Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications

This is the Accepted version of the following publication

Wrona, M, Cran, Marlene, Nerín, C and Bigger, Stephen W (2017) Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydrate Polymers, 156. 108 - 117. ISSN 0144-8617

The publisher’s official version can be found at http://www.sciencedirect.com/science/article/pii/S0144861716310475
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/33826/
Development and Characterisation of HPMC Films Containing PLA Nanoparticles Loaded with Green Tea Extract for Food Packaging Applications

Magdalena Wronaa, Marlene J. Cranb*, Cristina Nerína and Stephen W. Biggerb.

a Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, CPS-University of Zaragoza, Torres Quevedo Building, María de Luna St. 3, E-50018 Zaragoza, Spain

b Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, 8001, Australia

*Corresponding author: Tel.: + 61 3 9919 7642; fax: +61 3 9919 8082

E-mail addresses: marlene.cran@vu.edu.au (M. Cran), magdalenka.wrona@gmail.com (M. Wrona), cnerin@unizar.es (C. Nerín), stephen.bigger@vu.edu.au (S.W. Bigger)

Abstract

A novel active film material based on hydroxypropyl-methylcellulose (HPMC) containing poly(lactic acid) (PLA) nanoparticles (NPs) loaded with antioxidant (AO) green tea extract (GTE) was successfully developed. The PLA NPs were fabricated using an emulsification-solvent evaporation technique and the sizes were varied to enable a controlled release of the AO from the HPMC matrix. A statistical experimental design was used to optimize the synthesis of the NPs in order to obtain different sizes of nanoparticles and the loading of these into the HPMC matrix was also varied. The physico-chemical properties of the composite films were investigated and the release of the AO was confirmed by migration studies in 50% v/v ethanol/water food simulant. The AO capacity of the GTE released from the active films was studied using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the results suggest that the material could potentially be used for extending the shelf-life of food products with high fat content.
Keywords: green tea extract, antioxidants, PLA, nanoparticles, HPMC, active packaging

1 Introduction

In the broad field of nanotechnology, nanocomposites based on polymer matrices have become a very popular topic. Polymer nanocomposites are considered a major technological breakthrough for many engineering applications. For example, carbon nanotubes can deliver exceptional mechanical properties to a range of polymer matrices. Nanoparticles incorporated into polymers can enhance their barrier properties as well as their chemical and electrical properties, and can also impart reinforcement to polymer matrices (Ma, Siddiqui, Marom & Kim, 2010; Paul & Robeson, 2008; Ruffino, Torrisi, Marletta & Grimaldi, 2011).

Considerable attention has emerged over recent years towards the development of hybrid materials for active packaging applications. Combining the characteristics of organic polymers and nanotechnology innovations has led to the creation of new materials with extraordinary properties (Cirillo, Spizzirri & Iemma, 2015; Cushen, Kerry, Morris, Cruz-Romero & Cummins, 2012; Duncan, 2011; Rhim, Park & Ha, 2013; Silvestre, Duraccio & Cimmino, 2011). In particular, newly developed biopolymers that degrade under natural composting conditions combined with antioxidant (AO) and antimicrobial (AM) properties are becoming increasingly popular (DeGruson, 2016; Fabra, López-Rubio & Lagaron, 2014). These materials are the result of consumer demands for fresh foods with extended shelf life as well as natural packaging materials with a reduced environmental footprint.
One such biopolymer is poly(lactic acid) (PLA), an aliphatic polyester whose monomer can be derived primarily from renewable agricultural resources such as corn, beetroot, and sugarcane. The polymer is formed via the fermentation of starch and condensation of lactic acid (Bang & Kim, 2012; Del Nobile, Conte, Buonocore, Incoronato, Massaro & Panza, 2009; Llana-Ruiz-Cabello et al., 2015; Rancan et al., 2009; Tawakkal, Cran, Miltz & Bigger, 2014). Although it is typically produced for primary packaging applications, PLA can also be further processed to form nanoparticles (Hirsjärvi, 2008; Rancan et al., 2009; Ruan & Feng, 2003).

