil layers 

Australia Monthly Sachindra et al. 
(2013a) 

 
 

According to the previous statistical downscaling studies considered in Table 4, for 

downscaling GCM outputs to precipitation, GCM outputs of; humidity, wind speed, air 

temperatures and geopotential height, at various levels of the atmosphere have been 

used, irrespective of the geographic region. In downscaling minimum/maximum 

temperature, GCM outputs of; wind speed and air temperature have been widely 

employed along with other variables such as heat fluxes. Anandhi et al. (2009) stated 
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that the inclusion of surface heat fluxes along with other variables in the downscaling 

model could improve the predictions of monthly maximum temperature. Furthermore, 

Timbal et al. (2009) commented that the thermal predictors play an important role in the 

prediction of minimum/maximum temperatures. There is a clear similarity between the 

predictors used in downscaling precipitation and those used in downscaling 

streamflows. This is because the precipitation is the main driver of streamflow. Hence, 

it could be concluded that in a study where GCM outputs are downscaled to streamflow, 

the probable predictors could be selected from a pool of predictors used in downscaling 

GCM outputs to precipitation. However, predictors which are specifically related to the 

generation of streamflows such as soil moisture content could also be considered 

depending on how influential they are on the generation of streamflows (Sachindra et 

al., 2013a). As shown in Table 6, for downscaling GCM outputs to evaporation, the 

predictors similar to those used for downscaling precipitation have been used in the past 

studies. It was realised that, although there are some differences between the sets of 

predictors used in downscaling GCM outputs to precipitation, temperature, streamflow 

and evaporation, there are many common predictors among these pools of predictors. 

This is due to the inter-relationships of the hydroclimatic processes of these predictands. 

It could be concluded that in a statistical downscaling study, the pool of probable 

predictors could be selected based on past literature and relevant hydroclimatology, 

however the influences of each predictor on a predictand should be thoroughly analysed 

before including them in the downscaling model. According to Wetterhall et al. (2005), 

any variable is usable as a predictor in statistical downscaling, as long as there is a 

plausible relationship between that variable and the predictand considered in the 

investigation. Downscaling GCM outputs to precipitation with higher accuracies is 

more difficult than achieving the same for minimum/maximum temperatures, 

evaporation and dew point (Timbal et al., 2009). Since streamflow is related to 

precipitation and other variables such as evaporation, wind speed, soil moisture etc, it 

could be deduced that, downscaling GCM outputs to streamflows with higher accuracy 

is more difficult than downscaling GCM outputs to precipitation. 

 



Chapter 2: Statistical Downscaling: Issues Challenges and Potential Solutions 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 83 

Due to the seasonal variations of the atmospheric circulations, the selection of 

predictors for each season (e.g. summer, autumn, winter, spring; wet, dry; calendar 

months) is advisable. This process is referred to as seasonal stratification (Anandhi et 

al., 2008). It enables developing separate downscaling model for each season. Seasonal 

stratification is performed in two distinct ways; fixed seasons and floating seasons 

(Anandhi et al., 2008). In fixed seasons, the beginning and the end of a season is fixed, 

but in floating seasons the beginning and the end of a season could vary over time. 

Anandhi et al. (2008) successfully applied the floating method to identify the wet and 

dry seasons using the K-mean clustering technique (MacQueen 1967). Under changing 

climate, it is difficult to assume that conventional seasons will have their fixed 

beginning and end in the future, therefore the concept of floating seasons is seen as a 

solution to address this issue. 

 

In calibration and validation of a statistical downscaling model, predictor data are 

obtained from a reanalysis data source. Table 8 provides the details of some of the 

reanalysis data in use. 

 

Table 8 Reanalysis data sets 

 Reanalysis data 
set 

Availability of data Horizontal 
spatial resolution 

Reference 
Temporal Spatial 

NCEP/NCAR 1948 - present Global 2.5˚ x 2.5˚ Kalnay et al. (1996) 
NCEP/DOE-2 1979 - present Global 2.5˚ x 2.5˚ Kanamitsu et al. (2002) 
ERA-15 1979 - 1993 Global 2.5˚ x 2.5˚ Gibson et al. (1997) 
ERA-40 1957 - 2002 Global 2.5˚ x 2.5˚ Uppala et al. (2005) 
ERA-Interim 1979 - present Global 1.5˚ x 1.5˚ Dee et al. (2011) 
JRA-25 1979 - 2004 Global 1.25˚ x 1.25˚ Onogi et al. (2007) 
20CR 1871 - 2010 Global 2.0˚ x 2.0˚ Compo et al. (2011) 
NARR 1979 - present North American 

continent 
0.3˚ x 0.3˚ Mesinger et al. (2006) 

ERA = European Centre for Medium - Range Weather Forecasts reanalysis, JRA-25 = Japanese 25-year reanalysis, 
20CR = Twentieth century reanalysis, NARR = North American regional reanalysis 

 

According to Kistler et al. (2001), there are three distinct phases in reanalysis data; (1) 

early period from 1940 to 1957 when the first upper air observations were obtained, (2) 

employment of the modern rawinsonde network during the period 1958-1978, and (3) 

satellite era from 1979 to present. The availability of observations for the reanalysis 
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largely increased from 1950s to 1990s (Compo et al., 2011). Owing to the abundance of 

better quality observations, in the modern satellite era (post 1979 period) the reliability 

of reanalysis data became relatively higher (Bromwich & Fogt, 2004). In a study 

performed by Mooney et al. (2011) over Ireland (11 stations) considering the period 

1989-2001, it was commented that ERA-Interim, ERA-40 and NCEP/NCAR reanalysis 

reproduced the observed monthly mean 2 m air temperatures in summer with good 

accuracy. However, they found that all three reanalysis data sets significantly over-

estimated the monthly mean 2 m air temperatures in winter. In a comparison performed 

by Bromwich & Fogt (2004) between ERA-40 and NCEP/NCAR reanalysis data, over 

the high and mid-latitudes of the southern hemisphere, it was found that, prior to the 

modern satellite era both reanalysis data sets showed significant deviations from the 

observations. It was also found that, in the modern satellite era ERA-40 reanalysis data 

performed better than NCEP/NCAR reanalysis data in this region (Bromwich & Fogt 

2004). Simmons et al. (2004) found that ERA-40 data showed a better agreement with 

the global surface air temperature anomalies than with NCEP/NCAR reanalysis data 

during the period 1958-2001. Furthermore, they found that the agreement between 

ERA-40 global surface air temperature anomalies and observations was stronger in the 

period 1979-2001 than that over the period 1958-1978, owing to the inclusion of 

satellite data in reanalysis in the post 1979 period. According to the above findings it is 

seen that, the quality of reanalysis data prior to the satellite era is relatively low and also 

the quality of the reanalysis data may vary from one set of data to another. 

 

The selection of a certain reanalysis data set for providing the inputs for calibration and 

validation of a statistical downscaling model is mainly dependant on the length of the 

calibration and validation periods of the downscaling model and the availability of a 

certain reanalysis data set over that period. Also the past performances of the reanalysis 

data sets over the study area of interest may be considered in the selection of a 

reanalysis data set for the development of a downscaling model. 
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Issues with predictor pre-processing 

 

The Principal Component Analysis (PCA) is widely used in statistical downscaling (e.g. 

Tripathi et al., 2006; Ghosh & Mujumdar 2008; Anandhi et al., 2009) as a way of 

extracting the variance in a large set of GCM outputs to a manageable number of 

variables called Principal Components (PC). PCA approach is helpful in removing the 

redundant information included in a set of GCM outputs, before they are introduced to a 

statistical downscaling model. This process makes the statistical downscaling model 

more stable and efficient (Anandhi et al., 2008). The exact way of using PCA in the 

preparation of inputs to a statistical downscaling model for its calibration, validation 

and projections into future was not explicitly documented in the past studies, for 

example Tripathi et al., 2006; Ghosh & Mujumdar 2008; Anandhi et al., 2009. In an 

analysis performed by Sachindra et al. (2013a), the coefficients of PCs extracted for the 

calibration phase of the downscaling model, were used to obtain the PCs for the 

validation phase. This was performed since the coefficients of the PCs obtained for the 

model calibration should become fixed components of the downscaling model for 

validation and projection into future. When the coefficients of the PCs extracted for 

calibration were applied on the validation data, in certain instances it caused the PCs of 

the validation phase to be significantly correlated with each other (Sachindra et al., 

2013a). This process caused the model to overfit during calibration and underfit in 

validation, thus introducing a large uncertainty to the hydroclimatic projections 

produced into future. Therefore PCA should be used with extra caution in statistical 

downscaling exercises, where model calibration, validation and projections into future 

are performed. 

 

It is the common practice to use some reanalysis data as inputs to the downscaling 

model in its calibration and validation. However, the hydroclimatic projections into 

future are produced by introducing the outputs of a GCM to the downscaling model. 

The accuracy of reanalysis data is much higher than those of GCM outputs, since 

reanalysis data are quality controlled and corrected against observations (e.g. 

NCEP/NCAR reanalysis data – Kalnay et al., 1996). The GCM outputs used in the 
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downscaling model in producing the catchment scale projections into future, are less 

reliable in comparison to the reanalysis outputs used in calibration and validation of the 

model. In other words, the model development and projection of catchment scale 

climate into future are done with input data originated from two different sources with 

different levels of accuracies. Therefore these data used in the model as inputs are not 

homogeneous in quality. This could cause the statistical downscaling model to perform 

better in model calibration and validation, and produce less reliable projections into 

future with GCM outputs. Sachindra et al. (2013b) addressed the issue of non-

homogeneity in input data used in the development and projection of a downscaling 

model. They regressed the 20th century climate experiment outputs of HadCM3, 

ECHAM5 and GFDL2.0 against the NCEP/NCAR reanalysis outputs and using these 

regression relationships homogeneous sets of input for the downscaling model for its 

calibration, validation and future projections were generated. 

 

Another problem associated with the reanalysis data and the GCM outputs, is the 

mismatch between the spatial resolutions of these two data sources. As an example, the 

most widely used NCEP/NCAR reanalysis data are available at the spatial resolution of 

2.5˚ along longitude and latitude (some NCEP/NCAR outputs are also available 

approximately at 1.9˚ resolution), but the resolution of different GCMs vary from this 

(e.g. HadCM3 has a resolution of 2.75˚ x 3.75˚). As a solution to this spatial resolution 

mismatch between reanalysis outputs and GCM outputs, GCM outputs are interpolated 

to the reanalysis grid (e.g. Tripathi et al., 2006; Ghosh & Mujumdar 2008; Anandhi et 

al., 2009). The interpolation of GCM data from their original grid to the reanalysis grid 

can introduce errors into the input to the statistical downscaling model, as interpolation 

yields approximate values. The use of GCM data of fine spatial scales could be regarded 

as a possible solution to reduce the impacts of the spatial mismatch between reanalysis 

and GCM outputs. GCM data at finer spatial resolution refer to denser grids, hence the 

interpolation becomes more reliable. 
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SUMMARY AND CONCLUSIONS 

 

Whatever the statistical downscaling technique employed in a downscaling study, it is 

faced with a cascade of issues and challenges, as described in this paper. These issues 

are mainly emerging from uncertainties in general circulation models (GCMs), 

uncertainties in greenhouse gas (GHG) emission scenarios, issues with observations of 

hydroclimatic variables, issues with different statistical downscaling techniques and 

issues with predictor selection and prepossessing criteria. The GCM uncertainty is 

mainly due to the lack of perfect understanding of variety of atmospheric processes and 

their incomplete mathematical representation (owing to the assumptions and 

approximations) in GCMs. However, with the advancement of science, the GCM 

uncertainty will reduce. The GHG emission scenario uncertainty is a result of the 

uncertainties associated with the technological, demographic and socio-economic 

developments of the future world. The uncertainties linked with the future GHG 

emission scenarios are difficult to be eliminated. Issues associated with observations of 

various catchment scale hydroclimatic variables (precipitation, streamflow, temperature, 

pan evaporation, humidity etc) are due to; errors in measuring instrument, observations 

and recording errors caused by human negligence, missing data infilling techniques, 

extrapolation of streamflow rating curves out of their design range etc. The issues 

linked with the statistical downscaling techniques are mainly due to different 

representations of predictor-predictand relationships (e.g. linear, non-linear) by different 

statistical downscaling techniques. Issues with predictors are related with the different 

predictor selection criteria such as linear or non-linear methods. 

 

The selection of a better performing subset of GCMs from the large pool of GCMs is a 

possible way of reducing the uncertainty introduced to the downscaling exercise by the 

relatively poor performing GCMs. Better performing GCMs can be identified based on 

the model performance (spatiotemporal agreement with past observations – for example 

see; Harvey & Wigley, (2003)) and convergence of outputs (agreement of different 

GCMs on simulations produced into future – for example see; Johnson & Sharma 
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(2009)). Use of various bias-correction techniques may aid in reducing the mismatch 

between the GCM outputs and observations (or reanalysis data). 

 

In a statistical downscaling study, it is advisable to consider at least two future GHG 

emission scenarios which represent the plausible high and low GHG concentrations. 

This enables the identification of the possible higher and lower impacts of GHG 

emissions on catchment hydroclimatology. The latest set of GHG emission scenarios 

referred to as Representative Concentration Pathways (RCPs), contain a few scenarios 

which incorporate the influences of climate policies on future GHG emissions, unlike 

the past GHG emission scenarios (e.g. SRES scenarios). RCPs could be regarded as 

more plausible realisations of future GHG concentrations as many countries in the 

world have already implemented of climate policies in view of minimising the GHG 

emissions. 

 

There could be outliers, in the records of observations which are used for the statistical 

downscaling model calibration and validation. Careful analysis of observations, prior to 

using them in a downscaling study will help in the identification and elimination of the 

outliers from the record and lead to a more dependable data set and a model. When the 

record of hydroclimatic observations is too short at a certain station, the short record 

could be extended through mathematical relationships (e.g. linear regression equations) 

with a longer record available at a neighbouring station. 

 

The uncertainties introduced to the outputs of a statistical downscaling study, due to the 

use of different statistical downscaling techniques, are much less in comparison to the 

uncertainties arising from GCMs and greenhouse gas emission scenarios. It is advisable 

to use a relatively simple statistical downscaling technique (e.g. linear regression) at the 

beginning of a statistical downscaling study. If this simple downscaling method does 

not adequately reproduce the observations of the predictand, then a more complex 

downscaling technique could be experimented. Furthermore, it should be noted that 

there is no single superior statistical downscaling technique.  
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Any potential predictor used in a statistical downscaling study should have a plausible 

relationship with the predictand considered. If correlation coefficients were used for the 

selection of potential predictors, it is encouraged to analyse the consistency of the 

correlation between predictors and predictands over time. The use of scatter plots in 

predictor selection aids in visually identifying the nature of the predictor-predictand 

relationship. Unlike correlation coefficients, Partial Mutual Information criterion (PMI) 

is capable in identifying both linear and non-linear predictor-predictand dependence 

structures. 

 

Statistical downscaling of GCM outputs to catchment scale hydroclimatic variables is 

part of an ever evolving science. Although there are some issues associated with 

statistical downscaling, still it is regarded as a potential technique for predicting the 

catchment scale hydroclimatology, under changing climate. Outputs of a statistical 

downscaling study should only be used as indications of future catchment 

hydroclimatology, than exact predictions. 
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CHAPTER 3 

STATISTICAL DOWNSCALING OF GCM 

OUTPUTS TO PRECIPITATION AT A STATION

3.1 Introduction 

In this chapter, statistical downscaling of GCM outputs to monthly precipitation at a 

single station in the study area is presented. In statistical downscaling, it is the common 

practice to use some form of reanalysis outputs for the calibration and validation 

(development) of the downscaling model, and then use the corresponding outputs of a 

GCM on the downscaling model for the projection of climate at the catchment scale into 

future. The major issue associated with this conventional approach is that the outputs of 

two different sources with different degrees of accuracy are used as inputs to the 

downscaling model in its development and future projection phases. In other words, the 

inputs to the downscaling model are not homogeneous. 

When the conventional approach is used in developing statistical downscaling models, 

owing to non-homogeneity in inputs, it can yield downscaling models which perform 

well with reanalysis outputs but fail to perform well with corresponding GCM outputs. 

This is because unlike GCM outputs, reanalysis outputs are quality controlled and 

corrected against observations. In other words, reanalysis outputs are of better quality 

compared to corresponding GCM outputs. A downscaling model should not only 

perform well with reanalysis outputs, but also it should perform adequately with GCM 
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outputs. This is because, though the downscaling model is calibrated and validated 

using reanalysis outputs as inputs, projections of catchment scale climate into future are 

produced using the outputs of GCMs as inputs to the downscaling model. The use of 

GCM outputs pertaining to the past climate as inputs to a downscaling model in its 

calibration phase allows the determination of parameters of the downscaling model 

specifically suitable for that GCM. This enables producing more reliable projections of 

catchment scale climate into the future. Therefore, the use of GCM outputs for the 

calibration, validation and future projection phases as inputs to a statistical downscaling 

model is seen as a potential solution to the issue of non-homogeneity in inputs. 

In this chapter, calibration and validation of two statistical downscaling models; the first 

with NCEP/NCAR reanalysis outputs and the second with HadCM3 outputs are 

described. Following the common practice in the first downscaling model, the 

calibration and the validation were performed using NCEP/NCAR reanalysis outputs as 

inputs to the model in view of using the outputs of HadCM3 for the projection of 

precipitation into future. The second downscaling model was calibrated and validated 

using the 20th century climate experiment outputs of HadCM3 in view of using 

HadCM3 outputs for the projection of precipitation into future. In the first downscaling 

model which was developed according to the common practise (conventional manner), 

the input data to the model are obtained from two different sources with different 

degrees of accuracy. Hence the input data to this downscaling model are not 

homogeneous in its development and projection phases. However, the second 

downscaling model was developed and intended to be used with a homogeneous set of 

inputs derived from the same GCM. In the above manner, the issue of using inputs 

obtained from different sources for the calibration, validation and future projections in a 

conventional downscaling model was attempted to be resolved. The performances of the 

above two statistical downscaling models were compared graphically and numerically 

for the calibration and the validation phases. 

The bias in the outputs of HadCM3 was identified and the effect of that bias in the 

outputs of the downscaling model seen over the historical period was corrected using 



Chapter 3: Statistical Downscaling of GCM Outputs to Precipitation at a Station 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 112 

three bias-correction methods; (1) the equidistant quantile mapping, (2) the nested bias-

correction and (3) the monthly bias-correction. A comparison of performances of the 

above three bias-correction techniques is also included in this chapter along with the 

precipitation projections produced into future at the station of interest. 

Some of the inputs to the downscaling models developed in this study were correlated 

with each other. According to Tabachnick & Fidell (2007), issues due to multi-

collinearity (e.g. unstable coefficients in MLR equations) can occur when the 

correlation between any two predictor variables is extremely high (greater than 0.90). 

However, the correlations between the inputs to the downscaling models developed in 

this study were not extremely high, so that the multi-collinearity in the inputs to 

downscaling model did not make the coefficients in the MLR equations unstable. 

Furthermore, it should be noted that depending on the set of inputs (e.g. obtained from 

different GCMs or from same GCM but different sets of predictors) to the downscaling 

model, the projections/predictions of the predictand of interest produced by the 

downscaling model and its parameters can vary. As a solution to the above issue, 

ensemble techniques can be used to combine the outputs of downscaling models 

produced using different inputs obtained from the pool outputs of the same GCM or 

using a common set of inputs obtained from the pools of outputs of different GCMs. 

More information on the use of ensemble techniques in statistical downscaling is 

provided in Chapter 4 of the thesis. 

This chapter contains the following two journal papers. The first paper discusses the 

development of the two statistical downscaling models and the second paper details the 

application of the bias-correction and the precipitation projections produced into future. 

1. Sachindra DA, Huang F, Barton AF, Perera BJC. 2014a. Statistical

downscaling of general circulation model outputs to precipitation Part 1:

Calibration and validation. International Journal of Climatology. (Article in
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press, published online). DOI: 10.1002/joc.3914. (SCImago journal rank 

indicator = Q1; ERA Rank = A; Impact Factor = 2.886) 

2. Sachindra DA, Huang F, Barton AF, Perera BJC. 2014b. Statistical

downscaling of general circulation model outputs to precipitation Part 2: Bias-

correction and future projections. International Journal of Climatology. (Article

in press, published online). DOI: 10.1002/joc.3915. (SCImago journal rank

indicator = Q1; ERA Rank = A; Impact Factor = 2.886)

These two articles are permitted for redistribution under a Creative Commons Attributuion License 
https://creativecommons.org/licenses/by/4.0/
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ABSTRACT: This article is the first of two companion articles providing details of the development of two separate models
for statistically downscaling monthly precipitation. The first model was developed with National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis outputs and the second model was built
using the outputs of Hadley Centre Coupled Model version 3 GCM (HadCM3). Both models were based on the multi-linear
regression (MLR) technique and were built for a precipitation station located in Victoria, Australia. Probable predictors were
selected based on the past literature and hydrology. Potential predictors were selected for each calendar month separately
from the NCEP/NCAR reanalysis data, considering the correlations that they maintained with observed precipitation. Based
on the strength of the correlations, these potential predictors were introduced to the downscaling model until its performance
in validation, in terms of Nash–Sutcliffe Efficiency (NSE), was maximized. In this manner, for each calendar month, the
final sets of potential predictors and the best downscaling models with NCEP/NCAR reanalysis data were identified.
The HadCM3 20th century climate experiment data corresponding to these final sets of potential predictors were used to
calibrate and validate the second model. In calibration and validation, the model developed with NCEP/NCAR reanalysis
data displayed NSEs of 0.74 and 0.70, respectively. The model built with HadCM3 outputs showed NSEs of 0.44 and
0.17 during the calibration and validation periods, respectively. Both models tended to under-predict high precipitation
values and over-predict near-zero precipitation values, during both calibration and validation. However, this prediction
characteristic was more pronounced by the model developed with HadCM3 outputs. A graphical comparison of observed
precipitation, the precipitation reproduced by the two downscaling models and the raw precipitation output of HadCM3,
showed that there is large bias in the precipitation output of HadCM3. This indicated the need of a bias-correction, which
is detailed in the second companion article.

KEY WORDS statistical downscaling; precipitation; general circulation model
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1. Introduction

Changes in the global climate since the 20th century
(notably rises in the global temperature), were mostly
attributed to anthropogenic greenhouse gas (GHG) emis-
sions, rather than natural variability in climate (Crowley,
2000). Furthermore, as stated in IPCC (2007), the rise
in global and continental temperatures during the 20th
century can be credibly reproduced with climate mod-
els, only if both natural and anthropogenic forces were
considered. Sea level rise, reduction of snow coverage,
extreme precipitation events, heat waves and rise in the
frequencies of hot events and tropical cyclones are con-
sidered to be some of the impacts of climate change
(Alavian et al., 2009).

Over the period 1997–2008, the average precipitation
over the southern part of southeast Australia declined

* Correspondence to: D. A. Sachindra, College of Engineering and
Science, Footscray Park Campus, Victoria University, Melbourne,
Victoria 8001, Australia. E-mail: sachindra.dhanapalaarachchige@
live.vu.edu.au

by about 11% from the long term average, leading to a
reduction in runoff of approximately 35% (Chiew et al.,
2010). The Australian state of Victoria suffered a severe
drought (referred to as ‘the Millennium drought’) from
1997, until the torrential rainfalls in late 2010 and early
2011. During 1998–2007, annual average precipitation
in Victoria decreased by about 13% from the long term
average and the highest decline in rainfall of 28%,
occurred over the autumn months. The average rainfall
in autumn and early winter dropped well below the long
term average, while the rainfall in summer remained as
it was (Timbal and Jones, 2008). This drought forced the
introduction of severe water restrictions in many regions
of Victoria. The region southwest of Western Australia
is experiencing a drought which has been in effect since
late 1960s (Smith et al., 2000). Unlike the Millennium
drought, which has now ended, the drought in southwest
of Western Australia has not shown any signs of ending
and is considered to have experienced a step change in
climate (Government of Western Australia Department of
Water, 2009). The changes in the climate described in the
above examples are believed to be the possible impacts
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of anthropogenic climate change and natural variability
of the climate.

Precipitation is regarded as the predominant factor in
determining the availability of water resources in a catch-
ment. The food supply of humans and animals, irrigation,
hydropower generation and recreational purposes are just
some of the major sectors directly under the influence
of precipitation. Hence, it is understood that the reli-
able prediction of future precipitation, especially under
a changing climate, is of great importance in assessing
future water availability.

General circulation models (GCMs) are considered the
most reliable tools in studying climate change (Maraun
et al., 2010). They have proven their potential in repro-
ducing the past observed climatic changes, considering
the GHG concentrations in the atmosphere (Goyal et al.,
2012). However, GCMs produce their projections at rela-
tively coarse spatial scales and they are unable to resolve
sub-grid scale features such as topography, clouds and
land use. Since GCMs generate outputs at coarse grid
scales in the order of a few hundred kilometres, their out-
puts cannot be directly used in catchment scale climate
impact studies, which usually need hydroclimatic data
at fine spatial resolutions. The scale mismatch between
the GCM outputs and the hydroclimatic information
needed at the catchment level is a major obstacle in cli-
mate impact assessment studies of hydrology and water
resources (Willems and Vrac, 2011).

As a solution to the scale mismatch between the GCMs
outputs and the hydroclimatic information required at
catchment scale, downscaling techniques have been
developed. Downscaling techniques are classified into
two broad classes; dynamic downscaling and statistical
downscaling. In dynamic downscaling, outputs of GCMs
are fed into regional climate models (RCMs) as bound-
ary conditions to enable the prediction of the regional
climate at the spatial scale of 5–50 km (Yang et al.,
2012). This procedure is based on the complex physics
of atmospheric processes and involves high computa-
tional costs. In dynamic downscaling techniques, it is
assumed that the parameterisation schemes selected for
the past climate are also valid for the climate in future.
In addition, dynamic downscaling techniques are highly
dependant on the boundary conditions provided by the
GCMs. However, dynamic downscaling could produce
spatially distributed hydroclimatic predictions over the
catchment of interest (Maurer and Hidalgo, 2008).

Statistical downscaling relies on the empirical rela-
tionships derived between the GCM outputs (predictors
of downscaling models) and the catchment scale hydro-
climatic variables (predictands of downscaling models)
such as precipitation, streamflow and evaporation (Hay
and Clark, 2003). Unlike dynamic downscaling, statisti-
cal downscaling does not involve complex atmospheric
physics and hence is computationally less expensive
(Sachindra et al., 2012). In statistical downscaling, for
the establishment of relationships between the GCM out-
puts and the catchment scale hydroclimatic variables,
preferably long records of observed hydroclimatic data

are required (Sachindra et al., 2013). This is because a
long record of observations could possibly contain the
full variability of the observed climate and hence allow
the downscaling models to better model the changes in
the climate. However, this can limit the effective use of
statistical downscaling in data scarce regions. Statistical
downscaling techniques are based on the major assump-
tion that the relationships derived between the GCM
outputs and the catchment scale hydroclimatic variables
for the past observed climate are equally valid for the
future, under changing climate (von Storch et al., 2000).
Also similar to dynamic downscaling, statistical down-
scaling techniques are highly dependent on the outputs of
the GCMs which are used as inputs to the downscaling
model.

Statistical downscaling techniques are grouped under
three categories; weather classification, regression mod-
els and weather generators (Wilby et al., 2004). In
weather classification methods, large scale weather pat-
terns are grouped under a finite number of discrete states
(Anandhi, 2010). Then the links between the catch-
ment scale weather at certain times and the large scale
weather patterns are identified. Hence, by considering
the large scale weather patterns at any given time, the
corresponding catchment scale weather can be deduced.
The method of meteorological analogs (Timbal et al.,
2009, Charles et al., 2013; Shao and Li, 2013) and
recursive partitioning (Schnur and Lettenmaier, 1998)
are examples for the weather classification techniques.
Regression techniques develop either linear or nonlin-
ear regression equations between the GCM outputs and
the catchment scale hydroclimatic variables. Regression
based downscaling methods are regarded as the most
widely used statistical downscaling techniques (Nasseri
et al., 2013). This is mainly due to their simplicity
and effectiveness. Chu et al. (2010) used multi-linear
regression (MLR) for downscaling GCM outputs to daily
mean temperature, pan evaporation and precipitation. Tis-
seuil et al. (2010) used artificial neural networks (ANN),
generalized additive models (GAM), generalized linear
models (GLM) and aggregated boosted trees (ABT) for
downscaling GCM outputs to daily streamflows. Gene
expression programming (GEP) and MLR techniques
were employed by Hashmi et al. (2011) for downscal-
ing GCM outputs to daily precipitation. The least square
support vector machine regression (LS-SVM-R) was used
by Anandhi et al. (2012) and Sachindra et al. (2013)
for downscaling GCM outputs to daily relative humid-
ity and monthly streamflows, respectively. Model output
statistics (MOS) is a statistical downscaling technique
used in post-processing the outputs of climate or weather
models (Maraun et al., 2010), by relating them with
catchment scale observation using a linear regression
technique (Marzban et al. 2006). This enables the reduc-
tion of systematic bias in the predictions of the model.
Weather generators produce weather data for the future by
scaling their parameters according to the corresponding
changes characterized in the GCM outputs for the future.
These techniques possess the advantage of generating
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series of climatic data of any desired length of time with
similar statistical properties as observations used in the
weather generator (Khalili et al., 2009). The combination
of Markov chains and two parameter Gamma distribution
is an example of a weather generator (Richardson, 1981),
in which Markov chains are used to predict the occur-
rences of a climatic variable and the Gamma distribution
is used to determine the corresponding amounts. The
applications of weather generators in statistical downscal-
ing are found in the studies of Semenov and Stratonovitch
(2010), Iizumi et al. (2012), Khazaei et al. (2013).

In general, any statistical downscaling model is cali-
brated and validated (developed) using the reanalysis out-
puts (e.g. NCEP/NCAR) and observations, corresponding
to the past climate. For producing the future projections,
outputs of a GCM pertaining to a certain GHG emission
scenario are introduced to this downscaling model. This
procedure does not provide a smooth transition from the
model development phase (calibration and validation) to
the future projection phase, as the former and latter steps
are performed with the outputs of two different sources
which have different levels of accuracy. In other words,
the inputs used in the development phase and the future
projection phase of a conventional downscaling model are
not homogeneous. As a solution to this issue, a downscal-
ing model calibrated and validated with GCM outputs can
be used in producing future projections with the outputs
of the same GCM, pertaining to a future GHG emission
scenario. Since the outputs of the same GCM are used
for the model development and future projections, there
is homogeneity in the modelling process. However, in
the published literature there was no evidence of past
studies which attempted the use of a downscaling model
developed with GCM outputs.

This article, which is the first of a series of two
companion papers, discusses the calibration and vali-
dation of two statistical downscaling models based on
MLR) technique. The two statistical downscaling models
were developed separately, for downscaling monthly
outputs of (1) National Centers for Environmental
Prediction/National Center for Atmospheric Research
(NCEP/NCAR) reanalysis and (2) Hadley Centre Cou-
pled Model version 3 GCM (HadCM3), to monthly
precipitation. As the case study, a precipitation station
located within the Grampians water supply system
in north-western Victoria in Australia was selected.
A performance comparison between two downscaling
models for the calibration and validation phases was
also performed.

Downscaling GCM outputs to precipitation at monthly
temporal scale does not permit capturing the variations
of precipitation within a month (e.g. wet and dry days,
precipitation intensity and extremes of precipitation).
However, still monthly precipitation projections produced
using downscaling models could aid in the management
of water resources which include operations such as water
allocation for crops, domestic and industrial needs and
also environmental flows, especially in the planning stage
of a water resources project.

The remainder of this article was structured as follows.
The study area and the data used in the study were briefly
described in Section 2, followed by the generic methodol-
ogy in Section 3. Thereafter, in Section 4, the application
of this methodology to the precipitation station consid-
ered was provided along with a discussion on the model
results. A summary on the model development process
and results, along with the conclusions drawn from the
study were provided in Section 5. In the second article
the bias-correction and future precipitation projections are
detailed.

2. Study area and data

The Grampians water supply system in north-western
Victoria is a large multi reservoir system owned and
operated by the Grampians Wimmera Mallee Water
(GWMWater) Cooperation (www.gwmwater.org.au). For
this study, a precipitation station at Halls Gap post office
(Lat. −37.14◦, Lon. 142.52◦, elevation from mean sea
level about 236 m), located in the Grampians system was
selected. At this station, the annual average precipitation
over the period 1950–2010 was about 950 mm. In this
region, winter and summer are the wettest and the
driest seasons, respectively. Observed daily precipitation
record from 1950 to 2010 was obtained from the SILO
database (http://www.longpaddock.qld.gov.au/silo/) of
Queensland Climate Change Centre of Excellence and
aggregated to monthly precipitation, for the calibra-
tion and validation of downscaling models. In that
observed daily precipitation record 31.2% of the data
were missing and those missing data were filled by
the Queensland Climate Change Centre of Excellence
in the SILO database using the spatial interpolation
method detailed in Jeffrey et al. (2001). In order to
provide the inputs for the calibration and validation
of the first downscaling model, NCEP/NCAR monthly
reanalysis data for the period 1950–2010 were down-
loaded from http://www.esrl.noaa.gov/psd/. Monthly
precipitation outputs produced by the HadCM 3 GCM
for the 20th century climate experiment were extracted
from the programme for climate model diagnosis
and inter-comparison (PCMDI) (https://esgcet.llnl.
gov:8443/index.jsp) for the period 1950–1999, for
developing the second downscaling model.

3. Generic methodology

The first step of the downscaling exercise was to define
an adequately large atmospheric domain above the pre-
cipitation station. It was considered that an adequately
large atmospheric domain would enable sufficient atmo-
spheric influence on the climate at the points of interest
(e.g. a precipitation station) within the catchment.

A set of probable predictor variables was identified
based on a review of past literature on downscaling
GCM outputs to precipitation and hydrology. These
probable variables are the most likely candidates to influ-
ence precipitation at the catchment scale. In selecting
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predictors in the past studies (e.g. Anandhi et al., 2008;
Timbal et al., 2009; Kannan and Ghosh, 2013), factors
such as (1) availability in GCM and reanalysis data sets,
(2) reliable simulation by GCMs (3) usage in similar
studies, (4) fundamentals of hydrology, (4) correlations
with the predictand, etc. were considered. Potential
predictors are subsets of the set of probable predictor
variables. These sets of potential predictors are the
most influential variables on precipitation at the stations
considered. The predictor-predictand relationships vary
from season to season and also from (geographic) region
to region, following the spatiotemporal variations of the
atmospheric circulations (Karl et al., 1990). Therefore the
sets of potential predictors also vary spatiotemporally.
In this study, in order to better model the precipitation,
considering the seasonal variations of the atmospheric
circulations, potential predictors were identified for
each calendar month, and downscaling models were
developed separately for each of the 12 calendar months.
Sachindra et al. (2013) found that both Least Square
SVM (a complex nonlinear downscaling technique) and
MLR (a relatively simple linear downscaling technique)
have comparable capabilities in directly downscaling
GCM outputs to catchment scale streamflows. Hence, in
this study MLR technique was used to downscale GCM
outputs to catchment scale precipitation.

Following the methodology proposed by Sachindra
et al. (2013), the probable predictors obtained from a
reanalysis database were split into 20 year time slices, in
the chronological order. The Pearson correlation coeffi-
cients (Pearson, 1895) between these probable predictors
and the observed monthly precipitation were calculated
for each 20 year time slice and the whole period, at all
grid points in the atmospheric domain, for each calendar
month. Thereafter, the probable variables which exhibited
the best statistically significant correlations (at 95% con-
fidence level, p = 0.05) with observed precipitation, over
all 20 year time slices and the whole period consistently,
were extracted as the potential predictors. The consis-
tently correlated variables refer to the predictors which
maintained correlations without any sign variations (e.g.
positive to negative or vice versa) and large variation in
magnitudes over the time slices and the whole period of
the study. Once the selection of potential predictors was
completed, two downscaling models were developed
(calibrated/validated) separately, the first using the
reanalysis outputs and the second with the corresponding
20th century climate experiment outputs of the GCM.
The development of two separate downscaling models,
one with reanalysis outputs and the other with GCM
outputs, enabled the determination of how accurately the
model developed with GCM outputs could reproduce
the past precipitation observations, in comparison to its
counterpart model. Furthermore, this process allows for
understanding the potential of the downscaling model
developed with GCM outputs, for its use in producing the
precipitation projections into future. Reanalysis data are
accepted to be more accurate than GCM outputs, owing
to the rigorous quality control and corrective measures

to which they are subjected to (e.g. NCEP/NCAR reanal-
ysis – Kalnay et al., 1996). Since the reanalysis outputs
are more accurate than the GCM outputs, the down-
scaling model built with reanalysis outputs should better
perform in the calibration and validation periods. If the
downscaling model developed with GCM outputs was
capable of reproducing the past precipitation observations
adequately, it enables the use of this same model for the
future projections of precipitation. In this case, a homoge-
neous set of data produced by the same GCM is used for
the calibration, validation and future projection. There-
fore, this can be regarded as a better option, than using
the GCM outputs pertaining to future on the downscaling
model developed with reanalysis outputs to project the
precipitation at the station of interest into future.

For the calibration phase of the downscaling model
developed with reanalysis data, the first two thirds of
these reanalysis (corresponding to potential predictors)
and observed precipitation data (predictand) were used,
while the rest of the data were used for the model
validation. The potential predictors for both calibration
and validation were standardized with the means and the
standard deviations of reanalysis data corresponding to
the calibration phase (Sachindra et al., 2013). In model
calibration, initially, the three potential predictors which
have shown the best correlations with precipitation over
the whole period of the study were introduced to the
downscaling model. The parameters (coefficients and
constants in the MLR equations) of the downscaling
model were optimized in calibration, by minimizing
the sum of the squares of the errors. Then the model
validation was performed with the calibrated model.
The performance of the model during calibration and
validation in reproducing the observed precipitation
was assessed using the Nash–Sutcliffe efficiency (NSE;
Nash and Sutcliffe, 1970). Thereafter, the next potential
predictors which showed the best correlation with
precipitation were introduced to the previously added
predictors of the downscaling model, one at a time.
This process of stepwise addition of potential predictors
was practised until the model performance in terms of
NSE in validation reaches a maximum. This process
allowed finding the best set of potential predictors and
the best downscaling model for a calendar month. The
downscaling model calibration and validation were
performed for each calendar month separately.

If the stepwise development was not employed in
the development of the model based on the reanaly-
sis outputs, all potential predictors could have been
introduced into the downscaling model at once. This
could have introduced data redundancy errors due to
the inter-dependency or cross-correlations between the
predictors leading, to over-fitting in calibration and
under-fitting in validation. The stepwise model devel-
opment and selection of the model which showed the
best performance in validation guaranteed the avoidance
of selection of models which showed over-fitting in
calibration and under-fitting in validation.
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As mentioned earlier in this article, the second down-
scaling model (with sub-models for each calendar month)
was developed (calibrated/validated) with the GCM out-
puts corresponding to the climate of the 20th century. In
the calibration and validation of this downscaling model,
observed precipitation at the station of interest was used
as the predictand. The same calibration period used for
first model was also used for this model. The rest of
the GCM data were used for the validation. Inputs for
both the calibration and validation phases of this model
were standardized with the means and the standard devi-
ations of the GCM outputs pertaining to the calibration
period. The best potential predictors identified in the
calibration and validation processes of the downscaling
model developed with reanalysis outputs were also used
in the development of this model, assuming the validity
of these potential predictors for both downscaling models.
The calibration of the second model was performed for
each calendar month by introducing the 20th century cli-
mate outputs of the GCM pertaining to the best potential
predictors. The optimum parameters of the MLR based
downscaling models were determined by minimizing the
sum of the squared errors between the model predicted
precipitation and the observed precipitation. These MLR
models with the same parameters determined in the cal-
ibration phase were used in the validation. Unlike in
the development of the model which was driven with
reanalysis outputs, stepwise development process was not
adopted in building the model driven with GCM outputs,
as the best potential variables were already identified.

Graphical and numerical comparisons between the
observed precipitation and precipitation outputs of the
above described two statistical downscaling models were
performed. Both graphical and numerical assessments
were employed, as numerical assessments alone may
not be robust enough in the evaluation of model per-
formances. The graphical comparison of precipitation
included the time series and scatter plots of the model
reproduced precipitation against observations. The
numerical assessment of the two downscaling models
was done by statistical measures such as average, stan-
dard deviation, coefficient of variation, NSE, seasonally
adjusted NSE (SANS) (Wang, 2006; Sachindra et al.,
2013) and the coefficient of determination (R2). Note
that all MLR based downscaling models discussed in
this article were developed using the statistics toolbox
in MATLAB (Version - R2008b).

4. Application

The generic methodology described in Section 3 was
applied to the precipitation station at the Halls Gap post
office in the operational area of GWMWater, Victoria,
Australia.

4.1. Atmospheric domain for downscaling

There are no clear guidelines on the selection of the
optimum size of the atmospheric domain for a statistical

downscaling study. Najafi et al. (2011) successfully
used an atmospheric domain with 7 × 4 grid points in
the longitudinal and latitudinal directions, respectively
at a spatial resolution of 2.5◦ in both directions, for
the statistical downscaling of outputs of CGCM3 to
monthly precipitation. Their study demonstrated that the
atmospheric domain does not necessarily have to be a
square in shape. However, if the atmospheric domain
is too rectangular in shape, the influences of large scale
atmospheric circulations on the point of interest in
the catchment are more considered on the wider sides
of the domain, and the influences coming from the
narrower sides are less considered or neglected. Hence,
such domain shape should be avoided in statistical
downscaling. A larger atmospheric domain increases the
computational cost and time involved in the investigation.
However, a larger domain aids in identifying influences
of large scale atmospheric circulations over a wider area.
When the atmospheric domain is too small, it may not be
able to adequately capture the atmospheric circulations
responsible for the hydroclimatology in the catchment.
Therefore, the atmospheric domain which is an important
component of any statistical downscaling study should be
of adequate size and of an appropriate shape. In general
a domain size of 6 × 6 grid points at a spatial resolution
of 2.5◦ in both longitudinal and latitudinal directions is
a regarded as an adequate size (Tripathi et al., 2006).
An atmospheric domain with spatial dimensions of
7 × 6 grid points at a spatial resolution of 2.5◦ in both
longitudinal and latitudinal directions was selected for
the downscaling study described in this article. The size
of this atmospheric domain was determined considering
its ability to represent the large scale atmospheric
phenomena which influence the precipitation at the point
of interest and also the computational cost. The same
atmospheric domain over the same study area was suc-
cessfully used by Sachindra et al. (2013) for statistically
downscaling GCM outputs to catchment streamflows.
The spatial resolution of this atmospheric domain was
maintained at 2.5◦ in both longitudinal and latitudinal
directions, making it compliant with the spatial resolution
of the NCEP/NCAR reanalysis outputs. The atmospheric
domain used in this study is shown in Figure 1. The
shaded region in Figure 1 depicts the operational area of
GWMWater, and the precipitation station considered in
this study is located in its south most region.

4.2. Selection of probable and potential predictors for
downscaling

A pool of probable predictors was selected based on
hydrology and past studies by Anandhi et al. (2008) and
Timbal et al. (2009), on downscaling GCM outputs to
precipitation. In the downscaling study by Timbal et al.
(2009), predictor variables influential on the generation of
precipitation, over the south and south eastern Australia
(this includes the present study area) were identified. The
probable predictor pool selected for the study described
in this article consisted of geopotential heights at 200 hPa,
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Figure 1. Atmospheric domain for downscaling.

