
���������	
�����������	��	���������������	
�����������������	���������	�
����	�	����	
�����������	������

������������ �	
������ ��������������������������	
��������

�����������������������������������������
������������������������ ��������
!���������"�	������#���������$%�����������&��'��()*+,-������	����
������������.��������������	������������	������������������	��������������
���������������������������/�0���������1�(2-/�,))���,)3/�4��5�+6,,�768*��

���� � 	
������9����������������������
����	������
����:;;���/�����������/���;���;�
�;+*/2+7+;����/)8238
5���������������������������������.���<	�����	
���������/

!���������������=>�#��������#��������.�������:;;	��/	/��	/�	;,)3+3;�



�.�$�&�&���/� ���)�!���0��������
����������!����1��������� �!�!�������
���$�!� �����������%� ���1��$���
������
�����������	�	�,�,�,���������
�1����&����� ������)�	������������	�*��$�������&�2���1����)����������3�*��$�������&����
� �4�5�����&����

�7���$���
�����&���/�,�����6�-����������������7�����+� ���!�������8 �7�����	�����������'�������&���������9�:���'����������������

�����������	�
��

�������������������������������������������������������������������������
�����	�����������������
������� �	�!���"�	�����������!���#�#�$�$�$�%�������&�'�����
�����	�%�(��� �#�
�����#�)�(���
�*��

�+���
�	�(���
���������	���	�����"�	���	�����,�����'���
�����"�	���(�����&���(�������(�	
�(���
�(����� �����(�����-�����	�&���!��������������� ���(���������	�
�����������(���������	
�����������(�����&�����(���"�����"�
����

�.�
�������/�	������	�
�"���0���1�
�	�2�����&���������3���	�4����	�������0���1�
�/�����+�����	�������1�������0����	�������1���&�	���������0
�5���������	�����6����� �����0���+���,�������)�����7�	�������0���8��� �������9�����"���&���0���:�����
�
�	��� �����������3���	�4���;
�<���/���������������(���������)

�6�����(�����	���������������������(�
�	�������������	�
��������������	�������������	�������	����������������������	���������
�	�������������������������������������������������������
�������������������������	���������	��������� �	���!�����	�������"�	���������#�������	���	�����$�������������������%���������������&���'�	�
���	���	�������(��������� ���)�*�+�,�-�.
���������(�����	�����������������������������������/�����	���������(���������(���	���(�����(�	���(���������	�(�����0�	���������1�����	�������������(���	�������������������(�	��������
���������	�(�	�������	�(�����	���������	�����2���	���������������3�4�5�����-�*�*���-�*�6�����!�7�8�4���,�+�9�5�,�:�,�;�(���	���9�*�<�5�6�<

�6�����
�����)���������������������������(�
�	�����������������	�	�
�����
�����������	���������������	��������������������

��������������������� �������������������
� �!���"����!����� ����� 

�#�$�%�&���!��� �
������&����� �����������'�$��������������

�(�$�%�)����������$���������������&� ��������������!���*��$�������&��

�'���������&� ���+��� �,�!����������

�-��� �,����� �&����� �
�������������&� �!��

�������������������������&� �!���������-��� �,���������������������������&� �!��

http://www.tandfonline.com/action/journalInformation?journalCode=kchl20
http://www.tandfonline.com/loi/kchl20
http://www.tandfonline.com/action/showCitFormats?doi=10.4161/chan.25485
http://dx.doi.org/10.4161/chan.25485
http://www.tandfonline.com/action/authorSubmission?journalCode=kchl20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=kchl20&show=instructions
http://www.tandfonline.com/doi/mlt/10.4161/chan.25485
http://www.tandfonline.com/doi/mlt/10.4161/chan.25485
http://www.tandfonline.com/doi/citedby/10.4161/chan.25485#tabModule
http://www.tandfonline.com/doi/citedby/10.4161/chan.25485#tabModule


Channels 7:4, 322–328; July/August 2013; © 2013 Landes Bioscience

 ARTICLE ADDENDUM

322 Channels Volume 7 Issue 4

Addendum to: Pérez GJ, Desai M, Anderson S, 
Scornik FS. Large-conductance calcium-activated 
potassium current modulates excitability in iso-
lated canine intracardiac neurons. Am J Physiol 
Cell Physiol 2013; 304:C280-6; PMID:23195072; 
http://dx.doi.org/10.1152/ajpcell.00148.2012.

