
VICTORIA ~
UNIVERSITY

%

z
0
...
0

Cl
...

DEPARTMENT OF COMPUTER AND
MATHEMATICAL SCIENCES

r

Parallel Implementation of
Digital Image Compression Based

on the JPEG Standard

Nalin K. Sharda (CMS, VUT)
Savitridevi G. Bevinakoppa (CSE, RMIT)

Hema Sharda (CSE, RMIT)

(32 COMP 6)
November 1993

TECHNICAL IIBPORT

VICTORIA UNIVERSITY OF TECHNOLOGY
(P 0 BOX 14428) MELBOURNE MAIL CENTRE

MELBOURNE, VICTORIA, 3000
AUSTRALIA

. TELEPHONE (03) 688 4249 I 4492
FACSIMILE (03) 688 4050

Footscray Campus

Parallel Implementation of Digital
Image Compression Based on the

JPEG Standard
N alin K. Sharda

nalin@matilda.vut.edu.au
Dept. of Computer and Mathematical Sciences

Victoria University of Technology,
PO Box 14428, MMC, Melbourne, VIC - 3000

AUSTRALIA

and

Savitridevi G. Bevinakoppa, Hema Sharda
m9116 l 8@tuan.hpc.citri.edu.au(Savitridevi)
Dept. of Computer Systems Engineering
Royal Melbourne Institute of Technology
GPO Box 2476V, Melbourne, VIC - 3001

AUSTRALIA

ABSTRACT: Digital image compression techniques are used to reduce the number of bits required to store
and transmit images. To achieve required data compression in real-time, parallel processing techniques must be
employed. Digital image compression techniques are increasingly being used for processing still and motion
pictures. JPEG standard is becoming prevalent for the compression of still images.

This paper will describe the implementation of JPEG algorithm on a Transputer based system. The JPEG
algorithm is programmed using Helios C in conjunction with the Component Distributed Language (CDL),
working under the Helios operating system. Mapping of JPEG algorithm on array topology will be discussed.
Performance of parallel implementation of the JPEG algorithm is described using Gantt chart. Speed up and
efficiency of the system are also discussed.

1. Introduction

Digitally compressed images are used in storage and transmission systems to economise on space
and time. Parallel processing techniques must be employed in order to perform image compression
in real-time. Joint Photographic Experts Group (JPEG) is an international organisation which has
developed digital image compression standard for continuous tone, still images. The JPEG standard
specifies two classes of encoding and decoding processes viz. lossy and lossless. Discrete Cosine
Transform (DCT) based mode of operation is specified for lossy compression and provides a
capability which is adequate for many applications. The purpose of this work is to study methods for
mapping the JPEG algorithm on a network of processors organized in an array topology.

The JPEG standard is described in section 2. Implementation of JPEG algorithm on a
transputer networks of two different sizes are described in sections 3.2a and 3.2b. Execution
schedule for the JPEG algorithm on different size networks are described with the help of Gantt
charts.

2. JPEG standard

Consultative Committee for International Telegraph and Telephone (CCITI) and International
Standard Organisation (ISO) have formed committees to develop image compression standards for
still and motion pictures. For the past few years the Joint Photographic Experts Group (JPEG)
standard group has been working towards establishing the first international digital image
compression standard for continuous-tone (multi level) still images; it includes both grayscale and
colour images [l]. The Motion Photographic Experts Group (MPEG) is working on developing
standard for motion pictures.

mailto:nalin@matilda.vut.edu.au

- 2 -

There are two basic compression methods in the JPEG standard: Discrete Cosine Transform
(DCT)-based method and predictive method [l]. OCT-based method of compression is widely used
as it is suitable for a large number of applications. It is expected that OCT-based techniques
developed for implementing the JPEG standard can be applied to the MPEG standard also.

2.1 JPEG algorithm

In the JPEG algorithm a source image consists of three colour components as shown in figure 1.
Each pixel of a colour component is called as a sample of the image. A block of 8X8 samples is
called one data unit A sequence of (3 to 10) data units is known as one Minimum Coded Unit
(MCU).