500 hPa, 700 hPa, 850 hPa and 1000 hPa pressure lev-
els; relative humidity at 500 hPa, 700 hPa, 850 hPa and
1000 hPa pressure levels; specific humidity at 2 m height,
500 hPa, 850 hPa and 1000 hPa pressure levels; air tem-
peratures at 2 m height, 500 hPa, 850 hPa and 1000 hPa
pressure levels; surface skin temperature, surface pres-
sure, mean sea level pressure, surface precipitation rate
and zonal and meridional wind speeds at 850hpa pressure
level. These probable predictors were common for all cal-
endar months. The monthly data for these 23 probable
predictors for the 42 grid points shown in Figure 1 were
extracted from the NCEP/NCAR reanalysis data archive
at http://www.esrl.noaa.gov/psd/.

The probable predictors and the observed monthly
precipitation totals from 1950 to 2010 were split into
three 20 year time slices; 1950–1969, 1970–1989 and
1990–2010. The last time slice was 21 years in length.
The Pearson correlation coefficients between the probable
predictors and the observed monthly precipitation were
calculated for all three time slices and the whole period
(1950–2010), at each grid point in the atmospheric
domain (see Figure 1). The probable predictors which
showed good statistically significant correlations (at 95%
confidence level, p = 0.05) consistently over the three
time slices and the whole period were selected as the
potential predictors (Sachindra et al., 2013). This process
was repeated for all 12 calendar months, yielding 12 sets
of potential predictors.

The El Niño-Southern Oscillation (ENSO) and the
Indian Ocean Dipole (IOD) are regarded as two large
scale atmospheric phenomena influential on the climate
of Victoria, Australia. A correlation analysis performed
over the period 1950–2010 between the Southern Oscil-
lation Index (SOI) which is representative of ENSO and
observed precipitation at the Halls Gap post office indi-
cated that these correlations vary between 0.03 (March)

and 0.33 (October). Similarly, the correlations between
the Dipole Mode Index (DMI) which is representative
of IOD and observed precipitation ranged between
−0.01 (February) and −0.46 (August) during the period
1958–2010. Hence, it was realized that the influences of
these large scale atmospheric phenomena on the observed
precipitation at the Halls Gap post office are weak in
nature. Therefore it was understood that the inclusion of
such indices in the inputs to the downscaling models will
not lead to any improvement to the precipitation predic-
tions. Furthermore, Chiew et al. (1998) detailed the influ-
ences of ENSO on the rainfall, drought and streamflows
in Australia, using the SOI and sea surface temperature
(SST), and concluded that, the correlations between
these ENSO indicators and hydroclimatic variables are
not sufficiently strong for a consistent prediction.

4.3. MLR downscaling model calibration and
validation

4.3.1. Model calibration and validation with
NCEP/NCAR data

The potential predictors selected from the probable pool
were separated into two chronological groups; 1950 to
1989 and 1990 to 2010, the former for model calibration
and the latter for model validation. The potential predic-
tors were standardized for both calibration and validation
periods using the means and the standard deviations per-
taining to the period 1950 to 1989 (calibration period).
The standardized potential variables were ranked based
on the magnitude of their correlations with the observed
monthly precipitation, over the whole period of the study
(1950–2010). Then these potential variables were intro-
duced to the MLR based downscaling model as described
in Section 3. In the manner described in Section 3, for
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each calendar month the best set of potential predic-
tors and the best MLR based downscaling model were
selected. Table 1 shows the final (or the best) set of poten-
tial predictors used in the downscaling model developed
with NCEP/NCAR reanalysis outputs for the month of
January. Also this table contains the correlations between
the observed precipitation and the final set of potential
predictors, during the three 20 year time slices and the
whole period of the study.

Table 2 provides the final sets of potential predic-
tors used in the downscaling models in each calendar
month. The final sets of potential predictors used in the
downscaling models consisted of: surface precipitation
rate; specific humidity, relative humidity and geopoten-
tial heights at various pressure levels; mean sea level
pressure; surface pressure and zonal and meridional wind
speeds at 850 hPa pressure level. However, surface pre-
cipitation rate was identified as the most influential poten-
tial predictor on precipitation, appearing in the final sets
of potential predictors for all calendar months except
July. Surface precipitation rate produced by GCMs is a
precipitation flux (precipitation per unit time across unit
area at earth surface) which is analogous to precipita-
tion at a point over a specific time period (e.g. daily
or monthly precipitation). Therefore the strong influ-
ence of surface precipitation rate on monthly precipita-
tion was justified. The highest correlations between the
NCEP/NCAR precipitation rate and the observed precip-
itation over the period 1950–2010 within each calendar
month were June (0.82), August (0.82), October (0.79),
September (0.77), December (0.74), May (0.71), January
(0.69), April (0.64), February (0.61), March (0.61) and
November (0.48). Precipitation outputs of GCMs have
been also used in the past downscaling studies. Timbal
et al. (2009) used precipitation rate in downscaling daily
precipitation and Tisseuil et al. (2010) used precipita-
tion rate for downscaling daily streamflows. Maraun et al.
(2013) stated that despite the errors, the precipitation out-
put of a GCM can still contain useful information about
the observed precipitation. Hence it was realized that pre-
cipitation output of a GCM can be used as an input to a
downscaling model.

Specific humidity (mass of water vapour per unit mass
of air), and relative humidity (ratio of actual water vapour
pressure of the air to the saturation vapour pressure) at
various pressure levels are indicators of the atmospheric
water vapour content which leads to the formation of
clouds (Peixoto and Oort, 1996). Humidity variables
(relative or specific humidity) which are indictors of
the atmospheric water vapour content were potential
predictors in 7 (February, March, May, September,
October, November and December) of the 12 calendar
months. According to Nazemosadat and Cordery (1997),
geopotential heights are influential on the generation of
precipitation, as they are representative of large scale
atmospheric pressure variations such as the El Niño
Southern Oscillation (ENSO). Zonal and meridional
wind fields are influential on the evaporation from open
surface water bodies and they govern the movement

of rain bearing clouds (Bureau of Meteorology, 2010),
and hence it was suitable to include wind fields in the
final sets of potential predictors. It is noteworthy to
mention that, according to Table 2, except in August
and November, grid point {4,4} found to be a dominant
location for the final sets of potential predictors. The grid
point {4,4} is the closest grid point to the precipitation
station considered in this study.

In general, humidity variables and precipitation rate
are more capable of explaining the precipitation process
(refer to Table 2). However as shown in Table 2, in
the month of July, the set of potential predictors used
in the downscaling models contained only the wind
speeds and the geopotential heights at 850 hPa. It was
realized that these variables are still able to explain the
precipitation process with a good degree of accuracy,
as the downscaling model developed for July using
the NCEP/NCAR reanalysis outputs displayed NSEs of
0.58 and 0.50 in the calibration and validation phases,
respectively. Furthermore, as these potential variables are
selected based on the magnitude and also the consistency
of correlations with observed precipitation over time, it is
argued that the final sets of potential predictors used in the
downscaling models are able to characterize the changes
in precipitation at the point of interest, also in the future.

In Table 2, it could be found that the majority of the
potential predictors in the final sets were selected from
the grid points surrounding the precipitation station of
interest [(3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4)
and (5,5)]. However, some potential predictors in the final
sets were selected from the distant grid points of the
domain as the precipitation at the station of interest is
not only influenced by the atmosphere in close proximity
to the station but also by the atmospheric processes that
occur far away. The best grid locations of the potential
predictors provided in Table 2 were selected not only
based on the strength of the correlation between the
potential predictors and observed precipitation, but also
considering the consistency of the correlation over three
time slices and the whole period of the study. Therefore
it was assumed that the best grid locations of the final
sets of potential predictors used in this study will remain
the same in future.

4.3.2. Model calibration and validation with HadCM3
20th century climate experiment data

The 20th century climate experiment data of HadCM3
GCM were obtained for the period 1950–1999, cor-
responding to the final sets of potential predictors
shown in Table 2. HadCM3 model has been forced
with both natural and anthropogenic forcings to repro-
duce the climate of the 20th century (Knight, 2003).
As the natural forcings; SST and sea-ice anomalies,
variations in the total solar irradiance and stratospheric
volcanic aerosols, etc. have been used in HadCM3.
As anthropogenic forcings; GHG concentrations in the
atmosphere, changes in tropospheric and stratospheric
ozone, the effects of atmospheric sulphate aerosols and
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Table 1. Final set of potential predictors used in the January downscaling model and their correlations with observed precipitation
in each time slice and whole period.

Rank of variable Potential variables for January Grid location Time slice Correlation with precipitation

1 Surface precipitation rate 4,4

1950–1969 0.910
1970–1989 0.581
1990–2010 0.651
1950–2010 0.693

2 1000 hPa specific humidity 3,3

1950–1969 0.532
1970–1989 0.532
1990–2010 0.603
1950–2010 0.550

3 850 hPa meridional wind 3,6

1950–1969 −0.466
1970–1989 −0.698
1990–2010 −0.468
1950–2010 −0.548

4 850 hPa meridional wind 3,5

1950–1969 −0.400
1970–1989 −0.724
1990–2010 −0.522
1950–2010 −0.544

5 1000 hPa specific humidity 3,4

1950–1969 0.487
1970–1989 0.553
1990–2010 0.516
1950–2010 0.515

6 850 hPa meridional wind 2,6

1950–1969 −0.420
1970–1989 −0.585
1990–2010 −0.506
1950–2010 −0.513

7 2 m specific humidity 3,3

1950–1969 0.430
1970–1989 0.550
1990–2010 0.540
1950–2010 0.510

8 Surface precipitation rate 3,3

1950–1969 0.608
1970–1989 0.413
1990–2010 0.523
1950–2010 0.498

9 1000 hPa specific humidity 4,4

1950–1969 0.595
1970–1989 0.508
1990–2010 0.412
1950–2010 0.494

10 850 hPa relative humidity 1,2

1950–1969 0.438
1970–1989 0.475
1990–2010 0.596
1950–2010 0.483

11 2 m specific humidity 3,4

1950–1969 0.448
1970–1989 0.533
1990–2010 0.482
1950–2010 0.482

Bold values refer to calibration and validation periods of the study.

changes in land surface characteristics have been used
in HadCM3. The 20th century climate experiment data
of HadCM3 were split into two groups; (a) 1950–1989
for model calibration and (b) 1990–1999 for the model
validation. HadCM3 data for both the calibration and
validation phases were standardized with the means and
the standard deviations of HadCM3 data corresponding
to 1950–1989 period. In calibration, the standardized
sets of data pertaining to the best potential predictors

shown in Table 2 were introduced to the MLR based
downscaling model. During calibration, the optimum
values for the model parameters were determined by
minimizing the sum of squared errors between the
model predicted and observed precipitation values. In
validation, the HadCM3 data for the 1990–1999 period
were introduced to the calibrated MLR models. The same
procedure was repeated for all calendar months. Unlike
in the calibration and validation of the downscaling
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Table 2. Final sets of potential predictors for each calendar
month.

Month Potential variables used in
the model with grid locations

January Surface precipitation rate {(3,3),(4,4)}
1000 hPa specific humidity {(3,3),(3,4),(4,4)}
850 hPa meridional wind {(2,6),(3,5),(3,6)}
850 hPa relative humidity {(1,2)}
2 m specific humidity {(3,3),(3,4)}

February Surface precipitation rate {(3,4),(4,4),(4,5)}
March Surface precipitation rate

{(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(4,6)}
April 850 hPa relative humidity {(4,3),(4,4)}

Surface precipitation rate {(4,3)}
May Surface precipitation rate {(4,4),(5,5)}

850 hPa geopotential height {(4,3)}
June Surface precipitation rate

{(3,2),(3,3),(4,2),(4,3),(4,4),(4,5)}
Mean sea level pressure {(4,3),(5,3)}
850 hPa zonal wind {(2,4)}
Surface pressure{(4,3),(5,3),(5,4)}

July 850 hPa zonal wind {(1,3),(1,4)}
850 hPa geopotential height {(4,3),(4,4),(4,5)}

August Surface precipitation rate {(4,3),(5,4),(5,5)}
September Surface precipitation rate

{(2,1),(2,2),(3,2),(3,3),(3,5),(4,2),(4,3),(4,4),(4,5)}
850 hPa relative humidity {(3,3)}
700 hPa relative humidity {(3,4)}

October Surface precipitation rate
{(3,2),(4,2),(4,3),(4,4)}

850 hPa relative humidity {(4,3)}
700 hPa geopotential height {(1,1)}

November 850 hPa relative humidity {(3,2),(3,3)}
Surface precipitation rate {(4,3),(4,5)}

December Surface precipitation rate
{(2,1),(3,2),(4,3),(4,4),(5,5)}

850 hPa relative humidity {(3,2)}
hPa, atmospheric pressure in hectopascal; the locations are given within
brackets (see Figure 1).

model which was developed with NCEP/NCAR reanal-
ysis outputs, the stepwise development procedure was
not adopted in these models. A correlation coefficient
analysis performed between the 20th century climate
experiment outputs of HadCM3 and NCEP/NCAR
reanalysis outputs over the period 1950–1999, revealed
that these correlations are quite weak (e.g. 0.2–0.4).
Hence it was realized that HadCM3 outputs pertaining
to the 20th century climate experiment contain large
bias. Therefore it was understood that whether the final
sets of potential predictors are selected using a stepwise
procedure or not, they will not change the performance
of the model developed with HadCM3 outputs. It was
assumed that final sets of potential predictors identified in
the development of the model driven with NCEP/NCAR
outputs are also applicable for this model. The difference

between the statistical downscaling models built with the
HadCM3 20th century experiment data (Model(HadCM3))
and the models built with the NCEP/NCAR reanalysis
data (Model(NCEP/NCAR)) was that these two models
had different optimum values for their parameters
(coefficients and constants in MLR equations).

4.3.3. Calibration and validation results of the
downscaling models

Figure 2 shows the time series of monthly observed
precipitation and monthly precipitation reproduced by the
downscaling model developed with NCEP/NCAR data,
for the period 1950–2010. According to Figure 2, the
monthly precipitation reproduced by this downscaling
model, was in close agreement with the observed pre-
cipitation during both calibration and validation periods.
Although the model validation was performed in a rela-
tively dry period which included the Millennium drought
(1997–2010), this downscaling model has been able to
capture the monthly precipitation pattern and the magni-
tude with good accuracy.

Figure 3 shows the scatter plots of monthly observed
precipitation and precipitation reproduced by the down-
scaling model developed with NCEP/NCAR data, for
the calibration (1950–1989) and validation (1990–2010)
phases. As seen in Figure 3, during both the calibration
and validation periods, near zero monthly precipitation
values were over predicted and relatively large precipita-
tion values were under-predicted. However, these scatter
plots of the model predictions against the observations
further confirmed that, the prediction capabilities of the
model developed with NCEP/NCAR data in validation
are very much comparable with those during calibration.

Figure 4 illustrates the time series of monthly observed
precipitation and monthly precipitation reproduced by
the downscaling model built with HadCM3 data, for the
period 1950–1999. It was seen that this model was not
able to satisfactorily reproduce the high precipitation val-
ues. Furthermore, the agreement between the observed
and model reproduced precipitation was much less com-
pared to that of the model developed with NCEP/NCAR
reanalysis outputs. However, the model developed with
HadCM3 outputs properly captured the pattern of the
observed precipitation as shown in Figure 4. It should
be noted that the validation phase of the model devel-
oped with HadCM3 data was confined to the period
1990–1999, due to the unavailability of data beyond year
1999, under the 20th century climate experiment.

Figure 5 represents the scatter plots for the calibration
(1950–1989) and validation (1990–1999) phases of the
downscaling model developed with HadCM3 data. It
was seen that in the calibration and validation phases,
high precipitation values were largely under-predicted.
During both phases, the model displayed a clear trend of
over-predicting the majority of low precipitation values.
However, these characteristics were also seen in the
predictions of the model developed with NCER/NCAR
data, but with less intensity.
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Figure 2. Observed and Model(NCEP/NCAR) reproduced monthly precipitation (1950 to 2010).
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Figure 3. Scatter plots of observed and Model(NCEP/NCAR) reproduced monthly precipitation for calibration (1950–1989) and validation
(1990–2010).

Statistical downscaling models in general fail to cap-
ture the full range of the variance of a predictand such
as precipitation (Wilby et al., 2004). This is because,
in general the variance in the observations of precip-
itation is much greater than the variance in the large
scale atmospheric variables obtained from the GCM or
the reanalysis data. When the downscaling model is run
with the GCM or the reanalysis data it tends to explain
the mid range of the variance of the observed precipi-
tation better than the low and high extremes. Therefore
statistical downscaling models in general tend to repro-
duce the average of the precipitation better than the low
and high extremes. In other words, this results in an
under-estimation of large precipitation values and over-
estimations of near zero precipitation values. Tripathi
et al. (2006) also commented that even a downscal-
ing model based on support vector machine technique
(complex nonlinear regression technique) fails to properly
reproduce the extremes of precipitation though it captures
the average well.

The performances of the two downscaling models,
during the calibration and validation phases were numer-
ically assessed by comparing the mean, the standard
deviation and the coefficient of variation of the model
predictions with those of observations, and these results
are shown in Table 3. It can be seen that both downscal-
ing models developed with NCEP/NCAR and HadCM3
outputs reproduced the observed averages of the precip-
itation with good accuracy, in both calibration and vali-
dation phases. This finding was quite consistent with that
of Sachindra et al. (2013), in which MLR and LS-SVM
techniques were employed for downscaling NCEP/NCAR
outputs to streamflows. However, in this study, neither of
the two models properly captured the standard deviation
and the coefficient of variation of the observed precipi-
tation, during both the calibration and validation phases.
This characteristic was more noticeable in the outputs of
the downscaling model developed with HadCM3 data.
It indicated that, in particular, the model developed with
HadCM3 data could not reproduce the entire variance
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Figure 4. Observed and Model(HadCM3) reproduced monthly precipitation (1950 to 1999).
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Figure 5. Scatter plots of observed and Model(HadCM3) reproduced monthly precipitation for calibration (1950–1989) and validation (1990–1999).

of the observed precipitation. In Figure 4, the same
characteristic was seen in the time series plots. This
characteristic was seen with less severity in the outputs of
the model developed with NCEP/NCAR reanalysis data.

The model performances in calibration and validation
were further quantified with the NSE, the SANS and
the coefficient of determination (R2). The SANS con-
siders the seasonal means of precipitation in measuring
the model performances, unlike the original NSE, which
considers only the mean of precipitation for the whole
period. During calibration, the statistical downscaling
model developed with NCEP/NCAR reanalysis data dis-
played NSE, SANS and R2 of 0.74, 0.66 and 0.74, respec-
tively. However, for the same period, the downscaling
model developed with HadCM3 outputs, produced NSE,
SANS and R2 of 0.44, 0.26 and 0.44, respectively. In the
validation phase, the model developed with NCEP/NCAR
outputs produced NSE, SANS and R2 of 0.70, 0.61 and
0.72. During the validation period, the model developed
with HadCM3 outputs, produced NSE, SANS and R2

of 0.17, −0.20 and 0.22, respectively. These findings
indicated that both downscaling models have performed

relatively better during the calibration period than in
the validation period. However, it was seen that the
downscaling model developed with NCEP/NCAR data
performed well in the calibration and validation phases,
compared to its counterpart model which was built with
HadCM3 outputs. This statement was further supported
by the findings of scatter plots shown in Figures 3 and 5.

Figure 6 depicts the agreement between the pre-
cipitation reproduced by the model developed with
NCEP/NCAR outputs and the observed precipitation,
during the calibration (1950–1989) and validation
(1990–2010) periods, on a seasonal basis. As shown in
Figure 6, it was determined that this model demonstrates
good capabilities in reproducing the observations in
calibration and validation, in all four seasons, despite
the tendencies of under-predicting high precipitation
values and over-predicting near zero precipitation
values which were evident in all four seasons. The four
seasons are defined as summer (December–February),
autumn (March–May), winter (June–August) and spring
(September–November).
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Table 3. Performances of downscaling models in calibration and validation.

Statistic Calibration (1950–1989) Validation (1990–2010)/(1990–1999)a

Observations Model(NCEP/NCAR) Model(HadCM3) Observations Model(NCEP/NCAR) Model(HadCM3)

1990–2010 1990–1999

Avg 81.8 82.0 81.7 73.3 81.8 81.0 87.6
Std 61.7 53.2 41.1 56.9 64.3 51.9 44.5
C v 0.75 0.65 0.50 0.78 0.79 0.64 0.51
NSE 0.74 0.44 0.70 0.17
SANS 0.66 0.26 0.61 −0.20
R2 0.74 0.44 0.72 0.22

Avg, average of monthly precipitation in mm; C v, coefficient of variation; NSE, Nash–Sutcliffe efficiency; R2, coefficient of determination; Std,
standard deviation of monthly precipitation in mm; SANS, Seasonally Adjusted Nash–Sutcliffe efficiency. aBold italicized values in the table
refer to period 1990–1999.

Figure 7 displays the seasonal scatter plots for the
calibration (1950–1989) and validation (1990–1999)
periods of the model developed with HadCM3 outputs.
Large under-predictions of precipitation were seen in all
four seasons during both the calibration and validation
phases of this model. During all four seasons in the
validation period, a relatively poor agreement between
the observed and model reproduced precipitation was
seen. This characteristic was more intense in autumn,
winter and spring than in summer.

Table 4 shows the seasonal statistics of the observed
precipitation and the precipitation reproduced by the
models developed with NCEP/NCAR reanalysis and
HadCM3 data, for the calibration and validation periods.
In the calibration phase, during all four seasons, aver-
ages of the observed precipitation were near perfectly
reproduced by both downscaling models. In the validation
phase, although not as good as in calibration, both mod-
els were capable in reproducing the averages of observed
precipitation in all four seasons with some under and
over-predictions. During all four seasons in the validation
period, both downscaling models tended to over-predict
the average of the observed precipitation. This was due
to the fact that the calibration was performed over a wet-
ter period and the validation was done during a relatively
dryer period. However, according to Figures 2 and 4 both
downscaling models were able to adequately capture the
precipitation pattern seen in the observations, through-
out the calibration and validation periods. The under-
estimation of the standard deviation and the coefficient
of variation was seen in all four seasons of both mod-
els, during the calibration and validation periods. This
characteristic was more severe in the case of the model
developed with HadCM3 outputs. Since there is a large
scale gap between the GCM outputs and the catchment
scale, not all the variance in observations of a predictand
(at a point in the catchment) can be explained by the
GCM. Therefore, regression based statistical downscal-
ing techniques are capable of capturing only the part of
the variance (deterministic component of the variance) of
a predictand which is conditioned by the GCM (Hewit-
son et al., 2013). The local scale random variance of the
predictand (stochastic component of the variance) is not

simulated by the regression based downscaling models,
as it is not explicitly explained by the GCM. At the catch-
ment scale, capturing the full variance of a predictand is
important. This can be achieved by the application of a
suitable bias-correction method for post-processing the
outputs of the downscaling model (Maraun, 2013). Tech-
niques such as randomization may also help in capturing
the full variance of a predictand (von Storch, 1999).

In the model developed with NCEP/NCAR data, the
best performances in calibration in terms of NSE and R2

were seen during winter while the lowest performances
were observed in summer. For this model, in validation,
autumn produced the best performance. The model devel-
oped with HadCM3 outputs showed relatively low NSE
and R2 in all four seasons of the calibration period. The
negative NSEs were seen in autumn, winter and spring
during the validation period, which indicated the limited
performances of this downscaling model.

As mentioned in Section 1, the largest drop in pre-
cipitation over Victoria during the Millennium drought
was observed in autumn. The decline in the average of
the observed precipitation in autumn, during the Mil-
lennium drought (1997–2010), at the station considered
in this study, was 27.5%, from the long-term average
(1950–1989). The downscaling model developed with
NCEP/NCAR reanalysis outputs was able to successfully
reproduce this large drop in the average as 22.4%.

According to the findings discussed previously, it was
realized that the downscaling model developed with
NCEP/NCAR reanalysis data has better potential in
downscaling precipitation, in comparison with its coun-
terpart model built with HadCM3 outputs. This was due
to the better quality of NCEP/NCAR reanalysis out-
puts characterized by better synchronicity with observed
precipitation, high precipitation simulation, etc. in com-
parison to those of HadCM3 outputs. Furthermore, it
was seen that MLR has the potential for modelling
the relationship between the predictors and the monthly
precipitation adequately. As shown in Tables 3 and 4,
and Figure 3 with the final sets of potential variables
given in Table 2, the downscaling model developed with
NCEP/NACR reanalysis outputs reproduced the observed
precipitation with good degree of accuracy. Therefore it
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Figure 6. Seasonal scatter plots of observed and Model(NCEP/NCAR) reproduced monthly precipitation for calibration (1950–1989) and validation
(1990–2010).

was realized that the final sets of potential variables used
in the downscaling models are capable of capturing the
precipitation process to a good degree.

Figure 8 shows the exceedance probability curve for
the observed precipitation, precipitation reproduced by
the downscaling models with NCEP/NCAR and HadCM3

outputs, and the raw precipitation output of HadCM3
model for the 20th century climate experiment at grid
point {4,4} (see Figure 1 for location), over the period
1950–1999. Since point {4,4} is the closest grid point to
the precipitation station, HadCM3 20th century climate
experiment outputs at this point was considered to be
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Figure 7. Seasonal scatter plots of observed and Model(HadCM3) reproduced monthly precipitation for calibration (1950–1989) and validation
(1990–1999).

representative of the precipitation station considered in
this study. Note that the precipitation rate (which was
the observed precipitation equivalent output of HadCM3)
was converted to monthly precipitation, for plotting the
corresponding exceedance curve in Figure 8.

According to Figure 8, it was seen that there is a large
mismatch between the raw precipitation output at grid
point {4,4} of HadCM3 model and the observed pre-
cipitation, during the period 1950–1999. The large bias
in the precipitation output of HadCM3 indicated that its
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Table 4. Seasonal performances of downscaling models.

Model Statistic Calibration (1950–1989) Validation (1990–2010)/(1990–1999)a

Season Season

Summer Autumn Winter Spring Summer Autumn Winter Spring

Observed
Avg

40.7 73.7 125.1 87.7 42.9/(44.3) 54.1/(57.0) 119.4/(136.1) 78.3/(89.8)
Model(NCEP/NCAR) 40.7 73.7 125.1 87.7 49.2 57.8 132.5 85.1
Model(HadCM3) 40.3 73.8 125.1 87.8 (44.9) (78.8) (128.3) (98.5)

Observed
Std

33.7 58.8 64.5 53.5 41.0/(46.8) 43.1/(46.5) 61.2/(66.3) 48.4/(55.1)
Model(NCEP/NCAR) 26.0 46.6 54.1 43.9 29.8 33.1 54.1 41.7
Model(HadCM3) 15.6 34.4 26.7 30.5 (12.7) (39.0) (30.0) (42.0)

Observed
C v

0.83 0.80 0.52 0.61 0.96/(1.06) 0.80/(0.82) 0.51/(0.49) 0.62/(0.61)
Model(NCEP/NCAR) 0.64 0.63 0.43 0.50 0.61 0.57 0.41 0.49
Model(HadCM3) 0.39 0.47 0.21 0.35 (0.28) (0.49) (0.23) (0.43)

Model(NCEP/NCAR) NSE
0.60 0.63 0.70 0.67 0.42 0.75 0.58 0.64

Model(HadCM3) 0.16 0.34 0.17 0.33 (0.12) (−0.58) (−0.20) (−0.15)

Model(NCEP/NCAR) R2 0.60 0.63 0.70 0.67 0.45 0.71 0.63 0.65
Model(HadCM3) 0.16 0.34 0.17 0.33 (0.13) (0.04) (0.00) (0.09)

Avg, average of monthly precipitation in mm; C v, coefficient of variation; NSE, Nash–Sutcliffe efficiency; R2, coefficient of determination;
Std, standard deviation of monthly precipitation in mm. aBold italicized values in brackets in the table refer to period 1990–1999.
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Figure 8. Precipitation probability exceedance curves (1950–1999).

regional precipitation simulation is less reliable. Larger
differences between the observations and raw HadCM3
precipitation outputs were seen for precipitations with
low probability of exceedance, such as extremely high
precipitations. Furthermore, relatively small anomalies
were seen for precipitation values with low magnitudes.
For the majority of exceedance probabilities, this mis-
match was seen as a large under-prediction in HadCM3
precipitation outputs. The mismatch between the obser-
vations and the raw HadCM3 precipitation output was
mainly due to the bias present in HadCM3 outputs. As

defined by Salvi et al. (2011), bias is the difference

between the GCM outputs and the pertaining observa-

tions. GCM bias is a result of the limited knowledge of

the atmospheric processes and the simplified representa-

tion of the complex climate system in GCMs (Li et al.,

2010). The other possible factor contributing to the poor

agreement between observations and HadCM3 outputs is,

that grid point {4,4} may not exactly represent the precipi-

tation at the station considered in this study. Furthermore,

in case of the precipitation gauge located at the Halls Gap
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post office, topographical reasons also have possibly con-
tributed to the bias in the GCM outputs, as Halls Gap is
located in a valley surrounded by a mountain range.

It was noted that the mismatch between the obser-
vations and the precipitation downscaled with HadCM3
outputs was less in comparison with that between
the observations and the raw precipitation outputs of
HadCM3 at grid point {4,4}. This indicated that when
the raw outputs of HadCM3 are statistically downscaled
to monthly precipitation, the impact of bias in these raw
HadCM3 outputs, on downscaled precipitation was less
evident. However, this reduction in bias was not adequate
as still there was considerable mismatch between the
observed and downscaled precipitation (refer to Figure 8).
Therefore, it could be argued that a correction to the bias
that is present in HadCM3 outputs is needed in producing
precipitation projections into future. It was seen that
the precipitation exceedance curve of raw precipitation
output of HadCM3 at grid point {4,4} had deviated
largely from the precipitation exceedance curve of obser-
vations. However, the exceedance curves of precipitation
reproduced by the downscaling models developed with
NCEP/NCAR reanalysis outputs and HadCM3 outputs
were in relatively better agreement with the precipitation
exceedance curve of observed precipitation. This led
to the conclusion that, the precipitation outputs of
the downscaling models developed with NCEP/NCAR
reanalysis outputs and HadCM3 outputs are much better
than the raw precipitation output of HadCM3 at grid
point {4,4}. Furthermore, considering the limited agree-
ment seen between the precipitation downscaled with the
NCEP/NACR and HadCM3 outputs, it was realized that
there is a quality mismatch between the data of these
two sources. The second article of this series of two
companion articles, describes the bias correction and the
precipitation projections produced into future in detail.

5. Summary and conclusions

This article, which is the first of a series of two com-
panion articles, discussed the development (calibration
and validation) of two precipitation downscaling models,
employing the MLR technique. The first statistical down-
scaling model was developed with the NCEP/NCAR
reanalysis outputs and the second downscaling model was
developed with the HadCM3 outputs. The precipitation
station at the Halls Gap post office which is located in
the north western part of Victoria, Australia was selected
for the demonstration of the development process of the
two downscaling models.

It is the general practice to calibrate and validate the
downscaling model with some form of reanalysis data
(e.g. NCEP/NCAR) for the past climate, and use the
outputs of a GCM pertaining to future on the same
downscaling model for the projection of climate into
future. The major disadvantage of this procedure is that,
for the model development and future projections, data
from two entirely different sources are used. This study

investigated the potential of using a downscaling model
calibrated and validated with GCM outputs, which does
not have the above issue.

The selection of probable predictors for these down-
scaling models was based on the past statistical down-
scaling studies and hydrology. Potential predictors were
extracted for each calendar month from the set of
probable predictors considering the Pearson correlations
between the probable predictors and observed precip-
itation, under three 20 year time slices (1950–1969,
1970–1989 and 1990–2010) and the entire period of the
study (1950–2010). Potential predictors obtained from
the NCEP/NCAR reanalysis outputs were introduced to
the MLR based downscaling model, sequentially, based
on the magnitude of the correlation between observed
precipitation and predictors, over the whole period of the
study. This process was continued until the model perfor-
mances in validation in terms of NSE was maximized. In
this manner, the final sets of potential predictors for each
calendar month were identified, and downscaling mod-
els for each calendar month were developed separately.
The HadCM3 outputs corresponding to the final sets of
potential predictors identified previously were used for
the development of the second downscaling model. It
was assumed that these final sets of potential predictors
are valid for both downscaling models, developed with
NCEP/NCAR and HadCM3 outputs.

The MLR based downscaling model developed with
NCEP/NCAR reanalysis outputs proved capable in repro-
ducing the observed monthly precipitation during both
calibration (1950–1989) and validation (1990–2010)
phases. The performances of this model in calibration
were slightly better than those in validation. This model
was also able to capture the precipitation drop occurred
during the Millennium drought (1997–2010) satisfacto-
rily. However, it displayed tendencies of over-predicting
low precipitation values and under-predicting high pre-
cipitation values during both the calibration and valida-
tion periods.

On the other hand, the MLR based downscaling
model developed with HadCM3 outputs displayed lim-
ited performances with respect to the model developed
with NCEP/NCAR reanalysis outputs during both cal-
ibration and validation stages. This model performed
better during calibration (1950–1989) than in valida-
tion (1990–1999). Similar to the model developed with
NCEP/NCAR reanalysis outputs, this downscaling model
also displayed tendencies of over-predicting and under-
predicting low and high precipitation values, respectively.
However, the over and under-predictions associated with
the model developed with HadCM3 outputs were much
severe than those for its counterpart downscaling model.
Due to the termination of HadCM3 outputs at 1999 for
the 20th century climate experiment, the validation phase
of this downscaling model was confined to 1990–1999.
Therefore it was not possible to see how this downscaling
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model will reproduce the precipitation during the Millen-
nium drought.

The conclusions drawn from this study are:

1. The precipitation rate which is the precipitation
equivalent output of a GCM was found as the most
influential predictor on precipitation at the station of
interest, over the entire year, except in July;

2. Humidity, geopotential heights, mean sea level and
surface pressure, and wind speeds also showed good
correlations with observed precipitation consistently
over time;

3. The downscaling model developed with
NCEP/NCAR reanalysis outputs performed well
in both calibration and validation, while the per-
formances of the model developed with HadCM3
outputs were limited;

4. There was a quality mismatch between the
NCEP/NCAR reanalysis and HadCM3 outputs,
over the period 1950–1999; and

5. A bias-correction should be applied in projecting the
precipitation into future at the station of interest.

The application of the bias-correction and the pro-
jections of precipitation into future are presented in the
second companion article of this series of articles.

Acknowledgements

The authors acknowledge the financial assistance pro-
vided by the Australian Research Council Linkage Grant
scheme and the Grampians Wimmera Mallee Water Cor-
poration for this project. The authors also wish to thank
the editor and the two anonymous reviewers for their use-
ful comments, which have improved the quality of this
article.

References

Alavian V, Qaddumi HM, Dickson E, Diez SM, Danilenko AV,
Hirji RF, Puz G, Pizarro C, Jacobsen M, Blankespoor B. 2009.
Water and Climate Change: Understanding the Risks and Making
Climate-smart Investment Decisions. The Worldbank: Washington,
DC. http://documents.worldbank.org/curated/en/2009/11/11717870/
water-climate-change-understanding-risks-making-climate-smart-
investment-decisions (accessed on 19 July 2013).

Anandhi A. 2010. Assessing impact of climate change on season length
in Karnataka for IPCC SRES scenarios. J. Earth Syst. Sci. 119:
447–460, DOI: 10.1007/s12040-010-0034-5.

Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN. 2008. Down-
scaling precipitation to river basin in India for IPCC SRES scenarios
using support vector machine. Int. J. Climatol. 28: 401–420, DOI:
10.1002/joc.1529.

Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN. 2012. Daily rela-
tive humidity projections in an Indian river basin for IPCC SRES sce-
narios. Theor. Appl. Climatol. 108: 85–104, DOI: 10.1007/s00704-
011-0511-z.

Bureau of Meteorology. 2010. Australian Climate Influences.
http://www.bom.gov.au/watl/about-weather-and-climate/australian-
climate-influences.shtml (accessed 25 September 2012).

Charles A, Timbal B, Fernandez E, Hendon H. 2013. Analog downscal-
ing of seasonal rainfall forecasts in the Murray darling basin. Mon.
Weather Rev. 141: 1099–1117, DOI: 10.1175/MWR-D-12-00098.1.

Chiew FHS, Piechota TC, Dracup JA, McMahon TA. 1998. El
Nino/Southern Oscillation and Australian rainfall, streamflow and
drought: Links and potential for forecasting. J. Hydrol. 204:
138–149, DOI: 10.1016/S0022-1694(97)00121-2.

Chiew FHS, Young WJ, Cai W, Teng J. 2010. Current drought
and future hydroclimate projections in southeast Australia and
implications for water resources management. Stoch. Environ. Res.
Risk Assess. 25: 602–612, DOI: 10.1007/s00477-010-0424-x.

Chu JT, Xia J, Xu CY, Singh VP. 2010. Statistical downscaling of daily
mean temperature, pan evaporation and precipitation for climate
change scenarios in Haihe River, China. Theor. Appl. Climatol. 99:
149–161, DOI: 10.1007/s00704-009-0129-6.

Crowley TJ. 2000. Causes of climate change over the past 1000 years.
Science 289: 270–277, DOI: 10.1126/science.289.5477.270.

Government of Western Australia Department of Water. 2009.
Streamflow trends in south-west Western Australia. Surface water
hydrology series. Report no. HY32. http://www.water.wa.gov.au/
PublicationStore/first/87846.pdf (accessed 1 November 2012).

Goyal MK, Burn DH, Ojha CSP. 2012. Evaluation of machine learning
tools as a statistical downscaling tool: temperatures projections for
multi-stations for Thames river basin, Canada. Theor. Appl. Climatol.
108: 519–534, DOI: 10.1007/s00704-011-0546-1.

Hashmi MZ, Shamseldin AY, Melville BW. 2011. Statistical down-
scaling of watershed precipitation using Gene Expression Pro-
gramming (GEP). Environ. Model. Softw. 26: 1639–1646, DOI:
10.1016/j.envsoft.2011.07.007.

Hay LE, Clark MP. 2003. Use of statistically and dynamically
downscaled atmospheric model output for hydrologic simulations
in three mountainous basins in the western United States. J. Hydrol.
282: 56–75, DOI: 10.1016/S0022-1694(03)00252-X.

Hewitson B, Jack C, Coop L. 2013. Addressing deterministic and
stochastic variance in statistical downscaling. In European Geophys-
ical Union General Assembly . Vienna, Austria, 7–12 April, 2013.

Iizumi T, Takayabu I, Dairaku K, Kusaka H, Nishimori M, Saku-
rai G, Ishizak NN, Adachi SA, Semenov MA. 2012. Future
change of daily precipitation indices in Japan: a stochastic weather
generator-based bootstrap approach to provide probabilistic cli-
mate information. J. Geophys. Res. D: Atmos. 117: D11114, DOI:
10.1029/2011JD017197.

IPCC. 2007. IPCC Fourth assessment: synthesis report – summary
for policymakers, 6–9. http://www.ipcc.ch/pdf/assessment-report/
ar4/syr/ar4_syr_spm.pdf (accessed on 8 November 2012).

Jeffrey SJ, Carter JO, Moodie KB, Beswick AR. 2001. Using spa-
tial interpolation to construct a comprehensive archive of Aus-
tralian climate data. Environ. Model. Softw. 16: 309–330, DOI:
10.1016/S1364-8152(01)00008-1.

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L,
Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki
W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J,
Leetmaa A, Reynolds R, Jenne R, Joseph D. 1996. The NCEP/NCAR
reanalysis project. Bull. Am. Meteorol. Soc. 77: 437–471, DOI:
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Kannan S, Ghosh S. 2013. A nonparametric kernel regression model
for downscaling multisite daily precipitation in the Mahanadi basin.
Water Resour. Res. 49: 1360–1385, DOI: 10.1002/wrcr.20118.

Karl TR, Wang WC, Schlesinger ME, Knight RW, Portman D.
1990. A method of relating general circulation model simulated
climate to the observed local climate part I: seasonal statis-
tics. J. Clim. 3: 1053–1079, DOI: 10.1175/1520-0442(1990)003<
1053:AMORGC>2.0.CO;2.

Khalili M, Brissette F, Leconte R. 2009. Stochastic multi-site gener-
ation of daily weather data. Stoch. Environ. Res. Risk Assess. 23:
837–849, DOI: 10.1007/s00477-008-0275-x.

Khazaei MR, Ahmadi S, Saghafian B, Zahabiyoun B. 2013. A new
daily weather generator to preserve extremes and low-frequency
variability. Clim. Change, DOI: 10.1007/s10584-013-0740-5.

Knight J. 2003. Report on forcings for the C20C and EMULATE
HadAM3 experiments. http://hadc20c.metoffice.com/forcings.pdf
(accessed on 30 May 2013).

Li H, Sheffield J, Wood EF. 2010. Bias correction of monthly
precipitation and temperature fields from Intergovernmental Panel on
Climate Change AR4 models using equidistant quantile matching. J.
Geophys. Res. D: Atmos. 115: 1–20, DOI: 10.1029/2009JD012882.

Maraun D. 2013. Bias correction, quantile mapping, and downscal-
ing: Revisiting the inflation issue. J. Clim. 26: 2137–2143, DOI:
10.1175/JCLI-D-12-00821.1.

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ,
Widmann M, Brienen S, Rust HW, Sauter T, Themel M, Venema

 2014 Royal Meteorological Society Int. J. Climatol. (2014)

134



D. A. SACHINDRA et al.

VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-
Eich I. 2010. Precipitation downscaling under climate change:
Recent developments to bridge the gap between dynamical models
and the end user. Rev. Geophys. 48, DOI: 10.1029/2009RG000314.

Marzban C, Sandgathe S, Kalnay E. 2006. MOS, perfect prog,
and reanalysis. Mon. Weather Rev. 134: 657–663, DOI:
10.1175/MWR3088.1.

Maurer EP, Hidalgo HG. 2008. Utility of daily vs. monthly large-
scale climate data: an intercomparison of two statistical downscaling
methods. Hydrol. Earth Syst. Sci. 12: 551–563, DOI: 10.5194/hess-
12-551-2008.

Najafi M, Moradkhani H, Wherry S. 2011. Statistical downscaling of
precipitation using machine learning with optimal predictor selection.
J. Hydrol. Eng. 16: 650–664, DOI: 10.1061/(ASCE) HE.1943-
5584.0000355.

Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual
models, part 1 – a discussion of principles. J. Hydrol. 10: 282–290,
DOI: 10.1016/0022-1694(70)90255-6.

Nasseri M, Tavakol-Davani H, Zahraie B. 2013. Performance
assessment of different data mining methods in statistical
downscaling of daily precipitation. J. Hydrol. 492: 1–14, DOI:
10.1016/j.jhydrol.2013.04.017.

Nazemosadat MJ, Cordery I. 1997. The influence of geopotential
heights on New South Wales rainfall. Meteorol. Atmos. Phys. 63:
179–193, DOI: 10.1007/BF01027384.

Pearson K. 1895. Mathematical contributions to the theory of evolution.
iii. regression heredity and panmixia. Philos. Trans. R. Soc. Lond. A
187: 253–318, DOI: 10.1098/rsta.1896.0007.