Nanoparticles are commonly defined as particles with one or more dimensions in the range between 10 to 1000 nm (Rao & Geckeler, 2011). In terms of nanocarriers for the delivery or encapsulation of additives, they can be generally categorised into two groups: nanocapsules and nanospheres. The former are nanocarriers where an active agent is presented in a liquid core surrounded by a polymer shell whereas the latter are nanocarriers where the active agent is encapsulated inside the polymer or adsorbed on the surface of the polymer (Fang & Bhandari, 2010; Rao & Geckeler, 2011). Extensive studies have been conducted in applying PLA nanoparticles to the development of new types of active packaging (Auras, Harte & Selke, 2004; Imran, Klouj, Revol-Junelies & Desobry, 2014; Roussaki et al., 2014; Samsudin, Soto-Valdez & Auras, 2014). Such nanoparticles offer opportunities to protect active molecules against degradation during the manufacturing of materials that can often involve thermooxidative processes.

The main goals in the design of nanoparticles for AO delivery in active packaging are the control of nanoparticle size, loading and release of the AO, and the surface properties (Armentano et al., 2013). The emulsification-solvent
evaporation technique is a physico-chemical method of encapsulation where the solvent enables the partial or complete dissolution of the polymer and the emulsifier enables size control as well as enhancing the drug or AO solubility in the polymer network. In this technique, the loading of active agents occurs by entrapment and polymeric nanoparticles can be successfully used for encapsulation of both lipophilic and hydrophilic active agents (Gao, Jones, Chen, Liang, Prud’homme & Leroux, 2008; Vrignaud, Benoit & Saulnier, 2011). The encapsulation of AOs can be influenced by factors such as the molecular weight of the agent, its predisposition to interaction with the polymer matrix, and the presence of specific functional groups in the AO structure (Armentano et al., 2013).

Semi-synthetic materials derived from cellulose such as hydroxypropyl-methylcellulose (HPMC) have been used successfully to develop a range of active packaging materials (Akhtar, Jacquot, Arab-Tehrany, Gaiani, Linder & Desobry, 2010; Bilbao-Sainz, Avena-Bustillos, Wood, Williams & McHugh, 2010; Brindle & Krochta, 2008; de Moura, Aouada, Avena-Bustillos, McHugh, Krochta & Mattoso, 2009; de Moura, Avena-Bustillos, McHugh, Krochta & Mattoso, 2008; Ding, Zhang & Li, 2015; Imran, Klouj, Revol-Junelies & Desobry, 2014). Packaging films derived from HPMC have low flavour and aroma properties, which is important in food applications (Akhtar et al., 2012; Sanchez-Gonzalez, Vargas, Gonzalez-Martinez, Chiralt & Chafer, 2009), and the polymer is approved by the European Commission (2011) as a food additive characterised by number E 464.

Lipid oxidation is the main cause of fatty food spoilage (Falowo, Fayemi & Muchenje, 2014; Min & Ahn, 2005) and there is a significant number of
publications describing developments in active packaging designed to improve food products containing high levels of polyunsaturated fatty acids (Bolumar, Andersen & Orlien, 2011; Camo, Lorés, Djenane, Beltrán & Roncalés, 2011; López-de-Dicastillo, Gómez-Estaca, Catalá, Gavara & Hernández-Muñoz, 2012); Nerin et al 2006; Carrizo et al 2016). These are primarily focused on AO compounds such as green tea or green tea extracts (s) that have been successfully used to protect against lipid oxidation (Carrizo, Gullo, Bosetti & Nerín, 2014; Frankel, Huang & Aeschbach, 1997; Yang, Lee, Won & Song, 2016; Yin, Becker, Andersen & Skibsted, 2012). The main compounds in green tea are catechins that are powerful AOs due to the presence of the phenolic hydroxyl groups in their structure (Colon & Nerin, 2012; Gadkari & Balaraman, 2015; Senanayake, 2013). For direct contact applications, the AO agent would typically not be required to be released over time in order to extend the shelf-life of products (Carrizo, Taborda, Nerín & Bosetti, 2016), however, encapsulation of the agents can further extend the applications to releasing systems.