Samples

AG J Colour components

Figure 1: Source image

OCT-based method in JPEG standard involves Discrete Cosine Transform, quantisation and
encoding of an incoming image. The input image is divided into groups of rows. Each row group is
converted into a standard format and divided into a number of Minimum Coded Units. DCT,
quantisation and encoding is performed on each data unit. After encoding input image is transferred
into an output JPEG file.

Logical steps needed in lossy compression are given below.

1. Input image is divided into small groups and the division is performed row by row.

2. Each image group is converted into a standard internal format

3. Colour space conversion is performed, e.g. RGB to YCbCr. This is a null step for
grayscale images.

4. If required, an image group is expanded vertically and I or horizontally to fit a multiple of
MCUs.

5. Sub-sampling is performed on each image component, this leads to reduction of number of
samples in some colour components. This step operates independently on each colour
component. Sub-sampling of each sample is performed by taking average with respect to
neighbouring sampes.

6. Minimum Coded Units (MCU) are created by combining the required number of data units.

7. DCT, quantisation and Huffman encoding is performed on each data unit

8. Finally, encoded image is transferred to an output file with a header I marker.

- 3 -

3. Implementation of the JPEG algorithm on a transputer based system

Most of the current software implementation of the JPEG algorithm are in sequential form. In
a~mpting to perform JPEG data compression in real-time, parallel processing algorithms are being
tn~ on a transputer network. Array topology has been selected for this study. JPEG algorithm will
be unplemented on transputers in MIMD mode using Helios C in conjunction with the Component
Distrib!-lted Language (CDL), working under the Helios operating system. POSICs (Portable
Operating System Instruction Codes) library has been selected for communication between
transputers.

A few important terms which will be used later, are defined below.

1. Link usage:
2. Bottleneck:
3 . Mean inter-processor

distance:
4. Scalability:

5. Speedup (S):

6. Efficiency (E):

3.1 Helios operating system

Maximum number of the available links used in a network.
A link in the topology which carries a large volume of data traffic.
The average number of hops required to communicate between
pairs of processors in the network.
A measure of topology performance as the number of processing
elements is varied.
A measure of increased processing speed on a parallel processor.

Time taken by a task on a single processor Tserial
SN = -- = -----------

Time taken by a task on N processors T parallel

When a task is divided into sub-tasks which need to communicate
with each others, then the overall speedup is a function of the relative
times spent on computing and communicating.

A measure of how much each processor contributes to the speedup of
the parallel system.

~ = S I N Where S is the speedup, N is number of processors.

Helios is a distributed operating system developed by Perihelion Software Limited. Helios is
intended to run on a wide range of system configurations. A typical hardware configuration consists
from two to twenty processors in a tightly bound cluster. This could be either a purpose built system
or an upgraded workstation. Helios is capable of expanding into the available processors and of
sharing the workload amongst them. Such clusters may themselves be interconnected in a local area
network to allow the sharing of data and expensive devices such as high capacity discs and laser
printers [2].

Helios provides four levels of communication between processors. The lowest level is used in
the nucleus: PutMsg() and GetMsgO are the message passing primitives that provide the basis of all
Helios communication. The level above this is provided by system library functions Read() and
Write(). These calls operate on streams and have timeouts associated with each requested transaction.
At the next level are the POSICs readO and write() functions. Calls to the POSICs functions are
based on POSICs file descriptors. The highest level of communication is at the language level, which
depends upon the programming language used.

We have chosen POSICs level of communication to implement JPEG algorithm on transputer
network on the basis of the following factors.

1. This communication mechanisms ensures some degree of reliability and fault tolerant i.e.
it provides error detection and recovery from failure and there is a guarantee that
messages will arrive at their respective destinations.