Peixoto JP, Oort AH. 1996. The climatology of relative humidity
in the atmosphere. J. Clim. 9: 3443–3463, DOI: 10.1175/1520-
0442(1996)009<3443:TCORHI>2.0.CO;2.

Richardson CW. 1981. Stochastic simulation of daily precipitation,
temperature, and solar radiation. Water Resour. Res. 17: 182–190,
DOI: 10.1029/WR017i001p00182.

Sachindra DA, Huang F, Barton AF, Perera BJC. 2012. Issues
associated with statistical downscaling of general circulation model
outputs: a discussion. In Proceedings of Practical Responses to
Climate Change National Conference. Canberra, Australia, 1–3 May
2012.

Sachindra DA, Huang F, Barton AF, Perera BJC. 2013. Least square
support vector and multi-linear regression for statistically downscal-
ing general circulation model outputs to catchment streamflows. Int.
J. Climatol. 33: 1087–1106, DOI: 10.1002/joc.3493.

Salvi K, Kannan S, Ghosh S. 2011. Statistical downscaling and
bias-correction for projections of Indian rainfall and temperature
in climate change studies. In 4th International Conference on
Environmental and Computer Science. Singapore, 16–18 September,
7–11.

Schnur R, Lettenmaier DP. 1998. A case study of statistical

downscaling in Australia using weather classification by recursive
partitioning. J. Hydrol. 213: 362–379, DOI: 10.1016/S0022-
1694(98)00217-0.

Semenov MA, Stratonovitch P. 2010. Use of multi-model ensembles
from global climate models for assessment of climate change
impacts. Clim. Res. 41: 1–14, DOI: 10.3354/cr00836.

Shao Q, Li M. 2013. An improved statistical analogue downscaling
procedure for seasonal precipitation forecast. Stoch. Environ. Res.
Risk Assess. 27: 819–830, DOI: 10.1007/s00477-012-0610-0.

Smith IN, McIntosh P, Ansell TJ, Reason CJC, McInnes K. 2000.
Southwest Western Australian winter rainfall and its associa-
tion with Indian Ocean climate variability. Int. J. Climatol. 20:
1913–1930, DOI: 10.1002/1097-0088(200012)20:15<1913::AID-
JOC594>3.0.CO;2-J.

von Storch H. 1999. On the use of “inflation” in statistical
downscaling. J. Clim. 12: 3505–3506, DOI: 10.1175/1520-
0442(1999)012<3505:OTUOII>2.0.CO;2.

von Storch H, Hewitson B, Mearns L. 2000. Review of empirical
downscaling techniques. In Proceedings of RegClim Spring
Meeting . Jevnaker, Norway, 8–9 May. http://regclim.met.no/
rapport_4/Default.htm (accessed on 1 October 2012).

Timbal B, Jones DA. 2008. Future projections of winter rainfall in
southeast Australia using a statistical downscaling technique. Clim.
Change 86: 165–187, DOI: 10.1007/s10584-007-9279-7.

Timbal B, Fernandez E, Li Z. 2009. Generalization of a statisti-
cal downscaling model to provide local climate change projec-
tions for Australia. Environ. Model. Softw. 24: 341–358, DOI:
10.1016/j.envsoft.2008.07.007.

Tisseuil C, Vrac M, Lek S, Wade AJ. 2010. Statistical downscaling
of river flows. J. Hydrol. 385: 279–291, DOI: 10.1016/j.jhydrol.
2010.02.030.

Tripathi S, Srinivas VV, Nanjundiah RS. 2006. Downscaling of
precipitation for climate change scenarios: a support vector machine
approach. J. Hydrol. 330: 621–640, DOI: 10.1016/j.jhydrol.2006.
04.030.

Wang W. 2006. Stochasticity, Nonlinearity and Forecasting of Stream-
flow Processes . Deft University Press: Amsterdam, the Netherlands;
72–73.

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns
LO. 2004. Guidelines for use of climate scenarios developed from
statistical downscaling methods, supporting material to the IPCC,
3–21. http://www.ipcc-data.org/.

Willems P, Vrac M. 2011. Statistical precipitation downscaling for
small-scale hydrological impact investigations of climate change. J.
Hydrol. 402: 193–205, DOI: 10.1016/j.jhydrol.2011.02.030.

Yang T, Li H, Wang W, Xu CY, Yu Z. 2012. Statistical downscaling
of extreme daily precipitation, evaporation, and temperature and
construction of future scenarios. Hydrol. Process. 26: 3510–3523,
DOI: 10.1002/hyp.8427.

 2014 Royal Meteorological Society Int. J. Climatol. (2014)

135



INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. (2014)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/joc.3915

Statistical downscaling of general circulation model outputs
to precipitation – part 2: bias-correction and future

projections

D. A. Sachindra,a* F. Huang,a A. Bartona,b and B. J. C. Pereraa

a College of Engineering and Science, Footscray Park Campus, Victoria University, Melbourne, Australia
b School of Science, Information Technology and Engineering, University of Ballarat, Victoria, Australia

ABSTRACT: This article is the second of a series of two articles. In the first article, two models were developed with
National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and
HadCM3 outputs, for statistically downscaling these outputs to monthly precipitation at a site in north-western Victoria,
Australia. In that study, it was seen that the downscaling model developed with NCEP/NCAR reanalysis outputs performs
much better than the model developed with HadCM3 outputs. Furthermore, it was found that there is large bias in
HadCM3 outputs which needs to be corrected. In this article, the downscaling model developed with NCEP/NCAR
reanalysis outputs was used to downscale HadCM3 20th century climate experiment outputs to monthly precipitation over
the period 1950–1999. In all four seasons, the precipitation downscaled with HadCM3 20th century outputs, displayed a
large scatter and the majority of precipitation was overestimated. The precipitation downscaled with HadCM3 outputs was
bias-corrected against the observed precipitation pertaining to the period 1950–1999, using three techniques: (1) equidistant
quantile mapping (EDQM), (2) monthly bias-correction (MBC) and (3) nested bias-correction (NBC). Although all these
bias-correction techniques were able to adequately correct the statistics of downscaled precipitation, the magnitude of the
scatter of precipitation remained almost the same. Considering the performances and its ability to correct the cumulative
distribution of precipitation, EDQM was selected for the bias-correction of future precipitation projections. HadCM3 outputs
for the A2 and B1 greenhouse gas scenarios were introduced to the downscaling model and the downscaled precipitation
for the period 2000–2099 was bias-corrected with the EDQM technique. Both A2 and B1 scenarios indicated a rise in the
average of future precipitation in winter and a drop in it in summer and spring. These scenarios showed an increase in the
maximum monthly precipitation in all seasons and an increase in percentage of months with zero precipitation in summer,
autumn and spring.
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1. Introduction

Over the 800 000-year period prior to the industrial revo-
lution (1750–1850), the concentration of the atmospheric
carbon dioxide [dominant greenhouse gas (GHG)] fluctu-
ated approximately between 180 and 280 parts per million
(ppm) (Tripati et al., 2009). Since the industrial revolu-
tion, owing to the consumption of fossil fuels, the con-
centration of the global mean atmospheric carbon dioxide
level rose from 280 to 397 ppm by April 2013 (Earth
System Research Laboratory, 2013). The rising concen-
trations of GHGs (mainly carbon dioxide) have increased
the greenhouse effect leading to human-induced climate
change, which is no longer a hypothetical phenomenon
(Hughes, 2003). As stated by Dessai et al. (2005), the
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global climate is expected to change throughout the 21st
century. Climate change has shed its impacts, on humans
as well as flora and fauna in many different ways. Impacts
of climate change on health of humans (Thomas et al.,
2012), agricultural food production (Ziska et al., 2012),
floods (Prudhomme et al., 2013) and water resources
(Arnell and Gosling, 2013) are only some of the mul-
titude of themes discussed in the literature.

General circulation models (GCMs) are the prime tools
used in the projection of climate into the future (Fu
et al., 2012). GCMs are based on the theories of atmo-
spheric physics. They are forced with plausible realiza-
tions on future GHG concentrations, in order to produce
projections on global climate into future. The coarse
resolution of GCM outputs hinders their direct use in
catchment scale studies (Iizumi et al., 2011). Downscal-
ing techniques are used to link the coarse resolution
GCM outputs with the catchment scale climatic variables.
All downscaling techniques are based on the assumption
that large-scale climate represented in GCM outputs is

 2014 Royal Meteorological Society

136

sachindra
Typewritten Text
3.4

sachindra
Typewritten Text

sachindra
Typewritten Text

sachindra
Typewritten Text



D. A. SACHINDRA et al.

influential on the catchment scale hydroclimatology
(Maraun et al., 2010). There are two broad classes of
downscaling techniques, namely; dynamic downscaling
and statistical downscaling. In order to obtain local-scale
climatic information, dynamic downscaling approaches
employ regional climate models (RCMs) nested in GCMs
(Murphy, 1998). Dynamic downscaling techniques are
associated with high computational costs (Sun and Chen,
2012) due to the complex physics-based structure of
the RCMs. However, owing to the use of physics-based
equations to relate the predictors (GCM outputs which
are used as input to downscaling models) with predic-
tands (outputs of downscaling models – e.g. precipita-
tion), dynamic downscaling techniques are capable in
producing more reliable climatic information at local
scale. This is because it is reasonable to assume that the
same physics which was valid for the climate in the past is
also valid for the climate in the future. On the other hand,
statistical downscaling techniques are dependent on the
empirical relationships developed between the GCM out-
puts and local-scale hydroclimatic variables. Statistical
downscaling methods are computationally more efficient,
due to the simplicity in their structure. In statistical down-
scaling techniques, it is assumed that the relationships
derived between the predictors and predictands for the
past observed climate are also applicable for the possible
future climate (Iizumi et al., 2011). However, the valid-
ity of this assumption cannot be tested at present as the
future climate has not yet occurred (Chu et al., 2010).

Statistical downscaling techniques are grouped under
three classes; regression methods, weather typing (clas-
sification) and weather generators (Wilby et al., 2004).
In regression-based downscaling methods either linear
or nonlinear relationships between the predictors and
the predictand of interest are developed. By far, the
regression-based methods are regarded as the most widely
used statistical downscaling techniques (Nasseri et al.,
2013). Meenu et al. (2013) used the multi-linear regres-
sion (MLR) technique for downscaling GCM outputs to
daily precipitation and then the downscaled precipitation
was used in a hydrologic model to simulate stream-
flows. Samadi et al. (2013) used the MLR technique
and artificial neural networks (ANN; nonlinear regres-
sion method) for downscaling GCM outputs to daily
precipitation and temperature. They commented that the
MLR-based downscaling technique was more capable
than the ANN-based downscaling method in reproducing
the observations of precipitation and temperature. Ghosh
and Katkar (2012) employed MLR, ANN and support
vector machine (SVM; nonlinear regression method) for
downscaling GCM outputs to monthly precipitation. In
that study, it was found that though the three regression-
based downscaling models displayed similar overall per-
formances in the calibration phase, the ANN-based model
was able to better capture the relatively low and medium
precipitation values and the SVM-based model was better
at simulating relatively high values of precipitation.

In weather classification methods, patterns of large-
scale weather characterized by a global or a regional

model are linked to a local-scale weather variable.
Method of meteorological analogues is a widely used
weather classification technique (Timbal et al., 2009;
Shao and Li, 2013). Also recursive partitioning is another
classification type downscaling method (Schnur and Let-
tenmaier, 1998). Charles et al. (2013) used the method of
meteorological analogues for downscaling GCM outputs
to precipitation. It was found that this method was able
to correct the bias in statistics of seasonal precipitation
and also the number of wet days simulated by the GCM.
In weather generation techniques, weather data for future
are produced by scaling the parameters of the weather
generator either up or down according to the changes in
the GCM outputs pertaining to future. As an example the
simplest weather generator for daily precipitation could
have two parameters: (1) the probability of occurrence
of a wet day and (2) the precipitation amount. In such
case, the percentage changes in the parameters charac-
terized by the GCM for the future climate with respect
to those in the baseline period are determined. Then the
values of the parameters pertaining to observed precipi-
tation of the baseline period are scaled corresponding to
the above determined changes. The new scaled parame-
ters are used to generate time series of occurrence of wet
days and precipitation amounts at the station of interest
that reflects the large-scale changes in the precipitation
simulated by the GCM. Applications of weather genera-
tion techniques are detailed in the studies of Chen et al.
(2012) and Fatichi et al. (2011).

The classification of statistical downscaling techniques
detailed by Maraun et al. (2010) separates the statistical
downscaling techniques into three different categories:
(1) perfect prognosis, (2) model output statistics (MOS)
and (3) weather generators. Perfect prognosis methods
involve establishing statistical relationships between the
large-scale atmospheric variables and the catchment scale
hydroclimatic variables, using regression techniques or
weather classification approaches. In MOS methods,
statistical relationships between the outputs of a RCM
or a weather model and catchment scale observations of
a predictand are used to improve the model outputs.

Although GCMs are regarded as the best tools avail-
able for projection of climate into the future, there are
biases in GCM outputs. GCM bias is simply explained
as the deviation of GCM outputs from the observa-
tions (Salvi et al., 2011). However, in more elaborated
terms, incorrect reproduction of extreme temperatures,
prediction of excess number of wet days with low-
intensity rainfalls, under or over-prediction of climatic
variables, incorrect seasonal variations and so on are
some of the forms of biases prevailing in GCM out-
puts (Teutschbein and Seibert, 2012). Chen et al. (2011)
defined GCM bias as a time-independent component of
the error in GCM outputs. According to Ojha et al.
(2012), GCMs often incorrectly estimate the occurrences
and intensities of precipitation. The limited understand-
ing of the atmosphere and the simplified representation of
the atmospheric processes in GCMs are regarded as the
main causes of GCM bias (Li et al., 2010). In general,
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prognostic variables of a GCM contain relatively less bias
than the diagnostic variables that are derived from the
prognostic variables. Since prognostic variables do not
always show good relationships with the predictands of
interest, diagnostic variables are also used in developing
the downscaling models despite their larger bias. The cor-
rection of bias is performed in two distinct ways: (1) the
correction of bias in GCM outputs and (2) the correction
of bias in the predictands (e.g. precipitation) which were
downscaled from GCM outputs. However, neither of the
above approaches is capable of correcting the inherent
physics and thermodynamics of the GCM simulations, as
bias-correction has no direct connection with the inter-
nal functions of the GCM. There are number of different
bias-correction techniques in use, which are applicable
to GCM outputs and also to the predictands downscaled
from GCM outputs.

Ojha et al. (2012) reported that the bias seen in the
GCM outputs should be corrected before their subsequent
use. Johnson and Sharma (2012) used the nested bias-
correction (NBC) for correcting the bias in monthly
precipitation outputs of GCMs, over Australia. NBC
corrects the bias in means, standard deviations and lag 1
autocorrelations of GCM outputs, simultaneously at both
monthly and annual time scales. They commented that
the NBC is successful when the bias in GCM outputs is
not very large. Ojha et al. (2012) applied both NBC and
monthly bias-correction (MBC) for removing the bias in
precipitation outputs of number of GCMs, over India.
Unlike the NBC described earlier, in the monthly bias-
correction, only the means and standard deviations of the
monthly GCM outputs are corrected with respect to those
of the observations. In both nested and monthly bias-
corrections, the statistics of the observed climatic data
and the corresponding statistics of the past GCM outputs
are used in the correction of the GCM outputs pertaining
to future. These two methods assume that the biases in
the model outputs for the past climate will remain same
for the future climate (Johnson and Sharma, 2012).

Wood et al. (2004) employed the quantile mapping
technique for bias-correcting the monthly precipitation
and temperature outputs of a GCM. The quantile map-
ping (Panofsky and Brier, 1968) is a technique which can
match all statistical moments of GCM outputs with those
of observations, as in this technique cumulative distribu-
tion functions (CDFs) of GCM outputs for the past are
mapped onto the CDF of the past observations. For the
correction of bias in the GCM outputs pertaining to the
future climate, first, corresponding to the values of the
climatic variable for the future projections, the CDF val-
ues are obtained from the CDF which was derived from
the past GCM simulations. Then pertaining to these CDF
values, the bias-corrected values of the climatic variable
for the future climate are extracted from the CDF of
the observations of the past. Piani et al. (2010) used a
gamma distribution-based quantile mapping technique for
the bias-correction of daily precipitation downscaled by
the RCM over Europe. It was concluded that this bias-
correction is capable of correcting the average and the

other statistical moments of precipitation and also the
statistical properties such as precipitation intensity. Lafon
et al. (2013) applied four bias-correction techniques (lin-
ear scaling, nonlinear scaling, gamma distribution-based
quantile mapping and empirical distribution-based quan-
tile mapping) to reduce the bias in daily precipitation
simulated by the RCM over the UK. They commented
that all bias-correction techniques were able to correct
the average and the standard deviation of daily precip-
itation with a good degree of accuracy. However, the
accuracy of higher-order moments such as skewness and
kurtosis of daily precipitation were sensitive to the bias-
correction method and also to the period selected for the
calibration of the bias-correction. Out of the four bias-
correction techniques, the empirical distribution-based
quantile mapping was identified as the best perform-
ing bias-correction. Gudmundsson et al. (2012) com-
pared the performances of three variants of quantile map-
ping: distribution-derived, parametric and nonparametric
(empirical distribution based quantile mapping) in cor-
recting the bias in daily precipitation simulated by the
RCM over Norway. They also concluded that nonpara-
metric (empirical) quantile mapping is more effective in
reducing the bias in precipitation. Themeßl et al. (2011)
applied several bias-correction approaches to daily pre-
cipitation of the RCM over the Alps region in Europe. It
was concluded that the empirical distribution-based quan-
tile mapping technique displayed better performance than
the other methods, particularly in correcting the extremes
of precipitation.

Li et al. (2010) introduced a modified version of the
quantile mapping technique called equidistant quantile
mapping (EDQM). In equidistant quantile mapping, the
difference between the CDF of the GCM output (to
be corrected) and the CDF of the reference dataset
(which can be field observations, reanalysis outputs,
etc.), of the past climate, was subtracted from the CDF
of the GCM output for future climate, for the bias-
correction of future GCM outputs. In quantile mapping
and equidistant quantile mapping, the CDFs of GCM
outputs are corrected against the CDF of observations,
therefore all statistical moments are explicitly corrected.
On the other hand, NBC explicitly attempts to remove
bias in the average, the standard deviation and the lag
1 autocorrelation of GCM outputs, and monthly bias-
corrections reduces the bias in the average and the
standard deviation only.

Ines and Hansen (2006) used the quantile mapping
technique and the multiplicative shift method for bias-
correction of daily mean precipitation output of a GCM.
The multiplicative shift method involved the multipli-
cation of daily precipitation output of the GCM by the
ratio between the long-term observed and monthly pre-
cipitation output of the GCM. It was found that although
this technique corrects the long-term observed monthly
mean precipitation, it cannot correct any systematic error
in the precipitation distribution. A regression-based bias-
correction was employed by Kharin and Zwiers (2002)
for the removal of bias from precipitation outputs of a
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GCM. There a regression equation was built between
the mean of the precipitation outputs of the GCM and
observed precipitation, to correct the bias.

Above stated bias-correction techniques can be applied
not only to GCM outputs, but also to the outputs of
downscaling models, irrespective of whether the down-
scaling approach is dynamic or statistical. Ghosh and
Mujumdar (2008) used the quantile mapping technique
for the removal of bias in streamflows, which were statis-
tically downscaled from GCM outputs. Teutschbein and
Seibert (2012) used multiple bias-correction techniques
(linear scaling, local intensity scaling, power transfor-
mation, variance scaling, quantile mapping and delta-
change approach) on dynamically downscaled precipita-
tion and temperature. The major advantage of applying
the bias-correction techniques on the downscaled (either
statistically or dynamically) hydroclimatic outputs is that,
this process is computationally much cheaper than bias-
correcting each GCM output individually, prior to down-
scaling. The advantage of applying a bias-correction to
each GCM output separately (before introducing to the
downscaling model) is that the bias in each variable is
individually corrected. However, this procedure is useful
only if the bias-correction was capable in adequately cor-
recting the time series of each GCM output, rather than
just their statistics.

The first article of this series of two articles which was
entitled ‘Statistical Downscaling of General Circulation
Model Outputs to Precipitation. Part 1: Calibration and
Validation’ presented the calibration and validation of two
statistical downscaling models, based on the MLR tech-
nique. In that study, the first model was developed with
National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanal-
ysis outputs and the second model was with Hadley
Centre Coupled Model version 3 GCM (HadCM3) out-
puts. In both cases these outputs were used as the inputs
to the downscaling models. According to the results of
that study, it was seen that the model calibrated and val-
idated with NCEP/NCAR reanalysis outputs was more
capable in reproducing the observed precipitation, than
its counterpart model which was built with HadCM3 20th
century climate experiment outputs. Furthermore, a com-
parison of exceedance probability curves for the observed
precipitation, precipitation reproduced by the downscal-
ing models with NCEP/NCAR and HadCM3 outputs, and
the raw precipitation output of HadCM3 model for 20th
century climate experiment, over the period 1950–1999,
revealed that there is large bias in the raw precipitation
output of HadCM3 model. Therefore the need of a bias-
correction was understood.

This article which is the second of the series of
two articles, discusses the bias-correction and future
precipitation projections of the statistical downscaling
model developed in the first article, with NCEP/NCAR
reanalysis outputs. This downscaling model was used in
this study because of its better performances seen in the
first article. The same MLR equations (with the same
coefficients and constants) derived during the calibration

phase of this downscaling model were used in this study.
Here onwards in this article, this model is referred to
as the ‘downscaling model’. Initially, the downscaling
model was used to downscale the 20th century climate
experiment outputs of HadCM3, to monthly precipita-
tion. Then these downscaled precipitation data were bias-
corrected against the observed precipitation (reference
dataset for the bias-correction). For this purpose, three
bias-correction techniques, namely (1) EDQM, (2) MBC
and (3) NBC were employed. As a demonstration, the
above procedure was applied to a precipitation station
in the Grampians water supply system in north-western
Victoria, Australia. The same station was also used in
the first article. A performance comparison of the above
three bias-corrections, derived from the above demon-
stration, is presented in this article. Considering the per-
formances of each of these three bias-corrections, only
the EDQM technique was used for the bias-correction
of monthly precipitation projections produced into future
by the downscaling model with HadCM3 outputs per-
taining to the future climate. In downscaling GCM out-
puts to monthly precipitation, characteristics of precipi-
tation such as occurrences of wet and dry days, extreme
precipitation events, precipitation intensity are not cap-
tured. Though such characteristics are important in cer-
tain hydrological exercises, monthly precipitation is more
useful in water resources management operations such as
determining the optimum water allocation to crops, recre-
ational facilities, domestic and industrial needs and to the
environment particularly in the planning stage of a water
resources project.

Section 2 of this article provides a brief description of
the study area and the data used in the study. Section
3 describes the generic methodology, and its application
with the results is detailed in Section 4. In Section 5,
a summary of this work is provided along with the
conclusions derived from this study.

2. Study area and data

The precipitation station located at the Halls Gap post
office (Lat. −37.14◦, Lon. 142.52◦, elevation from the
mean sea level about 236 m) in the Grampians water
supply system of north-western Victoria, Australia was
used as the case study station. The Grampians system
is a multi-reservoir system owned by the Grampians
Wimmera Mallee Water Cooperation (www.gwmwater.
org.au).

Observed daily precipitation data from 1950 to 1999
were obtained from the SILO database (http://www.
longpaddock.qld.gov.au/silo/) of Queensland Climate
Change Centre of Excellence and these data were added
to monthly precipitation totals. These monthly observa-
tions were used for the evaluation of the downscaling
model when it was run with HadCM3 20th century
climate experiment outputs and NCEP/NCAR reanalysis
outputs. Also the observed precipitation was used as the
reference dataset for the bias-correction. Monthly outputs
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produced by HadCM3 GCM for the 20th century climate
experiment were obtained from the Programme for Cli-
mate Model Diagnosis and Inter-comparison (PCMDI)
(https://esgcet.llnl.gov:8443/index.jsp) for the period
1950–1999, and for the same period NCEP/NCAR
reanalysis outputs were obtained from http://www.esrl.
noaa.gov/psd/, for providing the inputs to the downscal-
ing model in reproducing the observed precipitation.

The HadCM3 outputs corresponding to the COM-
MIT GHG emission scenario were extracted from the
PCMDI website (https://esgcet.llnl.gov:8443/index.jsp)
for the period 2000–2099, to validate the performances
of the bias-correction. The COMMIT GHG emission sce-
nario assumed that the GHG concentrations at year 2000
are constant throughout the period 2000–2099. There-
fore, it was assumed that the statistics of future pre-
cipitation (2000–2099) downscaled from the outputs of
HadCM3 pertaining to COMMIT scenario will closely
reflect the statistics of the past precipitation (1950–1999)
simulated by HadCM3. For the future projections of pre-
cipitation at the station selected, monthly outputs of the
HadCM3 GCM under the A2 and B1 scenarios (IPCC,
2000), defined in the Special Report on Emission Sce-
narios (SRES) of the Intergovernmental Panel on Cli-
mate Change (IPCC) were obtained from the PCMDI
website (https://esgcet.llnl.gov:8443/index.jsp) for the
period 2000–2099. A2 and B1 GHG emission scenar-
ios described a world with rapid economic growth and
a world with greater focus on environmental protection,
respectively.

3. Generic methodology

The reproduction of observed precipitation at the sta-
tion of interest using the downscaling model with the
20th century climate experiment outputs of the GCM is
explained, in subsection 3.1. Also this subsection details
the procedure followed in downscaling the future pre-
cipitation using the downscaling model. Subsection 3.2
describes the bias-correction of the past and future down-
scaled precipitation, against the observed precipitation.

3.1. Reproduction of past precipitation and projection
of precipitation into future with GCM outputs

For each calendar month, GCM outputs of the 20th
century climate experiment were standardized with the
corresponding means and standard deviations of reanal-
ysis outputs (used for the model development) relevant
to the calibration period of the downscaling model. In
the calibration of the downscaling model, the reanal-
ysis outputs were standardized with their means and
standard deviations pertaining to the calibration period.
Hence, these means and standard deviations became
fixed parts of the model. These standardized GCM out-
puts of the 20th century climate experiment were intro-
duced to the downscaling model, for reproducing the past
observed precipitation. In the same way, the standardized
reanalysis outputs were introduced to the downscaling

model for the reproduction of the past observed precipi-
tation. The use of both GCM outputs of the 20th century
climate experiment and reanalysis outputs enabled finding
the capabilities of this model in reproducing past obser-
vations with these two sets of inputs obtained from two
different sources. This was important as the downscaling
model was developed with reanalysis outputs (refer to the
first article of this series of articles) and it is used with
GCM outputs in producing the projections into future.

The future GCM outputs for different GHG emission
scenarios were standardized with the means and the
standard deviations of reanalysis outputs (corresponding
to calibration period of the downscaling model) for each
calendar month and introduced to the downscaling model,
for the projection of precipitation at the station of interest.

3.2. Bias-correction

The precipitation downscaled by the above model with
GCM outputs was bias-corrected against the observed
precipitation pertaining to the station of interest. The
bias-correction was applied to the precipitation down-
scaled with GCM outputs as it was computationally effi-
cient than bias-correcting each GCM output individually.
Since the bias-correction techniques can be a source of
uncertainty in statistical downscaling, Chen et al. (2011)
investigated the use of several bias-correction techniques.
Therefore, in this study the bias-correction was performed
with three techniques: (1) EDQM, (2) MBC and (3) NBC.
All these bias-correction techniques were applied sepa-
rately on each calendar month and then for each technique
the bias-corrected precipitation of each month was com-
bined to produce the individual series. Bias-correction
was performed for each calendar month in order to pre-
serve the statistical attributes of precipitation in each
calendar month. Considering the performances of these
three bias-correction techniques, the best technique was
identified. Thereafter the performances of the best bias-
correction technique were validated. This was performed
by comparing the statistics of the past observed precip-
itation with those of bias-corrected precipitation down-
scaled for a future GHG emission scenario (in this study
the COMMIT scenario) which assumed that the GHG
emission levels at the end of the 20th century remained
constant throughout the 21st century. Owing to the above
assumption it was assumed that this scenario which is
pertaining to future could represent the statistics of the
past climate simulated by the GCM closely. Following
the validation, this bias-correction method was applied
for the future precipitation projections produced by the
downscaling model with GCM outputs.

3.2.1. Equidistant quantile mapping

EDQM (Li et al., 2010) is a variant of the quantile
mapping technique (Panofsky and Brier, 1968). In the
EDQM technique, initially, the empirical CDFs were
derived for the observed precipitation and precipitation
downscaled with GCM outputs, for the past climate. Then
the empirical CDF was developed for the precipitation
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downscaled with GCM outputs, for the future climate
under a GHG emission scenario. The periods which
represented the past climate and the future climate were
designated as period 1 and period 2, respectively.

The EDQM technique was applied in accordance
with the following three steps (Salvi et al., 2011).
These three steps are graphically illustrated in Figure 1.
In this figure, CDF1 and CDF2 correspond to the
observed precipitation and precipitation reproduced by
the downscaling model with GCM outputs respectively,
for the past climate. CDF3 denotes the precipitation
projected by the downscaling model with GCM outputs
for a certain future GHG emission scenario. It should
be noted that although this bias-correction technique
corrects the CDF of the hydroclimatic variable, it does
not explicitly correct the time series of the hydroclimatic
variable.

3.2.1.1. Step 1: For a given precipitation value a1, the
value c1 was found from CDF2 (see Step 1 in Figure 1).
From CDF1, the precipitation value a2 that corresponded
to c1 was determined (see Step 1 in Figure 1). a2 is
the corrected precipitation value of a1. This corrective
procedure was repeated for all precipitation values repre-
sented by CDF2. In other words, CDF2 was mapped onto
CDF1. Once this mapping was performed, all the sta-
tistical properties of precipitation represented by CDF2
were automatically matched with those of CDF1. Hence,
this step yielded the corrected CDF2 which exactly over-
lapped CDF1.

3.2.1.2. Step 2: Corresponding to a precipitation value
b1, value c2 was found from CDF3 (see Step 2 in
Figure 1). Pertaining to that CDF value c2, the difference
of precipitation (d ) between CDF3 (future climate) and
CDF2 (past climate) was computed (the sign of d was
also considered), as shown in Step 2 in Figure 2.

3.2.1.3. Step 3: The difference d (considering its sign)
calculated in Step 2 pertaining to CDF value c2 was
added to the corrected version of CDF2 (or CDF1)
yielded in Step 1. This produced the bias-corrected
precipitation value b2 corresponding to its original value
of b1. Steps 2 and 3 were repeated until all the future
precipitation values represented in CDF3 were corrected.
The negative precipitation values yielded in the corrected
CDF3 were set to zero. In order to obtain the same result
described in Steps 2 and 3, alternatively, the difference
between CDF2 and CDF1 could be subtracted from
CDF3, in order to bias-correct CDF3 (Li et al., 2010).

3.2.2. Monthly bias-correction

MBC is a relatively simple bias-correction method used
by Johnson and Sharma (2012). In that study, it was used
to correct the mean and the standard deviation of the
precipitation output of a GCM with those of the observed
precipitation. In this study, it was employed to correct
the mean and the standard deviation of the precipitation

downscaled with GCM outputs against those of observed
precipitation.

Let monthly time series of precipitation downscaled
with GCM outputs for a calendar month i be Yi, for the
past climate. As a first step, Yi was standardized with its
monthly mean (µGCM,i ) and standard deviation (σGCM,i )
according to Equation (1). This yielded the standardized
time series Y i

′ for each calendar month as follows:

Yi
′ = Yi − µGCM,i

σGCM,i
(1)

Then this standardized precipitation time series for
each calendar month i (Y i

′) was transformed back with
Equation (2), using the monthly mean (µObs,i ) and stan-
dard deviation (σObs,i ) of observed precipitation pertain-
ing to the past climate. Equation (2) provided the monthly
bias-corrected time series of precipitation downscaled
with GCM outputs (Z i ). This bias-corrected time series
of downscaled precipitation has the monthly mean and
standard deviation of the observed precipitation.

Zi = Yi
′.σObs,i + µObs,i (2)

For the correction of bias in future precipitation,
the precipitation downscaled with GCM outputs for
future were standardized with their means and standard
deviations corresponding to the past climate following
Equation (1), and transformed back with those of past
observed precipitation according to Equation (2). In
MBC, it is assumed that the bias in the mean and
the standard deviation of the precipitation downscaled
with GCM outputs for past climate (with respect to
past observations) remains the same in the future. This
assumption is also valid for the NBC detailed in the
next subsection. In MBC, though the mean and the
standard deviation of the precipitation downscaled with
GCM outputs were explicitly corrected, the CDF of
the precipitation was not corrected. Therefore, the CDF
of precipitation downscaled with GCM outputs for the
past, was different from that of observed precipitation.
This fact was also valid for the NBC, explained in the
following section.

3.2.3. Nested bias-correction

NBC, proposed by Johnson and Sharma (2012), is a
more complex bias-correction technique than the monthly
bias-correction. While the MBC corrects the mean and
the standard deviation in each calendar month, NBC
corrects the mean, the standard deviation and the lag
1 autocorrelations, simultaneously at both monthly and
annual time scales.

Like in MBC, in NBC, first the time series of precip-
itation downscaled with GCM outputs (for past climate)
for each calendar month (Yi) was standardized according
to Equation (1). Then the lag 1 auto correlations (�GCM,i )
in the above standardized precipitation time series were
replaced with the corresponding lag 1 auto correlations
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Figure 2. Time series plot for downscaling model run with NCEP/NCAR outputs as inputs (1950–1999).

in the observed precipitation (�Obs,i ) to produce Y i
′′ as

shown in Equation (3). Lag 1 auto correlation for month
i was calculated as the correlation between the monthly
precipitation time series of month i and month i − 1.

Yi
′′ =�Obs,i .Yi−1

′′+
√

1 − �2
Obs,i .


Yi

′ − �GCM,i Yi−1
′

√
1 − �2

GCM,i




(3)

Then Y ′′
i was transformed back with the mean (µObs,i )

and the standard deviation (σObs,i ) of observed precipita-
tion for each calendar month, as shown in Equation (4).

Y ′′′
i = Y ′′

i .σObs,i + µObs,i (4)

The bias-corrected monthly time series of downscaled
precipitation yielded in Equation (4) has the monthly lag

1 auto correlations, the mean and the standard deviation
of the observed precipitation.

Next, these rescaled monthly precipitation time series
(Y ′′′

i ) in Equation (4) were summed to produce annual
precipitation (Z j ) for each year j . This annual time
series of precipitation was standardized with annual
mean (µGCM) and standard deviation (σGCM) of the
precipitation downscaled with GCM outputs, following
Equation (5).

Zj
′ = Zj − µGCM

σGCM
(5)

Thereafter, the annual lag 1 autocorrelations in Z ′
j

were replaced with those in the observed precipitation
(�Obs) to produce Z ′′

j as shown in Equation (6). The
annual lag 1 autocorrelations were computed as the
correlation between precipitation in a certain year and
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the following year.

Zj
′′ = �Obs.Zj−1

′′ +
√

1 − �2
Obs.


Zj

′ − �GCM.Zj−1
′

√
1 − �2

GCM




(6)

The annual time series modified in Equation (6) was
rescaled with the annual mean (µObs) and the annual
standard deviation (σObs) of observed precipitation time
series, as given in Equation (7).

Zj
′′′ = Zj

′′.σObs + µObs (7)

The bias-corrected annual time series of downscaled
precipitation yielded in Equation (7) has the annual lag
1 auto correlations, the mean and the standard deviation
of the observed precipitation.

Finally, the monthly time series of precipitation
downscaled with GCM outputs were corrected using
Equation (8).

Yi ,j = Z ′′′
j

Zj
.Y ′′′

i ,j (8)

The future precipitation projections downscaled with
GCM outputs were nested bias-corrected with the statis-
tics of observed precipitation and precipitation down-
scaled with GCM outputs for the past climate, following
the procedure described in Equations (3) to (8).

3.2.4. Potential of bias-correcting GCM outputs
against reanalysis outputs

In this study, the precipitation downscaled with GCM
outputs were bias-corrected against the observed precipi-
tation. However, the bias-correction of each GCM output
prior to its use on the downscaling model may seem to be
a better option, as it removes the bias in each input vari-
able of the downscaling model, individually. Although
this method is computationally more expensive than the
correction of bias in the precipitation downscaled from
GCM outputs, it was important to verify whether the
individual bias-correction of each GCM output is ben-
eficial than its counterpart technique. In the absence of
any readily available observations corresponding to the
GCM outputs, the reanalysis outputs can be used as the
reference for the bias-correction.

Instead of bias-correcting each GCM output against
the corresponding reanalysis output, in this study, the
benefit of this approach (if any) was deduced indirectly.
For this purpose, the scatter of the precipitation output of
the GCM, was plotted against the precipitation output of
reanalysis data, for all four seasons. It is noteworthy to
state here that the precipitation output of the GCM was
identified as the most dominant potential predictor on the
monthly observed precipitation, in the first article of this
series. It was assumed that, the magnitudes of the scatter
of the other GCM outputs used in the downscaling model
were similar to that of the precipitation output of GCM.

Therefore, only the precipitation output of the GCM
was considered in this analysis. Meanwhile, the scatter
plots were also prepared for the precipitation downscaled
with GCM outputs (before bias-correction) against the
observed precipitation, for all seasons. Then the scatter
of the precipitation downscaled with the outputs of
the GCM (plotted against observed precipitation) was
compared both visually and numerically with that of
raw precipitation output of the GCM (plotted against
reanalysis outputs). The numerical comparison of the
magnitudes of the above described two scatter was
performed considering the coefficient of determination
(R2).

Johnson and Sharma (2012) stated that, if the magni-
tude of the scatter of the variable to be bias-corrected is
large (if large bias is present), then the bias-correction
will not be effective. Therefore, it was understood that
when the scatter of the raw outputs produced by the GCM
is large, then the bias-correction of these GCM outputs
prior to downscaling will not bring any additional advan-
tage over the bias-correction of precipitation downscaled
with the same GCM outputs.

4. Application

The generic methodology described in Section 3 was
applied to the precipitation station at the Halls Gap post
office in the operational area of GWMWater.

4.1. Reproduction of past precipitation and projection
of precipitation into future with HadCM3 outputs

In this article, the downscaling model was run with
both NCEP/NCAR reanalysis and HadCM3 20th cen-
tury climate experiment data, for the reproduction of
observed precipitation at the station of interest. The
HadCM3 outputs were available at the spatial resolution
of 2.75◦ latitude by 3.75◦ longitude. Owing to the mis-
match of spatial resolutions between the NCEP/NCAR
reanalysis outputs (2.5◦ latitude by 2.5◦ longitude) and
HadCM3, the HadCM3 outputs were interpolated to the
NCEP/NCAR grid (refer to Figure 1 in the first article of
this series of articles) using the inverse distance weighted
method (Ghosh and Mujumdar, 2008). The HadCM3
20th century climate experiment outputs for the period
1950–1999 were standardized with the means and the
standard deviations of the corresponding NCEP/NCAR
reanalysis outputs pertaining to the period 1950–1989
(calibration phase of this downscaling model) for each
calendar month, before their application to the downscal-
ing model. The means and the standard deviations of the
NCEP/NCAR reanalysis output pertaining to the period
1950–1989 (calibration phase of the downscaling model)
were treated as stationary components of the downscal-
ing model. Figures 2 and 3 show the time series plots for
the precipitation output of the downscaling model, with
NCEP/NCAR and HadCM3 outputs respectively, over
the period 1950–1999. The future precipitation projec-
tions were produced by introducing the HadCM3 outputs
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corresponding to possible future climate, as inputs to the
downscaling model, as described later in this article.

According to Figures 2 and 3, it was seen that, when
the downscaling model developed with NCEP/NCAR
outputs was run with HadCM3 outputs as inputs, it tended
to overestimate the majority of precipitation compared
to both observations and precipitation downscaled with
NCEP/NCAR reanalysis outputs. This reflected the bias
inherent in HadCM3 outputs with respect to that of
NCEP/NCAR reanalysis outputs. The same finding was
more clearly seen in scatter plot (b) of Figure 4. In
scatter plot (a) of Figure 4, a good agreement between
the precipitation downscaled with NCEP/NCAR outputs
and the observations was seen (for more details refer to
the first article). When the downscaling model was run
with NCEP/NCAR outputs it displayed a Nash–Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970) of 0.67 and
a coefficient of determination (R2) of 0.75. However,
when the downscaling model was run with HadCM3
outputs those two statistics dropped to −0.62 and 0.12,
respectively.

Table 1 shows the performances of the downscaling
model when run with NCEP/NCAR and HadCM3 outputs
as inputs, in reproducing the observed monthly precip-
itation over the period 1950–1999. It also shows the
statistics of the raw precipitation output of HadCM3 at
grid point {4,4} of the atmospheric domain. It is note-
worthy to state that the NCEP/NCAR reanalysis outputs
are quality controlled and corrected against observations
(Kalnay et al., 1996). Since this downscaling model was
calibrated and validated with NCEP/NCAR outputs, it
inherently had an advantage in reproducing the observed
precipitation better with NCEP/NCAR outputs, than that
with HadCM3 outputs. The model was able to repro-
duce the average, the standard deviation and the coef-
ficient of variation of observed precipitation with good
accuracy in the period 1950–1999, when it was run
with NCEP/NCAR reanalysis outputs. Also it displayed
a Seasonally Adjusted Nash–Sutcliffe efficiency (SANS)
(Wang, 2006; Sachindra et al., 2013) of 0.79, resembling
its good capabilities in reproducing observed precipi-
tation. When the same model was run with HadCM3
outputs, it largely overpredicted the average of the pre-
cipitation. The standard deviation in the observations was
properly captured by the model, when it was run with
HadCM3 outputs. However, the performances of this
model were limited according to the NSE, SANS and
R2 as shown in Table 1.

In Table 1, it was seen that raw precipitation output
of HadCM3 severely underestimated the average and
the standard deviation of the observed precipitation over
the period 1950–1999. Also the SANS and the R2 of
the raw precipitation output of HadCM3 were quite low
in comparison to those of precipitation reproduced by
the downscaling with the outputs of HadCM3. Hence
it was realized that the precipitation reproduced by the
downscaling model with the outputs of HadCM3 are in
better agreement with observations with respect to that
of raw precipitation simulated by HadCM3.

4.2. Bias-correction

In this section, the application of the three bias-correction
techniques to the precipitation downscaled with HadCM3
20th century climate experiment outputs is detailed. The
precipitation downscaled with HadCM3 outputs was bias-
corrected against the observed precipitation. The potential
of bias-correcting raw outputs of HadCM3 against the
corresponding NCEP/NCAR outputs are discussed at the
end of this section.

