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Abstract 

Decision support systems are used in team sport for a variety of purposes including 

evaluating individual performance and informing athlete selection. A particularly common 

form of decision support is the traffic light system, where colour coding is used to indicate a 

given status of an athlete with respect to performance or training availability. However 

despite relatively widespread use, there remains a lack of standardisation with respect to how 

traffic light systems are operationalised. This paper addresses a range of pertinent issues for 

practitioners relating to the practice of traffic light monitoring in team sports. Specifically, 

the types and formats of data incorporated in such systems are discussed, along with the 

various analysis approaches available. Considerations relating to the visualisation and 

communication of results to key stakeholders in the team sport environment are also 

presented. In order for the efficacy of traffic light systems to be improved, future iterations 

should look to incorporate the recommendations made here.  
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Introduction  1 

Decision support systems are computer-based information systems that provide objective 2 

evidence relating to the decision-making of organisations.[1] Such systems utilise historical 3 

data to generate a recommendation or assessment to a user, with the decision often provided 4 

based on output generated by a software-based algorithm. [2.3] In sport, decision support 5 

systems have been used for purposes such as tournament scheduling, [4] evaluating athlete 6 

performance [5] and informing team selection. [6] A number of challenges are required to be 7 

overcome in order for decision support systems to provide ongoing value to organisations. 8 

These include a willingness of users to accept and act on findings/recommendations, 9 

appropriate integration of the system into the organisation’s workflow as well as ensuring 10 

consistent use by practitioners.[7] Although evidence supporting their use is to date equivocal 11 

(see [8-9] for examples of unsuccessful implementations), relative success in fields such as 12 

medicine [2,3] make decision support systems an attractive proposition for sporting 13 

organisations in managing recent increases in data generation. 14 

In team sports, one form of decision support, ‘traffic light systems’ are becoming more 15 

popular in their use to inform and support the decisions of practitioners. Although the nature 16 

of these decisions may vary, they often relate to the type and level of training an athlete is to 17 

undertake, or their availability to participate in competition. Also used to monitor student 18 

progress in education, [10] traffic light systems function by flagging red, amber or green, 19 

thereby providing a rapid insight into how different from the norm a daily score is for a given 20 

measurement. For instance, green may be interpreted as things should continue as per normal, 21 

amber suggests caution that if left unattended could pose a risk, whilst red raises an alarm and 22 

indicates action is required in order to bring the response back closer to the norm. 23 

Considering the constraints, time-pressures and challenges that practitioners face in the day-24 
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to-day fast paced environment of high performance sport, the ease of application, visual 25 

appeal and translational ability of the traffic light approach make them an attractive option in 26 

applied sporting environments. Nevertheless, evidence of their basis as an objective decision 27 

support system is scarce. 28 

In performance sport contexts, measurements used in the traffic light systems are often 29 

derived directly from the athlete (both subjective and objective data), with the evidence base 30 

built using historical data. Types of data considered by practitioners using traffic light 31 

systems include self-reported athlete wellness, [11] musculoskeletal screening scores, [12] 32 

training load, [13] fitness and fatigue [14] and physiological testing/benchmarking. [15] 33 

Typically, users will use this information to adjust training programs and/or treatment in an 34 

effort to avoid undertraining/overtraining, reduce the likelihood of injury/illness incidence 35 

and determine the effectiveness of training programmes to ensure maintenance of 36 

performance. [16] 37 

 38 

Validating the decision not to train 39 

One of the most common outputs of traffic light systems used in a decision support context 40 

relates to a determination on the volume and intensity of training an athlete will undertake for 41 

a given session (or period of time). A common issue with traffic light systems is that it is 42 

often not clear what is used to validate the decision to restrict an athlete’s training. A number 43 

of problems arise when these systems are attempted to be validated, especially when using 44 

either injury prevention and/or performance-based metrics.  45 

For instance, individual player performance as a construct has proved difficult to define in 46 

team sports; due largely in part to the multifaceted nature of game play. [17] Further, 47 

considerable individual performance variation is likely to be observed depending on what is 48 
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occurring at the team level. [18] Using injury incidence as a measure is no less problematic. As 49 

injury occurs at such a low incidence relative to the total number of sessions/matches players 50 