Keywords: BK channels, alternative 
splicing, �  subunits, intracardiac neu-
rons, autonomic

Abbreviations: BK channel, large con-
ductance calcium-activated potassium 
channel; IGC, intracardiac ganglia; IBK, 
BK current; SS, splice site

Submitted: 05/31/13

Revised: 06/20/13

Accepted: 06/20/13

http://dx.doi.org/10.4161/chan.25485

*Correspondence to: Fabiana S. Scornik; 
Email: fabianasilvia.scornik@udg.edu

Large conductance calcium-activated 
potassium (BK) channels are widely 

expressed in the nervous system. We have 
recently shown that principal neurons 
from canine intracardiac ganglia (ICG) 
express a paxilline- and TEA-sensitive 
BK current, which increases neuronal 
excitability. In the present work, we fur-
ther explore the molecular constituents 
of the BK current in canine ICG. We 
found that the � 1 and � 4 regulatory 
subunits are expressed in ICG. Single 
channel voltage-dependence at different 
calcium concentrations suggested that 
association of the BK�  with a particular 
�  subunit was not enough to explain the 
channel activity in this tissue. Indeed, 
we detected the presence of several splice 
variants of the BK�  subunit. In conclu-
sion, BK channels in canine ICG may 
result from the arrangement of differ-
ent BK�  splice variants, plus accessory 
�  subunits. The particular combinations 
expressed in canine IC neurons likely 
rule the excitatory role of BK current in 
this tissue.

Introduction

Large conductance calcium-activated 
potassium (BK) channels are expressed 
in a wide variety of cells within the ner-
vous system, including intracardiac (IC) 
neurons of different species,1-3 where they 
contribute to numerous cellular functions, 
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including action potential repolarization 
and afterhyperpolarization. Diverse prop-
erties have been reported for IBK in dif-
ferent tissues, in different cells in a given 
tissue, in different regions of a single 
cell, and in the same cell under different 
stimuli.4-7 This behavior is accepted to be 
associated to heterogeneity in the molecu-
lar composition of BK channels, which 
can be achieved, among other mecha-
nisms, by differential expression of BK�  
subunits and BK�  splice variants. BK 
channels are usually composed by four 
BK�  pore-forming subunits and auxiliary 
�  subunits. To date, four different BK�  
subunits have been ascertained (encoded 
by KCNMB1 to 4), which display tissue-
speci�c distribution and differentially 
modulate IBK.

8-13 On the contrary, BK�  
subunits are encoded by a single gene, 
KCNMA1, from which a wide diversity of 
variants can be originated through alter-
native splicing.14 At least 13 splice sites 
have been described for KCNMA1.6,15 
Some of them have been identi�ed in 
many species and tissues, and thus are 
considered to be ubiquitous and con-
served across species (Table 1). However, 
the particular molecular composition of 
BK channels and how this identity modu-
lates IBK in different tissues still remains 
greatly unknown.

We have recently shown that principal 
neurons from canine intracardiac ganglia 
(ICG) express a conspicuous BK current 
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ICG. Multiple splice sites (SS) have been 
described for the BK channel �  sub-
unit.6 Some of the resulting splice vari-
ants have been reported to modulate BK 
channel electrophysiological properties. 
In the present study, we have focused on 
six particular SS (Table 1) to determine 
which of the associated splice variants 
were expressed in canine ICG. A sum-
mary of the results obtained is shown 
in Table 2. Of note, PCR ampli�cation 
of the SS1 region originated two ampli-
cons (Fig. 3A, lane 2). Their molecular 
weights were compatible with the SS1-
insertless variant (lower band) and the 
variant bearing an insertion of 4aa at 
the SS1 site (upper band). Sequencing 
of both PCR products con�rmed their 
anticipated identities. When the SS2 
region was ampli�ed in ICG, we observed 
a band compatible with the shorter 
(58aa) STREX splice variant (Fig. 3A, 
lane 3, upper band). Additionally, two 
bands with lower mobility were also 
observed in this tissue. Their molecular 
weight was compatible with the Zero 
and +4 variants. Their identities were 
con�rmed by sequencing. PCR analysis 
of the SS3 region and sequencing of the 
obtained band evidenced the expression 
of the SS3-Zero variant. Regarding the 
SS4 region, a band compatible with the 
slo27 variant was detected (Fig. 3A, lane 
5, middle band). Two additional bands 
were also observed. Sequencing of these 
3 amplicons con�rmed the expression of 
the slo27 variant and the SS4-Zero vari-
ant (lower band). The upper band cor-
responded to a heteroduplex of Zero and 
slo27, a phenomenon previously reported 
by Lai and McCobb respect to SS2.19