4.2.1. Bias-correction of precipitation downscaled with
HadCM3 outputs

EDQM, MBC and NBC (described in Section 3.2) were
applied to the precipitation downscaled with the HadCM3
outputs. All bias corrections were performed over the
50-year period from 1950 to 1999, against the observed
precipitation (considered as the reference precipitation for
bias-correction) at the station of interest. Table 2(a) and b
shows the season-based statistics of the observed precipi-
tation and that reproduced by the downscaling model with
NCEP/NCAR and HadCM3 outputs, before and after
the application of the three bias-correction techniques.
Table 2(a) refers to summer (December–February) and
autumn (March–May), while Table 2(b) refers to win-
ter (June–August) and spring (September–November).
According to Table 2(a) and (b), it was seen that all three
bias-correction techniques were capable in correcting the
average of the precipitation downscaled with HadCM3
outputs adequately, in all four seasons. EDQM and MBC
near-perfectly corrected the standard deviation in the pre-
cipitation reproduced with HadCM3 outputs, in all sea-
sons. The NBC properly corrected the standard deviation
of precipitation in summer and autumn, but an over esti-
mation of it was seen in winter and spring. In NBC,
initially the monthly lag 1 autocorrelations, the means and
the standard deviations were corrected. This was followed
by the correction of the annual lag 1 autocorrelations,
the means and the standard deviations. Owing to this
monthly to annual nesting procedure employed in NBC,
slight distortions of monthly mean and standard devia-
tion of precipitation could occur in some seasons. The
coefficient of variations in the precipitation downscaled
with HadCM3 were corrected by all three bias-correction
techniques successfully, despite the slight over-estimation
seen in winter and spring by NBC, which was due to the
over-estimation of standard deviation described earlier.
Overall, all three bias-correction techniques adequately
corrected the average, the standard deviation and the
coefficient of variation in all four seasons. Skewness of
precipitation was well corrected in all four seasons by the
EDQM technique. This is because, in EDQM, the CDF
to be corrected is mapped onto the reference CDF, allow-
ing all statistical moments to be matched. As described
in subsections 3.2.2 and 3.2.3, in MBC and NBC, no
explicit measure was taken to correct the skewness in
precipitation. All bias-correction techniques were capa-
ble in improving the NSE of the precipitation reproduced
with HadCM3 outputs in summer, autumn and winter.
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Figure 3. Time series plot for downscaling model run with HadCM3 outputs as inputs (1950–1999).
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Figure 4. Scatter plots for downscaling model runs with (a) NCEP/NCAR and (b) HadCM3 outputs as inputs (1950–1999).

On the other hand, there was hardly any improvement to
R2 values of precipitation, after the bias-correction.

Figure 5 shows the seasonal scatter of the precip-
itation reproduced with HadCM3 outputs against the
observed precipitation, before and after the application
of three bias-correction methods. Before the application
of the bias-corrections, during all four seasons, there
was large scatter in precipitation, which mainly resem-
bled an over-predicting trend. After each bias-correction,
this large over-predicting trend reduced and it became
a more balanced over and under-predicted scatter. In all
four seasons, the scatter of precipitation after each bias-
correction was visually similar to each other. However,
the scatter which was seen prior to the bias-corrections
did not shrink significantly after the application of any
of the bias-correction techniques, in any of the four
seasons. This is an indication that, these three bias-
correction techniques hardly enhanced the accuracy of
the time series of precipitation. Hence, it can be stated
that when the scatter is very large as seen in Figure 5, the
correction of the time series becomes difficult. However,
all three bias-correction techniques were able to correct

the statistics of precipitation downscaled with HadCM3
outputs. Therefore, it was argued that the bias-corrected
precipitation should be interpreted as a probabilistic pre-
diction/projection, rather than from the point of view
of a time series. For this purpose, EDQM was identi-
fied as the most suitable bias-correction technique as it
preserves all statistical moments of the reference precip-
itation (in this study the observed precipitation for the
period 1950–1999) for the past climate. Therefore, in
this study, the EDQM was used for the bias-correction
of future precipitation downscaled with HadCM3 outputs.

4.2.2. Validation of performances of EDQM technique

It is important to validate the performance of the EDQM
technique prior to its use in the bias-correction of future
precipitation projections. For this purpose, the statistics of
the observed precipitation for the period 1950–1999 were
compared with those of bias-corrected future precipitation
downscaled with HadCM3 COMMIT emission scenario
outputs for the period 2000–2099. The COMMIT is an
idealized GHG emission scenario which assumes the
GHG concentrations in the atmosphere at year 2000
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Table 1. Performances of downscaling model with NCEP/NCAR and HadCM3 outputs.

Statistic Period (1950–1999)

Observations With NCEP/
NCAR outputs

With HadCM3
outputs

Raw HadCM3 Precipitation
at grid point {4,4}

Avg 81.8 83.1 117.4 46.2
SD 62.2 53.8 61.8 28.4
Cv 0.76 0.65 0.52 0.61
NSE 0.67 −0.62 −0.27
SANS 0.79 0.26 −0.71
R2 0.75 0.12 0.08

Avg = average of monthly precipitation in mm; SD = standard deviation of monthly precipitation in mm; Cv = coefficient of variation;
SANS = seasonally adjusted Nash Sutcliffe efficiency; NSE = Nash−Sutcliffe efficiency; R2 = coefficient of determination. Bold values refer
to statistics of observed precipitation.

(CO2 concentration in the atmosphere ≈ 370 ppm) to
be the same throughout the 21st century (Ojha et al.,
2010). Owing to the above attribute of the COMMIT
emission scenario, it was assumed that it can closely
characterize the climate simulated by HadCM3 in the
latter half of the 20th century (1950–1999) during which
the rise in the concentrations of GHGs was limited. In
other words, a good agreement between the outputs of
HadCM3 relevant to the 20th century climate experiment
and for the COMMIT emission scenario was assumed.
Furthermore, according to a study by Ojha et al. (2010),
there is a close relation between the past observed
precipitation and that statistically downscaled from the
GCM outputs corresponding to the COMMIT scenario.
Hence, in this study it was argued that if the statistics of
the bias-corrected future precipitation downscaled from
the HadCM3 COMMIT outputs were in close agreement
with those of past observations, the EDQM technique has
proven capabilities in bias-correcting future precipitation
with adequate accuracy.

As a proof of the agreement between HadCM3 out-
puts of the 20th century climate experiment and those of
COMMIT emission scenario, a comparison of the statis-
tics of several potential predictors used in this study
was performed. For this purpose, the HadCM3 simulated
1000 hPa specific humidity, 850 hPa relative humidity,
850 hPa zonal wind speed and precipitation correspond-
ing to the 20th century climate experiment and the COM-
MIT emission scenario were interpolated to grid point
{4,4} (refer to Figure 1 of the first article of this series
of articles) using the inverse distance weighted method.
Then the statistics of the above variables were computed
for the 20th century climate experiment for the period
1950–1999 and also for the COMMIT emission sce-
nario for the period 2000–2099. The comparison of these
statistics of the potential predictors is shown in Table 3.
In Table 3, it was seen that there is a very good agreement
between the average, the standard deviation and the coef-
ficient of variation of the potential variables simulated by
HadCM3 under the 20th century climate experiment and
the COMMIT emission scenario. It was assumed that,
this is valid for all potential predictors used in this study.

For the validation of the performances of the EDQM
technique, first the HadCM3 monthly outputs for the

COMMIT emission scenario pertaining to the period
2000–2099 were standardized with the monthly means
and the standard deviations of the corresponding
NCEP/NCAR reanalysis outputs, relevant to the period
1950–1989 (model calibration period). Then these stan-
dardized HadCM3 outputs for the COMMIT scenario
were introduced to the downscaling model for projecting
the monthly precipitation at the station of interest. For
bias-correcting, observed precipitation for the period
1950–1999 was considered as the reference set of data,
which is denoted by CDF1 in Figure 1. The CDF2 in the
same figure refers to the precipitation downscaled with
HadCM3 20th century climate experiment outputs for the
same period. The future precipitation downscaled with
HadCM3 COMMIT outputs for the period 2000–2099
was depicted by CDF3 in Figure 1. Following the
EDQM procedure detailed in subsection 3.2.1, the future
precipitation downscaled with HadCM3 outputs for the
COMMIT scenario was bias-corrected. The statistics of
the monthly precipitation downscaled with HadCM3 out-
puts for the COMMIT emission scenario before and after
the bias-correction, for the future period 2000–2099,
were compared with those of observed precipitation per-
taining to the period 1950–1999, in Table 4(a) and (b).
Table 4(a) refers to summer (December–February) and
autumn (March–May), while Table 4(b) refers to winter
(June–August) and spring (September–November). In
Table 4(a) and (b), COMMIT (Before) and COMMIT
(After) refer to the precipitation downscaled with
HadCM3 COMMIT outputs, before and after the
bias-correction, respectively.

As shown in Table 4(a) and (b), prior to the bias-
correction, it was seen that the averages of the precipita-
tion downscaled from HadCM3 COMMIT outputs were
quite larger than those of observed precipitation, for all
seasons. After the bias-correction, it was seen that the pre-
cipitation downscaled from HadCM3 COMMIT outputs,
were able to reproduce the average of observed precipi-
tation with good accuracy, in winter and spring. Despite
some over-estimation, following the bias-correction, the
averages of precipitation downscaled from COMMIT out-
puts for summer and autumn adequately agreed with
those of observations. Before the bias-correction, except
in autumn, the standard deviation of the precipitation
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Figure 5. Seasonal scatter plots for precipitation downscaled with HadCM3 outputs, before and after bias-correction (1950–1999).

downscaled with HadCM3 COMMIT outputs displayed
an over-predicting trend. Even after the bias-correction
this trend was evident in all seasons.

In this study, empirical distribution functions of the
observed precipitation and precipitation downscaled from
HadCM3 outputs were used in applying the EDQM tech-
nique. This raised the need of frequent interpolation
and extrapolation of the CDFs of observed precipita-
tion and that downscaled with HadCM3 20th century
climate experiment outputs. This procedure increases the
severity of low and high extreme precipitation. The over-
prediction of the maximum monthly precipitation was
due to the extrapolation of the above CDFs and it can be
minimized by fitting suitable theoretical distribution func-
tions to the observed and downscaled precipitation time
series, prior to the application of the EDQM technique

(Li et al., 2010). However, it should be noted that when
a theoretical distribution function is fitted to a dataset,
inevitably, there will be fitting errors as no theoretical
distribution function can perfectly describe any precipi-
tation dataset.

Before the bias-correction, the 10th, 25th, 50th, 75th
and 90th percentiles of the downscaled precipitation for
COMMIT scenario were largely over-estimated, in all
seasons. After the bias-correction, in all seasons, the over-
estimating characteristic of the above percentiles of pre-
cipitation downscaled with HadCM3 COMMIT outputs
reduced. In all four seasons, the percentages of months
with zero precipitation were over-estimated. However,
this trend was minimal in summer. After the bias-
correction, the percentages of months with above average
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Table 3. Comparison of statistics of potential predictors between the 20th century climate experiment and the COMMIT scenario.

Statistic Precipitation
(mm)

1000 hPa Specific humidity
(grams kg−1)

850 hPa Relative
humidity (%)

850 hPa Zonal
wind speed (m s−1)

20C3M COMMIT 20C3M COMMIT 20C3M COMMIT 20C3M COMMIT
1950–1999 2000–2099 1950–1999 2000–2099 1950–1999 2000–2099 1950–1999 2000–2099

Avg 47.9 45.2 7.2 7.7 63.7 63.8 4.2 4.2
SD 30.4 27.5 1.0 1.1 9.6 9.4 3.2 3.3
Cv 0.63 0.61 0.14 0.14 0.15 0.15 0.75 0.79

Avg = average; SD = standard deviation; Cv = coefficient of variation; 20C3M = 20th century climate experiment; COMMIT = COMMIT
emission scenario.

precipitation under the COMMIT scenario matched with
those of observations, in all seasons acceptably.

4.2.3. Potential of bias-correcting HadCM3 outputs
against NCEP/NCAR outputs

Although the bias was prevalent in the HadCM3 out-
puts (as shown in the first article of this series of arti-
cles), in this study, the bias-correction was performed
on the precipitation downscaled with the HadCM3 out-
puts. This method was employed as it was computation-
ally much cheaper than bias-correcting each output of
HadCM3 individually, prior to their use in downscaling.
However, theoretically, the bias-correction of each GCM
output individually, before introducing to a downscaling
model seems to be a more effective approach than the
correction of bias in the precipitation downscaled with
raw GCM outputs. In the absence of any readily avail-
able observations corresponding to the GCM outputs used
in the downscaling model, the bias-correction of these
GCM outputs can be performed against the pertaining
NCEP/NCAR or any other reanalysis outputs (e.g. Salvi
et al., 2011).

According to Figure 5, it was seen that if the scatter
of the variable to be bias-corrected (e.g. precipitation
downscaled with GCM outputs) was large, none of the
bias-correction techniques used in this study was capable
in adequately reducing this scatter. If the scatter was not
adequately reduced, the time series of the variable is
also not properly corrected. Based on this argument, it
was decided to visualize the raw precipitation output of
HadCM3 against that of NCEP/NCAR in scatter plots,
pertaining to grid point {4,4} (refer to Figure 1 in the
first article, for the location of this grid point), for each
season. The grid point {4,4} referred to the point which
was located closest to the precipitation station considered
in this study. In the first article, precipitation output of
HadCM3 at grid point {4,4} was identified as the most
influential potential variable on the observed monthly
precipitation.

Figure 6 shows the scatter plots of raw precipitation
output of HadCM3 against that of NCEP/NCAR for the
period 1950–1999, corresponding to grid point {4,4}. As
shown in Figure 6, it is realized that there is large scatter
in the raw precipitation outputs of HadCM3 in all four
seasons. The very low R2 values in all seasons numeri-
cally verified the presence of large scatter in precipitation

outputs of HadCM3. It is also reasonable to assume that,
such large scatter is prevalent in the other outputs of
HadCM3 which were used in the downscaling model,
since all these outputs were produced by the same GCM.
Therefore, it was deduced that if the HadCM3 outputs
were bias-corrected against the NCEP/NCAR reanalysis
outputs with any of the bias-correction techniques used
in this study, the improvement to their time series will be
minimal. Without considerable improvement to the time
series of HadCM3 outputs, it was difficult to expect any
improvement to the precipitation downscaled with these
individually bias-corrected HadCM3 outputs. Hence, the
bias-correction of outputs of HadCM3, prior to down-
scaling, was identified as a procedure which brings no
additional advantage.

4.3. Future precipitation projections

4.3.1. Greenhouse gas emission scenarios

For this study, two GHG emission scenarios namely;
A2 and B1 were selected. A2 is a relatively high
GHG emission scenario due to its economic focus.
On the other hand, the B1 GHG emission scenario
described a world with high level of concern on the
environment and sustainable development. Therefore, it
refers to relatively low level of GHG emissions. The
A2 and B1 GHG emission scenarios referred to carbon
dioxide concentrations of about 850 ppm and 550 ppm,
respectively, by the end of the 21st century (IPCC,
2000). The downscaling model was used to project
the future precipitation at the station of interest, up to
year 2099. HadCM3 outputs for the A2 and B1 GHG
emission scenarios of the IPCC were obtained from the
PCMDI website (https://esgcet.llnl.gov:8443/index.jsp),
for the period 2000–2099, and used as the inputs to the
downscaling model used in this study.

4.3.2. Bias-corrected future precipitation projections

HadCM3 outputs for the A2 and B1 IPCC SRES GHG
emission scenarios for the period 2000–2099 were stan-
dardized with the means and the standard deviations of
the corresponding NCEP/NCAR reanalysis outputs, per-
taining to the model calibration period which spanned
over 1950–1989. Thereafter, these standardized HadCM3
outputs were introduced to the downscaling model.
This allowed the monthly precipitation projections at the
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Table 4. Seasonal statistics of observed and COMMIT precipitation for (a) summer and autumn and (b) winter and spring.

(a) Summer Autumn

Statistic 1950–1999 2000–2099 1950–1999 2000–2099

Obs COMMIT
(Before)

COMMIT
(After)

Obs COMMIT
(Before)

COMMIT
(After)

Avg 41.4 87.6 55.6 70.4 124.9 78.7
SD 36.6 57.4 51.1 56.8 51.0 65
Cv 0.88 0.65 0.92 0.81 0.41 0.83
Minimum precipitation 0.0 14.2 0.0 2.8 10.1 0.0
Maximum precipitation 192.3 347.0 301 345.4 271.0 385
10th Percentile 4.2 34.6 5.3 11.4 55.1 13.6
25th Percentile 16.4 46.7 18.0 30.1 82.7 29.0
50th Percentile 30.7 68.7 45.1 49.1 130.5 61.4
75th Percentile 54.9 112.6 82.3 108.6 161.1 122.9
90th Percentile 90.7 159.3 114.9 148.7 187.4 168.1
Percentage of months

with zero precipitation
4 0 6 0 0 6

Percentage of months
with above average
precipitation

39 38 37 39 53 41

(b) Winter Spring

Statistic 1950–1999 2000–2099 1950–1999 2000–2099

Obs COMMIT
(Before)

COMMIT
(After)

Obs COMMIT
(Before)

COMMIT
(After)

Avg 127.3 161.1 124.3 88.1 116.7 91.5
SD 64.8 72.9 71.5 53.7 67.3 71.6
Cv 0.51 0.45 0.58 0.61 0.58 0.78
Minimum precipitation 12.2 2.0 0.0 7.6 23.1 0.0
Maximum precipitation 345.2 387.5 424.1 272.4 321.6 346.5
10th Percentile 47.8 63.1 41.4 31.4 48.4 17.4
25th Percentile 77.4 109.0 73.2 48.7 63.2 41.5
50th Percentile 119.3 163.1 118.2 73 95.7 67.9
75th Percentile 167.6 208.5 170.8 118.8 156.8 125.0
90th Percentile 207.7 254.9 202.5 156.1 218.2 198.6
Percentage of months

with zero precipitation
0 0 5 0 0 3

Percentage of months
with above average
precipitation

47 51 47 43 40 41

Avg = average of monthly precipitation in mm; SD = standard deviation of monthly precipitation in mm; Cv = coefficient of variation;
COMMIT (Before) = Precipitation downscaled for COMMIT scenario before bias-correction (italicized values); COMMIT (After) = Precipitation
downscaled for COMMIT scenario after bias-correction. Bold values refer to statistics of observations.

station of interest up to year 2099. The precipitation
projections under A2 and B1 emission scenarios by the
downscaling model were bias-corrected using the EDQM
technique, as detailed in subsection 3.2.1.

In Table 5, the statistics of the future precipitation
projections for the period 2000–2099 are shown against
those of observed precipitation for the period 1950–1999.
The percentage changes in the statistics of the future
precipitation projections with respect to the statistics of
observed precipitation of the period 1950–1999 are also
provided within parentheses in Table 5. According to
Table 5, at the station of interest, in summer and spring,
the average of monthly precipitation for the period
2000–2099 showed a decline under both A2 and B1
emission scenarios. On the other hand, in winter, both

A2 and B1 emission scenarios indicated a rise in the
average of monthly precipitation. During autumn, only
A2 emission scenario showed a rise in the average of
the monthly precipitation. The standard deviation of the
precipitation under both A2 and B1 scenarios increased
in all seasons in comparison to that of observations
corresponding to the period 1950–1999. The two sample
t-test revealed that the changes in the average of future
precipitation in autumn and winter under both A2 and B1
scenarios are not significant at the 95% confidence level.
However, it was found that the decrease in the average of
precipitation projected into future in spring was signifi-
cant at the 95% confidence level for both GHG emission
scenarios. Furthermore, the two sample F -test revealed
that the rise in the standard deviation of the precipitation
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Figure 6. Seasonal scatter plots for raw precipitation output of HadCM3 at point {4,4} (1950–1999).

projected into future compared to that of observed
precipitation of period 1950–1999 was statistically
significant at the 95% confidence level for both A2 and
B1 emission scenarios in all seasons except in winter.

In summer and winter, the precipitation in Victo-
ria is influenced by the strength and the location of
the sub-tropical ridge (http://www.climatekelpie.com.
au/understand-climate/weather-and-climate-drivers/victo-
ria#SubtropicalRidge). In summer, the sub-tropical ridge
mainly lies over the southern part of the Australian con-
tinent (latitude 40◦S – Timbal and Drosdowsky 2013). In
winter, it is located over the north central region of Aus-
tralia (latitude 29◦S – Timbal and Drosdowsky 2013).
The increase in the GHG emissions causes the atmo-
spheric temperature to rise and this leads to strengthening
(rise in pressure) and the southward movement of the
sub-tropical ridge (Commonwealth Scientific and Indus-
trial Research Organisation, 2010). This phenomenon can
cause a decrease in precipitation in summer and winter
as the pressure in the sub-tropical ridge is high. The

relatively larger rise in the GHG emissions characterized
by A2 scenario can intensify the sub-tropical ridge
and cause relatively larger drop in the average of the
precipitation in comparison to the same caused by
B1 scenario which is associated with relatively low
emissions in summer and winter, as shown in Table 5.

In all four seasons, both A2 and B1 scenarios depicted
an increase in the maximum monthly precipitation, in
comparison with that of past observations. This rise was
particularly higher under A2 emission scenario which
was associated with relatively higher levels of GHG
emissions. This indicated that in future, with the rising
GHG levels in the atmosphere, there will be months
with large precipitation totals, at the station of interest.
However, it should be noted that high monthly precipita-
tions are prone to extrapolation errors of CDFs, as stated
previously in the validation of the performances of the
EDQM technique. The MLR technique used in develop-
ing the downscaling model employed in this study can
only determine the linear component of the relationships

 2014 Royal Meteorological Society Int. J. Climatol. (2014)

151



DOWNSCALING OF GCM OUTPUTS TO PRECIPITATION FUTURE PROJECTIONS

Ta
bl

e
5.

Se
as

on
al

st
at

is
tic

s
of

fu
tu

re
A

2
an

d
B

1
bi

as
-c

or
re

ct
ed

pr
ec

ip
ita

tio
n.

St
at

is
tic

Su
m

m
er

A
ut

um
n

W
in

te
r

Sp
ri

ng

19
50

–
19

99
20

00
–

20
99

19
50

–
19

99
20

00
–

20
99

19
50

–
19

99
20

00
–

20
99

20
00

–
20

99

O
bs

A
2

B
1

O
bs

A
2

B
1

O
bs

A
2

B
1

O
bs

A
2

B
1

A
vg

41
.4

33
.6

35
.3

70
.4

76
.8

67
.6

12
7.

3
13

2.
2

13
5.

6
88

.1
74

.5
71

.0
(−

19
%

↓)
*

(−
15

%
↓)

ˆ
(+

9%
↑)

ˆ
(−

4%
↓)

ˆ
(+

4%
↑)

ˆ
(+

7%
↑)

ˆ
(−

15
%

↓)
*

(−
19

%
↓)

*

SD
36

.6
44

.0
43

.1
56

.8
65

.5
66

.8
64

.8
72

.0
73

.4
53

.7
69

.2
63

.1
(+

20
%

↑)
*

(+
18

%
↑)

*
(+

15
%

↑)
*

(+
18

%
↑)

*
(+

11
%

↑)
ˆ

(+
13

%
↑)

*
(+

29
%

↑)
*

(+
18

%
↑)

*

M
ax

im
um

pr
ec

ip
ita

tio
n

19
2.

3
37

6.
4

25
1.

9
34

5.
4

42
4.

2
41

8.
5

34
5.

2
52

7.
4

49
4.

1
27

2.
4

38
3.

8
31

9.
9

(+
96

%
↑)

(+
31

%
↑)

(+
23

%
↑)

(+
21

%
↑)

(+
53

%
↑)

(+
43

%
↑)

(+
41

%
↑)

(+
17

%
↑)

Pe
rc

en
ta

ge
of

m
on

th
s

w
ith

ze
ro

4
20

24
0

6
10

0
1

0
0

8
5

pr
ec

ip
ita

tio
n

(+
16

%
↑)

(+
20

%
↑)

(+
6%

↑)
(+

10
%

↑)
(+

1%
↑)

(0
%

=)
(+

8%
↑)

(+
5%

↑)
Pe

rc
en

ta
ge

of
m

on
th

s
w

ith
39

31
37

39
40

39
47

46
48

43
39

38
ab

ov
e

av
er

ag
e

pr
ec

ip
ita

tio
n

(−
8%

↓)
(−

2%
↓)

(+
1%

↑)
(0

%
=)

(−
1%

↓)
(+

1%
↑)

(−
4%

↓)
(−

5%
↓)

A
vg

=
av

er
ag

e
of

m
on

th
ly

pr
ec

ip
ita

tio
n

in
m

m
;

SD
=

st
an

da
rd

de
vi

at
io

n
of

m
on

th
ly

pr
ec

ip
ita

tio
n

in
m

m
;

C
v
=

co
ef

fic
ie

nt
of

va
ri

at
io

n;
A

2
=

hi
gh

em
is

si
on

sc
en

ar
io

;
B

1
=

lo
w

em
is

si
on

sc
en

ar
io

;
↑=

pe
rc

en
ta

ge
in

cr
ea

se
in

20
00

–
20

99
w

ith
re

sp
ec

t
to

ob
se

rv
at

io
ns

of
pe

ri
od

19
50

–
19

99
;
↓=

pe
rc

en
ta

ge
de

cr
ea

se
in

20
00

–
20

99
w

ith
re

sp
ec

t
to

ob
se

rv
at

io
ns

of
pe

ri
od

19
50

–
19

99
(i

n
bo

ld
);

Sy
m

bo
l
=

in
di

ca
te

s
ch

an
ge

in
pe

rc
en

ta
ge

in
20

00
–

20
99

w
ith

re
sp

ec
t

to
ob

se
rv

at
io

ns
of

pe
ri

od
19

50
–

19
99

(i
n

ita
lic

s)
;

Sy
m

bo
l

*
in

di
ca

te
s

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
ch

an
ge

at
95

%
co

nfi
de

nc
e

le
ve

l;
Sy

m
bo

l
ˆ

st
at

is
tic

al
ly

in
si

gn
ifi

ca
nt

ch
an

ge
at

95
%

co
nfi

de
nc

e
le

ve
l.

 2014 Royal Meteorological Society Int. J. Climatol. (2014)

152



D. A. SACHINDRA et al.

between the predictors and the precipitation. High values
of precipitation usually display nonlinear relationships
with predictors. Therefore the downscaling technique
used in this study can be regarded as another source
of uncertainty in the simulations of high precipitation
values.

In all four seasons, the A2 scenario projected a
rise in the percentage of months with zero precipita-
tions, indicating that there will be greater number of
dryer months in future, with increasing GHG emissions.
A similar trend was seen in the projected precipitation
pertaining to the B1 scenario, except in winter, when no
months with zero precipitation was seen. It is notewor-
thy to state that the rise in the percentage of months with
zero precipitation was highest in summer, for both A2
and B1 emission scenarios. In winter, the rise in the per-
centage of zero precipitation months was relatively low,
in comparison with that of rest of the seasons, for the A2
emission scenario. In summer and spring both A2 and
B1 emission scenarios indicated a slight decrease in the
percentage of months with above average precipitation.
In autumn and winter the changes in the percentage of
months with above average precipitation was negligible
for both emission scenarios.

A comparison conducted between the statistics of
the raw precipitation outputs of HadCM3 correspond-
ing to A2 and B1 GHG emission scenarios of the
period 2000–2099, revealed that the differences between
the averages and the standard deviations of precipita-
tion at point {4,4} of the atmospheric domain were
quite negligible in all seasons. However, the maximum
of monthly precipitation simulated by HadCM3 under
A2 scenario was clearly higher than that under B1
scenario in all seasons. This indicated that the rela-
tive changes in the GHG concentrations characterized
by the A2 and B1 scenarios do not cause a signifi-
cant difference in the long-term average and the stan-
dard deviation of precipitation simulated by HadCM3
over the study area, but the high emissions associated
with A2 scenario causes HadCM3 to simulate peak
precipitation values higher than those simulated with
B1 scenario in all seasons. Similar characteristics are
seen in the statistics of precipitation in Table 5 down-
scaled using the HadCM3 outputs pertaining to A2 and
B1 scenarios. When the atmospheric GHG concentra-
tion rises, it causes an imbalance in radiative energy
which increases the heat energy stored in the sea leading
to an elevation in the sea surface temperatures (Tren-
berth et al., 2007). The rise in the sea surface tempera-
ture increases the rate of evaporation, hence the water
vapour content in the atmosphere. These phenomena
lead to intensification of the hydrologic cycle causing
a rise in the magnitude of the maximum precipitation
(Kunkel et al., 2013). Since the GHG emissions associ-
ated with the A2 scenario are higher in comparison to
those of B1, the rise in the magnitude of the maximum
precipitation is higher for A2 in all seasons as shown in
Table 5.

Figure 7 depicts the exceedance curves for future
A2 and B1 bias-corrected monthly precipitation for the
period 2000–2099, along with the exceedance curves
for the observed monthly precipitation pertaining to
the period 1950–1999. According to Figure 7, it is
evident that the precipitation in autumn and winter will
increase with respect to the observations of the period
1950–1999, for the majority of exceedance probabilities.
However, in spring there will be a drop in precipitation
pertaining to the majority exceedance probabilities, and
in summer a relatively small decrease in precipitation
was indicated for most of the exceedance probabilities.
These findings are also consistent with the numerical
assessments provided in Table 5.

Smith and Chandler (2009) stated that, over the Mur-
ray Darling basin (MDB) in south east Australia, the raw
precipitation output of HadCM3 under the A1B emission
scenario (mid-level scenario which refers to an atmo-
spheric CO2 concentration of about 720 ppm at the end
of the 21st century) shows a decrease in precipitation
of about 15% for the period 2071–2099, with respect
to the observed precipitation in the period 1971–2000.
According to the findings of this study, at the Halls Gap
post office which is located close to the southern bound-
ary of the MDB (within it), the precipitation downscaled
with HadCM3 outputs pertaining to A2 and B1 scenar-
ios for the period 2071–2099, showed decrease of about
12% and 3.4%, respectively, with respect to the observed
precipitation in the period 1971–2000. The Victorian
Government Department of Sustainability and Environ-
ment (2008) stated that the median estimates obtained
from the raw precipitation outputs of number of GCMs
under B1 (low emissions), and A1F1 (high emissions)
emission scenarios have indicated a drop in the average
of precipitation in all four seasons by the year 2070 over
the Wimmera region, which included the Halls Gap post
office. Furthermore, it was stated that the greatest reduc-
tion in precipitation is likely to occur in spring, which is
consistent with the findings of this study. Also it was
stated that the intensity of extreme daily precipitation
is likely to increase in the Wimmera region. However,
it should be noted that there were no evidence in the
literature of previous attempts on statistical downscal-
ing of GCM outputs to precipitation at Halls Gap or its
surrounding area. Future climate information for water
resource planning purposes in the study area is currently
based on the regional estimates derived from the raw
outputs of GCMs (e.g. Commonwealth Scientific and
Industrial Research Organisation, 2007) and does not pro-
vide the spatial resolution of detail that will be needed at
the catchment scale.

The long-term statistics of monthly precipitation
such as average, variance, extremes, and so on,
extracted from the bias-corrected time series of monthly
precipitation are useful for water resource planning pur-
poses. The average of the future precipitation enables the
understanding of the future water availability in a
catchment, in meeting the future demand. The variance
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Figure 7. Seasonal exceedance curves for future bias-corrected precipitation under A2 and B1 emission scenarios (2000–2099). (a) Summer,
(b) autumn, (c) winter and (d) spring.

of precipitation describes the amount of change in pre-
cipitation with respect to its average. A larger variance in
future precipitation at the catchment scale shows unique
challenges in managing water resources to withstand the
larger fluctuations in precipitation. Greater variation in
future precipitation will need to be considered in the
planning and operation of water resources infrastructure,
and will impact on the reliability of supply to customers.
Modelling extreme low and high precipitation values are
important in the management of droughts and floods,
respectively.

Owing to the downscaling of GCM outputs followed
by the bias-correction of downscaled precipitation, this
research provides useful, area-specific information to the
water resource planners (in the study area), than the cur-
rently available future climatic information derived from
raw GCM outputs. In future, the methodology described
in this article will be applied to a number of sites in
the operational area of GWMWater (refer to Figure 1
of the first article) for producing the future precipitation
projections with the outputs of multiple GCMs.

4.3.3. Caveats and uncertainties involved in the study

Statistical downscaling is a useful tool for the determina-
tion of catchment scale hydroclimatology using the GCM

outputs. However, the projections produced using statis-
tical downscaling techniques are subject to uncertainties
arising from many sources such as GHG emission sce-
narios, GCMs, observations of predictands against which
the downscaling models are calibrated and also from the
downscaling techniques used (Hashmi et al., 2009). The
largest uncertainty in a downscaling study often arises
from the GHG emission scenarios. This is because the
actual levels of GHG emissions pertaining to the future
climate are not known at the time the climate projections
are produced. In this study, A2 which is a high emis-
sion scenario and B1 which is a low emission scenario
were used for the projection of precipitation into future.
Therefore, the statistics of precipitation derived from the
outputs of the downscaling model refer to two plausi-
ble climate states conditioned by high and low GHG
emission levels. Hence the precipitation projections pro-
duced in this study should not be treated as definite but as
plausible.

Mainly owing to the different assumptions and approx-
imations employed in the structure, different GCMs may
tend to produce different projections of the future climate
(Yu et al., 2002) even under the same GHG emission sce-
nario. This causes the downscaling models fed with the
outputs of different GCMs to simulate future climate over
the same study area differently. The above effect due to
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the use of different GCMs is particularly evident when
the predictors used as inputs to the downscaling mod-
els have a low degree of convergence among different
GCMs. Johnson and Sharma (2009) found that GCMs
show relatively high convergence for pressure and sur-
face air temperature and comparably low convergence for
precipitation, over Australia under both A2 and B1 GHG
emission scenarios. This indicated that if the precipitation
outputs of different GCMs are used as inputs to a down-
scaling model, it will probably tend to produce different
projections of precipitation at the catchment scale. In this
study, precipitation simulated by HadCM3 was used as
an input to 11 of the 12 calendar month-based downscal-
ing models, for the projection of precipitation into future.
Therefore, the downscaling model used in this study will
tend to produce a range of catchment scale projections
of precipitation when run with the outputs of different
GCMs. It should be noted that the statistics of the pre-
cipitation projected into future in this study correspond
to the future climate simulated by HadCM3. By using
the outputs of different GCMs and hence obtaining the
ensemble average projection for precipitation can reduce
the dependence on one specific GCM.

The uncertainties rising from the observations of
precipitation also can cause the downscaling model to
be less robust. In this study, the daily precipitation data
were used to derive the monthly precipitation needed
for the model calibration and validation and also for the
correction of bias in the precipitation simulated by the
downscaling model. The daily observed precipitation
record at the Halls Gap post office contained 31%
missing data over the period 1950–2010. These missing
data have been filled by the Queensland Climate Change
Centre of Excellence in the SILO database, using the
spatial interpolation method described by Jeffrey et al.
(2001). Since about one third of the daily precipitation
observations were estimated, the record of observations
at the Halls Gap post office may have introduced
uncertainties to the downscaling model and also to the
bias-correction.

Another possible source of uncertainty in a down-
scaling exercise is the downscaling technique used for
deriving the relationship between the predictors and the
predictand. In this study, MLR which is a linear regres-
sion technique was employed for the above purpose.
Though MLR is a simple and convenient technique for
developing a downscaling model, it cannot capture the
nonlinear component of the relationships between the pre-
dictors and precipitation. Theoretically a complex non-
linear regression technique such as SVM or ANN could
be able to better capture the relationships between the
predictors and precipitation. However, the improvement
to the simulations produced by such downscaling model
built using a complex nonlinear regression technique over
a downscaling model developed with a relatively simpler
linear regression method may depend upon the degree of
nonlinearity in the relationships between the predictors
and the predictand.

5. Summary and conclusions

In the first article of this series of two articles, two mod-
els were developed using the MLR technique for down-
scaling NCEP/NCAR and HadCM3 outputs to monthly
precipitation. In that study, it was realized that the model
built with NCEP/NCAR outputs performed better than
the model that was developed with HadCM3 outputs. The
large mismatch seen between the raw precipitation output
of HadCM3 and the observed precipitation in the first arti-
cle, showed the need of a bias-correction. In this study the
model built with NCEP/NCAR outputs (which is referred
to as ‘the downscaling model’ throughout this article) was
used for the future projections of monthly precipitation
at the Halls Gap post office located in north western Vic-
toria, Australia, with HadCM3 outputs corresponding to
possible future climate as inputs. Also a bias-correction
to the precipitation downscaled with HadCM3 outputs
was performed.

The HadCM3 outputs for the 20th century cli-
mate experiment for the period 1950–1999 were stan-
dardized with the means and standard deviations of
NCEP/NCAR reanalysis outputs corresponding to the
period 1950–1989 (this was the calibration period of the
downscaling model). Then these standardized HadCM3
outputs were introduced to the downscaling model for
reproducing the observed monthly precipitation from
1950 to 1999, for the precipitation station at the Halls Gap
post office. The precipitation downscaled with HadCM3
20th century climate experiment outputs were bias-
corrected against the observed precipitation relevant to
the period 1950–1999. The bias-correction of precipi-
tation was performed using three different techniques:
(1) EDQM, (2) MBC and (3) NBC. Each of these tech-
niques were applied separately on the monthly precip-
itation downscaled with HadCM3 outputs on each cal-
endar month. Based on the performances, the EDQM
technique was identified as the most suitable method
for correcting the bias in precipitation downscaled with
HadCM3 outputs. The performances of the EDQM tech-
nique was validated by comparing the statistics of the
precipitation downscaled with HadCM3 outputs pertain-
ing to the COMMIT emission scenario for the period
2000–2099, with those of observed precipitation for the
period 1950–1999.

HadCM3 outputs for the future climate were obtained
under the A2 and B1 greenhouse emission scenarios for
the projection of monthly precipitation into future. The
A2 and B1 HadCM3 outputs for the period 2000–2099
were standardized with the means and standard devia-
tions of NCEP/NCAR reanalysis outputs pertaining to
the period 1950–1989. These standardized outputs of
HadCM3 for the A2 and B1 emission scenarios were
applied on the downscaling model for producing the
future precipitation at the Halls Gap post office. The
future precipitation downscaled from HadCM3 outputs
corresponding to A2 and B1 emission scenarios were
bias-corrected against the observed precipitation, using
the EDQM technique.
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The conclusions drawn from this study are:

1. When the downscaling model developed with
NCEP/NCAR reanalysis data was run with HadCM3
20th century climate experiment outputs for the
period 1950–1999, the model largely over-estimated
the majority of monthly precipitation. There was large
scatter in precipitation reproduced with HadCM3
outputs, during all four seasons.

2. After the application of EDQM, monthly bias-
correction and NBC techniques for the period
1950–1999, the large over-predicting trend of pre-
cipitation reduced and turned into a more balanced
over and under-predicted scatter. However, none of
the bias-correction techniques could satisfactorily
reduce the scatter of monthly precipitation.

3. Considering the scatter that was present in precipi-
tation after the bias-correction, it was seen that all
three bias-correction techniques hardly enhanced the
accuracy of the time series of monthly precipitation.

4. In all seasons, during the period 1950–1999, EDQM,
MBC and NBC techniques adequately corrected the
average, the standard deviation and the coefficient of
variation of monthly precipitation.

5. Following (3) and (4), it was argued that the bias-
corrected precipitation should produce probability
distributions of the projections more accurately than
the time series.

6. For the bias-correction of monthly precipitation,
EDQM was identified as the most suitable technique,
employed in this study, as this method was the best
in correcting the cumulative distribution (and hence
the probability distribution) of the precipitation down-
scaled with GCM outputs. EDQM has a sound theory
to model the CDF accurately.

7. If the scatter of the raw GCM outputs against
NCEP/NCAR outputs was large, it was understood
that the bias-correction of raw outputs of a GCM
against NCEP/NCAR outputs prior to downscaling
is not advantageous, than the bias-correction of the
predictand (e.g. precipitation) downscaled from the
same set of raw GCM outputs.

8. For the period 2000–2099, in spring, the precipitation
downscaled using HadCM3 outputs pertaining to both
A2 (relatively high emissions) and B1 (relatively low
emissions) scenarios showed a statistically significant
(at 95% confidence level) decrease in the average of
monthly precipitation with respect to the average of
observed precipitation of the period 1950–1999.
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CHAPTER 4 

STATISTICAL DOWNSCALING USING A

MULTI-MODEL ENSEMBLE APPROACH

4.1 Introduction 

In a statistical downscaling study, projections of a predictand (e.g. precipitation) 

produced into future can vary based on the GCM used in providing the inputs to the 

downscaling model. As a solution to this issue, ensemble techniques which can combine 

multiple projections into one single projection are used in statistical downscaling. 

Ensemble techniques are used in either combining the different outputs produced by the 

same climate model when run with different initial conditions into one single prediction 

or combining the outputs of different climate models into one single prediction. In this 

chapter, details of a statistical downscaling model developed using the multi-model 

ensemble outputs derived from three different GCMs; HadCM3, ECHAM5 and 

GFDL2.0 are presented. For this investigation, the above three GCM were selected 

owing to their good ability in simulating the precipitation over Australia and credible 

simulation of El Niño-Southern Oscillation (ENSO) (Smith and Chandler, 2010). 

The 20th century climate experiment outputs of the above three GCMs were linked to 

the corresponding NCEP/NCAR reanalysis outputs using multi-linear regression 

equations. The outputs of these multi-linear regression equations called the multi-model 

ensemble outputs were used as inputs to the downscaling model in its calibration and 
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validation phases. It should be noted that, since reanalysis outputs are quality controlled 

and corrected against observations they are more accurate than the corresponding 20th 

century climate experiment outputs of GCMs. When the 20th century climate 

experiment outputs of GCMs are regressed against the reanalysis outputs, the outputs of 

those regressions relationships (multi-model ensemble inputs to the downscaling model) 

undergo a bias-correction. Therefore, the multi-model ensemble inputs to the 

downscaling model generated by combining the outputs of three GCMs are able to 

provide more reliable estimates of the global-scale climate predictors. 

As described in Chapter 6 in the journal paper entitled “Least square support vector and 

multi-linear regression for statistically downscaling general circulation model outputs to 

catchment streamflows”, the multi-linear regression technique was able to perform quite 

comparably with a complex non-linear regression technique called the least-square 

support vector machine regression. Therefore, in the study detailed in this chapter, for 

the generation of multi-model ensemble inputs to the downscaling model and for its 

development, multi-linear regression technique was employed. 

The performances of this downscaling model developed with multi-model ensemble 

outputs were compared with those of a downscaling model developed using the 

NCEP/NCAR reanalysis outputs, as an assessment. The multi-linear regression 

equations developed between the GCM outputs and the NCEP/NCAR reanalysis 

outputs for the past climate were used with GCM outputs pertaining to future in 

generating the multi-model ensemble outputs for the future climate. In this manner, this 

downscaling model was calibrated, validated and projections into future were produced 

using a homogeneous set of inputs derived from the same set of GCMs. Furthermore, 

this multi-model ensemble approach aided in combining the outputs of several different 

GCMs into one single output for the prediction of precipitation at a station in the study 

area using statistical downscaling. 

This chapter contains the following journal paper; 
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1. Sachindra DA, Huang F, Barton AF, Perera BJC. 2013b. Multi-model ensemble

approach for statistically downscaling general circulation model outputs to

precipitation. Quarterly Journal of the Royal Meteorological Society, (Article in

Press), DOI: 10.1002/qj.2205. (SCImago journal rank indicator = Q1; ERA

Rank = A; Impact Factor = 3.327).

The full-text of this article is subject to copyright restrictions, and cannot be included in the online
version of the thesis.