participate in, any decisionsupport system for training availability is almost certainly destined 51 

to be conservative in its approach. The implications of this is that athletes may be missing 52 

sessions that they may participate in without adverse effect, thereby exerting a flow on effect 53 

to performance.  54 

Another fundamental problem with both forms of data is that access to injury or individual 55 

performance information is not available prior to the training session or match of interest. As 56 

such, traffic light systems in their current format are limited as a predictive tool. All they can 57 

do is (partially?) explain why an injury did or did not occur, or why a player did or did not 58 

perform to their usual standard (see Shmueli, 2010 [19] for a description of the differences 59 

between explanation and prediction). Of course that is of limited use to a practitioner making 60 

decisions on the athlete’s availability. Further, in order to make an accurate prediction based 61 

on historical data, a large number of data points are required, which necessitates a long lead 62 

in time and therefore limits those in the early stages of implementing a monitoring program. 63 

Consequently, proxies for under-recovery or susceptibility to injury, derived from the 64 

literature and or practitioner experience, are used as early warning signs for decision making 65 

with the intent to mitigate the risk of an undesirable outcome. So how can the evidence 66 

behind traffic light methods be improved, without losing the practical qualities that make 67 

them so popular in the first place?  68 

Despite the abovementioned methodological issues pertaining to injury prediction, 69 

nonetheless there has been a range of research investigating the relationships between the 70 

incidence of injury with player wellness, [20] musculoskeletal screening test scores, [21] fitness 71 

levels [22] and training load. [23] As many elite team sport athletes are being assessed in some 72 

capacity on an almost daily basis, the ability to analyse these athletes at the individual level 73 
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has never been more feasible. The rise in popularity of data mining in sport [24] has also 74 

allowed for non-linear relationships between load metrics [25] and injury/performance [26] at 75 

the inter- and intra-individual level to be better elucidated and visualised. Consequently, it is 76 

evident that in order to obtain better answers to these questions, both large data sets and 77 

complex analyses are required. The benefits of improving objective decision support systems 78 

such as traffic lights are important to both the performance and financial health of sports 79 

organisations. Below we provide some guiding principles for practitioners that can help to 80 

improve the efficacy of the approach.  81 

 82 

Step 1 – What type of data should be considered in the traffic light system? 83 

Collecting, maintaining and analysing the types of data mentioned earlier has in many sports 84 

become a full-time job in itself. For the sports practitioner, reducing the volume of data to 85 

consider in making a decision on an athlete’s training availability or determining their injury 86 

risk can greatly increase work efficiency. A pertinent example relating to data reduction can 87 

be drawn from Bartlett et al., 2016 [25] where the authors investigated the relationships 88 

between commonly collected training metrics and the session RPE response of athletes at a 89 

professional Australian Rules Football club. It was observed that the relationship between the 90 

distance covered by an individual in a session and the training time was almost a perfect one. 91 

Consequently, as is standard practice in relationship modelling [27] one of these metrics 92 

(training time) was removed from the model; in this case without any meaningful adverse 93 

effect on accuracy. Of course the data reduction could have instead been applied to the 94 

second metric. The duration of a training session is easier to measure than the distance an 95 

athlete has covered, which is of practical use to those without access to GPS or other player 96 

tracking systems. Amongst other benefits, the practice of data reduction helps to improve 97 
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model parsimony, which in the event of multiple solutions existing to a single problem the 98 

simplest should be chosen (see Coutts’ 2014 editorial on the relevance of Occam’s Razor to 99 

sport science [28]). 100 

So which considerations, in addition to the above, can help the practitioner to arrive at a 101 

decision on what to look at and what to leave out when designing their traffic light system? 102 