2. It offers greater functionality than lower level libraries.

3. Most importantly, POSICs library can also be used on other parallel architecture, thereby
giving portable code.

- 4 -

In POSICs based communication inter-processor message transmission times over transputer
links are characterised by a relationship of the form [2]:

where
1total = toverhead + tinit + N.ttx = 1461.42 + N X 0.567 micro sec ------ {1}
1total = message transmission time
toverhead = loop overhead on each test iteration
~nit = message initialisation time
N = number of bytes in a message
1tx = transmission time for one byte

Component Distribution Language (CDL) is the language which facilitates parallel programming
under Helios. The purpose of CDL is to provide a high-level approach to parallel programming.

3.2 Implementation of JPEG algorithm on a transputer network

For implementing the JPEG algorithm array topology has been selected on the basis of the following
factors.

1 . Link usage: All four links of the transputer can be used, including the end
links in a torus topology.

2. Bottleneck: Bottlenecks can be minimised by using as many links as
possible for distributing the data over the network

3. Mean inter-processor distance: This distance is less in the array topology than in many other
one or two dimensional topologies.

Implementation of the JPEG algorithm is being tested on different size networks, to determine
scalability of the array topology for this problem. The data used to determine scalability is subject to
the following factors:

1. Programming under the Helios operating system.
2. Communication is performed by using the POSICs routines.
3. A 125 X 125 Portable Pixel Map (PPM) P6 format input image is used. This format

consists of three image components: RGB.
Therefore, the number of samples is = 125 X 125 X 3

3.2.a Implementation of JPEG algorithm on a three processors network

The task graphs of the JPEG algorithm for parallel implementation look like a regular tree structures.
Tree structures can be embedded in array structures quite easily. The next important question is how
many processors can be used effectively? The minimax problem of parallel computing states that if
we execute a job on only one machine then there is no communication overhead; at the same time we
cannot exploit parallel operations. On the other hand, if we distribute the problem on too many
processors the communication overhead can nullify the advantage of parallel processing.

Our aim is to determine the suitability of different sire array topology networks for the JPEG
algorithm. We will first describe a parallel implementation of the JPEG algorithm on a Transputer
network with three processors, followed by an implementation on seventeen processors. Speedup
(S) and efficiency (E) will be used as the main parameters to characterise the effectiveness of these
networks.

The JPEG algorithm can be implemented on a three processors in MIMD mode. The three
transputers are connected as shown in figure 2. JPEG algorithm is divided into four tasks as shown
in the task graph of figure 3. In this task graph each node represents a processing task. Inside each
node we write the processing task number (PTn) and the processing time t(PTn) of the task as the
pair: PTn, t(PTn). Arcs joining the nodes represent communication tasks. Alongside each arc we
write the communication task number (CTn) and the communication task time t(CTn) as the pair
CTn, t(CTn). All times are in milli-seconds (msec). The processor on which a task is executed is
specified adjacent to the task node in the task graph.

Processor-A

- 5 -

Main processor
Processor-M

Processor-B

Figure 2: Tree topology for a network of three transputers

Processor-B

Figure 3: Task graph for three processors

Functions performed by the processing and communication tasks are as follows:

Task number Function

PTl Main processor performs initial set up of input image and divides input image into
two parts.

CTI First part of the image, which consists of 125 X 64 X 3 samples, is transferred from
Processor-M to Processor-A.

Communication time for transferring 125 X 64 X 3 samples (from equation {1}).
= 1461.421142 X 10-3 + 0.567642 X (125 X 64 X 3) X 10-3 =15.084 msec.

CT2 Remaining samples (125 X 61X3) are transferred from Processor-M to Processor­
B in 14.446 msec.

PT2 &3 On processors A and B, JPEG algorithm steps 2 to 7 are performed (see section 2),
on each part of the image.

Execution time on Processors A and B for performing PT2 and Pf3 =1200 msec.
This value has been obtained by executing the tasks on a single transputer and
recording the time with the help of the system clock

CT3&4 After performing each task, encoded image is transferred back to the main processor.
For optimum quality the encoded image consists of four times less samples than in
the source image. Thus, encoded image comprises

125 X 64 X 3 / 4 = 125 X 16 X 3 samples

- 6 -

..
The communication time for transferring encoded image from Processors A and B to
the Processor-M = 4.949 msec. This value has been obtained from the equation { 1}.