Available from: https://doi.org/10.1002/qj.2205
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CHAPTER 5 

MULTI-STATION AND MULTI-STATION

MULTIVARIATE DOWNSCALING

5.1 Introduction 

In the majority of the studies, statistical downscaling is performed at individual stations 

without attempting to preserve the spatial coherence seen in the observations at the 

stations in a study area. This causes the projections of a predictand produced by 

downscaling models at different stations in the study area to show limited agreement 

over space. In other words for the predictand of interest, the spatial correlation structure 

among the stations is violated. This affects the plausible representation of spatial 

variations of the climatic variables over the study area. Therefore in a study which 

involves statistical downscaling at multiple locations, the preservation of the cross-

correlation structure among the stations in the study area for a certain predictand is an 

important task. For this purpose, multi-station downscaling techniques capable of 

downscaling at multiple stations concurrently are used. However, the majority of the 

currently used multi-station downscaling techniques are complex. In this chapter, a 

relatively simple yet effective multi-station downscaling technique based on a key-

station approach is presented. 

The use of this key-station approach was demonstrated in this chapter by its application 

to monthly precipitation, evaporation, minimum temperature and maximum temperature 
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at 17 stations in the study area considering one predictand at a time. The precipitation 

received by a catchment determines the availability of its water resources. Evaporation 

is regarded as a process which causes loss of water from the catchment. Temperature is 

highly influential on the rate of evaporation. Therefore in this investigation above 

climatic variables were considered. However, this key-station approach can only be 

used with one single predictand at a time. Therefore the key-station approach was 

extended to key-predictand and key-station approach for the multi-station multivariate 

statistical downscaling of GCM outputs to evaporation, minimum temperature and 

maximum temperature at 17 stations in the study area. In other words, the key-

predictand and key-station approach detailed in this chapter is capable of downscaling 

GCM outputs to multiple predictands at multiple stations concurrently. This procedure 

enables the preservation of cross-correlation structures among the stations for each 

individual predictand while maintaining the cross-correlation structures between 

different climatic variables at individual stations. 

This chapter contains the following two journal papers. The first paper discusses the 

application of the key-station approach for downscaling GCM outputs to precipitation, 

evaporation, minimum temperature and maximum temperature at multiple stations (one 

predictand at a time). The second paper details the application of the key-predictand and 

key-station approach for downscaling GCM outputs to evaporation, minimum 

temperature and maximum temperature at multiple stations concurrently. 

1. Sachindra DA, Huang F, Barton AF, Perera BJC. 2013d. Statistical

downscaling of general circulation model outputs to precipitation, evaporation

and temperature using a key-station approach. Global and Planetary Change.

(Under review). (SCImago journal rank indicator = Q1; ERA Rank = A; Impact

Factor = 3.155).

2. Sachindra DA, Huang F, Barton AF, Perera BJC. 2013e. Statistical

downscaling of general circulation model outputs to evaporation, minimum

temperature and maximum temperature using a key-predictand and key-station
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approach. Journal of Water and Climate Change. (Under review). (SCImago 

journal rank indicator = Q2; Impact Factor = 1.000). 
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Abstract 

In this study, using a key-station approach, statistical downscaling of monthly GCM 

outputs to monthly precipitation, evaporation, minimum temperature and maximum 

temperature at 17 observation stations located in north western Victoria, Australia was 

performed. Using the observations of each predictand, over the period 1950-2010, 

correlations among all stations were computed. For each predictand, the station which 

showed the highest number of correlations above 0.80 (p ≤ 0.05) with other stations was 

selected as the first key-station. The stations that were highly correlated with that key-

station were considered as the member stations of the first cluster. By employing this 

same procedure on the remaining stations, the next key-station was found. This 

procedure was performed until all stations were segregated into clusters. Thereafter 

using the observations of each predictand, linear regression equations (inter-station 

regression relationships) were developed between the key-stations and the member 

stations for each calendar month separately. The downscaling models at the key-stations 

were developed using the NCEP/NCAR reanalysis data as inputs to them. The outputs 

of HadCM3 pertaining to the A2 greenhouse gas emission scenario were introduced to 

these downscaling models to produce projections of the predictands over the period 

2000-2099. Then the outputs of these downscaling models were introduced to the inter-

station regression relationships to produce the projections of the predictands into future, 

at all member stations. It was found that, the key-station approach employed in this 

study was effective and proved beneficial in maintaining the cross correlation structure 

among the stations, for the predictand of interest. 

Keywords: Statistical downscaling; Key station; General circulation model; Multi-

linear regression  
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1. INTRODUCTION 

Climate change due to rising concentrations of atmospheric greenhouse gases 

(Wilks, 2010) is a major issue in the present world. It is believed that the spatio-

temporal changes in precipitation pattern, increase in the intensity and frequency of 

extreme precipitation events, rise in the global temperature, and heat waves are some of 

the consequences of the increasing concentrations of greenhouse gases (GHG) in the 

atmosphere (Nicholls, 2008). It is believed that the climate of earth will continue to 

change in future (Hundecha and Bardossy, 2008). The study of the impact of changing 

climate on water resources is of great importance, particularly at the catchment scale, as 

water is essential for the existence of life. 

 

General Circulation Models (GCMs) are the most widely used tools for projection of 

global climate into future (King et al., 2012), considering the GHG concentrations in the 

atmosphere. GCMs are based on the physics of the atmosphere, and they employ 

various assumptions and approximations to simplify the naturally complex atmosphere 

in modelling (Sachindra et al., 2013). However, due to the coarse spatial resolution of 

the GCM outputs, they cannot be used directly in catchment scale studies which need 

climatic data at finer spatial resolutions (Jeong et al., 2012). As a solution to the issue of 

coarse spatial resolution of GCM outputs, downscaling techniques have been 

developed. They link the coarse resolution GCM outputs with fine resolution 

hydroclimatic variables at the catchment scale. There are two broad classes of 

downscaling methods in use: (1) dynamic downscaling and (2) statistical downscaling 

(Wilby and Dawson, 2007; Liu et al., 2013). 

 

Dynamic downscaling involves the introduction of boundary and initial conditions 

obtained from a GCM to a regional climate model (RCM) (Murphy, 1998). RCMs are 

also atmospheric physics based models capable of producing their outputs at spatial 

resolutions finer than the outputs of GCMs. Dynamic downscaling techniques produce 

spatially continuous projections of climatic variables, while maintaining their 

correlations over space (Maurer and Hidalgo, 2008). The major issue with dynamic 
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downscaling techniques is the high computational costs and the long simulation time 

involved in their implementation. 

 

In statistical downscaling, mathematical relationships are first developed between the 

GCM outputs and the catchment scale hydroclimatic variable of interest using the data 

of past climate. Then these relationships are used in downscaling GCM outputs 

pertaining to future climate. Therefore, all statistical downscaling techniques assume 

that the relationships developed between the GCM outputs and catchment scale 

hydroclimatic variable using the data of past climate, will remain the same in future. 

Furthermore, statistical downscaling techniques can only produce point scale 

projections of climate, while the dynamic downscaling techniques produce spatially 

continuous fields of outputs. Nevertheless, statistical downscaling methods are 

computationally cheaper compared to dynamic downscaling techniques and also faster 

in producing their outputs. Unlike dynamic downscaling, statistical downscaling 

methods can produce data of predictands such as streamflows, leaf wetness etc which 

are not simulated by the GCMs. 

 

Statistical downscaling techniques are further subdivided into three groups; (1) 

regression methods, (2) weather classification and (3) weather generation (Wilby et al., 

2004). In regression downscaling methods, either linear or non-linear relationships 

between the GCM outputs and the catchment scale hydroclimatic variables are 

constructed (Chen et al., 2010). Weather classification involves the determination of the 

values of catchment scale hydroclimatic variables by matching the current state of large 

scale weather with past similar conditions in the record (Wilby et al., 2004). Weather 

generators produce synthetic sequences of the climatic variable, which capture the 

statistics of the observations (Kou et al., 2007). 

 

Statistical downscaling studies are conducted at individual stations without explicitly 

preserving the observed cross-correlation structures between stations (e.g. Tripathi et al. 

(2006), Anandhi et al. (2008), Sachindra et al. (2013)), and also at multiple stations 

attempting to maintain the observed cross-correlation structures (or spatial covariance 
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structure) between the stations (e.g. Jeong et al. (2012)). In a statistical downscaling 

study which involves downscaling at a large number of stations over a study area, the 

preservation of the cross-correlation structure among stations is an important objective, 

as it enables the plausible representation of spatial variations of the climatic variables 

over the study area. However, under changing climate in future, the cross-correlation 

structures among stations may also tend to change. Jeong et al. (2012) used the 

multivariate multi-linear regression (MMLR) technique for downscaling NCEP/NCAR 

reanalysis outputs to daily precipitation, simultaneously at 9 observation stations in 

Canada. Wilks (1999) used a weather generation technique to generate daily 

precipitation, minimum temperature, maximum temperature and solar radiation, 

simultaneously at 62 stations in the western part of the USA. The same weather 

generation technique was used by Qian et al. (2002) for generating the daily 

precipitation, minimum temperature and maximum temperature at six observation 

stations in Portugal. Wilby et al. (2003) used the conditional resampling method to 

downscale GCM outputs to daily precipitation at multiple stations in the UK. However 

the multi-site downscaling methods employed in the past were of high degree of 

complexity and also involved high computational cost. 

 

Gupta (2008) stated that a short streamflow data set at a station can be lengthened by 

using a linear regression equation fitted between the data of that station and data of 

another station, which has a long record of data and also displays a high correlation with 

the former station. Anandhi et al. (2008) successfully used this regression technique to 

estimate missing data of minimum and maximum temperature at a station. The same 

idea can be extended to a statistical downscaling exercise in which a number of stations 

are involved. 

 

In such a case, initially a station at which the observed data of the predictand (e.g. 

precipitation) are highly correlated with those at some other stations in the study area is 

identified. This station is referred to as the key station. Thereafter, regression 

relationships are developed between the key station and the other stations which are 

correlated with the key station, using observed data. A statistical downscaling model is 
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then developed for the key station. The outputs of this downscaling model are used in 

the regression relationships developed between the key station and the other stations, to 

produce the values of the predictand at the other stations. In this study, the 

aforementioned key station approach was employed in order to determine the values of 

monthly precipitation, evaporation, minimum and maximum temperature at multiple 

stations in an area, using the outputs of the downscaling models developed at few key 

stations. Precipitation is the predominant factor which determines the amount of water 

available in a catchment, while evaporation is a key process which governs the loss of 

water from a catchment. Temperature is directly influential on the rate of evaporation. 

Therefore precipitation, evaporation and temperature are three climatic variables which 

largely influence the water resources in a catchment. Hence, the study of the variations 

of these three climatic variables under changing climate in future is immensely helpful 

in determining the availability of surface water resources in a catchment. The 

operational area of Grampians Wimmera Mallee Water Cooperation in the north 

western region of Victoria, Australia was selected as the study area to demonstrate the 

key station approach employed in this study. This area is sensitive to severe droughts 

(Barton et al., 2011), therefore reliable information on the likely future water 

availability is quite important. 

 

The major advantage of the key station approach is that, the observed cross-correlation 

structure among the stations in the past climate for a certain climatic variable is also 

preserved in the climatic projections produced into future. However, for the successful 

implementation of the key station approach, the correlations between the observations 

of the predictand of interest at the key station and the corresponding observations at the 

other stations in the study area should be high. If these correlations are low, the 

relationships between the key station and the other stations become weaker. 

Furthermore, in the key station approach, downscaling models are only developed at the 

key stations. Hence, it avoids the need of having downscaling models at all stations in 

the study area.  
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Section 2 of this paper provides the details of the study area and the data used in this 

research. The generic methodology is explained in Section 3 of the paper. The 

application of the generic methodology to the study area is detailed in Section 4, 

together with the results of the application. Section 5 provides the broad conclusions 

derived from this study. 

 

2. STUDY AREA AND DATA 

 

For the case study, monthly precipitation, evaporation, minimum temperature and 

maximum temperature measured at 17 stations were used. These stations were located 

within the operational area of Grampians Wimmera Mallee Water Cooperation 

(GWMWater) (www.gwmwater.org.au) in north-western Victoria, Australia. The 

operational area of GWMWater is shown in Figure 1 and is about 62,000 km2 in extent. 

The elevation of the study area varies from about 25 m to 1200 m (above mean sea 

level) from north to south. The northern part of the study area is relatively flatter and its 

climate is persistently dry and warm (Bureau of Meteorology, 2013). On the other hand, 

the southern region of the study area is mountainous and has a less pronounced dry 

season (Bureau of Meteorology, 2013). 
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Figure 1 Study area 

 

Table 1 shows the 17 stations considered in this study with their latitudes and 

longitudes. 

 

Table 1 Stations considered in this study 
Name of the Station ID Latitude Longitude 
Eversley 79014 -37.18 143.15 
Ouyen post office 76047 -35.07 142.32 
Birchip post office 77007 -35.98 142.92 
Swan Hill post office 77042 -35.34 143.55 
Rainbow 77083 -35.90 141.99 
Great Western 79019 -37.18 142.86 
Polkemmet 79023 -36.66 142.07 
Lake Lonsdale 79026 -37.03 142.58 
Longerenong 79028 -36.67 142.30 
Moyston post office 79034 -37.30 142.77 
Wartook reservoir 79046 -37.09 142.43 
Hamilton airport 90173 -37.65 142.06 
Halls Gap post office 79074 -37.14 142.52 
Tottington 79079 -36.79 143.12 
Stawell 79080 -37.07 142.79 
Balmoral post office 89003 -37.25 141.84 
Ararat prison 89085 -37.28 142.98 

Station ID is as defined by the Bureau of Meteorology Australia at http://www.bom.gov.au/climate/data/stations/ 
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Monthly observed precipitation, evaporation, maximum temperature and minimum 

temperature for the 17 stations shown in Table 1 were obtained from the SILO database 

of Queensland Climate Change Centre of Excellence at 

http://www.longpaddock.qld.gov.au/silo/, for the period 1950-2010. These data were 

used for identification of key stations and also for calibration and validation of the 

downscaling models. The observed records of precipitation, evaporation, maximum 

temperature and minimum temperature were also used in the bias-correction of the 

outputs of the downscaling models, as the reference data set. For providing inputs to the 

downscaling models in calibration and validation, monthly National Centers for 

Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis outputs were extracted from the physical sciences division of the National 

Oceanic and Atmospheric Administration / Earth System Research Laboratory 

(NOAA/ESRL) at http://www.esrl.noaa.gov/psd/. 

 

For reproducing the past observed precipitation, evaporation, maximum temperature 

and minimum temperature using the downscaling models, monthly outputs of HadCM3 

for the 20th century climate experiment (20C3M) were downloaded from the 

Programme for Climate Model Diagnosis and Inter-comparison (PCMDI) 

(https://esgcet.llnl.gov:8443/index.jsp) for the period 1950-1999. For producing the 

projections of catchment scale precipitation, evaporation, maximum temperature and 

minimum temperature into future, using the downscaling models, monthly outputs of 

HadCM3 pertaining to the A2 GHG emission scenario were also downloaded from 

https://esgcet.llnl.gov:8443/index.jsp. 

 

Smith and Chandler (2009) stated that HadCM3 is among the few GCMs which are 

capable in properly simulating the precipitation over Australia and produce credible 

predictions of El Niño Southern Oscillation (ENSO). In that study, they argued that any 

GCM capable in simulating precipitation with good degree of accuracy should also 

simulate other climatic variables plausibly. Therefore HadCM3 was selected for the 

present study. The distinct link between ENSO and precipitation in Australia is 
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discussed in detailed by Chiew et al. (1998). The use of the A2 GHG emission scenario 

in the current study enables the projection of the worst plausible impacts of the rising 

GHG concentrations on the climate over the study area, as this scenario refers to high 

levels of emissions of GHGs, owing to the rapid economic growth of the future world. 

The A2 GHG emission scenario provides similarities to the severe drought experienced 

by the study region from 1997 to 2009 (Barton et al. 2011) which now provides the 

basis for many government planning efforts (for example refer to Victorian Government 

Department of Sustainability and Environment, 2011). 
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3. GENERIC METHODOLOGY

The procedure for application of the key station approach used in this study is shown in 

brief in the flow chart provided in Figure 2. The steps shown in Figure 2 are described 

in detail later. 

Figure 2 Steps involved in application of the key station approach 
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3.1. Identification of key stations and clusters 

In this paper, a key station is defined as an observation station whose data for a specific 

climatic variable (e.g. monthly precipitation) are highly correlated with those of a set of 

other observation stations in the same study area. The key station and the other 

observation stations (member stations) which are highly correlated with it are called a 

cluster. A study area can have several clusters; each cluster contains a key station, and a 

cluster can have any number of member stations. 

For identification of key stations and clusters for each climatic variable, initially the 

Pearson correlation coefficients (Pearson, 1895) between each station and the rest of the 

stations were computed for the past climate, considering all calendar months together. 

This yielded a matrix of correlation coefficients among all stations in the study area. 

Once the correlation matrix was computed, by examining it, a station at which the data 

of the considered climatic variable are highly correlated (magnitude of 0.80 or above 

preferred) with those at other stations in the study area was identified. This station was 

the key station and the other stations which were highly correlated with it were the 

member stations of the cluster, for the climatic variable considered. 

If one such key station for the whole study area cannot be found, then multiple key 

stations for the study area were identified. In such case, first, a threshold value of 0.80 

was imposed on the correlation matrix of a climatic variable of interest. Note that the 

threshold value of 0.80 refers only to the magnitude of the correlation. Once the 

threshold value was imposed on the correlation matrix, the station which has the highest 

number of correlations above the threshold with other stations was selected as the first 

key station, and the stations which showed high correlation with this station were 

considered as the members of the first cluster. When multiple stations showed the same 

number of stations with which they have correlations above 0.80, any such station was 

selected as the first key station. Thereafter, the same procedure which was used in 

identifying the first key station was applied on the correlation matrix which included 

only the stations which were not included in the first cluster. In this manner, the second 

key station and the member stations of the second cluster were identified. This 
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procedure was repeated until all stations are assigned to clusters. Also the different 

clusters should be less correlated with each other as much as possible. Clusters and key 

stations were identified for each variable considered in this study separately. If there is 

any station which does not display a correlation above the threshold with any other 

station, that station should be treated as a solitary key station (no any member stations 

in the cluster). 

 

The magnitude of the correlation threshold can be changed based on the correlations in 

the matrix. However, if the correlations among the stations for a certain predictand were 

relatively low, the advantage of application of the key station approach becomes 

limited. This is because low correlations refer to poor linear associations between a 

predictand at the key station and that at the member stations in the cluster. These poor 

linear associations will cause the regression relationships built between a predictand at a 

key station and that at member stations to be less effective. 

 

3.2. Relationships between key stations and member stations in clusters 

Once the key stations were identified, using the observations simple linear regression 

relationships were developed for each predictand between the key station and the 

member stations, in each cluster, for each calendar month separately. In this paper, these 

relationships are referred to as inter-station regression relationships. The first two thirds 

of the observations at the key and the member stations were used to calibrate these 

linear regression relationships. Then, these linear regression relationships were 

validated using the remaining observations.  

 

3.3. Atmospheric domain and predictor selection 

After the development of the inter-station regression relationships, an atmospheric 

domain over the study area was defined. The atmospheric domain allows the inclusion 

of influences of the large scale atmospheric circulations on the catchment scale climate 

in the downscaling models. This atmospheric domain was used for the development of 

downscaling models for all predictands at all key stations. 
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For this study, probable predictors which are the likely variables to influence a 

predictand at the catchment scale were selected based on a review of past literature and 

hydrological principles. Probable predictors can vary from predictand to predictand and 

also geographically. The potential predictors are a subset of probable predictors and 

they are the most influential predictors on the predictand considered. Potential 

predictors also vary from predictand to predictand and also spatiotemporally. 

 

The potential predictors for each calendar month at each key station were selected from 

the set of probable predictors, based on their correlations with the observations of the 

predictand. The selection of potential predictors for each calendar month enables the 

consideration of seasonal variations of the atmosphere, and hence it allows better 

modelling of the predictand (Sachindra et al., 2013). The data corresponding to the 

probable predictors were obtained from a reanalysis database. These reanalysis data and 

observations of the predictand (pertaining to a key station) were chronologically 

separated into 20 year time slices. Then the Pearson correlation coefficients between the 

observations and the reanalysis data were computed for each time slice and for the 

whole time period of the study. This was performed at each grid point in the 

atmospheric domain, for each calendar month separately. The probable predictors which 

displayed the best correlations (statistical significance: p ≤ 0.05) consistently over the 

20 year time slices and the whole period of the study were selected as the potential 

predictors for each calendar month. 

 

3.4. Development of downscaling models at key stations 

Downscaling models were developed (calibrated and validated) for the key stations 

using the potential predictors identified in Section 3.3. The first two thirds of the 

observations of predictands and the reanalysis data corresponding to the potential 

predictors were used for the calibration of the downscaling models and the remaining 

data were used for the validation. The reanalysis data for potential predictors for both 

calibration and validation were standardised using the means and the standard 

deviations of the reanalysis data corresponding to the calibration phase of the 

downscaling model. This was done as the means and the standard deviations of the 
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reanalysis data become a fixed component of the downscaling model throughout its 

development (calibration and validation) and projection phases (Sachindra et al., 2014). 

For the calibration of the downscaling model, initially the potential predictor which 

displayed the best correlation with the predictand over the whole period of the study at 

the station of interest was introduced to the downscaling model. By minimising the sum 

of squared errors between the observations and the outputs of the downscaling model, 

the optimum values for the coefficient and constant in the multi-linear regression 

(MLR) equation (in this case a simple linear regression equation, as there is only one 

independent variable) were computed. Following this, the downscaling model was 

validated as an independent simulation. The model performance in calibration and 

validation was measured using the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 

1970) by comparing the model outputs with the corresponding observations. Then, one 

at a time, the next best potential predictors were introduced to the downscaling model, 

and it was calibrated and validated. This stepwise introduction of predictors was 

continued until the performance of the downscaling model attains a maximum in 

validation, in terms of the NSE. The stepwise model development allowed the 

identification of the best set of predictors and the development of the best downscaling 

model for each calendar month. Following the same procedure, downscaling models 

were developed for all calendar months at each key station for each predictand, 

separately. The performances of the downscaling models during the calibration and 

validation phases were assessed by comparing the statistics of the model outputs with 

those of observations. Graphical comparisons (scatter plots) of outputs of downscaling 

models and observations were also performed. 

 

3.5. Reproduction of past climate at key stations and bias-correction 

After the development of downscaling models at the key stations, the 20C3M outputs of 

the GCM pertaining to the calibration and validation phases of the downscaling models 

were standardised with the means and the standard deviations of the reanalysis outputs 

corresponding to the calibration phase of the downscaling models. Then, by introducing 

these standardised 20C3M outputs of the GCM to the downscaling models, the 

observations of the predictands (e.g. precipitation) were reproduced for the past climate. 
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This was performed to analyse the performances of the downscaling models in 

reproducing the past observations when these were run with the GCM outputs 

pertaining to the past climate. It was an important investigation as the downscaling 

models have been developed with better quality reanalysis data for the past climate, and 

for the projection of climate into future they will be used with GCM outputs which are 

associated with greater uncertainties. If any bias was seen in the outputs of the 

downscaling models when run with the 20C3M outputs of the GCM, a correction to bias 

was applied. 

 

In this study, the monthly bias-correction (Johnson and Sharma, 2012) was applied on 

the outputs of the downscaling models (e.g. precipitation) produced with the 20C3M 

outputs of the GCM. The monthly bias-correction is based on the assumption that the 

bias in the mean and the standard deviation of the outputs of the downscaling models 

(with respect to past observations) for the past climate will remain the same in future 

(Johnson and Sharma, 2012). The procedure for the application of the monthly bias-

correction is described below. 

 

This bias-correction was applied to the calibration period of the downscaling model, by 

replacing the means and the standard deviations of the outputs of the downscaling 

models produced with the 20C3M outputs of the GCM, with those of observations 

relevant to the calibration period of the downscaling models. For the validation of the 

bias-correction, outputs of the downscaling models produced with the 20C3M outputs 

of the GCM pertaining to the validation period of the downscaling models were 

standardised with the means and the standard deviations of the outputs of the 

downscaling models pertaining to the calibration period. Then those standardised 

outputs were transformed back with the means and the standard deviations of the 

observations relevant to the calibration period of the downscaling models. The bias-

correction was applied to each predictand in each calendar month separately.  
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3.6. Development of a downscaling model at a member station 

It was important to compare the statistics of the outputs (e.g. monthly precipitation) 

produced by the inter-station regression relationships against those of outputs of a 

downscaling model developed at a member station, for the past climate. Since this 

enables the determination of how well the key station approach can replace the need of 

having individual downscaling models at member stations. For this purpose, for a 

predictand, a downscaling model was developed at a member station. In the 

development of the downscaling model at this member station, the same procedure 

which was adopted in building downscaling models at the key stations was employed. 

The outputs of the inter-station regression relationships and the corresponding outputs 

of the downscaling model built at the member station were compared both numerically 

and graphically with each other. 

 

3.7. Projections into future 

In order to produce catchment scale projections of the predictands into future, GCM 

outputs pertaining to the future climate were obtained. Then these were standardised 

with the means and the standard deviations of the reanalysis data corresponding to the 

calibration phase of the downscaling models. These standardised GCM outputs were 

introduced to the downscaling models developed at key stations for producing the 

projections of predictands into future. In the same way as the bias-correction was 

validated (refer to Section 3.5), it was applied to the projections produced into future by 

the downscaling models developed at the key stations. Using the inter-station regression 

relationships, the projections produced into future at key stations were extended to the 

member stations. 

 

4. APPLICATION 

 

The generic methodology described in Section 3 was applied to downscale monthly 

GCM outputs to precipitation, evaporation, minimum temperature and maximum 

temperature at 17 stations (see Table 1) located in the operational area of GWMWater 

(see Figure 1). 
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4.1. Identification of key stations and clusters  

4.1.1 Key stations and clusters for precipitation 

 

For identification of key stations, first the correlations of monthly precipitation among 

the stations were computed for the period 1950-2010, considering all calendar months 

together. Then the correlations above 0.80 (p≤0.05) in the matrix were identified. This 

correlation matrix is shown in Table 2. The correlations above 0.80 were highlighted in 

bold text. For monthly precipitation, the stations 79023 (Polkemmet) and 79046 

(Wartook reservoir) showed the highest number of correlations above 0.80 with the rest 

of the stations in the study area. Therefore, one of these stations, in this case station 

79046 was selected as the first key station for monthly precipitation. The stations which 

displayed correlations above 0.80 with station 79046 (first key station) were identified 

as the member stations of the first cluster. These member stations were 79014, 79019, 

79023, 79026, 79028, 79034, 90173, 79074, 79079, 79080, 89003 and 89085. 

 

Table 2 Correlations among the 17 stations for monthly observed precipitation over the 

period 1950-2010. 

 

Station 

ID 79
01

4 

76
04

7 

77
00

7 

77
04

2 

77
08

3 

79
01

9 

79
02

3 

79
02

6 

79
02

8 

79
03

4 

79
04

6 

90
17

3 

79
07

4 

79
07

9 

79
08

0 

89
00

3 

89
08

5 
79014 1.00 0.62 0.75 0.62 0.71 0.91 0.83 0.85 0.84 0.88 0.84 0.76 0.82 0.87 0.89 0.78 0.93 

76047 0.62 1.00 0.79 0.81 0.77 0.63 0.68 0.63 0.69 0.64 0.56 0.49 0.55 0.68 0.68 0.53 0.63 
77007 0.75 0.79 1.00 0.79 0.82 0.74 0.77 0.73 0.79 0.74 0.66 0.57 0.65 0.83 0.79 0.63 0.75 
77042 0.62 0.81 0.79 1.00 0.71 0.62 0.64 0.61 0.66 0.61 0.53 0.45 0.53 0.67 0.66 0.50 0.61 
77083 0.71 0.77 0.82 0.71 1.00 0.72 0.80 0.75 0.82 0.74 0.67 0.59 0.67 0.79 0.78 0.65 0.71 
79019 0.91 0.63 0.74 0.62 0.72 1.00 0.85 0.89 0.85 0.91 0.85 0.76 0.84 0.86 0.93 0.81 0.94 
79023 0.83 0.68 0.77 0.64 0.80 0.85 1.00 0.89 0.94 0.83 0.85 0.75 0.83 0.85 0.89 0.83 0.83 

79026 0.85 0.63 0.73 0.61 0.75 0.89 0.89 1.00 0.88 0.87 0.91 0.79 0.92 0.88 0.95 0.86 0.87 

79028 0.84 0.69 0.79 0.66 0.82 0.85 0.94 0.88 1.00 0.83 0.81 0.71 0.79 0.86 0.89 0.78 0.84 

79034 0.88 0.64 0.74 0.61 0.74 0.91 0.83 0.87 0.83 1.00 0.84 0.78 0.83 0.85 0.90 0.81 0.93 

79046 0.84 0.56 0.66 0.53 0.67 0.85 0.85 0.91 0.81 0.84 1.00 0.84 0.95 0.82 0.86 0.90 0.85 

90173 0.76 0.49 0.57 0.45 0.59 0.76 0.75 0.79 0.71 0.78 0.84 1.00 0.82 0.72 0.75 0.88 0.79 
79074 0.82 0.55 0.65 0.53 0.67 0.84 0.83 0.92 0.79 0.83 0.95 0.82 1.00 0.81 0.85 0.89 0.84 

79079 0.87 0.68 0.83 0.67 0.79 0.86 0.85 0.88 0.86 0.85 0.82 0.72 0.81 1.00 0.91 0.76 0.85 

79080 0.89 0.68 0.79 0.66 0.78 0.93 0.89 0.95 0.89 0.90 0.86 0.75 0.85 0.91 1.00 0.81 0.91 

89003 0.78 0.53 0.63 0.50 0.65 0.81 0.83 0.86 0.78 0.81 0.90 0.88 0.89 0.76 0.81 1.00 0.81 

89085 0.93 0.63 0.75 0.61 0.71 0.94 0.83 0.87 0.84 0.93 0.85 0.79 0.84 0.85 0.91 0.81 1.00 

Bold shaded correlations are above the correlation threshold 0.80 

 



Chapter 5: Multi-Station and Multi-Station Multivariate Downscaling 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 206 

After the delineation of the first cluster, the rest of the stations (76047, 77007, 77042 

and 77083) in the study area were considered for the identification of the next key 

stations. The correlations among these stations for monthly precipitation were 

highlighted in the box shown in Table 2. Similar to the selection of the first key station, 

a threshold of 0.80 was imposed on the correlation matrix in this box. Since each station 

highlighted in the box in Table 2 (76047, 77007, 77042 and 77083) had only one 

correlation above 0.80 with other stations, one of these stations, in this case station 

76047 (Ouyen post office) was selected as the second key station. Due to the high 

correlation displayed by the precipitation data at station 77042 (Swan Hill post office) 

with those at station 76047 (Ouyen post office), station 76042 was identified as the only 

member of the second cluster. Then again a correlation threshold of 0.80 was imposed 

on the last two stations left (77007 and 77083). Since these two stations were highly 

correlated with each other for precipitation, station 77007 (Birchip post office) was 

defined as the third and the last key station, and station 77083 (Rainbow) was identified 

as the only member station of the third cluster. It was understood that the key station 

approach was able to segregate the precipitation observation stations in the study area 

into number of clusters, depending on the spatial correlation structures seen in the past 

precipitation observations. The stations in different cluster were least correlated with 

each other. This allowed the maintenance of adequate independence between the 

stations in different clusters. Figure 3 shows the key stations, member stations and the 

clusters delineated over the study area for monthly precipitation. 
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Figure 3 Clusters of stations for precipitation 

 

4.1.2 Key stations and clusters for evaporation, minimum temperature and maximum 

temperature 

 

In the same manner as for monthly precipitation, correlation matrices for the monthly 

observed evaporation, minimum temperature and maximum temperature were also 

calculated for the period 1950-2010 (not shown in the paper). It was seen that the 

correlations among stations for monthly evaporation, minimum and maximum 

temperature were much higher than those for monthly precipitation. The minimum 

correlation among the 17 stations for evaporation which was about 0.94 was seen 

between stations 90173 and 76047, as these two stations are located in two different 

climatic zones and separated by a large distance. The lowest correlations for both 

minimum temperature and maximum temperature were seen between the stations 90173 

and 77042, which were 0.96 and 0.98 respectively. These two stations are located far 
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apart from each other (see Figure 4) in two distinctly different climatic zones (refer to 

Section 2). 

 

Considering the very high correlations (higher than the correlation threshold of 

magnitude of 0.80) seen between the stations for evaporation, minimum temperature 

and maximum temperature, it was realised that any station in the study area can be 

regarded as a key station, for those climatic variables. Therefore, for evaporation, 

minimum temperature and maximum temperature, station 79046 (Wartook reservoir) 

was selected as the sole key station. The rest of the stations were considered as the 

member stations of the cluster. Figure 4 shows the key station and the cluster for 

evaporation, minimum temperature and maximum temperature over the study area. 

 

 
 

Figure 4 Cluster of stations for evaporation, minimum temperature and maximum 

temperature 
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4.2. Relationships between key stations and member stations in clusters 

As described in Section 3.2, simple linear regression relationships were developed 

(calibrated and validated) between the key stations and the member stations of each 

cluster, for each predictand and for each calendar month separately. The constants and 

coefficients of the MLR equations in the inter-station regression relationships 

determined for the past climate were assumed to be valid for future, under changing 

climate. 

4.2.1 Relationships between key stations and member stations for precipitation 

Table 3 shows the statistics of the calibration (1950-1989) and validation (1990-2010) 

phases of inter-station regression relationships for precipitation. In all four seasons in all 

clusters, and at all member stations during the calibration phase of the inter-station 

regression relationships, the average of the monthly precipitation was near-perfectly 

reproduced. However, during the calibration period, the standard deviation of the 

precipitation was under-estimated at all member stations, in all clusters and in all 

seasons. In cluster 1 in the calibration period, the NSEs ranged between; 0.57 to 0.83 

(summer), 0.68 to 0.90 (autumn), 0.68 to 0.84 (winter) and 0.68 to 0.90 (spring).  

In the calibration phase of the inter-station regression relationships, the highest NSEs in 

all clusters, in all four seasons, were seen at station 79074 (Halls Gap post office). This 

was due to the very high correlation (0.95 in Table 2) which prevailed between the 

observed precipitation at the key station of cluster 1 (79046) and that at station 79074. 

Also these stations were located geographically close to each other (see Figure 3). In 

cluster 1, during the calibration phase, the lowest NSEs in summer, autumn and winter 

were seen at station 79079. In the calibration period in clusters 2 and 3, NSEs were 

relatively low in summer, and the highest NSEs in those clusters were seen in winter. 

In the validation phase of the inter-station regression relationships for precipitation, 

despite some under-predictions in all four seasons, in all clusters the average of 

precipitation was well reproduced at all member stations. During the same period, the 
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standard deviation of the precipitation was well reproduced at the majority of member 

stations in cluster 1, in all seasons, despite some under and over-predictions. Under-

prediction of the standard deviation of precipitation was evident at all member stations 

in clusters 2 and 3 in all seasons. In cluster 1 during validation, NSEs for precipitation 

at member stations varied between; 0.34 to 0.82 (summer), 0.51 to 0.89 (autumn), 0.55 

to 0.88 (winter) and 0.58 to 0.85 (spring). In summer and autumn, station 79074 showed 

the highest NSEs in all clusters during the validation phase. In winter and spring, station 

79026 displayed the highest NSEs in all clusters. 

 

Considering the performances of the outputs of inter-station regression relationships 

seen in their calibration and validation phases, it was realised that they are robust 

enough for satisfactory modelling of precipitation at the member stations. 
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Table 3 Statistics for calibration and validation of inter-station regression relationships 
for precipitation 

 

Season 

 

Key 

Station

 

Cluster 
Member 

Station 

Period 1950-1989 (Calibration)  Period 1990-2010 (Validation) 

Average Std NSE  Average Std NSE 
Obs Inter Obs Inter  Obs Inter Obs Inter 

Summer 
79046 1 

79014 33.5 33.7 33.1 28.1 0.73  36.5 32.5 28.0 25.5 0.61 
79019 32.7 32.9 33.5 28.7 0.75  28.2 31.5 22.7 25.6 0.49 
79023 25.2 25.2 23.6 19.5 0.68  24.3 24.4 18.6 17.1 0.34 
79026 30.5 30.5 26.7 22.9 0.73  30.4 29.7 26.0 21.2 0.80 
79028 25.0 25.2 26.7 21.3 0.66  24.1 24.2 20.9 18.3 0.39 
79034 33.4 33.4 32.3 26.7 0.68  31.0 32.4 27.4 26.0 0.70 
90173 36.1 36.1 26.9 20.3 0.57  33.2 35.7 25.3 22.2 0.37 
79074 40.7 40.7 33.7 30.8 0.83  42.9 40.0 41.0 31.9 0.82 
79079 29.6 29.6 28.5 21.4 0.57  28.7 29.2 25.8 21.0 0.50 
79080 30.3 30.3 28.6 24.2 0.72  31.3 29.5 26.5 21.9 0.67 
89003 28.5 28.5 23.8 18.2 0.59  28.4 27.9 20.4 18.6 0.41 
89085 34.8 34.9 34.3 29.5 0.75  36.2 33.5 28.2 26.8 0.64 

76047 2 77042 24.3 24.3 27.0 20.3 0.56  24.1 24.1 22.1 18.8 0.60 
77007 3 77083 23.1 23.1 25.2 19.9 0.62  25.5 21.1 32.6 12.9 0.39 

Autumn 
79046 1 

79014 46.8 46.8 33.1 28.2 0.73  36.0 36.8 25.3 21.7 0.71 
79019 47.1 47.1 34.0 28.1 0.69  32.2 37.0 24.9 22.0 0.71 
79023 36.6 36.6 28.2 24.7 0.77  24.9 27.9 19.5 18.9 0.72 
79026 49.2 49.3 40.1 35.0 0.77  32.8 36.9 26.3 26.8 0.86 
79028 35.6 35.7 30.2 25.2 0.70  22.4 26.6 19.3 19.5 0.66 
79034 48.8 48.8 34.9 29.2 0.70  32.4 38.4 25.6 23.5 0.62 
90173 53.2 53.2 32.8 28.2 0.74  39.8 43.6 24.0 22.9 0.51 
79074 73.7 73.7 58.8 55.7 0.90  54.1 53.8 43.1 41.5 0.89 
79079 46.2 46.2 35.5 29.3 0.68  30.3 35.7 26.9 22.5 0.74 
79080 46.5 46.5 36.6 31.2 0.73  30.5 35.1 23.6 24.4 0.74 
89003 47.9 47.9 34.1 30.4 0.80  31.9 37.6 21.7 23.6 0.73 
89085 50.7 50.7 32.8 27.8 0.72  33.5 40.9 23.1 22.0 0.70 

76047 2 77042 32.8 32.8 27.9 22.8 0.67  21.1 24.0 20.7 19.0 0.63 
77007 3 77083 31.1 31.1 27.5 23.3 0.72  21.1 20.7 21.6 15.8 0.76 

Winter 
79046 1 

79014 62.7 62.7 29.0 25.4 0.77  63.8 60.6 29.4 24.0 0.71 
79019 63.0 63.0 32.1 28.3 0.78  60.9 60.4 30.4 26.5 0.72 
79023 48.3 48.3 24.9 21.1 0.72  49.2 47.4 27.0 20.9 0.77 
79026 72.4 72.4 38.6 33.7 0.76  72.9 70.3 39.3 32.9 0.88 
79028 44.2 44.2 23.3 19.8 0.73  43.1 43.1 26.1 19.5 0.73 
79034 63.0 63.0 32.3 28.0 0.75  60.3 60.6 28.6 26.3 0.75 
90173 73.6 73.6 29.2 25.2 0.74  70.6 72.2 28.7 24.4 0.55 
79074 125.1 125.1 64.5 59.2 0.84  119.4 120.3 61.2 56.6 0.86 
79079 58.9 58.9 28.2 23.3 0.68  55.0 57.7 32.7 22.8 0.67 
79080 60.1 60.1 31.0 26.4 0.73  61.0 58.4 32.8 25.9 0.81 
89003 73.6 73.6 33.4 29.7 0.79  66.5 71.1 31.3 28.1 0.78 
89085 64.3 64.3 29.3 26.5 0.82  60.9 62.3 27.0 25.1 0.74 

76047 2 77042 35.9 35.9 23.0 19.5 0.72  30.8 32.9 18.7 16.2 0.55 
77007 3 77083 36.8 36.8 20.4 17.3 0.72  37.1 33.1 21.5 15.9 0.66 

Spring 
79046 1 

79014 55.7 55.7 32.8 27.9 0.72  51.7 49.7 29.6 23.9 0.66 
79019 53.0 53.0 32.2 28.2 0.77  49.0 46.9 28.9 23.7 0.58 
79023 42.6 42.6 27.2 23.1 0.73  40.9 37.0 26.2 18.7 0.72 
79026 53.2 53.2 33.9 30.2 0.80  50.2 46.6 30.7 25.0 0.84 
79028 40.5 40.5 28.1 23.2 0.68  35.8 34.9 23.3 18.3 0.73 
79034 56.3 56.3 33.9 29.1 0.74  48.5 49.4 25.3 24.4 0.72 
90173 63.5 63.5 29.1 25.2 0.75  59.8 58.4 26.8 21.5 0.70 
79074 87.7 87.7 53.5 50.8 0.90  78.3 78.5 48.4 45.8 0.83 
79079 50.4 50.4 32.8 27.2 0.69  44.1 44.5 30.8 22.4 0.64 
79080 50.5 50.5 32.1 27.7 0.74  47.1 44.5 29.2 22.9 0.74 
89003 57.2 57.2 31.4 27.9 0.79  48.9 51.4 27.5 23.8 0.85 
89085 58.7 58.7 34.0 30.4 0.80  49.9 51.6 23.9 25.5 0.65 

76047 2 77042 34.0 34.0 23.7 20.1 0.72  34.0 31.3 29.6 18.1 0.72 
77007 3 77083 36.0 36.0 26.2 21.9 0.70  31.6 31.6 24.8 17.7 0.65 

Average = average of monthly precipitation in mm, Std = standard deviation of monthly precipitation in mm, Inter = Inter-station 
regression relationships, NSE = Nash Sutcliffe efficiency 
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4.2.2 Relationships between key stations and member stations for evaporation and 

temperature 

 

At the majority of member stations, the NSEs for the calibration (1950-1989) and 

validation (1990-2010) phases of the inter-station regression relationships for 

evaporation, minimum temperature and maximum temperature were quite high in all 

four seasons (results not shown in the paper). It was realised that these high NSEs were 

due to the high correlations seen between the key station and member stations (Section 

4.1.2) for evaporation, minimum temperature and maximum temperature. Furthermore, 

it was seen that NSEs for the inter-station regression relationships developed for 

evaporation, minimum temperature and maximum temperature were relatively higher 

than those for precipitation. Also, in the calibration phase the inter-station regression 

relationships near-perfectly reproduced the averages of evaporation, minimum 

temperature and maximum temperature, at all member stations, in all seasons. Also at 

the majority of stations the standard deviations of evaporation, minimum temperature 

and maximum temperature were near-perfectly reproduced by the inter-station 

regression relationships during the calibration period. In the validation phase, despite 

slight over and under-predictions, the inter-station regression relationships built for 

evaporation, minimum temperature and maximum temperature were able to capture the 

average and the standard deviations of these variables well in all seasons, at all member 

stations.  It was realised that the inter-station regression relationships developed 

between the key station and member stations for evaporation, minimum temperature 

and maximum temperature are quite robust. 