Figure 1 shows five main factors that should be considered by those working in high-level 103 

team sport environments, with an outline of each provided below.  104 

 105 

**** INSERT FIGURE 1 ABOUT HERE **** 106 

 107 

Validity of measurements and data entry 108 

The validity of a measure or the strength of relationships between variables of interest should 109 

primarily inform the decision support system. For instance, concurrent validity refers to the 110 

extent to which a metric relates to an alternate, previously validated measure of the same 111 

construct administered at the same time (e.g., assessing training time and distance covered as 112 

per the example above). [29] Convergent validity relates to the extent to which two metrics 113 

that theoretically should be related to each other are, indeed, related to each other (e.g., an 114 

increase in heart rate as the intensity of a training session also increases). [30] As an example, 115 

if certain information relating to activities the player undertook the night before a training 116 

session showed limited relationship with the athlete’s risk of injury or performance in 117 

competition, it would not make sense to measure it for that purpose. In the context of 118 

designing a traffic light system, an assessment of these forms of validity is essentially another 119 

form of the data reduction process. Whilst these and other forms of validity are not always 120 
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measurable or relevant for all metrics included in the traffic light system, they should be 121 

assessed wherever possible. Alternately, a review of the literature can inform the approach, 122 

via evaluation of the suitability of both objective and subjective measures [31] and 123 

consideration of issues related to sport context and implementation. [32] 124 

Of equal importance is consideration of the reliability of a traffic light system. Some 125 

level of random error is inherent and to be expected in any measurement. From a systematic 126 

perspective if technology shows meaningful differences between different devices, units or 127 

software versions or the methods of obtaining self-report data change, [33] then reliability will 128 

in turn also be affected. Therefore, this within- and between-athlete variability should be 129 

accounted for. With sufficient data, the latter consideration can be overcome through the 130 

development of separate models for each individual athlete.  131 

Data interpretation and decision-making consequences 132 

In professional team sports, where decisions relating to training availability need to be made 133 

within 1-2 hrs of training commencing, the traffic light system needs to be easily and quickly 134 

interpretable. Whilst coaches are expected to be learned and experienced in their content area, 135 

they are typically not statistically trained. Consequently, more sophisticated data formats may 136 

require conversion before being communicated to coaches and other practitioners. For 137 

instance, raw data may need to be converted to a normalised score (e.g., a z-score) to allow 138 

historical intra-individual or within-team, sport or gender comparisons. [34] Often this will 139 

also entail some form of visualisation, which may also vary in nature depending on the 140 

preferences or learning styles of the intended audience. Delivery flexibility and the ability to 141 

generate visualisations rapidly are crucial in ensuring all stakeholders can interpret results for 142 

their given use. Cost effectiveness 143 
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The cost effectiveness of a system includes features such as burden, time and cost/benefit. In 144 

its most simple form, burden relates to the number of staff and the resources required in order 145 

to collect, clean, interpret and report the data used in the traffic light system. This includes 146 

both the start-up cost (e.g., hardware and software, data storage solutions) and daily operation 147 

of the measurement system. Many companies working in elite sport have aimed to provide 148 

user-friendly software in order to expedite this process. However, if metrics of interest are not 149 

reported by the accompanying software, then further post-hoc analysis of raw data may be 150 

required. Burden can also exist in the form of staff being required to undertake further 151 

training in order to complete the collection and analysis of data. This may also extend to their 152 

ability to understand and interpret any results derived from these analyses. In addition, the 153 

burden on the athlete should also be considered and minimised as much as possible. [32] 154 

Closely linked with interpretability and burden, the time required to collect, interpret and 155 

report is paramount to a successful, useful and meaningful decision support system. How 156 

much time it takes to manage data and implement a decision support system (especially in the 157 

context where thousands of observations can be obtained in one week for a single team) 158 

dictates the success of a given system. For example, analysing a continuous trace of 10 Hz 159 

GPS data for each player for each training session can allow for interesting insights into the 160 

movement of athletes, however, it can be time consuming. Consequently, the extent to which 161 

gaining this insight provides added benefit to informing a decision comparative to the time 162 

spent on the analysis needs to be examined. 163 

In high-level sport, the decision support system should be considered in relation to its cost 164 

and benefit so as to determine its efficacy and value to an overall programme. Beyond the 165 

more tangible benefits such as possible improvements in performance and reductions in 166 

injuries and illnesses, other benefits such as communication between staff and athletes, 167 
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building knowledge within the programme and supporting athlete self-management are all 168 

possible benefits of developing monitoring and decision support systems. [35]  169 