PT4 Main processor collects encoded image from Processors A and B transfers it into an
output JPEG file with header/marker. Encoded samples are directly stored in the
JPEG output file on the main processor. Thus, execution time for task 4 is considered
to be zero.

The execution schedule of JPEG algorithm on a three processors is shown in the form of Gantt chart
in figure 4. A Gantt chart [3] essentially shows the scheduling of various tasks on the time axis.

T
a
s
k
s

0

PT4

CT4

(en
~~~~~~~PT3 

CT2 

PT2 

CTl 

PTl 

500 

I 

I I 

1000 1500 
Time in msec. 

Figure 4: Gantt chart for a three processor network 

From the Gantt chart of figure 4 we can clearly see the tasks that contribute to the total execution 
time. These tasks are shown with hash lines inside the bars representing the tasks. Other tasks 
overlap in execution and therefore do not contribute to this calculation. 

Total time taken by three processors = t(Pfl) + t(CTl) + t(CT2) + t(Pf3) + t(CT4) 

= 500 + 15.084 + 14.446 + 1200 + 4.949 + 0 

= 1734.929 msec. 

Time taken on a single processor = 500 + 1200 + 1200 + 0 = 2900 msec. 

Speed up of parallel processor S3 = 2900/ 1734.929 = 1.67 

Efficiency of parallel processor ~ = 1.67 / 3 = 0.557 



- 7 -

3.3b Implementation of JPEG algorithm on seventeen transputers 

The three transputer network is the smallest that can be utiliz.ed meaningfully. A seventeen transputer 
network is the largest available to us. In this section we consider mapping of the JPEG algorithm on 
a network of seventeen transputers. 

To map the JPEG algorithm on this network the source image can be split into sixteen parts as 
shown in figure 5. The sixteen image parts are labelled as a, b, .~ , p. Each part of the source 
image can be processed on a transputer. This can be mapped quite elegantly onto a 4X4 array of 
transputers as shown in figure 6. 

125 x 125 x 3 i 

samples 

125 X 125 X 3 samples 
I 

a b 

e f 

i j 

m n 

125X64X3 
samples 

c d 

g h 

k I 

0 p 

125X61X3 
samples 

Figure 5: Source image 

64 X 125 X 3 samples 

61 X 125 X 3 samples 

Main Processor 

M Input image 

Figure 6: Mapping the source image onto a transputer network. 



- 8 -

Tasks required for executing the JPEG algorithm on a seventeen transputer network are listed below. 
The task graph of figure 7 shows the relationship between these tasks and the paths used for first 
distributing the uncompressed image on the network, and then for collecting the compressed image 
parts. Y'!e ~se the notation described in section 3.2 for task identification and specification of the 
execut10n tJ.mes. 

Task number Function 

PTl Input image is divided vertically into two parts, and other initialization functions such 
as setting up the coding tables are performed on the main processor. t(PTl) = 500 

CTl,2 The two image halves are transferred to processors A and D respectively. 

CT3 

CT4 

CT5 

Part a of the image is retained on Processor-A and the remaining image parts of 
the half image now on Processor-A are transferred to other processors as per the task 
graph of figure 7. t(CTl) = 15.084 and t(CT2) = 14.446 

Image parts e, i and j are transferred from A to E. 