 

4.3. Atmospheric domain and predictor selection 

As shown in Figure 5, an atmospheric domain with 7 points in the longitudinal direction 

and 6 points in the latitudinal direction was demarcated over the study area for the 

current study. This atmospheric domain had a spatial resolution of 2.5˚ in both 

longitudinal and latitudinal directions. 
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Figure 5 Atmospheric domain for downscaling 

The probable predictors for the current study were selected mainly based on the study 

by Timbal et al. (2009). Timbal et al. (2009) used the method of meteorological 

analogues to statistically downscale GCM outputs to daily precipitation, pan 

evaporation, minimum temperature, maximum temperature, and dew point temperature 

over six regions in the southern half of Australia. In that study they identified the best 

predictors for each predictand for each season over the six regions. Since the current 

study area is also located in south eastern Australia, the predictors used in the study by 

Timbal et al. (2009) were included in the probable predictor pool of the current study. 

Some of the predictors used by Anandhi et al. (2008, 2009) in downscaling GCM 

outputs to monthly precipitation, minimum temperature and maximum temperature 

were also included in the pool of probable predictors used in the current study. The 

probable predictors which were selected for the present study based on past literature 

and hydrology are shown in Table 4. 
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Table 4 Probable predictors for precipitation, evaporation and temperature 
Probable predictor Level Precipitation Evaporation Tmin/max 

Geopotential height  200hPa    
  500 hPa    
  700 hPa    
  850 hPa    
  1000 hPa    

Relative humidity  500 hPa    
  700 hPa    
  850 hPa    
  925 hPa   
  1000 hPa    

Specific humidity  2m height    
  500 hPa    
  850 hPa    
  1000 hPa    

Air temperature 2m height    
  500 hPa    
  850 hPa    
  1000 hPa    

Skin temperature surface    

Pressure surface    
mean sea level    

Precipitation rate surface   

Precipitable water N/A  

Zonal wind speed 850 hPa    

Meridional wind speed 850 hPa    
= included in the pool of probable predictors, N/A = not applicable, hPa = Atmospheric pressure in hectopascal, 
Tmin/max = minimum temperature and maximum temperature 
 

Following the procedure described in Section 3.3, potential predictors from the pool of 

probable predictors were extracted for each predictand at each key station for each 

calendar month. 

 

4.4. Development of downscaling models at key stations 

Using the procedure described in Section 3.4, downscaling models were developed at 

the key stations for precipitation, evaporation, minimum temperature and maximum 

temperature. These models were calibrated and validated over the periods 1950-1989 

and 1990-2010 respectively. Sections 4.4.1, 4.4.2 and 4.4.3 detail the performances of 
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the downscaling models developed at the key stations for precipitation, evaporation, 

minimum temperature and maximum temperature respectively. All downscaling models 

in this study were developed using the MLR option available in the statistics toolbox of 

MATLAB (Version - R2008b) software. 

 

4.4.1 Downscaling models developed at key stations for precipitation 

 

As stated in Section 4.1.1, three key stations were identified for precipitation. Tables 5 

shows the statistics of the precipitation reproduced by the downscaling model developed 

at the key station 79046 of cluster 1. The statistics of the precipitation reproduced by the 

downscaling models developed at key stations 76047 (cluster 2) and 77007 (cluster 3) 

are not shown in tabular form. During the calibration phase of the downscaling models 

at key stations 79046, 76047 and 77007, the average of the precipitation was near-

perfectly reproduced in all seasons. In validation at all three key stations, the average of 

precipitation was successfully reproduced, in all seasons, despite some under and over-

predictions. In the majority of seasons, the standard deviation of precipitation was 

under-estimated by the downscaling models at all three key stations, during both the 

calibration and validation periods. During calibration at all three key stations, the 

maximum of precipitation was under-predicted in all seasons. In validation, the 

maximum of precipitation was under-predicted in all seasons at station 79046 (key 

station 1). At the other two key stations, this pattern was evident in the majority of 

seasons. The R2 values and NSEs of the precipitation reproduced by the downscaling 

models at the three key stations were also comparable with each other in the calibration 

and validation periods. 
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Table 5 Statistics of precipitation reproduced by downscaling model developed at 

station 79046 (Key station 1) 

 

Model Statistic 
Calibration (1950-1989) Validation (1990-2010) 

Season Season 
Summer Autumn Winter Spring Summer Autumn Winter Spring 

Observed Avg 40.9 67.9 108.5 80.8 39.3 50.2 106.3 72.3 
Model output 40.9 67.9 108.5 80.8 47.8 56.5 110.9 76.9 

Observed Std 32.2 49.6 50.2 43.2 31.6 36.7 49.1 37.9 
Model output 20.4 39.8 41.6 32.2 24.3 28.3 40.1 30.2 

Observed Min 2.3 3.1 14.5 10.4 0.0 4.0 25.2 9.0 
Model output 8.5 0.0 11.1 23.8 15.8 0.0 21.4 18.3 

Observed Max 163.4 246.7 273.7 246.2 155.0 137.8 234.2 189.6 
Model output 123.7 182.1 240.4 166.6 112.7 117.5 221.6 164.4 

Model output NSE 0.40 0.65 0.69 0.56 0.41 0.56 0.74 0.73 

Model output R2 0.40 0.65 0.69 0.56 0.49 0.59 0.75 0.75 
Avg = average of monthly precipitation in mm, Std = standard deviation of monthly precipitation in mm, Min = 
minimum of monthly precipitation in mm, Max = maximum of monthly precipitation in mm, NSE = Nash Sutcliffe 
efficiency, R2 = coefficient of determination 
 

Figure 6 shows the scatter plots for the precipitation reproduced by the downscaling 

models developed at the key stations 79046, 76047 and 77007, for the calibration and 

validation phases. The best model performance in terms of the NSE (0.75) was seen at 

the key station 79046 in its validation. Similarly, a good NSE of 0.70 was also seen in 

its calibration phase. The other two key stations showed low NSEs in both calibration 

and validation, relative to those of key station 79046. At all three key stations, the 

scatter of precipitation reproduced by the downscaling models in their calibration and 

validation periods was comparable with each other. According to the six scatter plots in 

Figure 6, it was seen that the high precipitation values were under-predicted by the 

downscaling models at all key stations, during both the calibration and validation 

periods. Also all three downscaling models in general displayed an over-predicting 

pattern for the low precipitation values in the calibration and validation periods. 
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Figure 6 Scatter plots for precipitation reproduced by downscaling models developed at 

key stations 79046, 76047 and 77007 
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4.4.2 Downscaling models developed at key stations for evaporation and temperature 

 

As stated in Section 4.1.2, for the entire study area one single key station was identified 

for evaporation, minimum temperature and maximum temperature. The statistics of the 

monthly evaporation, minimum temperature and maximum temperature reproduced by 

the downscaling models developed at the key station 79046 were compared with the 

statistics of corresponding observations (results not shown). 

 

During the calibration phase, the average of evaporation was perfectly reproduced by 

the downscaling model at key station 79046, in all seasons. Despite negligible over and 

under-predictions seen during the validation period of this downscaling model, in all 

seasons, the average of evaporation was well reproduced. The standard deviation of 

evaporation was reproduced with good accuracy in both calibration and validation, in all 

seasons, despite slight over and under-predictions. For evaporation, relatively high NSE 

and R2 values were seen in the calibration and validation phases of the downscaling 

model, in all seasons. According to the statistics of the monthly evaporation reproduced 

by the downscaling model developed at key station 79046, it was realised that this 

model is quite capable in reproducing the statistics of observations of evaporation.  

 

In all seasons, the averages of the minimum temperature and maximum temperature 

were near-perfectly reproduced by the downscaling models which were developed for 

the key station 79046, in both the calibration and validation periods. Despite slight 

under and over-estimations, the standard deviation of the minimum temperature was 

well reproduced in the calibration and the validation phases of the downscaling model, 

in all seasons. However, both in calibration and validation, the standard deviation of the 

maximum temperature was slightly under-estimated by the downscaling model in all 

four seasons. In all seasons, an over-prediction of the minimum of the minimum 

temperature was seen in both calibration and validation. The minimum of the minimum 

temperature was important as it referred to extreme minimum temperature. In both the 

calibration and validation periods, despite slight over and under-predictions, the 

maximum of the maximum temperature were reproduced with good accuracy by the 
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downscaling model, in all seasons. The maximum of the maximum temperature was 

important as it referred to extreme maximum temperature. 

 

Figure 7 show the scatter plots for evaporation, minimum temperature and maximum 

temperature reproduced by the downscaling models developed at key station 79046. It 

was evident that, for evaporation, minimum temperature and maximum temperature, the 

scatter was small and quite comparable in both the calibration and validation periods. 

However, the scatter of evaporation (see Figures 7a and 7b) and maximum temperature 

(see Figures 7e and 7f) in both the calibration and validation periods was relatively 

smaller for lower values and larger for higher values. On the other hand, the scatter of 

the minimum temperature was almost even along the 45˚ line in both the calibration and 

validation periods (see Figures 7c and 7d). 
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Station 79046 (Key station 1) - Maximum temperature 

 
Figure 7 Scatter plots for evaporation, minimum temperature and maximum temperature 

reproduced by downscaling model developed at key station 79046 
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4.4.3 Bias-correction of the outputs produced by downscaling models with 20C3M 

outputs of HadCM3 at key stations 

 

Following the procedure detailed in Section 3.5, the monthly bias-correction (Johnson 

and Sharma, 2012) was applied over the period 1950-1989 and it was validated for the 

period 1990-2010. Table 6 shows the statistics of precipitation reproduced by the 

downscaling model developed at key station 79046 when it was run with the 20C3M 

outputs of HadCM3, before and after the application of the monthly bias-correction. 

Note that the statistics of evaporation, minimum temperature and maximum temperature 

reproduced by the downscaling model developed at key station 79046 before and after 

the monthly bias-correction were not shown in tabular form. 

 

As shown in Table 6, the downscaling model at the key station 79046, when it was run 

with the 20C3M outputs of HadCM3, tended to over-estimate the average of 

precipitation in the application and validation periods of the bias-correction, in all 

seasons, before the bias-correction. After the application of the monthly bias-correction 

the average of precipitation reproduced by the downscaling model was corrected with 

good accuracy, in all seasons in the application period. During the validation period of 

the bias-correction in summer and spring, the average of precipitation was successfully 

corrected. The correction to the standard deviation of precipitation reproduced by the 

downscaling model was successful in the majority of seasons in the application and 

validation phases of the bias-correction. In both the application and validation periods 

of the bias-correction, the minimum of precipitation was well corrected in all seasons 

except spring. However, the correction to the maximum of precipitation was limited in 

the majority of seasons, in both application and validation periods. 

 

In the application and validation periods, before the implementation of the bias-

correction, the NSEs were quite low during all seasons for precipitation. This indicated 

that there is large mismatch in the precipitation reproduced by the downscaling model 

when it was run with the 20C3M outputs of HadCM3 (i.e. considerable bias) and the 

observed precipitation. After the application of the bias-correction, the NSEs in all 
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seasons in the application period and also in summer and winter in the validation period 

showed some increase. This hinted some improvement to the time series of the variable 

following the application of monthly bias-correction. 

 

Table 6 Statistics of precipitation reproduced by downscaling model at key station 

79046, with 20C3M outputs of HadCM3, before and after bias-correction 

Model Statistic 
Application (1950-1989) Validation (1990-1999) 

Season Season 
Summer Autumn Winter Spring Summer Autumn Winter Spring 

Observed 
Avg 

40.9 67.9 108.5 80.8 42.3 53.1 119.0 77.8 
Before B-C 66.3 102.2 156.5 83.4 69.9 106.1 137.0 82.6 
After B-C 41.1 68.1 108.5 80.8 44.5 75.4 101.8 81.1 

Observed 
Std 

32.2 49.6 50.2 43.2 37.2 42.9 57.8 41.8 
Before B-C 32.1 34.4 137.0 47.6 35.1 39.4 93.6 52.5 
After B-C 31.9 49.2 50.2 43.2 35.0 70.7 37.1 47.5 

Observed 
Min 

2.3 3.1 14.5 10.4 0.0 4.0 29.8 21.8 
Before B-C 17.7 18.4 0.0 0.0 21.3 46.3 0.0 0.0 
After B-C 0.0 0.0 2.4 17.0 0.0 9.0 3.5 20.6 

Observed 
Max 

163.4 246.7 273.7 246.2 155.0 137.8 234.2 189.6 
Before B-C 183.7 189.6 1091.1 187.9 145.4 212.7 420.7 163.7 
After B-C 144.0 245.4 323.6 193.5 126.2 298.1 209.3 236.8 

Before B-C NSE -1.17 -0.40 -9.29 -1.00 -1.30 -1.91 -2.70 -0.87 
After B-C -0.54 -0.27 -1.03 -0.90 -0.64 -2.46 -0.48 -1.22 

Avg = average of monthly precipitation in mm, Std = standard deviation of monthly precipitation in mm, Min = 
minimum of monthly precipitation in mm, Max = maximum of monthly precipitation in mm, NSE = Nash Sutcliffe 
efficiency, Before B-C = before bias-correction, After B-C = after bias-correction 
 

For evaporation in general, the over and under-predictions in the statistics were quite 

small in comparison with those for precipitation. During the application period of the 

bias-correction, the bias in the average of evaporation was perfectly corrected in all 

seasons. In the validation phase of the bias-correction, the bias in the average of 

evaporation reproduced by the downscaling model increased in the majority of seasons. 

The standard deviation of the evaporation reproduced by the downscaling model was 

well corrected in the application phase of the bias-correction. In the validation phase, 

the bias in the standard deviation of the evaporation decreased in winter and spring. The 

maximum of the evaporation reproduced by the downscaling model was well corrected 

by the bias-correction in summer during both the application and validation periods. 

The NSEs for the evaporation reproduced by the downscaling model when it was run 
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with the 20C3M outputs of HadCM3 were relatively higher than those for precipitation, 

in both the application and validation periods.  

The bias in the average of the minimum temperature and the maximum temperature 

reproduced by the downscaling model at key station 79046, when it was run with the 

20C3M outputs of HadCM3 was quite small in all seasons even before the bias-

correction. The over-prediction of the standard deviation of the minimum temperature 

that was seen in summer and spring in the application and validation periods of the bias-

correction was successfully corrected. Also the under and over-predictions in the 

standard deviation of the maximum temperature in the application and validation 

periods of the bias-correction were successfully corrected in all seasons. 

4.5. Development of a downscaling model at a member station 

Using the same procedure used in developing downscaling models at key stations 

(Section 4.4), a downscaling model was built for precipitation at member station 89003. 

This was performed to compare the performances of the inter-site regression 

relationship (between the key station 79046 and the member station 89003) against the 

performances of the downscaling model developed at this member station in 

reproducing the observed precipitation. Table 7 shows the statistics of precipitation 

reproduced by the downscaling models at station 89003, and also the statistics of 

precipitation reproduced at station 89003 by applying the precipitation outputs of the 

downscaling model developed at key station 79046 on the inter-site regression 

relationship. 

As shown in Table 7, in all seasons the average of precipitation was near-perfectly 

reproduced by the downscaling model at station 89003 and the inter-station regression 

relationship, in the calibration period. In the validation period the average of 

precipitation was over-estimated in all seasons by both the downscaling model at station 

89003 and the inter-station regression relationship. However, still these results were 

quite comparable with each other. In both calibration and validation, the standard 

deviation of precipitation was under-predicted, in all seasons by the downscaling model 
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at station 89003 and the inter-station regression relationship. Nevertheless, in all 

seasons, the standard deviation of precipitation reproduced by the downscaling model at 

station 89003 and the inter-station regression relationship were comparable with each 

other. Also the maximum of precipitation reproduced by the downscaling model at 

station 89003 and that by inter-station regression relationship was comparable in all 

seasons. In both the calibration and validation periods, in the majority of seasons, the 

NSEs of the downscaling model at station 89003 and the inter-station regression 

relationship were quite comparable with each other. 

 

In summary, it was seen that the statistics of the precipitation reproduced by the 

downscaling model developed for station 89003 and the inter-station regression 

relationship between the key station 79046 and station 89003 are comparable with each 

other in the majority of instances. It was then assumed that the inter-station regression 

relationships can reproduce precipitation, evaporation and minimum temperature and 

maximum temperature quite well at all stations, in comparison with the individual 

downscaling models developed for them. 
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Table 7 Statistics of precipitation reproduced at station 89003 by downscaling models 

and inter-site regression relationship 

 

Model Statistic 
Calibration (1950-1989) Validation (1990-2010) 

Season Season 
Summer Autumn Winter Spring Summer Autumn Winter Spring 

Observed 
Avg 

28.5 47.9 73.6 57.2 28.4 31.9 66.5 48.9 
Model output 28.5 48.0 73.6 57.2 33.3 37.9 73.1 54.8 
Inter-station Reg 28.5 47.9 73.6 57.2 32.3 41.3 74.7 54.7 

Observed 
Std 

23.8 34.1 33.4 31.4 20.4 21.7 31.3 27.5 
Model output 14.1 27.3 28.2 23.3 17.3 19.6 27.0 23.3 
Inter-station Reg 12.2 24.3 24.7 20.4 14.3 18.5 23.8 19.4 

Observed 
Min 

0.0 0.0 5.7 4.4 0.0 0.0 10.0 3.2 
Model output 12.0 0.0 1.7 18.8 13.3 0.0 17.8 0.0 
Inter-station Reg 8.9 2.5 18.3 18.2 14.9 2.5 23.9 14.6 

Observed 
Max 

143.7 136.8 182.9 184.0 85.8 90.7 147.7 125.2 
Model output 88.6 114.8 161.7 148.5 81.6 88.0 143.1 111.1 
Inter-station Reg 79.8 111.3 158.4 112.3 73.4 76.9 136.3 109.4 

Model output NSE 0.35 0.65 0.72 0.55 0.44 0.45 0.66 0.60 
Inter-station Reg 0.36 0.50 0.65 0.46 0.46 0.31 0.66 0.64 

Avg = average of monthly precipitation in mm, Std = standard deviation of monthly precipitation in mm, Min = 
minimum of monthly precipitation in mm, Max = maximum of monthly precipitation in mm, NSE = Nash Sutcliffe 
efficiency, Inter-station Reg = inter-station regression relationship 
 

4.6. Projections into future 

The A2 GHG emission scenario of the Intergovernmental Panel on Climate Change 

(IPCC) defined in the Special Report on Emission Scenarios (SRES) (IPCC, 2000) was 

used for the projection of precipitation, evaporation, minimum temperature and 

maximum temperature into future, at the 17 stations considered in this study. The 

monthly outputs of HadCM3 for the period 2000-2099 pertaining to the A2 GHG 

emission scenario were used for producing inputs to the downscaling models developed 

at the key stations. Following the procedure detailed in Section 3.7 projections of 

precipitation, evaporation, minimum temperature and maximum temperature were 

produced into future, at the 17 stations. 

 

The percentage changes in the statistics of monthly precipitation, evaporation, minimum 

temperature and maximum temperature, for each season, over the period 2000-2099, 

were compared with the statistics of the observations of those predictands of the period 
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1950-1989. In Table 8 the comparison of average of monthly precipitation, evaporation, 

minimum temperature and maximum temperature, for each season, over the period 

2000-2099 with that of observations of the period 1950-1989 were shown. 

 

As seen in Table 8, the average of the monthly precipitation showed a decline in 

summer and spring at the majority of stations in the period 2000-2099, in comparison 

with the average of the observed precipitation 1950-1989. In autumn and winter, the 

average of precipitation displayed a rise at the majority of stations. It was realised that, 

with respect to the past climate of the period 1950-1989, summer and spring in the 

period 2000-2099 will be dryer and autumn and winter tend to be wetter, over the study 

area. In all seasons except autumn, the standard deviation of the monthly precipitation 

over the period 2000-2099, indicated a drop, at most of the stations. The maximum of 

the monthly precipitation indicated a rise in magnitude at the majority of stations in 

summer, autumn and winter during the period 2000-2099. 

 

Table 8 Percentage changes in the average of precipitation, evaporation, minimum 

temperature and maximum temperature over the period 2000-2099 

Predictand Season 
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4 
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6 
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3 

79
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4 
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9 

79
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0 

89
00

3 

89
08

5 

Precipitation 

Summer -9↓ -10↓ +28↑ -9↓ 21↑ -10↓ -10↓ -10↓ -9↓ -9↓ -10↓ -6↓ -9↓ -8↓ -9↓ -7↓ -10↓ 
Autumn +4↑ +36↑ +40↑ +23↑ +35↑ +6↑ +7↑ +9↑ +9↑ +8↑ +4↑ +7↑ +5↑ +5↑ +8↑ +6↑ +6↑ 
Winter +14↑ +23↑ -1↓ 21↑ -1↓ +15↑ +15↑ +16↑ +15↑ +15↑ +16↑ +11↑ +17↑ +13↑ +15↑ +14↑ +14↑ 
Spring -26↓ -18↓ -15↓ -14↓ -11↓ -27↓ -29↓ -30↓ -30↓ -27↓ -27↓ -19↓ -28↓ -28↓ -28↓ -24↓ -27↓ 

    

Evaporation 

Summer +7↑ +8↑ +9↑ +8↑ +9↑ +13↑ +11↑ +12↑ +11↑ +13↑ +13↑ +7↑ +13↑ +12↑ +12↑ +12↑ +13↑ 
Autumn +6↑ +11↑ +9↑ +8↑ +9↑ +11↑ +10↑ +11↑ +10↑ +11↑ +12↑ +6↑ +11↑ +11↑ +11↑ +10↑ +11↑ 
Winter +2↑ +4↑ +3↑ +3↑ +3↑ +4↑ +4↑ +5↑ +4↑ +5↑ +5↑ +2↑ +5↑ +5↑ +5↑ +4↑ +4↑ 
Spring +13↑ +19↑ +18↑ +16↑ +18↑ +21↑ +20↑ +22↑ +19↑ +22↑ +23↑ +11↑ +22↑ +24↑ +21↑ +18↑ +21↑ 

    

Min Temp 

Summer +1↑ +1↑ +0↑ +0↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ +1↑ 
Autumn +22↑ +21↑ +22↑ +20↑ +23↑ +22↑ +22↑ +22↑ +24↑ +23↑ +25↑ +21↑ +24↑ +22↑ +21↑ +22↑ +23↑ 
Winter +40↑ +31↑ +36↑ +28↑ +36↑ +41↑ +39↑ +37↑ +41↑ +41↑ +49↑ +32↑ +44↑ +38↑ +34↑ +37↑ +46↑ 
Spring +29↑ +21↑ +26↑ +21↑ +26↑ +30↑ +26↑ +27↑ +29↑ +31↑ +34↑ +28↑ +32↑ +27↑ +26↑ +29↑ +33↑ 

                   

Max Temp 

Summer +2↑ +2↑ +2↑ +1↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ +2↑ 
Autumn +5↑ +4↑ +5↑ +4↑ +5↑ +6↑ +5↑ +5↑ +5↑ +6↑ +6↑ +5↑ +6↑ +5↑ +5↑ +5↑ +6↑ 
Winter +24↑ +21↑ +23↑ +22↑ +22↑ +25↑ +23↑ +24↑ +23↑ +25↑ +28↑ +21↑ +26↑ +24↑ +24↑ +22↑ +24↑ 
Spring +21↑ +16↑ +18↑ +16↑ +18↑ +22↑ +20↑ +21↑ +20↑ +23↑ +24↑ +20↑ +23↑ +20↑ +21↑ +20↑ +23↑ 

Min Temp = minimum temperature, Max Temp = maximum temperature 
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According to Table 8, the average of the monthly evaporation displayed a rise in all 

seasons, at all stations, over the period 2000-2099, in comparison with that of 

observations of the period 1950-1989. This implies that in future, throughout the study 

area, the loss of water into the atmosphere due to evaporation will tend to increase. In 

the period 2000-2099, the standard deviation of the monthly evaporation showed a rise 

in summer, autumn and spring at the majority of stations. In all four seasons, the 

maximum of the monthly evaporation indicated an increase at the majority of stations, 

in the period 2000-2099.  

 

At all stations, the average (see Table 8) and the standard deviation of the monthly 

minimum temperature displayed a rise over the period 2000-2099, with respect to those 

statistics of the observations of the minimum temperature of the period 1950-1989. 

However, the increase in the average of the monthly minimum temperature in summer 

was negligible at all stations. Except in summer, the minimum of the monthly minimum 

temperature also indicated a rise at the majority of stations. 

 

According to Table 8, at all stations, the average of the monthly maximum temperature 

showed an increase in all four seasons over the period 2000-2099, in comparison with 

that of observations of the period 1950-1989. This rise in the average of the monthly 

maximum temperature was relatively higher in winter and spring, at all stations. Only in 

summer, at all stations, the standard deviation of the monthly maximum temperature 

indicated a decline in the period 2000-2099. The maximum of the monthly maximum 

temperature showed a rise in all seasons, at all stations, in the period 2000-2099. 

 

The Victorian Government Department of Sustainability and Environment (2008 a, b) 

stated that according to the median estimates obtained from the raw outputs of number 

of GCMs under B1 (low emissions), A1B (medium emissions) and A1F1 (high 

emissions) emission scenarios, the average temperature and evaporation are likely to 

increase in all seasons, across the Wimmera and Mallee regions which include the 

present study area. These findings of the Victorian Government Department of 

Sustainability and Environment further reinforced the findings of the present study. 
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5. CONCLUSIONS 

 

Following broad conclusions were drawn from this study: 

 

1. The key station approach was proven to be a simple and yet effective 

methodology for downscaling GCM outputs to a predictand of interest at 

multiple stations concurrently. It allows maintaining the cross-correlation 

structure among the observations of a predictand of interest, across number of 

observation stations in a study area. Therefore, plausible representation of 

spatial variations of the predictand of interest among observation stations can be 

maintained in the projections produced by the downscaling models into future. 

Also the key station approach is able to segregate the stations in a study area into 

separate clusters according to the spatial variations of the predictand of interest 

seen in the past observations. This allows the maintenance of independence 

among stations in different clusters while preserving dependence structure 

among the station in individual clusters. 

 

2. Nevertheless, for the effective application of the key station approach the 

presence of high correlations (preferably magnitudes above 0.80 at p ≤ 0.05) 

among the observation stations (in a cluster) for the predictand of interest is a 

prerequisite. However, when the correlations between the stations for a 

predictand of interest are less strong (limited linear association), a non-linear 

regression technique can be used for developing effective inter-station 

regression relationships.  

 

3. In the application of the key station approach, downscaling models are 

developed for the predictand of interest only at the key stations. Therefore, 

unlike downscaling at each individual station separately, in this approach the 

selection of potential predictors and the correction of bias have to be performed 

only at several stations. 
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4. When the bias is limited, the monthly bias-correction was found to be very 

effective in correcting the bias in the monthly mean and the standard deviation 

of a climatic variable (e.g. output of a GCM or downscaling model). In monthly 

bias-correction, though no explicit measure is employed to correct the bias in the 

minimum and the maximum of a climatic variable, yet it is capable in effectively 

reducing the bias in the minimum and the maximum of the variable when the 

bias is limited. Therefore, monthly bias-correction is recommended for variables 

which show little bias in their statistics. 
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Abstract 

A key-predictand and key-station approach was employed in downscaling general 

circulation model outputs to monthly evaporation, minimum temperature (Tmin) and 

maximum temperature (Tmax) at 5 observation stations concurrently. Tmax was highly 

correlated (magnitudes above 0.80 at p ≤ 0.05) with evaporation and Tmin at each 

individual station, hence Tmax was identified as the key-predictand. One station was 

selected as the key-station, as Tmax at that station showed high correlations with 

evaporation, Tmin and Tmax at all stations. Linear regression relationships were 

developed between the key-predictand at the key-station and evaporation, Tmin and Tmax 

at all stations using observations. A downscaling model was developed at the key-

station for Tmax. Then, outputs of this downscaling model at the key-station were 

introduced to the linear regression relationships to produce projections of monthly 

evaporation, Tmin and Tmax at all stations. This key-predictand and key-station approach 

was proven to be effective as the statistics of the predictands simulated by this approach 

were in close agreement with those of observations. This simple multi-station 

multivariate downscaling approach enabled the preservation of the cross-correlation 

structures of each individual predictand among the stations and also the cross-

correlation structures between different predictands at individual stations.  

Keywords: Downscaling, Key predictand, Key station, General circulation model 
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INTRODUCTION 

General Circulation Models (GCMs) are considered as the most reliable tools available 

for the projection of global climate into future (Anandhi et al. 2008). These GCMs are 

based on the physics of the atmosphere and they project the climate hundreds of years 

into future considering the greenhouse gas (GHG) concentrations in the atmosphere. 

The resolution of the outputs of modern GCMs is still in the order of few hundred 

kilometres (Tripathi et al. 2006). This coarse spatial resolution of GCM outputs hinders 

their direct application at the catchment scale. This is because the climate information 

needed by most of the catchment scale studies is much finer in spatial resolution than 

that of GCM outputs. As a solution to this resolution mismatch, downscaling techniques 

have been developed. They relate the coarse resolution GCM outputs to the catchment 

scale hydroclimatic variables. 

 

There are two classes of downscaling techniques in use; (1) dynamic downscaling and 

(2) statistical downscaling. In dynamic downscaling, a finer resolution regional climate 

model (RCM) is nested in a coarse resolution GCM (Murphy 1998). Since RCMs are 

atmospheric physics based models, they can more realistically model the relationships 

between the large scale climate simulated by GCMs and the climate in the catchment. 

The other advantage of dynamic downscaling is that, it can produce spatially continuous 

fields of climatic variables while reliably maintaining the correlations over space 

(Maurer et al. 2008). However, the high computational cost and the long run time 

needed for the completion of a simulation are regarded as the major issues associated 

with dynamic downscaling. 

 

On the other hand, in statistical downscaling, empirical relationships between the GCM 

outputs and the catchment scale hydroclimatic variables are determined 

(Hay and Clark 2003). Statistical downscaling methods are computationally cheaper and 

they are faster in producing their outputs. Hence, they can easily be used with different 

GCMs and different GHG emission scenarios for the development of series of climate 

change scenarios (Khalili et al. 2013). Statistical downscaling methods produce there 

outputs at a point scale (e.g. at observation stations) which is a finer spatial scale than 
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the spatial scale at which most of the dynamic downscaling methods produce their 

outputs (Willems et al. 2012). Also unlike dynamic downscaling, statistical downscaling 

methods can produce data of predictands such as streamflows, leaf wetness etc which 

are not simulated by the GCMs. However, for the proper calibration and validation of a 

statistical downscaling model, a long time series of observations is needed 

(Heyen et al. 1996). All statistical downscaling methods are dependent on the 

assumption that the relationships developed between GCM outputs and catchment scale 

hydroclimatic variables (e.g. precipitation) for the past climate is also valid for the 

climate in future (von Storch et al. 2000). Statistical downscaling methods are classified 

into three main categories; regression methods, weather classification methods and 

weather generators (Wilby et al. 2004). In regression based downscaling methods, linear 

or non-linear relationships between the large scale atmospheric variables (e.g. reanalysis 

or GCM outputs) and the observations of catchment scale hydroclimatic variables are 

developed. Then these relationships are used with the outputs of GCMs pertaining to 

future climate for the determination of the catchment scale climate relevant to future. In 

weather classification, the current state of the large scale weather (e.g. characterised by 

GCM outputs) is matched with that of past weather in record. Then corresponding to the 

large scale weather in the past, the present catchment scale weather is determined. 

Weather generators are used to produce weather sequences which contain the statistical 

properties of observations of weather (Kou et al. 2007). For the generation of catchment 

scale weather sequences corresponding to future, the parameters in the weather 

generators are scaled up or down corresponding to the changes in the GCM outputs 

pertaining to future. 

Statistical downscaling exercises are performed at individual stations (e.g. Tripathi et al. 

(2006)) and also at multiple stations simultaneously (e.g. Jeong et al. (2013a, b)). When 

downscaling is performed at individual stations, a separate downscaling model is 

developed at each station. In such case, no explicit attempt is made in maintaining the 

spatial correlations (cross-correlations) seen among the observations of stations, in the 

outputs of the downscaling models. When downscaling is performed at multiple stations 

simultaneously, explicit measures are made to preserve the spatial correlation structure 
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among the stations. This enables the realistic representation of spatial variations of the 

climatic variable of interest, over the study area. Khalili et al. (2011) found that 

neglecting the spatial correlation structure among precipitation and temperature data 

generated at multiple stations may result in large under-predictions of high streamflows 

estimated using a hydrologic model fed with those precipitation and temperature data. 

Cannon (2008) stated that maintaining the correlations among the outputs of 

downscaling models developed at precipitation stations in a certain study area is critical 

as spatial variations of precipitation can significantly influence the streamflow. 

Furthermore, Jeong et al. (2013a) commented that projections of precipitation produced 

at multiple stations considering the spatial coherence is quite important in the 

management of water resources. However, it should be noted that, under changing 

climate the observed spatial correlation structure can still change in future. According to 

Khalili et al. (2013), the majority of downscaling exercises have been performed at 

individual stations owing to the complexity of simultaneously downscaling at multiple 

stations which involves correctly maintaining both temporal persistence at individual 

stations and also spatial correlation structures between the stations. Also when 

downscaling is performed at multiple stations concurrently, the accuracy at each 

individual station may tend to decrease as spatial correlations among number of stations 

have to be maintained in parallel. 

 

A weather generation technique was used by Wilks (1999) to generate daily 

precipitation, minimum temperature, maximum temperature and solar radiation 

simultaneously at 62 stations over the western USA. The conditional resampling 

method was employed by Wilby et al. (2003) in order to downscale daily precipitation 

from GCM outputs to multiple locations in the UK. Mehrotra et al. (2006) used 

parametric (Hidden Markov Model) and non-parametric (k-nearest neighbour) weather 

generation techniques for the generation of precipitation occurrences at multiple stations 

simultaneously. It was concluded that the parametric multi-station weather generation 

techniques are associated with large number of parameters in comparison to non-

parametric weather generators. The concept of spatial autocorrelation (degree of 

dependence of observations over space) was used in a weather generator by Khalili et 
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al. (2007) for the generation of daily precipitation at multiple stations. The same 

concept was employed in the generation of daily maximum temperature, minimum 

temperature and solar radiation at multiple stations concurrently by Khalili et al. (2009). 

Again Khalili et al. (2011) used the concept of spatial autocorrelation for the generation 

of daily precipitation and temperature at multiple stations concurrently (considering 

each predictand separately) over a catchment in Canada, which were then used in a 

hydrologic model to simulate streamflow in the catchment. Khalili et al. (2013) used a 

linear regression technique for linking the GCM outputs to catchment scale maximum 

temperature and minimum temperature and then the spatial dependence structure among 

the stations for the two predictands were determined using a stochastic technique. It was 

found that this multi-station multivariate downscaling methodology was able to 

reproduce the spatial and temporal characteristics of maximum temperature and 

minimum temperature with good accuracy. Jeong et al. (2012b) applied MMLR 

technique for downscaling GCM outputs to daily maximum temperature and daily 

minimum temperature concurrently at 9 stations in Canada. In that study it was found 

that, the addition of spatially correlated random noise (randomization process) between 

the predictands and the stations to the deterministic time series of the predictands 

produced by the MMLR technique can aid in correctly reproducing the cross-correlation 

structures of predictands between the stations and the cross-correlation structures 

between the two predictands at individual stations. The multivariate multi-linear 

regression (MMLR) technique combined with a stochastic weather generation technique 

was used by Jeong et al. (2013b) for downscaling reanalysis outputs to daily 

precipitation, simultaneously at 9 observation stations in Canada. In that study, it was 

found that the use of the stochastic weather generation technique (along with the 

regression technique) enhanced the capabilities of the downscaling model in capturing 

the spatial and temporal characteristics of precipitation. More applications of multi-

stations weather generation techniques are found in the studies by Qian et al. (2002), 

Kottegoda et al. (2003), Apipattanavis et al. (2007) and Bardossy & Pegram (2009). 

The majority of the existing multi-station and multi-station multivariate downscaling 

techniques are quite complex in nature. Hence there is a need for simple yet effective 
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multi-station and multi-station multivariate downscaling techniques (e.g. Maraun et al. 

(2010)). Unlike the complex multi-station downscaling techniques used in the previous 

studies, in the present study a relatively simple yet effective multi-station multivariate 

downscaling methodology was investigated. In the present study, a key predictand and 

key station approach was used for simultaneously downscaling GCM outputs to 

monthly evaporation, minimum temperature and maximum temperature at several 

observation stations. Using this key predictand and key station approach the cross-

correlation structures for each predictand among the stations and also the cross-

correlation structures among different predictands at individual stations can be 

preserved. Hence the key predictand and key station approach allows the plausible 

representation of the spatial variations of each predictand and also aids in maintaining 

realistic representation of the relationships among different predictands considered in a 

downscaling exercise. Furthermore, since downscaling models are developed only at the 

key stations for the key predictands, the predictor selection, calibration and validation of 

the downscaling models and the bias-correction have to be performed only for limited 

number of predictands at limited number of stations. 

 

However, it should be noted that for the effective implementation of the key predictand 

and key station approach, the predictands of interest should be highly correlated 

(preferably magnitudes above 0.80 at p ≤ 0.05) with each other over space. If these 

spatial correlations are low, the overall effectiveness of this approach becomes limited. 

Details of the key predictand and key station approach employed in this study are 

provided later in the paper. 

 

Evaporation is one of the many processes responsible for the loss of water from a 

catchment. Temperature variations are directly influential on the changes in the 

evaporation, snow melt etc (King et al. 2012). Therefore, evaporation, minimum 

temperature and maximum temperature were considered as the catchment scale 

predictands in this study. For the demonstration of the methodology, 5 observation 

stations located in the operational area of the Grampians Wimmera Mallee Water 

Corporation in north western Victoria, Australia were considered in this study. This 



Chapter 5: Multi-Station and Multi-Station Multivariate Downscaling 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 241 

region contains several large water supply reservoirs which supply water to large 

number of domestic and industrial users. Also this area is quite sensitive to severe 

droughts (Barton et al. 2011). Hence, the determination of dependable point scale 

climatic information pertaining to likely future climate over the study area was 

identified an important task. 

 

STUDY AREA AND DATA 

The study area is located in the southern region of the operational area of Grampians 

Wimmera Mallee Water Corporation (GWMWater) (www.gwmwater.org.au). The 

operational area (62, 000 km2) of GWMWater is located in the north western part of 

Victoria, Australia and is shown in Figure 1. The study area is mountainous and does 

not have a clear dry season (Bureau of Meteorology 2013) in comparison with the 

northern region of the operational area of the GWMWater, which is relatively flatter and 

persistently dry. This study area contains some important water supply reservoirs such 

as Lake Taylor, Lake Lonsdale, Lake Bellfield and Rockland Reservoir, several rivers 

such as Wimmera River and Glenelg River, and some agricultural production areas. 

Hence the study of impact of climate change over this area was identified as a timely 

need. 
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Figure 1 Operational area of Grampians Wimmera Mallee Water Corporation 

 

For the demonstration of the methodology five observation stations were considered in 

this study and they are shown with their latitudes and longitudes in Table 1. Over the 

period 1950-2010, the observations of monthly evaporation, maximum temperature and 

minimum temperature at the five stations considered in this study displayed high 

positive correlations with those at other stations (Ouyen post office, Longerenong, Halls 

Gap post office, Birchip post office, Great Western, Swan hill post office, Rainbow, 

Wartook Reservoir, Hamilton Airport, Stawell, Eversley, Ararat prison) located across 

the operational area of GWMWater. Therefore it was assumed that the likely changes in 

the future climate at the other stations located in the operational area of GWMWater 

will be consistent with those at the five stations considered in this study. 

 

Observations of daily evaporation, maximum temperature and minimum temperature 

for the 5 observation stations, were obtained from the SILO database of Queensland 
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Climate Change Centre of Excellence at http://www.longpaddock.qld.gov.au/silo/ for 

the period 1950-2010. These daily observations were added to derive the corresponding 

monthly observations at each station. Monthly observations were used for the 

computation of correlations between the predictands at stations in identifying key 

predictands and key stations. Also these observations were used in calibration and 

validation of the downscaling models developed at the key stations. Furthermore, the 

observations were used as the reference data set for the correction of bias in the outputs 

of the downscaling models. 

 

Table 1 Stations considered in this study 
Name of the station Station ID Latitude Longitude 
Polkemmet 79023 -36.66 142.07 
Lake Lonsdale 79026 -37.03 142.58 
Moyston Post Office 79034 -37.30 142.77 
Tottington 79079 -36.79 143.12 
Balmoral Post Office 89003 -37.25 141.84 

Station ID is as defined by the Bureau of Meteorology Australia at http://www.bom.gov.au/climate/data/stations/ 
 

National Centers for Environmental Prediction / National Center for Atmospheric 

Research (NCEP/NCAR) reanalysis outputs were obtained from the physical sciences 

division of the National Oceanic and Atmospheric Administration / Earth System 

Research Laboratory (NOAA/ESRL) at http://www.esrl.noaa.gov/psd/, for providing 

inputs to the downscaling models in their calibration and validation phases. To 

reproduce the past observations of key predictands using the downscaling models, the 

20th century climate experiment (20C3M) outputs of ECHAM5 were extracted from the 

Programme for Climate Model Diagnosis and Inter-comparison (PCMDI) at 

https://esgcet.llnl.gov:8443/index.jsp over the period 1950-1999. Also ECHAM5 

outputs pertaining to the A2 GHG emission scenario were obtained for the period 2000-

2099, from the https://esgcet.llnl.gov:8443/index.jsp, for the projection of catchment 

scale climate into future. 

 

Smith and Chandler (2009) stated that a few GCMs including ECHAM5 are capable in 

correctly simulating the precipitation over Australia and also able to produce credible 

predictions of El Niño Southern Oscillation (ENSO). They also argued that a GCM 
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which can correctly simulate precipitation should be able to simulate other climatic 

variables with a good degree of accuracy. Therefore, for the present study, the outputs 

of ECHAM5 were used. The A2 GHG emission scenario of Intergovernmental Panel on 

Climate Change (IPCC) was used in this study as it refers to relatively higher amounts 

GHGs in the atmosphere in future. Therefore, the projections produced based on the A2 

GHG emission scenario will refer to high levels of impact on the environment. 

 

GENERIC METHODOLOGY 

The procedure for application of the key predictand and key station approach is shown 

in brief in the flow chart displayed in Figure 2. The steps shown in Figure 2 are 

described in detail later. 
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Figure 2 Steps involved in application of the key predictand and key station approach 

 

Identification of key predictands and groups 

In this paper, a key predictand refers to a climatic variable (e.g. evaporation, 

temperature) which is highly correlated (magnitude above 0.80 at p ≤ 0.05) with other 

climatic variables of interest at each individual observation station, in a group of 
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observation stations, located in a certain study area. If the study area contains only one 

observation station, a predictand which is highly correlated with other predictands at 

that station becomes the key predictand. 