 170 

Step 2 – In which format should traffic light system data be analysed? 171 

The format in which data are analysed can alter the nature of the inferences made, 172 

irrespective of the analysis approach implemented. Whilst ideal where possible, the analysis 173 

of unconverted, raw data can result in substantially varied baseline values across different 174 

athletes, making between-individual comparisons challenging. As a result, in team sport 175 

settings z-scores continue to experience popularity based on their ability to allow for the 176 

standardised position of an individual within a group or with reference to their own baseline 177 

data to be articulated. Expressing data as a percentage change from baseline addresses this by 178 

allowing for the within-individual differences to be interpreted within context of others in the 179 

group. However where large within-individual variation exists in data, or where values are 180 

close to zero, artificially high values may result. Furthermore, the conversion of the data to a 181 

relative format may be less interpretable to some stakeholders. So which format should be 182 

used in traffic light systems? One of the key considerations in making this selection relates to 183 

the decision to focus on the individual or the group.     184 

Individual vs group 185 

The importance of considering the individual within a team has received increased attention 186 

of late. [25,36] However, it is well established that analysing larger numbers of athletes together 187 

can allow for greater inferences to be made relating to the sample population of interest, 188 

thereby increasing the confidence in such findings. [37] The approach taken is likely to depend 189 

on the question at hand. For instance, when considering a team sport training scenario, a 190 
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typical approach for practitioners would be to use within-group comparisons and literature to 191 

determine the typical responses for a given training period. Figure 2 provides an example of a 192 

practical problem with this approach. The figure shows the average weekly training load for 193 

39 players from an Australian Football League club over the course of a month during the 194 

season. Both weekly mean values and the variance differs substantially between players, thus 195 

the need for an individual approach is self-evident.  196 

 197 

**** INSERT FIGURE 2 ABOUT HERE **** 198 

 199 

Step 3 – How is traffic light data analysed and interpreted? 200 

The consideration on whether to assess at the individual or group level will also have direct 201 

implications for the types of analysis undertaken. A range of commentaries and resources 202 

exist relating to the various approaches available to sport scientists. [38-39] However, perhaps 203 

the two most pervasive topics relate to determining what constitutes a meaningful change and 204 

the accounting for repeated measures in analyses.  205 

Accounting for repeated measures 206 

Most traffic light systems will incorporate repeated measures data. Many of these 207 

measurements occur on a daily basis; aggregated weekly or monthly values along with rolling 208 

averages are often then calculated to describe trends in the data as well as facilitate analysis. 209 

However, when group data is pooled without account for the dependency of repeated 210 

observations on the same individual/s, relationships between variables of interest can be 211 

overstated. [40] Generalised linear models such as linear mixed models and generalised 212 

estimating equations can account for this issue in the modelling process, however whilst 213 
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relatively common in research, their use may require upskilling of practitioners. Although 214 

machine learning algorithms can allow for any potential non-linearity both between and 215 

within individuals to be uncovered, most approaches assume independence between 216 

observations. The development of models for each individual has been used as another 217 

method of avoiding the repeated measures issue. [25] However this will be more time 218 

consuming when large player numbers are involved. Further, in instances where limited data 219 

exists obtaining a well-fit model also may become a challenge.  220 

 221 

Identifying a meaningful change 222 

In sporting terms, it is important to identify what longitudinal changes in responses (i.e., to 223 

training) are meaningful, above and beyond ‘normal’ or random variability. Given the 224 

historical records of data now available to many professional teams, a number of approaches 225 

have been proposed in the literature to determine what constitutes a ‘meaningful’ change 226 

(often referred to as responsiveness). [41] The standard deviation (SD), effect size, smallest 227 

worthwhile change (SWC), coefficient of variation (CV) and risk ratio are just some 228 

examples of metrics used to determine this meaningful change. However, unsurprisingly each 229 

measure will provide different outputs.  230 

 231 

**** INSERT TABLE 1 & FIGURE 3 ABOUT HERE **** 232 

 233 

In the Figure 2 example, despite similar weekly mean training loads, the distinct levels of 234 

variance between each player results in substantially different thresholds for each player, 235 

therefore also resulting in different flags (Table 1). Table 1 shows an example of a traffic 236 
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light system in operation. In this illustration a < 0.3 x CV of the weekly load is considered 237 

‘green’ (a ‘small’ effect/difference), a 0.3 to 0.9 x CV equates to ‘amber’ (a ‘moderate’ 238 

difference) and a 0.9 to 1.6 x CV is ‘red’ (a large difference). It should be noted that this 239 

approach represents only one example and a variety of others experience use in the field. 240 