We also determined the splicing vari-
ants at the N- and C-terminus of the 
BK channel �  subunit in canine ICG. 
Sequencing of the PCR products obtained 
upon ampli�cation of the N-terminal 
region evidenced the presence of tran-
scripts bearing the MSS translational 
start site. As this start site is in frame 
with the 3' start site beginning MDALI, 
we cannot ensure the presence of tran-
scripts starting with the latter start site 
in ICG. Regarding the C-terminus, we 
were able to detect the presence of the 3 
most common variants at this site, end-
ing VYR, DEC and ERL. A schematic 

BK channels. To provide molecular evi-
dence to this conclusion, we sought to 
determine which of the four described 
BK channel �  subunits are expressed in 
IC neurons and would thus confer IBK its 
particular characteristics. RT-PCR stud-
ies evidenced that � 1 and � 4 subunits 
were clearly expressed in canine ICG, 
while a faint expression was observed for 
� 2 and � 3 subunits in this tissue (Fig. 
1A). To further con�rm our results, we 
performed immuno�uorescence staining 
of partially dissociated ICG. IC neurons 
expressed the � 4 subunit (Fig. 1Ba), and 
all those cells that expressed this subunit 
also expressed the BK channel �  subunit 
(Fig. 1Bb). On the contrary, staining for 
� 2 and � 3 subunits was only observed 
in a low percentage of neurons (Fig. 1Bc 
and 1Bd, respectively). These data are in 
agreement with the lack of single chan-
nel inactivation observed in our previous 
article. In addition, they strongly suggest 
that � 4 subunit (and � 1 to a lesser extent) 
is a likely candidate for modulating IBK in 
these cells.

Calcium- and voltage-dependence of 
single BK channels in IC neurons. Our 
previous whole cell current studies could 
not provide detailed information on BK 
channel calcium- and voltage-depen-
dence. To cover this aspect, we studied the 
single channel voltage-dependence at dif-
ferent calcium concentrations in excised 
patch experiments from our native prepa-
ration. Figure 2 depicts examples of single 
channel recordings at increasing calcium 
concentrations and the open probabil-
ity (Po) vs. voltage relationship for the 
calcium concentrations assayed. The 
analysis of voltage- and calcium-depen-
dence led to V1/2 values of �35.7 ± 11.1 
mV, 29.8 ± 2.2 mV and 70.0 ± 15.1 mV; 
at 10, 3 and 0.3 � M Ca2+, respectively. 
These results deviate from similar analy-
sis using heterologous expression of BK�  
and either � 1 or � 4 subunits.8,9,17,18 These 
deviations could be due to the possibil-
ity that in our native preparation, more 
than one �  subunit modulates the BK�  
subunit. Alternatively, or in addition, a 
BK�  isoform different from that used in 
the heterologous expression studies could 
be expressed in canine IC neurons.

A combination of BK channel 
� -subunit variants is expressed in canine 

(IBK), which plays a role in their excitabil-
ity. We demonstrated that these channels 
do not present intrinsic inactivation and 
that the decline of the BK whole cell cur-
rent was most likely dependent on the 
intracellular calcium concentration. In the 
present work, we aimed to further explore 
the molecular constituents of BK chan-
nels in canine IC neurons. Our results 
suggest that the presence of several splice 
variants of the BK�  subunit, modulated 
by � 4 and/or � 1 subunits, may explain 
the voltage- and calcium-dependence of 
the BK channel observed in this native 
preparation.

Results

BK channel � 1 and � 4 regulatory sub-
units are expressed in canine ICG. It 
is well known that BK channel �  sub-
units modulate channel’s biophysical 
properties, including activation voltage-
dependence, activation and deactivation 
kinetics, and inactivation.16 In particular, 
the � 2 and � 3 regulatory subunits are 
known to be responsible for IBK inacti-
vation.13 Our recent studies showed that 
the inactivation of IBK from canine ICG 
is not due to intrinsic inactivation of 

Table�1. Description of the analyzed splice 
sites

Splice site Variant (aa) Named

5'

+66 MANG

+36 MSS

0 MDALI

SS1 +4 +4

SS2

+58/61 STREX

+29 e22

+3 +3

SS3 +8 +8

SS4 +27 Slo27

3'