As a simple example consider the 3 predictands P1, P2 and P3 at the 5 observation 

stations St1, St2, St3, St4 and St5 located in a certain study area. For the identification of 

key predictands, initially, the Pearson correlations (Pearson, 1895) among the 

observations of different predictands were computed for each individual observation 

station (intra-station correlations), considering all calendar months together. Then at 

each observation station, the predictand combinations (e.g. P1 against P2; referred later 

in this paragraph as P1 - P2) which showed high correlations (magnitude above 0.80 at p 

≤ 0.05) were identified as shown in Figure 3. Note that in Figure 3, high correlations 

were denoted with a  and relatively low correlations were indicated with a . 

Thereafter, groups of stations were identified based on the highly correlated 

combinations of predictands common to the stations. For example, as shown in Figure 

3, at stations St1, St2 and St5 predictand combinations P1 - P2 and P2 - P3 showed high 

correlations. Therefore St1, St2 and St5 were considered under group 1. At these stations 

predictand P2 was common to both predictand combinations which showed high 

correlations. Hence predictand P2 was identified as the key predictand for group 1. At 

stations St3 and St4 predictand combinations P1 - P3 and P2 - P3 showed high 

correlations. Therefore stations St3 and St4 were considered as group 2 (see Figure 3). 

Since predictand P3 was common to both the combinations P1 - P3 and P2 - P3, it was 

identified as the key predictand for group 2. In the same manner, this procedure can be 

extended to n (كԺ+) number of stations and m (كԺ+) number of predictands for the 

identification of key predictands and groups of observation stations. 
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Figure 3 Groups of stations and key predictands 

 

Note that, at times, there can be one single key predictand over the entire study area, as 

this predictand shows high correlations with all other predictands, at all stations. Also 

the maximum number of key predictands is always equal to the total number of 

predictands considered in the study. The maximum number of groups is also equal to 

the total number of predictands, as each group is governed by a key predictand. 

 

Identification of key stations and clusters 

Once the key predictands were identified, as the next step, key stations were determined 

over the study area. In this paper, a key station is an observation station where a key 

predictand (refer to previous section) is highly correlated (magnitude above 0.80 at p ≤ 

0.05) with all predictands (this also includes the key predictand) in a cluster of 

observation stations located within a group of observation stations governed by that key 
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predictand. The key station and the other stations which showed high correlations 

between the key predictand and all predictands were defined as a cluster of stations. 

These other stations in a cluster were referred to as the member stations. Note that a 

group of stations can have one or more clusters and each cluster is governed by a key 

station. 

 

In order to determine the key stations, the correlations between the key predictands and 

all predictands of interest were computed at all stations in each group of stations, 

identified in previous section. For this purpose, at each station, data of each predictand 

for all calendar months together were considered. The above procedure yielded 

correlation matrices between each key predictand and all predictands of interest in each 

group. In other words, one correlation matrix for each key predictand and each of the 

predictands of interest was computed. Then for each of these correlation matrices, a 

threshold with a magnitude of 0.80 was imposed. In a group, a certain station in which 

the key predictand showed the highest number of high correlations with all predictands 

of interest was identified as the first key station. Note that, when a certain key 

predictand at several stations show the highest number of high correlations with all 

predictands of interest, any such station can be considered as a key station. The key 

station and the other stations which showed high correlations between the key 

predictand and all predictands were defined as a cluster of stations. Then the same 

procedure was repeated on the rest of the stations in the group. This procedure was 

continued until all stations in all groups were assigned to clusters. 

 

As an example, in Figure 4 (same stations and predictands as in Figure 3), in group 1, if 

the key predictand P2 at station St1 showed high correlations with predictands P1, P2 and 

P3 (all predictands of interest) at station St2 and relatively low correlations with those 

predictands at station St5, then station St1 becomes the key station of cluster 1 and 

station St2 becomes a member station of that cluster. In such case, station St5 becomes 

the second key station in group 1 since it is the only remaining station in the group. 

Likewise, in group 2, if key predictand P3 at station St3 was highly correlated with 
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predictands P1, P2 and P3 (all predictands of interest) at station St4, then station St3 

becomes the key station and station St4 becomes a member station of cluster 2. 

Figure 4 Clusters of stations and key stations 

Intra and inter-station regression relationships in clusters 

Once the key predictands and key stations were identified, simple linear regression 

equations were built between the key predictands at key stations and other predictands 

at the key stations in all clusters using observations. These regression equations are 

referred to as the intra-station regression relationships in this paper. Also simple linear 

regression equations were developed between the key predictands at key stations and all 

predictands at the member stations in all clusters using observations. In this paper, these 

regression equations are called the inter-station regression relationships. 
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All simple linear regression relationships (intra and inter-station) between the 

predictands were computed for each calendar month separately. This was done in order 

to better capture the seasonal variations in the relationships between the predictands. 

The first two thirds of the observations of predictands were used for the calibration of 

intra and inter-station regression relationships, while the rest of the observations were 

used for the validation of these relationships (derived in the calibration). In the 

calibration of the intra and inter-station regression relationships, the optimum values of 

the coefficients and the constants of the equations were determined by minimising the 

sum of squared errors between the observations and the outputs of these regression 

relationships. 

Atmospheric domain and predictor selection 

Once intra and inter-station regression relationships were determined in each cluster, an 

atmospheric domain was defined over the study area. The atmospheric domain enables 

the inclusion of the influences of the atmospheric circulations on the catchment scale 

climate which is modelled by the downscaling models. The same atmospheric domain 

was used for the development of downscaling models at all key stations for all key 

predictands. 

The probable predictors for the study were selected for each key predictand separately, 

from the past literature and based on principles of hydrology. The probable predictors 

were the likely predictors to influence a certain key predictand at the catchment scale. 

The pool of probable predictors varies from one key predictand to another. The potential 

predictors are subsets of probable predictors which vary seasonally and also from one 

key station to another. These potential predictors are the most influential predictors on a 

certain key predictand at a key station. 

In this study, the correlations between the reanalysis data (e.g. NCEP/NCAR) of 

probable predictors and the observations of the key predictands at the key stations were 

used as the basis for the extraction of potential predictors, from the pool of probable 
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predictors. The reanalysis data pertaining to the probable predictors, and the 

observations of the key predictands at key stations were split into 20 year time slices (in 

this study 1950-1969, 1970-1989, and 1990-2010), in the chronological order. Then, for 

each calendar month, the Pearson correlation coefficients between the probable 

predictors and the key predictand at each key station were computed for each time slice 

and the whole period of the study (in this study 1950-2010), at all grid points in the 

atmospheric domain. The probable predictors which showed the best correlations (p ≤ 

0.05) with a key predictand at a key station, consistently, in all time slices and the whole 

period of the study were extracted as the potential predictors for that key predictand at 

that key station. The extraction of potential predictors was practised for each calendar 

month separately as it can yield sets of potential predictors which can reflect the 

seasonal variations of the atmospheric conditions. Sachindra et al. (2013a, b) 

successfully used the above procedure, for the selection of potential predictors in the 

development of models used for statistically downscaling NCEP/NCAR reanalysis 

outputs to monthly streamflows and monthly precipitation. 

 

Development of downscaling models for key predictands at key stations 

For each key predictand at each key station, downscaling models were then developed 

(calibrated and validated). The first two thirds of the reanalysis data pertaining to the 

potential predictors and the observations of the key predictands at key stations were 

used for the calibration of the downscaling models. The rest of the data were used for 

the validation of these models. The reanalysis data pertaining to the calibration and 

validation phases of the downscaling models were standardised using the means and the 

standard deviations of those corresponding to the calibration phase, for each calendar 

month separately. The means and the standard deviations of the reanalysis data 

pertaining to the calibration period of the downscaling models were considered as fixed 

components of them.  

 

In calibration of a downscaling model for a key predictand at a key station (in a cluster), 

first the standardised data of the potential predictor which displayed the best correlation 

with the observations of the key predictand of interest over the whole period of the 
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study was introduced to the downscaling model. Then by minimising the sum of 

squared errors between the model outputs and the observations, the optimum values of 

the constant and the coefficient of the linear regression equation were determined. The 

performances of the downscaling model in calibration were also monitored using the 

Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe 1970). Thereafter the reanalysis data 

of that predictand pertaining to the validation period was introduced to the downscaling 

model while keeping the optimum values of the constant and the coefficient of the linear 

regression equation determined in calibration fixed. During the validation, the 

performance of the downscaling model was measured using the NSE. Then the next 

best potential predictors based on their correlations with the key predictand of interest 

over the whole period of the study were added to the downscaling model at the key 

station of interest, one at a time. The downscaling model was calibrated and validated, 

following the addition of each predictand. It produced multi-linear regression equations 

between the key predictand and the potential predictors introduced to the downscaling 

model. This procedure was performed until the model performance in validation reaches 

a maximum in each calendar month. This procedure yielded the best set of potential 

predictors and the optimum downscaling model for each calendar month. In this 

manner, downscaling models were developed for each key predictand at each key 

station in each cluster in each group. The performances of the downscaling models built 

for each key predictand at each key station were assessed numerically by comparing the 

statistics of the model outputs with those of observations. Also the model outputs were 

graphically compared with the observations using scatter plots. 

 

Reproduction of past observations of key predictands and bias-correction 

Once the downscaling models were developed for the key predictand at the key station 

in each cluster in each group, the 20C3M outputs of the GCM (in this study ECHAM5) 

were standardised with the means and the standard deviation of the reanalysis outputs 

corresponding to the calibration period. This procedure was practised for each calendar 

month separately. Then, the past observations of the key predictands at the key stations 

were simulated by introducing these standardised 20C3M outputs of the GCM, to the 

downscaling models developed in previous section. This analysis enabled the 
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assessment of the performances of the downscaling models (developed with reanalysis 

data) in reproducing the past climate with the 20C3M outputs of the GCM. This 

analysis was important as these downscaling models which were developed with better 

quality reanalysis outputs were meant to be used with GCM outputs which have higher 

degree of uncertainty, for the projection of catchment scale climate into future. 

 

The bias contained in GCM outputs can cause downscaling models to produce 

erroneous projections into future. According to Salvi et al. (2011), bias is the mismatch 

between the GCM outputs and the observations. Ojha et al. (2012) emphasised the 

importance of bias correction in downscaling. Hence, it was realised that either the bias 

in the GCM outputs (which are used as inputs to downscaling model) or the bias in the 

outputs of the downscaling models run with the GCM outputs should be corrected prior 

to any use (Sachindra et al. 2014). In the current study, the monthly bias-correction (for 

theory refer to Johnson and Sharma (2012)) was used on the outputs of the downscaling 

models produced when they were run with the 20C3M outputs of the GCM. The 

monthly bias-correction assumes that the bias in the means and the standard deviations 

of the outputs of the downscaling models produced for the past will remain the same in 

future. 

 

In the application of the monthly bias-correction, outputs of the downscaling models 

pertaining to the calibration period produced with the 20C3M outputs of the GCM were 

standardised with their means and standard deviations corresponding to the same 

period. Then these standardised outputs of the downscaling models were rescaled using 

the means and the standard deviations of the observations relevant to the calibration 

period of the downscaling model. In the validation of the monthly bias-correction, the 

outputs of the downscaling models produced over the validation period with the 20C3M 

outputs of the GCM were standardised with the means and the standard deviations of 

the outputs of the downscaling models produced over the calibration period with the 

20C3M outputs of the GCM. Then these standardised outputs of the downscaling 

models were rescaled using the means and the standard deviations of the observations 
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pertaining to the calibration period of the downscaling model. The monthly bias-

correction was applied and validated for each calendar month separately.  

 

Development of downscaling models at a key station and a member station for a 

predictand not identified as a key predictand 

A downscaling model was developed at a key station (of a cluster) for downscaling 

reanalysis outputs to a predictand which was not identified as a key predictand. This 

was performed to assess the quality of the outputs produced by the intra-station 

regression relationships against the outputs of the downscaling model developed at that 

key station for that predictand which was not identified as a key predictand. In order to 

assess the quality of the outputs produced by the inter-station regression relationships, a 

downscaling model was built at a member station (of a cluster) for downscaling 

reanalysis outputs to a predictand which was not identified as a key predictand. For the 

development of these two downscaling models, the same procedure that was practised 

in building downscaling models for key predictands at key stations was adopted. The 

calibration and validation of these downscaling models were performed over the same 

periods as those of the downscaling models developed for key predictands at key 

stations in each cluster. The outputs of the intra-station and inter-station regression 

relationships were compared with those of downscaling models, both numerically and 

graphically. 

 

Projections into future 

For producing projections of catchment scale climate into future, the outputs of a GCM 

(in this study ECHAM5) pertaining to the future climate were obtained. Then these 

GCM outputs were standardised using the means and the standard deviations of the 

reanalysis outputs relevant to the calibration period of the downscaling models, for each 

calendar month. Thereafter these standardised GCM outputs were introduced to the 

downscaling models which were developed at key stations for key predictands. This 

way, at the key stations, the projections of the key predictands were produced into 

future. The projections of the key predictands produced at key stations were then bias-

corrected using the monthly bias-correction following the procedure employed in the 
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validation of the bias-correction which was detailed in Section entitled “Reproduction 

of past observations of key predictands and bias-correction”. Then these bias-corrected 

projections were introduced to the intra and inter-station regression relationships for the 

projection of catchment scale climate into future at all stations in each cluster in each 

group. 

 

APPLICATION 

The generic methodology detailed previously was used to downscale monthly GCM 

outputs to monthly evaporation, minimum temperature and maximum temperature at the 

5 observation stations (see Table 1) located in the southern region of the operational 

area of GWMWater, in north western Victoria, Australia (see Figure 1). 

 

Identification of key predictands 

For the identification of the key predictands, the correlations among the three 

predictands; evaporation, minimum temperature and maximum temperature were 

computed at each individual station using the monthly observations of these predictands 

of the period 1950-2010. Table 2 shows these correlations. 

 

Table 2 Correlations among evaporation, minimum temperature and maximum 

temperature at each individual station 

Predictand 
combination 

Station 
79023 79026 79034 79079 89003 

Evaporation-Tmax 0.953 0.951 0.952 0.951 0.949 
Evaporation-Tmin 0.876 0.878 0.864 0.879 0.861 
Tmax-Tmin 0.929 0.949 0.944 0.955 0.939 

Tmax = monthly maximum temperature, Tmin = monthly minimum temperature 

 

According to Table 2, at all stations all predictand combinations (e.g. evaporation – 

maximum temperature) showed correlations above 0.80 (p ≤ 0.05). Therefore it was 

realised that, there are strong linear relationships between evaporation, minimum 

temperature and maximum temperature at all stations. Then at each individual station, 

the predictand which showed high correlations with all other predictands was identified. 

It was seen that, at all stations, maximum temperature showed the highest correlations 
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with the other two predictands (evaporation, minimum temperature). Hence, the 

maximum temperature was identified as the only key predictand and all 5 stations were 

included in one group governed by this key predictand. Furthermore, evaporation 

displayed consistently higher correlations with maximum temperature than with 

minimum temperature. This indicated that maximum temperature is more influential 

than minimum temperature on evaporation. 

 

Identification of key stations and clusters 

Since maximum temperature was identified as the only key predictand, the correlations 

between the maximum temperature and all predictands (i.e. evaporation, minimum 

temperature and maximum temperature) over the period 1950-2010 were computed at 

all stations using observations. Table 3 shows the correlations between the maximum 

temperature and all predictands at all stations. 

 

Table 3 Correlations between observations of key-predictand and all predictands 

Key predictand 
Other 
predictand 

Station 79023 79026 79034 79079 89003 

Tmax Evaporation 

79023 0.953 0.953 0.955 0.948 0.955 

79026 0.951 0.951 0.954 0.947 0.954 

79034 0.948 0.948 0.952 0.943 0.952 

79079 0.955 0.954 0.958 0.951 0.957 

89003 0.942 0.943 0.947 0.937 0.949 
 

Tmax Tmin 

79023 0.929 0.945 0.936 0.954 0.928 

79026 0.930 0.949 0.940 0.957 0.932 

79034 0.935 0.952 0.944 0.960 0.936 

79079 0.929 0.946 0.937 0.955 0.929 

89003 0.934 0.954 0.946 0.962 0.939 
 

Tmax Tmax 

79023 1.000 0.998 0.996 0.998 0.996 

79026 0.998 1.000 0.999 0.999 0.998 

79034 0.996 0.999 1.000 0.998 0.998 

79079 0.998 0.999 0.998 1.000 0.996 

89003 0.996 0.998 0.998 0.996 1.000 
Tmax = monthly maximum temperature, Tmin = monthly minimum temperature 
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According to Tables 3, it was seen that the observations of maximum temperature at all 

stations were highly correlated (p ≤ 0.05) with those of evaporation, minimum 

temperature and maximum temperature at all stations over the period 1950-2010. 

Therefore any station was seen as a potential key station and also all 5 observation 

stations were considered in one cluster. In this study the observation station at Lake 

Lonsdale (79026) was selected as the only key station. Hence, stations at Polkemmet 

(79023), Moyston post office (79034), Tottington (79079) and Balmoral post office 

(89003) were identified as the member stations of the only cluster defined in this study. 

Note that in this study, both the group and the cluster referred to the same set of stations 

as there was only one cluster located within the only group identified. Figure 5 shows 

the locations of the key station and the member stations identified in this study along 

with some of the water resources (lakes and rivers) in the region. 

Figure 5 Locations of the key station and member stations 

Intra and Inter-station regression relationships 

Following the procedure stated in generic methodology, intra and inter-station 

regression relationships were developed (calibrated and validated). The calibration and 



Chapter 5: Multi-Station and Multi-Station Multivariate Downscaling 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 258 

validation of the intra and inter-station regression relationships were performed over the 

periods 1950-1989 and 1990-2010 respectively. The constants and coefficients of the 

MLR equations in the inter/intra-station regression relationships determined for the past 

climate were assumed to be valid for the future, under changing climate. 

 

The intra-station regression relationships were developed at the key station 79026, 

between the maximum temperature (key predictand) and evaporation, and also between 

the maximum temperature and the minimum temperature. The inter-station regression 

relationships were developed between the maximum temperature at the key station 

79026 and evaporation, minimum temperature and maximum temperature at each 

member station of the cluster. 

 

Table 4 shows the statistics of the monthly evaporation at all stations reproduced by the 

intra and inter-station regression relationships built between the maximum temperature 

and evaporation. According to Table 4, the intra and inter-station regression 

relationships were able to reproduce the average and the standard deviation of monthly 

evaporation with good accuracy in all seasons during the calibration period 1950-1989 

and the validation period 1990-2010 at all stations. In all seasons, the intra and inter-

station regression relationships were able to reproduce the maximum of monthly 

evaporation at the majority of stations in both calibration and validation periods with 

considerable accuracy despite some under and over-estimations. It was realised that 

these relationships built between the maximum temperature and evaporation were 

effective in translating maximum temperature to evaporation. 
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Table 4 Statistics of evaporation reproduced by intra and inter-station regression 

relationships of all stations between maximum temperature and evaporation. 

Season Station 

Period 1950-1989 (Calibration)   Period 1990-2010 (Validation) 

Average Std Max 
NSE 

Average Std Max 
NSE 

Obs Reg Obs Reg Obs Reg Obs Reg Obs Reg Obs Reg 

Summer 

79023 232.9 232.9 29.7 26.9 307.8 301.0 0.82   223.9 238.7 30.0 28.0 288.2 296.5 0.51 

79026 211.0 211.0 29.5 26.2 287.2 278.9 0.79   209.7 216.5 29.2 27.1 280.2 274.5 0.70 

79034 198.7 198.7 28.2 25.4 272.3 262.5 0.81   194.6 204.4 28.4 26.2 262.2 258.3 0.63 

79079 216.3 216.3 30.4 25.9 293.0 279.6 0.73   222.8 221.9 36.1 26.8 309.6 275.5 0.58 

89003 205.2 205.2 28.0 25.6 276.8 269.0 0.84   195.4 211.2 27.2 26.6 250.8 264.7 0.44 

                                  

Autumn 

79023 107.9 107.9 49.1 48.4 208.8 188.4 0.97   106.0 111.1 47.9 48.8 193.2 200.9 0.95 

79026 97.5 97.5 45.5 44.4 194.2 169.1 0.96   99.2 100.1 45.1 44.8 181.8 179.1 0.97 

79034 90.9 90.9 42.9 42.2 179.4 161.4 0.97   91.0 93.8 42.5 42.6 171.0 172.8 0.96 

79079 96.6 96.6 46.6 45.6 196.8 174.8 0.96   101.3 99.6 49.8 46.4 191.2 188.4 0.93 

89003 96.5 96.5 43.6 43.0 187.0 168.2 0.97   93.4 99.6 43.0 43.3 175.8 179.7 0.94 

                                  

Winter 

79023 47.7 47.7 11.4 10.5 82.2 83.2 0.85   46.7 49.3 11.6 10.9 75.0 73.6 0.76 

79026 40.9 40.9 10.9 7.8 71.2 55.6 0.52   42.9 41.6 10.4 7.4 67.2 53.7 0.75 

79034 37.6 37.6 9.6 8.8 63.7 64.5 0.85   38.4 38.7 9.9 9.1 59.6 57.9 0.84 

79079 39.0 39.0 11.2 9.6 69.6 70.5 0.74   35.7 40.4 9.3 9.9 64.0 62.2 0.52 

89003 44.1 44.1 10.6 9.9 73.2 75.9 0.87   42.6 45.4 10.3 10.3 64.0 67.7 0.74 

                                  

Spring 

79023 131.2 131.2 39.3 38.0 257.8 235.3 0.94   132.6 137.5 40.3 42.8 208.0 250.4 0.91 

79026 115.3 115.3 36.2 33.5 230.2 201.9 0.85   122.0 120.4 37.8 37.3 198.4 213.9 0.94 

79034 108.9 108.9 32.8 31.3 234.0 196.6 0.91   112.3 114.2 34.9 35.5 185.6 209.6 0.93 

79079 118.7 118.7 40.1 37.4 278.8 220.1 0.87   122.4 124.8 46.5 42.1 231.4 234.9 0.90 

89003 114.7 114.7 32.2 31.4 229.4 203.6 0.95   115.5 120.1 32.9 35.7 184.8 216.9 0.90 
Average = average of monthly evaporation in mm, Std = standard deviation of monthly evaporation in mm, Max = 
maximum of monthly evaporation in mm, Obs = observed, Reg = intra or inter-station regression relationships, NSE 
= Nash Sutcliffe efficiency 

 

It was found that, the intra and inter-station regression relationships built between the 

maximum temperature at key station 79026 and minimum temperature at all stations are 

quite robust in all seasons in capturing the average of minimum temperature. However 

in winter, these relationships were relatively weaker at all stations and they under-

estimated the standard deviation and the minimum of the minimum temperature was 

over-estimated. 
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It was proven that the inter-station regression relationships were able to reproduce the 

statistics of the maximum temperature at all member stations in all seasons with high 

degree of accuracy. Hence it was realised that, the inter-station regression relationships 

built between the maximum temperature at key station 79026 and that of member 

stations are quite reliable. 

Atmospheric domain and predictor selection 

An atmospheric domain consisting of 7 grid points in the longitudinal direction and 6 

grid points in the latitudinal direction was defined over the study area. This atmospheric 

domain is shown in Figure 6. In this atmospheric domain, grid points were 2.5˚ apart 

from each other in both longitudinal and latitudinal directions. This grid resolution was 

maintained across the atmospheric domain in order to comply with the spatial resolution 

of the NCEP/ NCAR reanalysis outputs. All GCM outputs used in this study were 

interpolated to the grid shown in Figure 6, using the inverse distance weighted method. 

Figure 6 Atmospheric domain for downscaling 
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Timbal et al. (2009) used the method of meteorological analogues for downscaling 

NCEP/NCAR reanalysis data to daily precipitation, pan evaporation, minimum 

temperature, maximum temperature, and dew point temperature over six regions in the 

southern half of Australia. The present study area is located in the southern half of 

Australia. Hence the predictors used by Timbal et al. (2009) were included in the pool 

of probable predictors used in the present study. The pool of probable predictors used in 

this study included the geopotential heights at 200, 500, 700, 850 and 1000 hPa pressure 

levels, relative humidity at 700, 850, 925 and 1000 hPa pressure levels, specific 

humidity at 500, 850 and 1000 hPa pressure levels, air temperature at 500, 850 and 

1000 hPa pressure levels, surface air temperature, surface skin temperature, surface air 

pressure, mean sea level pressure and, zonal and meridional wind speeds at 850 hPa 

pressure level. Following the procedure detailed in generic methodology, potential 

predictors for maximum temperature at key station 79026 were extracted for each 

calendar month from the pool of probable predictors. 

 

Development of a downscaling model for monthly maximum temperature at key 

station 79026 

For the development of the downscaling model for monthly maximum temperature at 

the key station 79026, the observations of monthly maximum temperature and the 

NCEP/NCAR reanalysis outputs pertaining to the potential predictors were split into 

two chronological groups; 1950-1989 and 1990-2010. The first group of data was used 

in the calibration of the downscaling model and the second group was used in the 

validation. Following the procedure detailed in generic methodology, downscaling 

models were developed for each calendar month. Hence, the final sets of potential 

predictors and the best downscaling models for each calendar month were identified. 

When the key predictand and key station approach is employed in a downscaling 

exercise the downscaling models are developed only for the key predictands at the key 

stations. Therefore the selection of probable predictors and the correction of bias have to 

be performed only for a few predictands at a few stations. 
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Table 5 displays the final sets of potential predictors used in the development of the 

downscaling model for monthly maximum temperature at the key station 79026. 

According to Table 5, it was seen that in the majority of calendar months, air 

temperature at earth surface and also air temperature at various pressure levels in the 

atmosphere are among the potential predictors. This indicated the high degree of 

influence of air temperature fields on the monthly maximum temperature at the 

catchment scale. Other than air temperature, relative and specific humidity fields were 

also seen among the final sets of potential predictors used in the development of the 

downscaling model for monthly maximum temperature at the key station 79026. 
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Table 5 Final sets of potential predictors for each calendar month 

Month Potential variables used for downscaling model with grid locations 

January 1000hPa air temperature{(5,1)}  
700hPa relative humidity {(3,6),(3,7)} 
1000hPa specific humidity {(5,1),(6,2)}  
  

February 850hPa zonal wind {(1,1),(2,1),(2,2)} 
500hPa relative humidity {(4,7),(5,6),(5,7)} 
500hPa specific humidity {(1,3)} 
  

March Surface air temperature{(2,2)}  
  

April 850hPa air temperature {(1,4),(1,5)} 
850hPa relative humidity {(5,2),(5,3),(5,4),(6,4),(6,5)} 
700hPa relative humidity {(6,5)} 
850hPa specific humidity {(5,1),(6,2),(6,3)}  
  

May 1000hPa relative humidity {(2,1),(3,1)}  
925hPa relative humidity {(1,1),(2,1),(2,2),(3,1),(3,2)}  
500hPa relative humidity {(5,6)}  
  

June Surface air temperature{(6,2)}  
  

July Surface air temperature{(4,7), (5,6)}  
  

August Surface air temperature{(3,3),(4,3)}  
  

September Surface air temperature{(3,5),(4,3)}  
850hPa air temperature {(4,5)} 
  

October Surface air temperature{(5,1),(5,2),(5,3),(5,4),(6,1),(6,2)}  
  

November 850hPa relative humidity {(6,5)} 
500hPa specific humidity {(6,1),(6,2)}  
  

December Surface air temperature{(2,1),(3,1),(4,2),(4,3),(4,4)}  
500hPa relative humidity {(4,1),(4,2)}  
500hPa specific humidity {(3,1),(3,2)}  

hPa = Atmospheric pressure in hectopascal; and the locations are given within brackets (see Figure 6) 

 

Table 6 shows the statistics of the observed monthly maximum temperature and those of 

model reproduced monthly maximum temperature for the calibration and validation 

periods of the downscaling model at key station 79026. As seen in Table 6, the average, 

the standard deviation and the maximum of the monthly maximum temperature were 

reproduced by the downscaling model during both calibration and validation periods in 

all seasons with good degree of accuracy. Hence, it was realised that, this downscaling 

model is capable in properly reproducing the statistics of observed monthly maximum 

temperature with the NCEP/NCAR reanalysis outputs. 
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Table 6 Statistics of monthly maximum temperature reproduced by downscaling model 

developed at key station 79026 

Model Statistic 
Calibration (1950-1989) Validation (1990-2010) 
Season Season 
Summer Autumn Winter Spring Summer Autumn Winter Spring 

Observed Avg 27.4 20.5 13.1 19.3 27.9 21.0 13.5 19.9 
Model output 27.4 20.5 13.1 19.3 27.7 20.7 13.2 19.6 

Observed Std 2.2 4.0 1.1 3.0 2.3 3.9 1.1 3.4 
Model output 1.7 3.9 0.9 2.8 1.5 3.6 0.9 3.1 

Observed Max 32.6 27.3 17.5 27.8 32.1 28.9 15.9 29.1 
Model output 33.6 27.0 16.1 24.6 31.5 27.6 15.3 25.4 

Model output NSE 0.59 0.97 0.67 0.88 0.49 0.94 0.71 0.87 

Model output R2 0.59 0.97 0.67 0.88 0.51 0.95 0.77 0.87 
Avg = average of monthly maximum temperature in ˚C, Std = standard deviation of maximum temperature in ˚C, 
Max = maximum of maximum monthly temperature in ˚C, NSE = Nash Sutcliffe efficiency, R2 = coefficient of 
determination 

 

Figure 7 shows the scatter plots for the calibration (1950-1989) and validation (1990-

2010) periods of the downscaling model developed at the key station 79026 for monthly 

maximum temperature. Owing to the limited scatter seen in Figure 7, it was realised that 

there is a very good agreement between the observations of monthly maximum 

temperature and the monthly maximum temperature reproduced by the downscaling 

model, in both calibration (NSE = 0.97) and validation (NSE = 0.96) periods. However, 

the scatter of the monthly maximum temperature tended to increase slightly with the 

increase in its magnitude during both calibration and validation periods. This indicated 

that the accuracy of relatively high values of monthly maximum temperature are less 

accurate compared to relatively low and the medium values of monthly maximum 

temperature simulated by the downscaling model. 
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Figure 7 Scatter plots for the calibration and validation periods of the downscaling 

model for monthly maximum temperature at key station 79026 

 

Reproduction of past observations of maximum temperature and bias-correction 

Following the procedure detailed in generic methodology, the monthly bias-correction 

(Johnson and Sharma, 2012) was applied over the period 1950-1989 and it was 

validated for the period 1990-1999. The statistics of the monthly maximum 

precipitation reproduced by the downscaling model with the 20C3M outputs of 

ECHAM5, before and after bias-correction for both application and validation periods 

are shown in Table 7. 
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Table 7 Statistics of maximum temperature reproduced by downscaling model at key 

station 79026, with 20C3M outputs of ECHAM5, before and after bias-correction 

Model Statistic 
Application (1950-1989) Validation (1990-1999) 
Season Season 
Summer Autumn Winter Spring Summer Autumn Winter Spring 

Observed 
Avg 

27.4 20.5 13.1 19.3 27.4 20.5 13.3 19.2 
Before B-C 30.9 18.3 12.8 17.0 31.7 18.5 12.7 17.0 
After B-C 27.4 20.5 13.1 19.3 28.1 20.8 13.0 19.3 

Observed 
Std 

2.2 4.0 1.1 3.0 2.1 3.8 1.0 2.8 
Before B-C 6.1 2.5 0.8 4.3 6.6 2.6 0.8 4.5 
After B-C 2.2 4.0 1.1 3.0 2.3 4.1 1.1 3.2 

Observed 
Max 

32.6 27.3 17.5 27.8 32.0 26.7 15.7 24.3 
Before B-C 46.2 24.7 15.3 24.8 43.2 24.8 14.0 24.4 
After B-C 31.9 27.5 16.8 26.7 33.9 28.5 15.7 25.9 

Before B-C NSE -13.71 -0.07 -0.63 -0.82 -16.77 -0.07 -1.07 -1.16 
After B-C -0.37 0.79 -0.30 0.54 -0.77 0.79 -0.61 0.69 
Avg = average of monthly maximum temperature in ˚C, Std = standard deviation of monthly maximum temperature 
in ˚C, Max = maximum of monthly maximum temperature in ˚C, NSE = Nash Sutcliffe efficiency, Before B-C = 
before bias-correction, After B-C = after bias-correction 
 

According to Table 7, it was seen that the mismatches between the average, the standard 

deviation and the maximum of observed monthly maximum temperature and those 

reproduced by the downscaling model at key station 79026 when it was run with the 

20C3M outputs of ECHAM5 were successfully corrected by the monthly bias-

correction in both application and validation periods. Following the bias-correction, the 

NSEs in all seasons in both the calibration and validation periods showed an increase. 

This indicated that, the scatter of the maximum monthly temperature reproduced by the 

downscaling model reduced after the bias-correction in all seasons in both calibration 

and validation periods. Figure 8 shows the scatter plots for the monthly maximum 

temperature reproduced by the downscaling model with the 20C3M outputs of 

ECHAM5, before and after the application of the monthly bias-correction. It was 

observed that the scatter of the monthly maximum temperature reproduced by the 

downscaling model reduced after the bias-correction.  
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Figure 8 Scatter of the monthly maximum temperature reproduced by the downscaling 

model at key station 79026 with the 20C3M outputs of ECHAM5, before and after the 

application of the monthly bias-correction. 

 

In the application of the monthly bias-correction explicit measures are taken only for the 

correction of the monthly mean and the monthly standard deviation of the variable of 

interest. However, it was realised that when the scatter of the variable prior to the 

application of the monthly bias-correction is limited (refer to Figure 8(a)), the monthly 

bias-correction can reduce the scatter (refer to Figure 8(b)) and improve the time series 

of the variable. Sachindra et al. (2014) found that when the scatter of the variable prior 

to the application of the monthly bias-correction is very large the monthly bias-

correction fails to reduce the scatter of the variable. 

 

Development of downscaling models at key station 79026 and member station 

79023 for evaporation 

For the purpose of comparing the quality of the outputs of an intra-station regression 

relationship with the outputs of the downscaling model at the key station, a downscaling 

model was built at the key station 79026 for evaporation which was not selected as a 

key predictand. This downscaling model was calibrated and validated over the periods 
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1950-1989 and 1990-2010 respectively, following the same procedure used in the 

development of a downscaling model for a key-predictand. 

 

It was found that the average, the standard deviation and the maximum of monthly 

evaporation reproduced by the above downscaling model at the key station 79026 were 

in close agreement with those of observations and those produced by the intra-station 

regression relationship at this station. It was assumed that, the other intra-station 

regression relationship between the maximum temperature and the minimum 

temperature at key station 79026 also can properly capture the statistics of observations 

of minimum temperature. Furthermore it was realised that when the correlations 

between the observations of the key predictand and other predictands at a key station (in 

a cluster) are high, instead of developing downscaling models for each of the other 

predictands (at that key station) the intra-station regression relationships can be used 

effectively for the determination of the values of the other predictands. 

 

Figure 9 shows the scatter plots for the monthly evaporation simulated by the intra-

station regression relationship against the monthly evaporation simulated by the 

downscaling model developed at key station 79026. According to the small scatter seen 

in Figure 9, it was further realised that the time series of monthly evaporation 

reproduced by the intra-station regression relationship and that reproduced by the 

downscaling model developed at key station 79026 are in good agreement with each 

other. 
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Figure 9 Evaporation reproduced by intra-station regression relationship against 

evaporation reproduced by downscaling model developed at station 79026 

In order to compare the quality of the outputs of an inter-station regression relationship 

against the outputs of a downscaling model, a downscaling model was built at member 

station 79023 (Polkemmet) for evaporation  which was not selected as a key 

predictand. This downscaling model was also calibrated and validated over the periods 

1950-1989 and 1990-2010 respectively, following the same procedure used in the 

development of a downscaling model for a key predictand. 

It was found that the average, the standard deviation and the maximum of the monthly 

evaporation at station 79023 estimated by the above downscaling model were in close 

agreement with those of observations and those produced by the inter-station regression 

relationships. The scatter of the evaporation simulated by the inter-station regression 

relationship between the maximum temperature at key station 79026 and evaporation at 

member station 79023 against the evaporation simulated by the downscaling model 

developed at station 79023 was also quite limited (not shown).  

Following the above findings, it was assumed that the statistics and the time series of 

the outputs of all inter-station regression relationships developed in this study can 
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closely represent those of the outputs of downscaling models. It was realised that when 

the correlations between the observations of a key predictand at a key station and all 

predictands at member stations (in a cluster) are high, instead of developing separate 

downscaling models for each predictand at each station, inter-station regression 

relationships can be used effectively for the determination of the values of all 

predictands at member stations. 

Projections of evaporation, minimum temperature and maximum temperature 

into future 

Following the procedure detailed in generic methodology, projections of monthly 

evaporation, minimum temperature and maximum temperature were produced into 

future using the outputs of ECHAM5 pertaining to A2 GHG emission scenario for the 

period 2000-2099. Table 8 shows the percentage changes in the statistics of monthly 

evaporation, minimum temperature and maximum temperature in the period 2000-2099 

at all stations with respect to the observations of the period 1950-1989. 

Table 8 Percentage changes in the statistics of evaporation, and minimum and 

maximum temperature over the period 2000-2099 

Variable Season 
79023 79026 79034 79079 89003

Avg Std M Avg Std M Avg Std M Avg Std M Avg Std M 

Ev 

Summer +9↑ +27↑ +17↑ +10↑ +21↑ +17↑ +10↑ +21↑ +16↑ +9↑ +15↑ +13↑ +11↑ +24↑ +17↑ 
Autumn +11↑ +19↑ +17↑ +10↑ +16↑ +10↑ +12↑ +20↑ +19↑ +13↑ +23↑ +20↑ +12↑ +20↑ +18↑ 
Winter +20↑ +14↑ +17↑ +12↑ -37↓ -18↓ +17↑ +9↑ +15↑ +21↑ +5↑ +17↑ +18↑ +14↑ +19↑ 
Spring +10↑ +10↑ +33↑ +9↑ +4↑ +25↑ +10↑ +9↑ +23↑ +11↑ +5↑ +16↑ +10↑ +12↑ +30↑ 

Tmax 

Summer +9↑ +27↑ +17↑ +10↑ +21↑ +17↑ +10↑ +21↑ +16↑ +9↑ +15↑ +13↑ +11↑ +24↑ +17↑ 
Autumn +11↑ +19↑ +17↑ +10↑ +16↑ +10↑ +12↑ +20↑ +19↑ +13↑ +23↑ +20↑ +12↑ +20↑ +18↑ 
Winter +20↑ +14↑ +17↑ +12↑ -37↓ -18↓ +17↑ +9↑ +15↑ +21↑ +5↑ +17↑ +18↑ +14↑ +19↑ 
Spring +10↑ +10↑ +33↑ +9↑ +4↑ +25↑ +10↑ +9↑ +23↑ +11↑ +5↑ +16↑ +10↑ +12↑ +30↑ 

Tmin 

Summer +10↑ +4↑ +21↑ +10↑ +4↑ +17↑ +10↑ +3↑ +22↑ +10↑ +5↑ +15↑ +10↑ NC +21↑ 
Autumn +10↑ +36↑ +57↑ +10↑ +37↑ +34↑ +10↑ +38↑ +37↑ +10↑ +36↑ +35↑ +10↑ +34↑ +27↑ 
Winter +7↑ -63↓ +406

↑
+10↑ -48↓ +165

↑
+11↑ -46↓ +296

↑
+12↑ -47↓ +170

↑
+12↑ -47↓ +218

↑Spring -3↓ +23↑ +35↑ -1↓ +24↑ +9↑ NC +23↑ +18↑ -1↓ +26↑ +9↑ NC +18↑ +24↑ 

Ev = monthly evaporation, Tmax = monthly maximum temperature, Tmin = monthly minimum temperature, Avg = 
average of climatic variable, Std = standard deviation of climatic variable, M = maximum of evaporation, maximum 
of maximum temperature, minimum of minimum temperature (in italics), ↑ = percentage increase in 2000-2099 with 
respect to observations of period 1950-1989, ↓ = percentage decrease in 2000-2099 with respect to observations of 
period 1950-1989 (in bold), NC = No change in percentage in 2000-2099 with respect to observations of period 
1950-1989 
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According to Table 8, it was seen that at each station in all seasons the changes in the 

average, the standard deviation and the maximum of monthly evaporation are equal to 

those of the monthly maximum temperature. This showed the uniform relationship 

between the maximum temperature and evaporation. However, the changes in the 

statistics of monthly minimum temperature did not display clear uniform association 

with either monthly evaporation or monthly maximum temperature. As shown in Table 

8, in all seasons at all stations the averages of monthly evaporation and monthly 

maximum temperature in the period 2000-2099 indicated a rise in comparison with 

observations of the period 1950-1989. This indicated that in future, the loss of water 

into atmosphere due to evaporation will tend to increase with the rising GHG 

concentrations in the atmosphere over the study area. Except in winter, at all stations the 

standard deviations of evaporation and maximum temperature showed an increase in the 

period 2000-2099. This hinted that, in future there will be more fluctuations in the 

regimes of evaporation and maximum temperature across the present study area. The 

maximum of monthly evaporation and the maximum of monthly maximum temperature 

also displayed a rise at all stations in summer, autumn, and spring during the period 

2000-2099. 

 

The average of the minimum temperature showed a rise at all stations except in spring. 

Except in winter, at the majority of stations the standard deviation of the minimum 

temperature also showed an increase indicating more fluctuations in the minimum 

temperature in future. The minimum of minimum temperature indicated an increase in 

all seasons in the period 2000-2099, however these predictions are less reliable as intra 

and inter-station regression relationships consistently over-estimated the minimum of 

minimum temperature during their calibration and validation phases. 

 

It was concluded that, in future the evaporation, minimum and the maximum 

temperature will tend to increase across the study area and hence the future climate in 

the study area will be dryer and warmer. Furthermore the fluctuations in these 

predictands are also likely to increase with the rising GHGs. 
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According to median estimates obtained from the raw outputs of number of GCMs, the 

Victorian Government Department of Sustainability and Environment (2008) found that 

the average of temperature and evaporation over the present study area are likely to 

increase under B1 (low emissions), A1B (medium emissions) and A1F1 (high 

emissions) emission scenarios, in all seasons. It was realised that the findings of the 

present research are in close agreement with those of the Victorian Government 

Department of Sustainability and Environment (2008). 

 

However, unlike that previous study which directly used the raw outputs of GCMs for 

the determination of future climate in this study area, in this study using a statistical 

downscaling methodology the raw outputs of a GCM were translated to point specific 

climatic information pertaining to future. This was performed while maintaining the 

spatial correlation structures of each individual predictand among the stations and also 

the correlation structures between different predictands at individual stations. The 

observations of monthly evaporation, maximum temperature and minimum temperature 

at all observation stations (including the stations not considered in this study) located in 

the operational area of GWMWater showed high positive correlations with each other. 

Hence it can be assumed that the patterns of changes in evaporation, maximum 

temperature and minimum temperature determined for the 5 observations station 

considered in this study are also valid for those at the other stations in the operational 

area of GWMWater. 

 

Furthermore it was realised that the key predictand and key station approach can also be 

applied to an area of any extent with any number of stations and any number of 

predictands effectively, provided that there are high correlations among stations (in a 

cluster) for each individual predictand and high correlations among different 

predictands at each individual station in the clusters. 