Such systems have clear implications for decision-making between individuals within a 241 

group. Clearly if one traffic light system was calibrated using a CV approach, and another 242 

using the SD, then the measurement and observation would be different, therefore, triggering 243 

a different course of follow up action. In complement to Figure 2, Figure 3 displays the 244 

weekly training load for the two athletes (#5 and #13) shown in Figure 2 and Table 1. An 245 

example traffic light system is shown for the month (incorporating the weekly load data) 246 

using the same traffic light thresholds discussed above The differences between the two 247 

outputs are clearly visible.  248 

Whether considering the data from a training prescription or injury prevention perspective, 249 

given the noted differences for each player, it is apparent that differentiated loading 250 

approaches should be prescribed for each. For example, Player #13 shows large variation in 251 

their monthly load – due in part to the high load obtained in week 1. In the example, this has 252 

resulted in a decision to reduce the exposure to load in week 2; therefore, the system provides 253 

a red flag. Together, these 2 weeks demonstrate inconsistency in loading, possibly increasing 254 

the risk of injury/illness. [42] In rectifying this, closer attention (in the context of this example) 255 

should be placed on the absolute and relative changes in load so as to prescribe more 256 

consistent loading. In contrast, Player #5 demonstrates relative consistency in their loading 257 

(range 1250 AU – 1850 AU). As such, a red flag (a change of ~300 load units) may not pose 258 

any meaningful risk to injury/illness. Collectively, this shows a number of complexities and 259 

factors to consider when individualising training prescription in team sports. The system 260 
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employed will thus require careful consideration of the relationships between each metric and 261 

those validity measures mentioned earlier in the article. 262 

 263 

 264 

Step 4 – Communicating the findings 265 

Increasing the transparency in which data is displayed in scientific research has received 266 

considerable attention of late. [43] Figures which are able to display the response of the 267 

individual within the group have become more sophisticated as more advanced visualisation 268 

packages are available in commercial software. Figure 4 shows an example of how the same 269 

group means and standard deviations can be replicated using individual data, as well as how 270 

different tests of statistical significance change as a result of this differently distributed data. 271 

[43] This provides further support for visualisation of both the individual and group in order to 272 

understand the nature of the dataset. The great appeal of the traffic light approach is its ability 273 

to convey information visually in an intuitive and easily interpretable manner. The use of 274 

integrated plots, automated colour coding and conditional formatting, and visual flagging of 275 

outliers, anomalies and trends (both desirable and undesirable) provides regular feedback to 276 

the coach and support staff to guide daily decision making. 277 

 278 

*** INSERT FIGURE 4 ABOUT HERE **** 279 

The future 280 

Given the considerable human and financial investment in the pursuit of success, and the 281 

ethical importance of looking after individuals in our care, high performance sport will 282 
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continue to evolve in search of better ways to train and monitor athletes and to make 283 

decisions about how best to manage them to ensure both safety and success. The future will 284 

likely involve a mix of existing and new measurement approaches and technologies. 285 

However, to be most effective, and to provide a sound basis for decision support, all of the 286 

following will need to be developed and enhanced: 287 

• Robust selection of athlete monitoring measures, with due consideration to issues 288 

related to validity, reliability, data reduction and athlete burden. 289 

• Establishment of evidence-based guidelines related to the determination of 290 

benchmarks and baselines and the subsequent boundaries used for categories (e.g., 291 

red, amber, green) within a decision support system. 292 

• Development of database and dashboard software to enhance data management and 293 

visualisation. 294 

• Application and exploration of analytic approaches to large datasets that account for 295 

longitudinal repeated measures data. Evaluation of multiple analysis approaches (i.e., 296 

machine learning vs linear models) to the same datasets. 297 

• Improved integration within multidisciplinary teams and the upskilling of staff and 298 

coaches in sport science and data analysis. 299 

• The strategic implementation of research and innovation within high performance 300 

programmes, including rigorous data collection and question driven projects. 301 

• The pursuit of research that encourages practitioners and researchers to answer 302 

questions through analysis of larger scale datasets facilitated through greater 303 

collaboration across clubs, leagues and sports. 304 

  305 
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