+8 VYR

+61 DEC

+8 ERL

The table shows the more common variants 
described for each of the splice sites (SS) 
analyzed, the number of aminoacids (aa) 
added to originate each variant and the name 
by which they are usually known. The Zero 
variant, which corresponds to the absence 
of insertion, has been described for SS1 to 
SS4. The VYR and ERL splice variants have the 
same number of aa but different sequences.
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subunit has been reported to be mainly 
expressed in brain and has complex Ca2+-
dependent effects.9 However, the V1/2 
values obtained at different Ca2+ concen-
trations in canine IC neurons do not com-
pletely match those previously reported in 
similar conditions in heterologous expres-
sion systems. (2) Multiple BK�  splice 

Discussion

In the present work, we have explored 
the molecular identity of BK channels 
in canine ICG. Our results point at two 
different levels of the BK channel macro-
molecular complexity: (1) The principal 
�  subunit expressed in ICG is � 4. This 

representation of the genomic organiza-
tion leading to these 3' ends is presented 
in Figure 3B. Note that only one of the 
canine previously described assemblies 
(Fig. 3B, d) was present in ICG. The 
other two assemblies identi�ed (Fig. 3B, 
b and c) had not been formerly reported 
in canine tissue.

Figure 1. BK channel � 1 and � 4 regulatory subunits are expressed in canine ICG. (A) Picture depicts the results of RT-PCRs performed as described 
in Methods using speci�c primers for BK channel �  regulatory subunits. PCR products were resolved in 2% agarose gels. The bands correspond to 
the expected amplicons (KCNMB1, 278 bp; KCNMB2, 137 bp; KCNMB3, 201 bp; KCNMB4, 216 bp). A molecular marker (MK) was run side by side with 
the samples, and the corresponding base pair (bp) sizes of two of its bands are indicated on the left. n = 1–3. (B) Pictures show representative images 
of individual confocal sections obtained from partially dissociated ganglia stained with the standard immunohistochemical technique described in 
Methods. The antibody used is indicated at the top right corner of each image, and the scale bar was 40 � m. Percentage of positive cells with respect 
to PGP 9.5 was 47.6 for � 2 (n = 63 and 30 cells, PGP 9.5 and � 2, respectively), 6.3 for � 3 (n = 32 and 2 cells, PGP 9.5 and � 3, respectively) and 129.2 for 
� 4 (n = 24 and 31 cells, PGP 9.5 and � 2, respectively). Percentage of � 4 positive cells with respect to BK�  was 116 (n = 263 and 305 cells, BK�  and � 4, 
respectively).
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in our native preparation. Also, Erxleben 
and collaborators studied the effects of 
STREX inclusion and � 1 modulation 
on IBK.

20 Although their assays were per-
formed in the BK�  N-terminus MSS 
background, our results present differ-
ences with their observations in terms of 
calcium- and voltage-dependence, prob-
ably due to the predominant expression 
of � 4 in IC neurons. Comparisons among 
native and heterologous expression prepa-
rations are dif�cult to interpret. Still, our 
molecular results suggest that BK chan-
nels expressed in canine ICG are probably 
composed of BK�  bearing more than one 
splice variant plus � 4 and/or � 1. In this 
line, we recently demonstrated that 100 
nM Iberiotoxin blocked BK channels in 
IC neurons. However, this block occurred 
at times between 3 and 14 min (data not 
shown). This behavior perhaps re�ects 
the heterogeneous subunit arrangements 
of BK channels in ICG, in agreement 
with the molecular evidence presented 
here. This heterogeneous expression 
anticipated in canine ICG for both �  and 
�  subunits adds further complexity to 
the biophysical response of the channel, 
and warrants further investigation. For 
example, experiments showing inhibition 

suggest that the MSS N-terminus may 
be expressed in canine ICG, and that the 
original transcripts will carry one or more 
insertions. Although at present we can-
not de�ne the exact combination of BK�  
splice variants in ICG, the anticipated 
portrait is quite different from the expres-
sion vectors used in heterologous transfec-
tion experiments. Thus, the mismatching 
between the results presented here and 
those published elsewhere may not be 
unexpected. Moreover, one has to bear 
in mind that the heterologous expression 
studies are often performed with a single 
variant, which excludes the possibility of 
heterotetramers, a channel arrangement 
likely to occur in our native prepara-
tion. Additionally, up to four BK�  can be 
assembled with the BK�  tetramer to ren-
der functional channels. Both the number 
of �  subunits and its identity are un�xed 
and in�uence BK channel properties.23 
Little is known about the interplay among 
alternatively spliced �  subunit variants 
and �  subunits. Petrik and Brenner per-
formed an elegant characterization of the 
effects of � 4 on STREX BK channels.18 
These studies were performed using a 
mouse zero BK�  subunit, a framework 
that does not resemble much the BK�  