Image parts b and f are transferred from A to B. 

Image parts m and n are transferred from A to M. 

t(CT3) = 6.693 

t(CT4) = 4.95 

t(CT5) = 4.622 

PT2 At this stage Processor-A becomes free to start processing its image part a. 

CT6 

CT7 

CT8 

CT9 

CTlO 

CTll 

CT12 

CT13 

CT14 

CT15 

CT16 

Image parts i and j are transferred from E to I. 

Image part f is transferred from B to F. 

Image part n is transferred from M to N. 

Image part j is transferred from I to J. 

Image parts h, I and k are transferred from D to H. 

Image parts c and g are transferred from D to C. 

Image parts p and o are transferred from D to P. 

Image parts I and k are transferred from H to L. 

Image part g is transferred from C to G. 

Image part o is transferred from P to 0. 

Image part k is transferred from L to K. 

t(CT6) = 4.95 

t(CT7) = 3.205 

t(CT8) = 3.042 

t(CT9) = 3.2 

t(CTlO) = 6.36 

t(CTl l) = 4.95 

t(CT12) = 4.47 

t(CT13) = 4.78 

t(CT14) = 3.2 

t(CT15) = 3.042 

t(CT16) = 3.205 

PT2 to Each processor performs compression on its image part. 
Pf 17 This takes 150 msec. i.e. for n = 2 to 17 t(PTn) = 150 

CTI 7 to Encoded image parts are transferred back to the main processor as shown in 
CT32 the task graph of figure 7. The time taken for each communication task is shown on 

the arc representing the same. 

PTl 8 to The main function of these tasks is to collect the encoded image parts. 
PT28 The execution time required for these tasks is negligible. 



Distribution 
of image 
parts 
from the 
main processor 
to others. 

Collation of 
image parts 
back to the 
main processor 

CT1, 15.084 

PT2~ 150 I 

- 9 -

M 
PT1 ,500 

CT2, 14.446 

I PT1 o~ 150 

CT3, ~.69 ~4.622 
CT4 5 ,, 

CT12, 4 .4/~T 10, 6.36 

/CT11~~ 4.9, 

E B M 
PT3, 
150 

CT6 
4.9~ 

'f 

I 
PT6, 
150 

PT4, 
150 

CT?, 
3.205 ,, 

F 
PT? , 
150 

CT9 , CT18, 
3 .2 1.89 

1 , 

J 
PT9 , 
1 50 

CT17 
1 .89 

1 • 1 , 

I E 
PT18 , .... ~ PT19, 

Q 1
' I 

CT8, 
3.042 

1 • 

N 
PT8 , 
1 n 

CT19, 
1.89 

I f 

M 
PT20, 

P C H 
PT13, 
150 

CT15, 
3.042 

1 • 

0 
PT16 , 

1 .n 

CT27, 
1.89 

I I 

p 
PT23, 

I 

PT12, 
1 0 

CT14 , 
3 .2 

If 

G 
PT15, 
150 

CT26, 
1.89 

If 

PT11, 
1 "n 

CT1 ~ 
4 . 7E 

111 

L 
PT14, 
150 

CT16, 
3 .2 

I I 

K 
PT17, 
150 

CT25 
1.BE 

I , 

H L 
PT22.~ - PT21, 

I I~ 0 

CT20, 2.33 - CT21, CT23 CT31, 
2.33 

CT29, CT28,2 .33 
3.2 2.3: ,, 

B CT22,1..:8D A _ 
PT24, - PT25,~---...1 

0 0 

CT24, 
4.949 

3.2 
I~ 

D CJ30, 1.8b C 
PT27, - PT26, 

0 0 

CT32 
4.94E 

L-----~ _I M ...--:....----J 
-1 PT28, 0 I -

Figure 7: Task graph for seventeen processors 



- 1 0 -

Task Name Time Processor Time Bar 
en tS.0811 ; ~ 

; 
I I 
I I 

en 6.7b i - I CT6 4.9511 I • i 
I 

CT9 
I 

3.2b [ • I I 

CT4 ! 4.9Sb i • I ! 
I 

CT7 I I 
I 

3.2h i • e rs 4.6111 •• I I 

crs 3.0Sh I 
I i : 

• I 

CTl 14.4Sb / 
I 

I 
i 

i 
~1 I 

crto 6.3Sb ~ I I 

4.77b i I 
I 

CT13 ~ I I 
CT16 3.2b ! I E!I 

I 
I 

i 
I 

I 

CTll 4.95h i • I 
CT14 3.lb j I• I I CT12 4.47b ! • ens 3.03b i I• I I I I I 
PT2 lSOb ! A 

I I 

I I I I I I I 
PT3 lSOb E 

PT4 lSOb 
I I I I I I I 

B 

PTS lSOb I M I 