 

SUMMARY AND CONCLUSIONS 

Statistical downscaling of GCM outputs to monthly evaporation, minimum temperature 

and maximum temperature was performed using a key predictand and key station 
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approach at 5 observation stations located in north western Victoria, Australia. For the 

effective application of the key predictand and key station approach high correlations 

(magnitudes above 0.80 at p ≤ 0.05) should prevail between the observations of each 

individual predictand among the stations and also among different predictands at each 

individual station. In this study, high correlations between monthly evaporation, 

minimum temperature and maximum temperature were seen over the period 1950-2010 

at each individual station and among the 5 stations for each individual predictand. 

Hence the key predictand and key station approach was effectively employed. Due to 

the good agreement seen between the outputs of intra and inter-station regression 

relationship and those of downscaling models developed at a key station and a member 

station respectively, the effectiveness of the key predictand and key station approach 

was realised. 

Following conclusions were drawn from this study: 

1. The correlations between the evaporation and the maximum temperature were

consistently higher than those between the evaporation and the minimum

temperature at each individual station. Therefore it was realised that the

maximum temperature is more influential than the minimum temperature on

evaporation.

2. The key predictand and key station approach was proven to be a simple and

effective methodology for downscaling GCM outputs to multiple predictands at

multiple stations simultaneously. It not only aids in maintaining the cross-

correlation structures among the observation stations for each individual

predictand but also enables the preservation of the cross-correlation structures

among different predictands at each individual observation station. Therefore the

plausible representation of spatial variations of individual predictands among

observation stations and also the realistic relationships between different

predictands can be maintained in the projections produced by the downscaling

models into future.
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3. However, for the effective implementation of the key predictand and key station 

approach the presence of high correlations (magnitudes above 0.80 at p ≤ 0.05) 

among the observation stations (in a cluster) for each individual predictand and 

high correlations among different predictands at each individual observation 

station are prerequisites. 

 

4. In the application of the key predictand and key station approach, downscaling 

models are only developed for the key predictands at key stations. Therefore 

unlike downscaling at each individual station separately, in this approach the 

selection of potential predictors and the correction of bias have to be performed 

only at several stations for several predictands. 

 

5. Although the monthly bias-correction employs explicit measures to correct only 

the monthly mean and the standard deviation of a climatic variable (e.g. output 

of a GCM or downscaling model), when the bias is limited, monthly bias-

correction is also capable of improving the time series of the climatic variable. 
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CHAPTER 6 

 

STATISTICAL DOWNSCALING OF GCM 

OUTPUTS TO STREAMFLOWS 

 

6.1 Introduction 

In the literature, studies on statistical downscaling of GCM outputs to catchment scale 

precipitation, temperature and evaporation are abundantly found. However, the direct 

downscaling of GCM outputs to catchment streamflows is rarely documented. In this 

chapter, the development of two statistical models for downscaling NCEP/NCAR 

reanalysis outputs to monthly streamflows is detailed. In this investigation, the first 

downscaling model was developed using the least square support vector machine 

regression (non-linear regression technique) and the second downscaling was 

established using the multi-linear regression (linear regression technique). This chapter 

provides a comparison between the performances of the downscaling models developed 

using the above two techniques. Also in this chapter the issues associated with the use 

of principal component analysis (PCA) in preparing inputs to statistical downscaling 

models are investigated. Furthermore, this was the first study conducted in Australia on 

direct downscaling of catchment streamflows from large scale atmospheric variables. 

 

This chapter contains the following journal paper; 
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CHAPTER 7 

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS FOR FUTURE WORK

7.1 Summary 

The greenhouse gases (GHGs) such as carbon dioxide, methane and water vapour in the 

earth’s atmosphere absorb some of the solar energy which is reflected by the earth’s 

surface. Then these GHGs radiate the absorbed energy back into the atmosphere causing 

a rise in the atmospheric temperature. The elevation of the atmospheric temperature due 

the emission of thermal energy back to the earth by GHGs is called the greenhouse 

effect. The rising GHG concentrations in the atmosphere owing to human activities such 

as burning of fossil fuels, agricultural and other practices, intensify the greenhouse 

effect causing an imbalance in the earth’s radiative energy budget, which alters the 

global climate. Climate change influences droughts, floods, extreme temperatures and, 

sea level changes, and has shed its adverse impacts on agriculture, energy generation, 

human health, biodiversity, water resources and land resources. 

General Circulation Models (GCMs) are used for the projection of global climate into 

future. They consider the GHG concentrations in the atmosphere for the simulation of 

global climate. Though GCMs are capable of providing credible simulations of climate 

at the global and continental scales, their coarse spatial resolution does not permit the 
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proper simulation of climate at the catchment scale. Hence the direct use of the coarse 

resolution GCM outputs in catchment scale studies is not feasible. Therefore in order to 

determine the catchment scale climate using the GCM outputs, either dynamic or 

statistical downscaling techniques are used. 

This study focused on investigating and providing potential solutions to the following 

issues associated with statistical downscaling; (1) non-homogeneity in inputs used in the 

development (calibration and validation) and future projection phases of statistical 

downscaling models (SDMs), (2) propagation of bias in GCM outputs to the outputs of 

SDMs, (3) varying nature of climate projections produced by SDMs depending on the 

GCM used for providing inputs, (4) complexity of multi-station and multivariate SDMs, 

and (5) use of linear regression and non-linear regression techniques in SDMs. 

The above aims of this study were demonstrated through a case study in the operational 

area of the Grampians Wimmera Mallee Water Corporation (GWMWater) in north-

western Victoria, Australia. This study area contains a large scale multi-reservoir water 

supply system which supplies water to domestic, industrial, agricultural and 

environmental purposes. Hence the analysis of the impacts of changing climate on the 

water resources in this study area was identified as a timely need. In this study, 17 

weather observation stations located within the operational area of GWMWater were 

considered. All SDMs detailed in this study were developed at monthly time steps. The 

monthly hydroclimatic data are helpful from the agricultural and water management 

point of view, especially in relation to water resources planning activities. 

Conventionally SDMs are developed using some form of reanalysis outputs as inputs, 

and then the outputs from GCMs are used for the projection of catchment scale climate 

into future. Since reanalysis outputs and GCM outputs are derived from two different 

sources with different degrees of accuracy, inputs to the SDM in the development and 

projection phases are not homogeneous. As a potential solution to the above issue of 

non-homogeneity in inputs, a SDM was developed (calibrated and validated) in this 

study for monthly precipitation at an observation station (in the study area) using the 
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20th century climate experiment outputs of HadCM3 GCM. It was developed in view of 

using the outputs of HadCM3 pertaining to the future for producing catchment scale 

precipitation projections into the future. The performances of this downscaling model in 

its development phase were compared with those of a downscaling model developed in 

the conventional manner using NCEP/NCAR reanalysis outputs. Despite the advantage 

of using homogeneous sets of inputs for both development and future projections, the 

downscaling model developed with HadCM3 outputs displayed limited performances in 

the development phase in comparison to its counterpart model developed with 

reanalysis outputs. However, it was found that the precipitation output of the 

downscaling model developed with HadCM3 outputs were in better agreement with 

observations in comparison to the agreement between the raw precipitation output of 

HadCM3 and observations. The poor agreement between the raw precipitation output of 

HadCM3 and observations indicated the presence of large bias in GCM outputs. Hence 

the need of a correction to GCM bias was realised. 

Due to assumptions and approximations used in GCMs, their outputs contain bias, and 

this bias propagates into the outputs of SDMs. In order to address the GCM bias, 

various bias-correction techniques have been used in the past. In this study, three 

different bias-correction techniques; (1) equidistant quantile mapping, (2) nested bias-

correction, and (3) monthly bias-correction were applied to the monthly precipitation 

outputs of a SDM. For the analysis of the performances of the above three bias-

correction techniques, the SDM which was developed in the previous study with 

NCEP/NCAR reanalysis outputs was run with the 20th century climate experiment 

outputs of HadCM3, for the reproduction of past observed precipitation at the station of 

interest. Then each of the above bias-correction techniques was applied to the 

precipitation reproduced by that SDM, considering the observed precipitation as the 

reference. Following a comparison of performances between the above three bias-

correction techniques, it was found that equidistant quantile mapping outperformed the 

other two techniques. 
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Owing to differences in the internal structures, even for the same GHG emission 

scenario different GCMs tend to simulate future climate differently. Therefore when 

projections of different GCM are used in a SDM, it also tends to produce projections of 

catchment scale climate which vary with the GCM. As the catchment scale climate 

projections produced by the SDM into future varies with the GCM, decision making in 

the management of water resources becomes difficult. Therefore there is a need for 

deriving a single climate projection at the catchment scale from the different climate 

projections produced by a set of GCMs. As a potential solution to the issue of having 

multiple climate projections at the catchment scale, a SDM for monthly precipitation 

was developed in this study with a set of outputs derived from the outputs of different 

GCMs. The set of outputs derived from the outputs of different GCMs is called the 

multi-model ensemble (MME) outputs. These MME outputs for the past and future 

climate were derived from the outputs of three GCMs; HadCM3, ECHAM5 and 

GFDL2.0. The above three GCMs were selected for this investigation as in the past 

literature, it was stated that they are capable of simulating the precipitation over 

Australia and El Niño-Southern Oscillation (ENSO) with a good degree of accuracy. As 

the first step, the regression relationships between the NCEP/NCAR reanalysis outputs 

and the 20th century climate experiment outputs of HadCM3, ECHAM5 and GFDL2.0 

for each calendar month were determined using the multi-linear regression (MLR) 

technique. These MME outputs (values generated from the above MLR relationships) 

pertaining to the past climate were used for the calibration and the validation of the 

SDM. Then the outputs of HadCM3, ECHAM5 and GFDL2.0 corresponding to the 

future climate were introduced to the MLR relationships. This process yielded a set of 

MME outputs pertaining to the future climate. These MME outputs for future were used 

on the SDM for the projection of monthly precipitation into future at the station of 

interest. Furthermore, since the inputs to this SDM were derived from the same three 

GCMs throughout its development and future projection phases, this MME approach 

allowed the use of homogeneous inputs to the SDM. 

 

When a statistical downscaling exercise is performed for a certain predictand over 

number of stations in a study area, it is important to preserve the cross-correlation 
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structure among the stations. The preservation of the cross-correlation structure among 

the stations (for a predictand) enables the plausible representation of spatial variation of 

the predictand of interest. However, the majority of the currently used multi-station 

downscaling techniques capable of preserving the cross-correlation structure among the 

stations for a predictand of interest are complex. In this study, a relatively simple yet 

effective multi-station downscaling methodology was developed. As the first step, 

cross-correlation coefficients between the 17 stations located in the study area were 

computed for monthly precipitation, evaporation, minimum temperature and maximum 

temperature using the observations, considering each predictand at a time. Then for each 

predictand, the station which displayed the highest number of high correlations 

(magnitude above 0.80 at p ≤ 0.05) with the other stations was selected as the first key 

station. The stations which showed high correlations with the first key station were 

considered as the member stations of the first cluster. The same procedure was repeated 

until all stations were classified into clusters (each governed by a key station). Then 

using the observations, for each predictand, linear regression relationships between the 

key station and the member stations of each cluster were determined for each calendar 

month. Thereafter, for each key station, SDMs were developed for each predictand. 

Then by using the outputs of these SDMs on the above linear regression relationships, 

the values of each predictand at all member stations were determined for the past and 

the future climate. This multi-station downscaling methodology was able to downscale 

GCM outputs to monthly precipitation, evaporation, minimum temperature and 

maximum temperature at multiple stations effectively while preserving the cross-

correlation structures among the stations for each individual predictand. However this 

methodology could only be applied to one predictand at a time. Hence this multi-station 

downscaling methodology was upgraded to a multi-station multivariate downscaling 

approach which can downscale GCM outputs to multiple predictands at multiple 

stations concurrently. 

 

In this multi-station multivariate downscaling approach, the predictands which are 

highly correlated (magnitude above 0.80 at p ≤ 0.05) with other predictands of interest 

at each individual observation station in a group observation stations was determined. 
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These predictands were called the key predictands. In this investigation, three 

predictands; monthly evaporation, minimum temperature and maximum temperature at 

5 of the 17 observation stations were considered for the demonstration of the 

methodology. It was found that, the maximum temperature was highly correlated with 

evaporation and minimum temperature at each individual station. Hence the maximum 

temperature was identified as the only key predictand. One station at which the 

maximum temperature showed high correlations with all three predictands at all 

observation stations was identified as the only key station. Then using the observations, 

linear regression relationships between the key predictand at the key station and 

evaporation, minimum temperature and maximum temperature at all stations were 

determined. A SDM for maximum temperature at the key station was developed and by 

introducing the outputs of a GCM (pertaining to future) to this SDM, projections of the 

maximum temperature were produced into future. Then by introducing the outputs of 

the SDM to the above linear regression relationships the projections of evaporation, 

minimum temperature and maximum temperature at all stations were determined. In 

this multi-station multivariate downscaling approach, the cross-correlation structures 

between the stations for each individual predictand and also the cross-correlation 

structures among different predictands at each individual station were preserved. It was 

found that the multi-station multivariate downscaling approach developed in this study 

was effective in downscaling GCM outputs to multiple predictands at multiple stations 

concurrently. 

 

Both linear and non-linear regression techniques are widely used in statistical 

downscaling studies. In this study, two statistical downscaling models were developed 

using the MLR (a linear regression technique) and the least square support vector 

machine regression (LS-SVM - a non-linear regression technique) for downscaling 

NCEP/NCAR reanalysis outputs to monthly streamflows. In the comparison of 

performances, it was found that LS-SVM is marginally better than MLR in downscaling 

reanalysis outputs to streamflows. 
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7.2 Conclusions 

The following conclusions were drawn from this study; 

1. In a statistical downscaling exercise, consideration of the statistical significance 

and the consistency of the correlations between the predictors and the predictand 

of interest over time is a potential way to select a robust set of predictors for a 

downscaling model. In other words, the predictors which show correlations with 

fluctuations in the signs (positive to negative or vice versa) or largely varying 

magnitudes over time (one time slice to another) can be omitted, as these are 

indications of inconsistent relationships with the predictand. 

 

2. In statistical downscaling, principal component (PC) analysis is used for 

extracting the variance present in a large set of predictors to a limited number of 

PCs (linear combinations of predictors). Then these PCs are used as inputs to 

statistical downscaling models. In such an exercise, the coefficients of the PCs 

extracted from the predictor data pertaining to the model calibration phase are 

used for the generation of PCs in the validation and future projection phases. 

When this is done some of the PCs in the validation or future projection phases 

can become markedly correlated with each other, leading to poor performances 

in the validation and future projection phases. Hence PC analysis in statistical 

downscaling studies should be performed cautiously. 

 

3. There is a large quality mismatch (bias) between the 20th century climate 

experiment outputs of GCMs and NCEP/NCAR reanalysis outputs. Hence, it 

was understood that a correction to GCM bias is necessary. 

 

4. When the bias in the GCM outputs are large, the bias-correction of each 

individual GCM output against the corresponding reanalysis outputs and using 

them in a statistical downscaling model is not better than using the same set of 

GCM outputs (without bias correction) on a downscaling model and applying 

the bias-correction to the output of that downscaling model against observations. 
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The application of a bias-correction to the output of a downscaling model is 

computationally much cheaper than the application of the same bias-correction 

to each individual GCM output used for the development of a downscaling 

model. 

 

5. When the bias in the outputs of a statistical downscaling model is large, 

equidistant quantile mapping, monthly bias-correction and nested bias-

correction techniques cannot reduce the scatter of the predictand. In other words, 

following the bias-correction the improvement to the time series of the 

predictand was minimal. 

 

6. The equidistant quantile mapping technique was identified as the most suitable 

bias-correction technique, employed in this study, as this method was capable of 

correcting the cumulative distribution of the predictand downscaled using GCM 

outputs. 

 

7. A downscaling model developed with multi-model ensemble outputs derived 

from the 20th century climate experiment outputs of a set of GCMs, showed 

limited performances in comparison a downscaling model developed using the 

NCEP/NCAR reanalysis outputs. Nevertheless, the multi-model ensemble 

approach used in the former downscaling model enabled the use of 

homogeneous sets of inputs to the downscaling model in its development and 

future projection phases and also provided a potential way for combining the 

outputs of different GCMs into single prediction. 

 

8. In the development phases, downscaling models for monthly evaporation, 

minimum temperature and maximum temperature showed very limited scatter 

compared to that of monthly precipitation. It was realised that downscaling 

GCM outputs to precipitation is associated with limited accuracy in comparison 

to that of evaporation, minimum temperature and maximum temperature. 
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9. The key station approach (multi-station downscaling methodology) and the key 

predictand and key station approach (multi-station multi-predictand downscaling 

methodology) developed in this study were effective and capable of reducing 

computational costs associated with downscaling multiple predictands at 

multiple stations. Also the former downscaling approach is capable of 

preserving the cross-correlation structures among the observation stations for a 

predictand of interest and the latter downscaling approach is capable of 

preserving the cross-correlation structures among the observation stations for 

each predictand of interest also between the predictands at individual stations. 

 

7.3 Recommendations for Future Work 

1. Study of potential improvements to the model developed in this study for 

directly downscaling reanalysis outputs to monthly streamflows is considered as 

a useful investigation in future. Since precipitation and evaporation are highly 

influential on the streamflows, inclusion of them as predictors in the streamflow 

downscaling model is seen as a way for improving the streamflow predictions. 

 

2. The key station approach detailed in this thesis was demonstrated only for 

precipitation, evaporation and temperature considering each predictand at a time. 

This multi-station downscaling approach can also be applied to the network of 

streamflow stations located within this study area. The application of key station 

approach to streamflow stations aids the preservation of cross-correlations 

among the streamflow stations and also it can reduce the computational cost. 

 

3. The simulation of streamflows using the precipitation, evaporation and 

temperature produced by the downscaling models developed in this study is also 

seen as another useful piece of future work. For this purpose, regression 

relationships between precipitation, evaporation and temperature with 



Chapter 7: Summary, Conclusion and Recommendations for Future Work 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 314 

streamflows can be determined. Then the projections of precipitation, 

evaporation and temperature produced by the downscaling models into future 

can be used in those regression relationships for the determination of 

streamflows pertaining to future climate. 

 

4. Also the use of a simple water balance model for the determination of 

streamflows using precipitation and evaporation produced by the downscaling 

models is seen as another potential investigation in future. 



Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 315  

 

REFERENCES 

 

Note that following are the references cited within the body text of this thesis in 

Chapters 1 and 2. References cited within the journal papers included in this thesis are 

found at the end of each journal paper. 

 

Anandhi A, Srinivas VV, Nanjundiah RS, Kumar DN. 2008. Downscaling precipitation 

to river basin in India for IPCC SRES scenarios using support vector machine. 

International Journal of Climatology 28: 401-420. DOI: 10.1002/joc.1529. 

 

Baigorria GA, Jones JW. 2010. GiST: A stochastic model for generating spatially and 

temporally correlated daily rainfall data. Journal of Climate 23: 5990-6008. DOI: 

10.1175/2010JCLI3537.1. 

 

Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. 2008. Climate change and water. 

Technical paper VI of the Intergovernmental Panel on Climate Change, IPCC 

Secretariat, Geneva, Switzerland. 

 

Bjerknes V. 1904. Das Problem der Wettervorhersage, betrachtet vom Standpunkte der 

Mechanik und der Physik (The problem of weather prediction, considered from the 

viewpoints of mechanics and physics) – Meteorolgische Zeitschrift 21: 1-7. (Translated 

and edited in 2009 by Volken E, Bronnimann in Meteorolgische Zeitschrift 18: 663-

667. DOI: 10.1127/0941-2948/2009/416). 

 

Bureau of Meteorology. 2010. Australian climate influences. Available online at 

http://www.bom.gov.au/watl/about-weather-and-climate/australian-climate-

influences.shtml. (Accessed 25th September 2012). 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 316  

 

Bureau of Meteorology. 2013. Climate classification of Australia. Available online at 

http://www.bom.gov.au/climate/environ/other/kpn.jpg. (Accessed 20th February 2013) 

 

Cai W, Cowan T. 2008. Evidence of impacts from rising temperature on inflows to the 

Murray-Darling Basin. Geophysical Research Letters 35: L07701, DOI: 

10.1029/2008GL033390. 

 

Cannon AJ, Whitfield PH, Lord ER. 2002. Synoptic map-pattern classification using 

recursive partitioning and principal component analysis. Monthly Weather Review 130: 

1187–1206. DOI: 10.1175/1520-0493(2002)130<1187:SMPCUR>2.0.CO;2. 

 

Cassano EN, Lynch AH, Cassano JJ, Koslow MR. 2006. Classification of synoptic 

patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. 

Climate Researchearch 30: 83–97. DOI: 10.3354/cr030083. 

 

Charles SP, Bates BC, Smith IN, Hughes JP. 2004. Statistical downscaling of daily 

precipitation from observed and modelled atmospheric fields. Hydrological Processes 

18: 1373–1394. DOI: 10.1002/hyp.1418. 

 

Chen TS, Yu PS, Tang YH. 2010. Statistical downscaling of daily precipitation using 

support vector machines and multivariate analysis. Journal of Hydrology 385: 13–22. 

DOI: 10.1016/j.jhydrol.2010.01.021 

 

Cheng CS, Li G, Li Q, Auld H. 2011. A synoptic weather-typing approach to project 

future daily rainfall and extremes at local scale in Ontario, Canada. Journal of Climate 

24: 3667-3685. DOI: 10.1175/2011JCLI3764.1. 

 

Chiew FHS, Young WJ, Cai W, Teng J. 2010. Current drought and future hydroclimate 

projections in southeast Australia and implications for water resources management. 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 317  

Stochastic Environmental Research and Risk Assessment 25: 602-612. 

DOI:10.1007/s00477-010-0424-x. 

 

Chiew FHS. 2007. Estimation of rainfall elasticity of streamflow in Australia. 

Hydrological Sciences Journal 51: 613–625. DOI: 10.1623/hysj.51.4.613. 

 

Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2007. 

Climate change in Australia: Technical report 2007. Commonwealth Scientific and 

Industrial Research Organisation, Canberra; Australia. 

 

Crowley TJ. 2000. Causes of climate change over the past 1000 years. Science 289: 

270-277. DOI: 10.1126/science.289.5477.270. 

 

Denis B, Laprise R, Cay D, Côté J. 2002. Downscaling ability of one-way nested 

regional climate models: The Big-Brother experiment. Climate Dynamics 18: 627-646. 

DOI: 10.1007/s00382-001-0201-0. 

 

Department of Environment and Primary Industries. 2013a. Victorian resources online 

– Mallee. Available online at 

http://vro.dpi.vic.gov.au/dpi/vro/malregn.nsf/pages/mallee_soil_index. (Accessed 26th 

July 2013). 

 

Department of Environment and Primary Industries. 2013b. Victorian resources online 

– Wimmera. Available online at 

http://vro.dpi.vic.gov.au/dpi/vro/wimregn.nsf/pages/natres_soilwimm. (Accessed 26th 

July 2013). 

 

Department of Planning and Community Development. 2012. The Wimmera plains. 

Available online at http://www.dpcd.vic.gov.au/__data/assets/pdf_file/0007/113587/05-

Wimmera-Plains-DRAFT120810.pdf. (Accessed 08th August 2013). 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 318  

D'onofrio A, Boulanger JP, Segura EC. 2010. CHAC: A weather pattern classification 

system for regional climate downscaling of daily precipitation. Climatic Change 98: 

405-427. DOI: 10.1007/s10584-009-9738-4. 

 

Earth System Research Laboratory. 2013. Trends in atmospheric Carbon Dioxide. 

Available online at http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (Accessed 

20th June 2013). 

 

Ferreira C. 2006. Gene expression programming: Mathematical modelling by an 

artificial intelligence. 2nd edition, Springer-Verlag, Germany. 480pp 

 

Fowler HJ, Blenkinsop S, Tebaldi C. 2007. Linking climate change modelling to 

impacts studies: recent advances in downscaling techniques for hydrological modelling. 

International Journal of Climatology 27: 1547–1578. DOI: 10.1002/joc.1556. 

 

Frakes B. Yarnal B. 1997. A procedure for blending manual and correlation-based 

synoptic classifications. International Journal of Climatology 17: 1381–1396. DOI: 

10.1002/(SICI)1097-0088(19971115)17:13<1381::AID-JOC204>3.0.CO;2-Q. 

 

Ghosh S, Katkar S. 2012. Modeling uncertainty resulting from multiple downscaling 

methods in assessing hydrological impacts of climate change. Water Resources 

Management 26: 3559-3579. DOI: 10.1007/s11269-012-0090-5. 

 

Goyal MK, Ojha CSP. 2012.Downscaling of surface temperature for lake catchment in 

an arid region in India using linear multiple regression and neural networks. 

International Journal of Climatology 32: 552-566. DOI: 10.1002/joc.2286. 

 

Grampians Wimmera Mallee Water Corporation (GWMWater). 2011a. GWMWater 

sustainability report 2010 – 2011. Available online at 

http://www.gwmwater.org.au/information/publications/reports-and-



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 319  

policies/doc_download/1415-sustainability-report-201011. (Accessed 10th August 

2013). 

 

Grampians Wimmera Mallee Water Corporation (GWMWater). 2011b. Storage 

management rules for the Wimmera-Mallee system headworks. Available online at 

http://www.gwmwater.org.au/information/publications/ground-and-surface-water/west-

wimmera-gma/cat_view/163-reservoir-operating-rules. (Accessed 10th August 2013). 

 

Haas R, Pinto JG. 2012. A combined statistical and dynamical approach for 

downscaling large-scale footprints of European windstorms. Geophysical Research 

Letters 39: L23804. DOI: 10.1029/2012GL054014. 

 

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M. 2008. A 

European daily high-resolution gridded dataset of surface temperature and precipitation. 

Journal of Geophysical Research 113: D20119. DOI: 10.1029/2008JD10201. 

 

Hess P, Brezowsky H. 1977. Katalog der GroBwetterlagen Europas (1881-1976) 

(Catalogue of European circulation patterns (1881-1976), in German). 

 

Hessami M, Gachon P, Ouarda TBMJ, St-Hilaire A. 2008. Automated regression-based 

statistical downscaling tool. Environmental Modelling and Software 23: 813-834. DOI: 

10.1016/j.envsoft.2007.10.004. 

 

Hughes JP, Guttorp P. 1994. A class of stochastic models for relating synoptic 

atmospheric patterns to regional hydrologic phenomena. Water Resources Research 30: 

1535–1546. DOI: 10.1029/93WR02983. 

 

Hughes L. 2003. Climate change and Australia: trends, projections and impacts. Austral 

Ecology 28: 423-443. DOI: 10.1046/j.1442-9993.2003.01300.x. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 320  

Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý J, Tveito 

OE. 2008. Classifications of atmospheric circulation patterns. Annals of the New York 

Academy of Sciences 1146: 105–152. DOI: 10.1196/annals.1446.019. 

 

Isbell RF. 2002. The Australian soil classification. Australian soil and land survey 

handbooks series 4, Revised edition, CSIRO Publishing, Australia. 152 pp. 

 

James PM. 2007. An objective classification method for Hess and Brezowsky 

Grosswetterlagen over Europe. Theoretical and Applied Climatology 88: 17–42. DOI: 

10.1007/s00704-006-0239-3. 

 

Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P. 2013. A multi-site statistical 

downscaling model for daily precipitation using global scale GCM precipitation 

outputs. International Journal of Climatology 33: 2431–2447. DOI: 10.1002/joc.3598. 

 

Jones RG, Murphy JM, Noguer M. 1995. Simulation of climate-change over Europe 

using a nested regional-climate model 1: Assessment of control climate, including 

sensitivity to location of lateral boundaries. Quarterly Journal of the Royal 

Meteorological Society 121: 1413–1449. DOI: 10.1002/qj.49712152610. 

 

Joshi D, St-Hilaire A, Daigle A, Ouarda TBMJ. 2013. Databased comparison of Sparse 

Bayesian Learning and Multiple Linear Regression for statistical downscaling of low 

flow indices. Journal of Hydrology. Article in press. DOI: 

10.1016/j.jhydrol.2013.02.040. 

 

Kalkstein LS, Nichols MC, Barthel CD, Greene JS. 1996. A new spatial synoptic 

classification: application to air-mass analysis. International Journal of Climatology 16: 

983–1004. DOI: 10.1002/(SICI)1097-0088(199609)16:9<983::AID-JOC61>3.0.CO;2-

N. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 321  

Kalkstein LS, Tan G, Skindlov JA. 1987. An evaluation of three clustering procedures 

for use in synoptic climatological classification. Journal of Applied Meteorology 26: 

717–730. DOI: 10.1175/1520-0450(1987)026<0717:AEOTCP>2.0.CO;2. 

 

Khalili M, Brissette F, Leconte R. 2007. Stochastic multi-site generation of daily 

precipitation data using spatial autocorrelation. Journal of Hydrometeorology 8: 396-

412. DOI: 10.1175/JHM588.1. 

 

Kou X, Ge J, Wang Y, Zhang C. 2007. Validation of the weather generator CLIGEN 

with daily precipitation data from the Loess Plateau, China. Journal of Hydrology 347: 

347-357. DOI: 10.1016/j.jhydrol.2007.09.051. 

 

Kreienkamp F, Spekat A, Enke W. 2013. The weather generator used in the empirical 

statistical downscaling method, WETTREG. Atmosphere 4: 169-197. DOI: 

10.3390/atmos4020169. 

 

Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Sen Z, 

Shiklomanov I. 2008. The implications of projected climate change for freshwater 

resources and their management. Hydrological Sciences Journal 53: 3-10. DOI: 

10.1623/hysj.53.1.3. 

 

Kunkel KE, Karl TR, Easterling DR, Redmond K, Young J, Yin X, Hennon P. 2013. 

Probable maximum precipitation and climate change. Geophysical Research Letters 40: 

1402-1408. DOI:10.1002/grl.50334. 

 

Lamb HH. 1972. British Isles weather types and a register of daily sequence of 

circulation patterns, 1861-1971. Her Majesty's stationery office, London, UK. 85pp. 

 

Lund IA. 1963. Map-pattern classification by statistical methods. Journal of Applied 

Meteorology 2: 56–65. DOI: 10.1175/1520-0450(1963)002<0056:MPCBSM>2.0.CO;2. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 322  

Lynch P. 2008. The origins of computer weather prediction and climate modeling. 

Journal of Computational Physics 227: 3431–3444. DOI: 10.1016/j.jcp.2007.02.034. 

 

Mala-Jetmarova H, Barton A, Briggs S. 2013. Securing water supply in western 

Victoria through the implementation of regional pipeline systems. In: Graymore M, 

McRae-Williams P, Barton A, Lehmann L. (Eds), Pipes, ponds and people: Adaptive 

water management in drylands. VURRN Press, Mt Helen, Victoria, 43-76. 

 

Malby AR, Whyatt JD, Timmis RJ, Wilby RL, Orr HG. 2007. Long-term variations in 

orographic rainfall: analysis and implications for upland catchments. Hydrological 

Sciences Journal 52: 276–291. DOI: 10.1623/hysj.52.2.276. 

 

Mallee Catchment Management Authority. 2012. Annual report 2011 – 2012. Available 

online at http://www.malleecma.vic.gov.au/resources/corporate-documents/ar-2011-12-

final.pdf/at_download/file (Accessed 8th August 2013). 

 

Maraun D, Wetterhall F, Ireson, AM, Chandler RE, Kendon EJ, Widmann M, Brienen 

S, Rust HW, Sauter T, Themel M, Venema VKC, Chun KP, Goodess CM, Jones RG, 

Onof C, Vrac M, Thiele-Eich I. 2010. Precipitation downscaling under climate change: 

Recent developments to bridge the gap between dynamical models and the end user. 

Reviews of Geophysics 48: DOI: 10.1029/2009RG000314. 

 

McRobert J, Larsen C. 2011. Climate variability and land management practices. 

Available online at http://www.malleecma.vic.gov.au/resources/reports/final-report-

mcma.pdf/at_download/file. (Accessed 18th August 2013). 

 

Mearns LO, Giorgi F, Whetton P, Pabon D, Hulme M, Lal M. 2003. Guidelines for use 

of climate scenarios developed from Regional Climate Model experiments. Available 

online at http://www.ipcc-data.org/guidelines/dgm_no1_v1_10-2003.pdf. (Accessed 5th 

August 2013). 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 323  

Meenu R, Rehana S, Mujumdar PP. 2013. Assessment of hydrologic impacts of climate 

change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrological 

Processes 27: 1572-1589. DOI: 10.1002/hyp.9220. 

 

Mehrotra R, Srikanthan R, Sharma A. 2006. A comparison of three stochastic multi-site 

precipitation occurrence generators. Journal of Hydrology 331: 280-292. DOI: 

10.1016/j.jhydrol.2006.05.016. 

 

Murphy J. 1998. An evaluation of statistical and dynamical techniques for downscaling 

local climate. Journal of Climate 12: 2256-2284. DOI: 10.1175/1520-

0442(1999)012<2256:AEOSAD>2.0.CO;2. 

 

Murray-Darling Basin Authority. 2010. Guide to the proposed basin plan: Technical 

background Part II. Available online at 

http://www.mdba.gov.au/sites/default/files/archived/Wimmera-Avoca-region.pdf. 

(Accessed 5th August 2013). 

 

Nasseri M, Tavakol-Davani H, Zahraie B. 2013. Performance assessment of different 

data mining methods in statistical downscaling of daily precipitation. Journal of 

Hydrology 492: 1-14. DOI: 10.1016/j.jhydrol.2013.04.017. 

 

Nicholls N, Collins D. 2006. Observed climate change in Australia over the past 

century. Energy and Environment 17: 1-12. DOI: 10.1260/095830506776318804. 

 

Panitz HJ, Fosser G, Sasse R, Sehlinger A, Feldmann H, Schädler G. 2013. Modelling 

near future regional climate change for Germany and Africa. In: Nagel WE, Kröner DH, 

Resch MM. (Eds.), High performance computing in science and engineering ‘12. 

Springer Berlin Heidelberg, 390 pp. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 324  

Phillips NA. 1956. The general circulation of the atmosphere: a numerical experiment. 

Quarterly Journal of the Royal Meteorological Society 82: 123–164. DOI: 

10.1002/qj.49708235202. 

 

Piani C, Haerter JO, Coppola E. 2010. Statistical bias correction for daily precipitation 

in regional climate models over Europe. Theoretical and Applied Climatology 99: 187-

192. DOI: 10.1007/s00704-009-0134-9. 

 

Qian JH, Zubair L. 2010. The effect of grid spacing and domain size on the quality of 

ensemble regional climate downscaling over South Asia during the north-easterly 

monsoon. Monthly Weather Review 138: 2780-2802. DOI: 10.1175/2010MWR3191.1. 

 

Richardson CW. 1981. Stochastic simulation of daily precipitation, temperature, and 

solar radiation. Water Resources Research 17: 182-190. DOI: 

10.1029/WR017i001p00182. 

 

Richardson LF. 1922. Weather prediction by numerical process. Cambridge University 

Press, Cambridge, UK. 236 pp. 

 

Rojas M. 2006. Multiply nested regional climate simulation for Southern America: 

Sensitivity to model resolution. Monthly Weather Review 134: 2208–2223. DOI: 

10.1175/MWR3167.1. 

 

Rowan JN, Downes RG. 1963. A study of the land in North-Western Victoria. Soil 

Conservation Authority, Technical Communication No. 2, Victoria. 

 

Rummukainen M. 2010. State-of-the-art with regional climate models. Wiley 

Interdisciplinary Reviews: Climate Change 1: 82–96. DOI: 10.1002/wcc.8. 

 

Sachindra DA, Huang F, Barton AF, Perera BJC. 2013a. Least square support vector 

and multi-linear regression for statistically downscaling general circulation model 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 325  

outputs to catchment streamflows. International Journal of Climatology 33: 1087-1106. 

DOI: 10.1002/joc.3493. 

 

Sachindra DA, Huang F, Barton AF, Perera BJC. 2014a. Statistical downscaling of 

general circulation model outputs to precipitation Part 1: Calibration and validation. 

International Journal of Climatology. (Article in press). DOI: 10.1002/joc.3914. 

 

Sheridan SC. 2002. The redevelopment of a weather-type classification scheme for 

North America. International Journal of Climatology 22: 51-68. DOI: 10.1002/joc.709. 

 

Smith IN, McIntosh P, Ansell TJ, Reason CJC, McInnes K. 2000. Southwest Western 

Australian winter rainfall and its association with Indian Ocean climate variability. 

International Journal of Climatology 20: 1913-1930.DOI:10.1002/1097-

0088(200012)20:15<1913::AID-JOC594>3.0.CO;2-J. 

 

Srikanthan R, Pegram GGS. 2009. A nested multisite daily rainfall stochastic generation 

model. Journal of Hydrology 371: 142-153. DOI: 10.1016/j.jhydrol.2009.03.025. 

 

Tabachnick BG, Fidell LS. 2007. Using multivariate statistics. Pearson Publishers, 

Boston. pp980. 

 

Timbal B. 2009. The continuing decline in South-East Australian rainfall - Update to 

May 2009. Available online at 

http://www.cawcr.gov.au/publications/researchletters.php. (Accessed 15th August 

2013). 

 

Tisseuil C, Vrac M, Lek S, Wade AJ. 2010. Statistical downscaling of river flows. 

Journal of Hydrology 385: 279–291. DOI: 10.1016/j.jhydrol.2010.02.030. 

 

Trenberth KE, Fasullo JT, Kiehl J. 2009. Earth's global energy budget. Bulletin of the 

American Meteorological Society 90: 311–323. DOI: 10.1175/2008BAMS2634.1. 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 326  

 

Tribbia JJ, Anthes RA. 1987. Scientific basis of modern weather prediction. Science 

237: 493-499. DOI: 10.1126/science.237.4814.493. 

 

Tripathi S, Srinivas VV, Nanjundiah RS. 2006. Downscaling of precipitation for climate 

change scenarios: a support vector machine approach. Journal of Hydrology 330: 621-

640. DOI:10.1016/j.jhydrol.2006.04.030. 

 

Tripati AK, Roberts CD, Eagle RA. 2009. Coupling of CO2 and ice sheet stability over 

major climate transitions of the last 20 million years. Science 326: 1394-1397. DOI: 

10.1126/science.1178296. 

 

Vasiliades L, Loukas A, Patsonas G. 2009. Evaluation of a statistical downscaling 

procedure for the estimation of climate change impacts on droughts. Natural Hazards 

and Earth System Sciences 9: 879-894. DOI: 10.5194/nhess-9-879-2009. 

 

Victorian Government Department of Sustainability and Environment. 2008. Climate 

Change in Victoria Summary Report. Available online at 

http://www.climatechange.vic.gov.au/publications. (Accessed on 28th July 2013). 

 

von Storch H, Hewitson B, Mearns L. 2000. Review of empirical downscaling 

techniques. Proceedings of RegClim spring meeting, 8 - 9 May 2000, Jevnaker, Norway. 

Available online at http://regclim.met.no/rapport_4/Default.htm. (Accessed 1st October 

2012). 

 

Vorosmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden 

S, Bunn SE, Sullivan CA, Liermann CR, Davies PM. 2010. Global threats to human 

water security and river biodiversity. Nature 467: 555–561. DOI: 10.1038/nature09440. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 327  

Wallis P, Birrell R, Griggs D, Healy E, Langford J, Stanley J. 2009. Melbourne’s water 

situation: the opportunity for diverse solutions. Monash Sustainability Institute Report 

09/2, Melbourne. 

 

Water in Drylands Collaborative Research Program. 2009. Driving water futures: The 

use of an interactive visualisation tool for community water allocation engagement. 

WIDCORP Report 03/09, Horsham. 

 

White M, Oates A, Barlow T, Pelikan M, Brown J, Rosengren N, Cheal D, Sinclair S, 

Sutter G. 2003. The vegetation of north-west Victoria A report to the Wimmera, North 

Central and Mallee Catchment Management Authorities. 460 pp 

 

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. Guidelines 

for use of climate scenarios developed from statistical downscaling methods, supporting 

material to the IPCC. Available online at http://www.ipcc-data.org/. 3-21. (Accessed 

28th January 2012). 

 

Wilby RL, Dawson CW. 2012. The Statistical DownScaling Model: insights from one 

decade of application. International Journal of Climatology. Article in press. DOI: 

10.1002/joc.3544. 

 

Wilby RL, Fowler HJ. 2011. Regional climate modelling in modelling the impact of 

climate change on water resources. In: Fung F, Lopez A, New M. (Eds.), Modelling the 

impact of climate change on water resources. Wiley-Blackwell, Chichester, UK. 209 

pp. 

 

Wilby RL, Wigley TML. 1997. Downscaling general circulation model output: a review 

of methods and limitations. Progress in Physical Geography 21: 530-548. DOI: 

10.1177/030913339702100403. 

 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 328  

Wilby RL, Wigley TML. 2000 Precipitation predictors for downscaling: observed and 

general circulation model relationships. International Journal of Climatology 20: 641–

661. DOI: 10.1002/(SICI)1097-0088(200005)20:6<641::AID-JOC501>3.3.CO;2-T. 

 

Wilks DS, Wilby RL. 1999. The weather generation game: A review of stochastic 

weather models. Progress in Physical Geography 23: 329-357. DOI: 

10.1177/030913339902300302. 

 

Wilks DS. 1992. Adapting stochastic weather generation algorithms for climate change 

studies. Climatic Change 22: 67-84. DOI: 10.1007/BF00143. 

 

Wilks DS. 1992. Multisite generalization of a daily stochastic precipitation generation 

model. Journal of Hydrology 210: 178-191. DOI: 10.1016/S0022-1694(98)00186-3. 

 

Wilks DS. 1998. Multisite generalizations of a daily stochastic precipitation generation 

model. Journal of Hydrology 210: 178–91.DOI: 10.1016/S0022-1694(98)00186-3. 

 

Wilks DS. 1999. Simultaneous stochastic simulation of daily precipitation, temperature 

and solar radiation at multiple sites in complex terrain. Agricultural and Forest 

Meteorology 96: 85-101. DOI: 10.1016/S0168-1923(99)00037-4. 

 

Wilks DS. 2010. Use of stochastic weather generators for precipitation downscaling. 

Wiley Interdisciplinary Reviews. Climate Change 1: 898-907. DOI: 10.1002/wcc.85. 

 

Willems P, Vrac M. 2011. Statistical precipitation downscaling for small-scale 

hydrological impact investigations of climate change. Journal of Hydrology 402: 193-

205. DOI: 10.1016/j.jhydrol.2011.02.030. 

 

Yang T, Li H, Wang W, Xu CY, Yu Z. 2012. Statistical downscaling of extreme daily 

precipitation, evaporation, and temperature and construction of future scenarios. 

Hydrological Processes 26: 3510–3523. DOI: 10.1002/hyp.8427. 



References 

Sachindra, D.A: Catchment Scale Downscaling of Hydroclimatic Variables from General Circulation Model Outputs 329  

 

Yarnal B. 1993. Synoptic climatology in environmental analysis. Belhaven Press, 

London, UK. 192 pp. 

 

Yhang YB, Hong SY. 2008. Improved physical processes in a regional climate model 

and their impact on the simulated summer monsoon circulations over East Asia. Journal 

of Climate 21: 963-979. DOI: 10.1175/2007JCLI1694.1. 


	Binder1
	CH_1_PhD_Thesis.pdf
	CH_2_PhD_Thesis
	CH_3_PhD_Thesis
	CH_4_PhD_Thesis
	CH_5_PhD_Thesis
	CH_6_PhD_Thesis
	CH_7_PhD_Thesis
	Short_References_PhD_Thesis