variants are expressed in canine ICG. 
We have characterized, for the �rst time, 
the BK�  splice variants expressed in this 
native preparation. However, we cannot 
address to which extent each of them will 
effectively contribute to BK current in 
IC neurons. It is notable that the speci�c 
splice variants’ combination identi�ed in 
canine ICG is somewhat different from 
that detected in canine brain (Table 2). 
This observation supports the accepted 
idea of the occurrence of BK�  tissue-spe-
ci�c hallmarks given by a particular set of 
splice variants, which confer unique tis-
sue-speci�c identity to IBK. Interestingly, 
we have identi�ed the presence of STREX 
at SS2 and of slo27 at SS4. These inser-
tions result in the inclusion of 58 and 27 
extra aminoacids, respectively, and thus 
are suggested to cause bigger effects on 
IBK than the shorter insertions that we 
identi�ed in canine tissues. In fact, several 
studies have been published that show 
major effects of the independent inclu-
sion of either variant on IBK.

4,5,18,20 Also, 
some attempts have been made to study 
the effects of the simultaneous presence of 
multiple variants.21,22 Again, our V1/2 val-
ues obtained in canine IC neurons deviate 
from published results. Our observations 

Figure 2. Calcium- and voltage-dependence of single BK channels in IC neurons. Left, representative single channel traces elicited by voltage steps to 
+40 mV at the indicated calcium concentrations. Arrows indicate the closed state of the channel. Right, plot of the open probability (Po) as a function 
of voltage at increasing calcium concentrations. Data are displayed as the mean ± SE (n = 1–10). V1/2 are �35.7 ± 11.1 mV, 29.8 ± 2.2 mV and 70.0 ± 15.1 
mV (10, 3 and 0.3 � M Ca2+, respectively).
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Po was determined by either all-point 
amplitude histogram or event detection 
with 50% amplitude criteria. All record-
ings were performed at 20–22°C.

Solutions. Recordings were done 
in symmetrical solutions of the fol-
lowing composition (in mM): 140 
KCl, 10 HEPES, 2 MgCl2. Calcium 
concentration was titrated to 0.3, 
3 or 10 � M with glycol-bis(2-
aminoethylether)-N,N,N',N'-tetraacetic 
acid or N-hydroxyethyl-ethylenediamine-
triacetic acid and measured with a calcium 
electrode (Kwik-Tip, World Precision 
Instruments).

Drugs. Collagenase type I, trypsin 
and trypsin inhibitor (Worthtington). 
D-MEM, NGF 7S, FBS and glutamax 
(Invitrogen Corp.). All other drugs were 
obtained from Sigma.

Antibodies. Rabbit polyclonal anti-
PGP9.5 was from EMD Chemical, mouse 
monoclonal anti � 2, � 3 and � 4 were from 

X-100, tissue was incubated overnight at 
4°C with 1:100/200 dilutions of primary 
rabbit polyclonal antibodies against the 
BK channel �  subunit or the neuronal 
marker PGP9.5 and a monoclonal anti-
body against the BK channel �  subunits 
2–4 (� 2–4). Immunostaining of the � 1 
subunit was not performed due to the lack 
of availability of a reliable antibody. Tissue 
was then incubated with a 1:1,000 dilu-
tion of anti-rabbit Alexa-594 and/or anti-
mouse Alexa-488-conjugated secondary 
antibodies for 2 h at room temperature. 
Speci�city of polyclonal primary antibod-
ies was assessed by preincubation with a 
control peptide antigen. Ganglia were 
mounted using Pro-Long antifade mount-
ing media and visualized under a Fluoview 
Olympus laser scanning confocal micro-
scope (40 oil immersion objective) 
equipped with argon and He/Ne lasers. 
Optical sections were taken through the 
entire volume of the cell with the XY frame 
set to 512 × 512 pixels and the Z-axis was 
changed in 0.5 to 1 micron increments. 
Sections were scanned sequentially to 
avoid bleeding artifacts. Images shown are 
individual confocal sections.