I I I I I 

PT6 lSOh i l 
I I I ! I I 

PT7 lSOb 1 F 
I I I I I I I 

PT8 lSOb I 
I I I ! I I 

N 
I I ! I I 

PT9 150b J 
I I i I I I 

PTlO 150h D 
I I I I I I 

PTll 15011 H 
I I I I ' I 

PTll 150h c 
i I I ! I 

PT13 15011 p 
I I I I i i 

PT14 15011 L 

PT15 
I I I I : I 

I 
150b I G 

1SOll JO I 
I I ! ' I ! 

PT16 
I ' I 

PT17 150b (K 

PT18 Oh I I @ 

I PT19 011 !E I @ 

PTlO Ob M Ii) 

PTll Ob I L 

@ 

PTll Ob JH 

@ 

PTl3 Ob i P @ 

PT14 Ob 1B 
I 
I 

I 
<il I 

PT25 Ob ; A <il l 

i 
I 

@l PT26 Ob i C 
I 

PT27 Ob \ D I 
: 

! 
PT28 Ob iMAIN <il 

CT17 l.88h i I 

CT18 l.88b j I 

CT19 I 1.88h : I 

cno 3.2b i • 
CT21 I 2.3211 : 

: 
I i 

CT22 i l.88h : 
; ; I 

' ! 
I ! 

CT23 I 2.32b : ; 
; I · 

CT24 i 4.95b i i • 
CT25 I 1.8811 '1 

!I! 
I i - -

1.88h ! Cfl6 ! I 
i 

CT27 i us11 1 
I 

I I 

3.2h i I : \ m ens 

I 
I 

CT29 I 3.lb ( I • 
i 

I 

CT30 ; 1.8811 : I •1 
I-· 

2.32)1 1 

I I CT31 I i I •, 
! - - -

4.9Sh '. ~ 
: i• 

CT32 
I 

Figure 8: Gantt chart for task allocation on a seventeen transputer network 



- 1 1 -

The Gantt chart of figure 8 was drawn by using Microsoft Project - a project management software. 
The first column lists the task name. The second column contains the execution time. The units 
shown as 'h' stands for hours. Microsoft project does not allow smaller time units to be specified as 
fractions (for obvious reasons). We have entered data by equating one hour to one msec. The tasks 
on the critical path, i.e. those which contribute to the total execution time are filled with hatch lines. 
To improve the resolution of the Gantt chart, PTl which takes 500 msec'on the main processor, has 
been omitted from figure 8. 

Time taken on a single processor = 500 + 150 X 16 = 2900 msec 

From Gantt the total time on the seventeen transputer network = 500 + 198.93 = 699 msec 

Speed up of the seventeen processor network = 29001699 = 4.15 

Efficiency of the seventeen processor network = 4.15 / 17 = 0.244 

4. Conclusion 

To reduce the number of bits used to store and transmit images, compression techniques are often 
used. JPEG is an international organisation which has developed a standard for digital image 
compression. 

JPEG algorithm can be implemented on a network of processors connected in an array 
topology. With a network of three transputers a speedup of 1.67 can be obtained. This gives an 
efficiency of 55.73 for each processor. On a network of seventeen processors, with sixteen 
processors connected as a 4X4 array, a speedup of 4.15 can be obtained. The average efficiency of 
each processor is only 24·L\ %. Thus, as we go from a singe processor to three processors, and then 
to a seventeen processor network, we can reduce the total time to solution, but the level of processor 
utilisation also falls. · 

BIBLIOGRAPHY 

[l] 

[2] 

[3] 

Gregory K. Wallace," The JPEG Still Picture Compression Standard." IEEE Transaction on 
Consumer Electronics, Vol. 38, No. 1, Feb. 1992, pp. xviii-xxxiv. 

Davis Ian, Perihelion Software Limited, ''Helios operating system", 1992. 

Ted G. Lewis and Hesham El-Rewini, "Introduction to Parallel Computing", Prentice Hall, 
1992. 