Electrophysiological recordings. 
Current measurements were obtained 
using the patch-clamp technique in 
excised patch con�guration. Solutions 
were applied with a gravity �ow system 
(speed 1–3 ml/min) to a 150 � l bath 
chamber. Electrode shanks were coated 
with dental wax and tips �re polished to 
a tip diameter of aprox. 1 � m. Electrode 
resistances were of 8–10 M� . Data acqui-
sition and analysis: Experiments were 
controlled with an Axopatch 200A ampli-
�er and pClamp 9.0/Digidata 1440A 
acquisition system (Molecular Devices). 
All experiments were acquired online for 
later analyses with Clamp�t (Molecular 
Devices). Voltage activation curves for sin-
gle-channel experiments were �tted with a 
two state Boltzmann equation of follow-
ing form: Po = Pomax + (Pomin � Pomax)/1 
+ exp[(V � V1/2)/dV], where Pomax and 
Pomin are the maximum and minimum 
Po asymptotes, respectively, V is the hold-
ing potential, V1/2 is the voltage for half 
maximal activation, and dV represents the 
slope factor. Single channel data analysis 
was performed using Clamp�t as previ-
ously described in Scornik et al.24 Brie�y, 

of BK current by Protein Kinase A, or 
an apparent sensitivity to inhibition by 
oxidation would be indicative of the pre-
dominance of BK� -STREX channels20 in 
IC neurons.

In summary, in the present addendum 
we provide molecular evidence for the 
presence, in canine ICG, of BK chan-
nel components known to affect chan-
nel function. Although our study does 
not cover all the possible splice variants 
reported for this type of channel, it is rea-
sonable to postulate that the splice vari-
ants we identi�ed collectively contribute 
to the functional effect of the BK channel 
on membrane excitability observed in this 
native tissue.

Materials and Methods

Canine IC ganglia and neuron isola-
tion. Parasympathetic ganglia and neu-
rons from the atrial ganglionated plexi 
of the dog were dissociated as previously 
described.3 Brie�y, canine hearts were 
obtained, and the fat pads on the ventral, 
lateral and dorsal aspects of the atrium 
were quickly removed and placed in a nor-
mal Krebs (NK) solution in ice. Individual 
ganglia were removed from the fat pads 
and cleaned under a dissection scope. The 
ganglia were either �ash-frozen in liquid 
N2 for subsequent RNA extraction or dis-
sociated with 0.1% collagenase-elastase 
and 0.2% trypsin. Individual cells were 
obtained by triturating the remaining 
tissue with a Pasteur pipette. Cells were 
resuspended in Dulbeco’s modi�ed eagle 
media (DMEM), supplemented with 1% 
fetal bovine serum, 100 � g/ml penicillin-
streptomycin, 2 mM glutamax, 10 � g/ml 
S7 and 0.11 g/ml piruvic acid; and plated 
on collagen coated bottom glass Petri 
dishes (MatTek Coorp., Ashland, MA). 
Cells were placed overnight in a CO2 
incubator at 37°C. To obtain partially dis-
sociated ganglia, the trituration step was 
minimized.

Immunohistochemistry. Partially 
dissociated ganglia were obtained as 
described above. Ganglia were mounted 
on glass slides and stained with a stan-
dard immunohistochemical technique. 
Brie�y, after �xation with a 4% para-
formaldehyde-0.2% picric acid solution 
and permeabilization with 0.2% Triton 

Table�2. Splice variants identified in canine 
ICG and brain

Splice site Splice variant ICG Brain

5'

MANG � �

MSS + +

MDALI + (?) + (?)

SS1
ZERO + �

+4 + +

SS2

ZERO + +

+3 + +

STREX + �

e22 � �

SS3
ZERO + +

+8 � �

SS4
ZERO + +

Slo27 + +

3'

VYR + +

DEC + +

ERL + +

The table displays the results of sequencing 
the RT-PCR products for canine ICG and brain, 
as described in methods. The presence (+) or 
the absence (�) of each splice variant is indi-
cated. Question marks are used to state that 
we cannot ensure the presence of transcripts 
starting with the MDALI start site (the three 
start sites are in the same reading frame, and 
cDNA sequencing does not allow discrimi-
nation). The STREX variant identified in ICG 
corresponds to the short isoform published 
(+58aa).
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