Active packaging using AO compounds faces several challenges including the protection of AOs during the production of packaging materials and the controlled release of encapsulated AOs from the polymer matrix. The present work aims to address these challenges with the development of a new hybrid active film based on natural AOs incorporated into a HPMC biopolymer film. This paper reports the synthesis and characterisation of GTE-loaded PLA nanoparticles of various sizes incorporated into a HPMC film matrix to achieve controlled AO release.

2 Materials and Methods

2.1 Polymers and Reagents
The PLA polymer (grade 7001D Ingeo™, specific gravity 1.24, melting temperature 154°C (Tawakkal, Cran & Bigger, 2014), was provided in pellet form by NatureWorks LLC, Minnetonka, Minnesota, USA. The HPMC powder (viscosity at 2% w/w in H₂O of 80-120 cP; CAS 9004-65-3), poly(vinyl alcohol) (PVA) (99+% hydrolyzed; CAS 9002-89-5) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (CAS 1898-664) were obtained from Sigma-Aldrich (Sydney, Australia). Other chemicals included: acetone (CAS 67-64-1) obtained from Univar (Ingleburn, Australia), acetonitrile (CAS 75-05-8) obtained from Merck (Bayswater, Australia), and methanol (ACS/HPLC; CAS 67-56-1) obtained from Honeywell Burdick and Jackson® (Adelaide, Australia). Green tea powder (Asahina Maccha 4-GO) was manufactured by Marushichi Suzuki Shoten Co. and was purchased from a local supermarket. Green tea was stored in darkness at 4°C. Ultrapure water was supplied from a Milli-Q system (Millipore, Billerica, MA, USA).

2.2 Green Tea Extract

Green tea extract was prepared by adding 0.5 g of green tea powder to 10 mL of an acetonitrile in water solution (4:1 v/v ratio). The solution was heated to 80°C and stirred continuously for 30 min before it was cooled to room temperature and filtered once through filter paper (Whatman 5A, 125 mm from Adventec®, Caringbah, Australia) and then through a 0.2 μm PHENEX PTFE syringe filter (also from Adventec®). Solutions of GTE at a concentration of 1% v/v in acetonitrile were prepared.

2.3 Nanoparticle Synthesis
A slightly modified method to that described by Roussaki et al. (2014) was used to produce PLA nanoparticles loaded with GTE with optimization of the synthesis parameters outlined below. Briefly, 20 mL of a 1% v/v aqueous solution of PVA was added to a 250 mL round-bottom flask and the solution was mixed at 700 to 1400 rpm using an egg-shaped magnetic stirrer. A mass of 0.2 g of PLA, which had been previously dried at 60°C in an air-circulating oven overnight, was dissolved in 20 g of acetone at room temperature. Equal volumes (20 mL) of different concentrations (0.2%, 0.6%, 1%) of GTE in acetonitrile and 1% w/v PLA in acetone were mixed and this solution was then added drop-wise into the PVA emulsifier solution where it remained under stirring for 10 min. Samples were left overnight to evaporate the solvent and were then centrifuged at 4000 rpm for 10 min at 15°C using a SORVALL® RT7 bench-top centrifuge from Du Pont Company (Wilmington, USA). The nanoparticles suspended in the aqueous phase were thereafter subjected to several cleaning steps by addition of acetonitrile and centrifugation and the resulting supernatant was recovered and stored at 7°C. Two types of GTE-loaded nanoparticles were prepared: (i) emulsifier free at a stirring speed of 1400 rpm, and (ii) in 0.5% v/v PVA emulsifier solution at a stirring speed of 700 rpm. The samples were nominally characterised by small nanoparticles (NP47) and larger nanoparticles (NP117) where the number is the nanoparticle size in nm. Neat nanoparticles without GTE (BK244), were also prepared under the same conditions.

The yield of the nanoparticles was determined gravimetrically by weighing a sample of the solution that was then completely dried in an air-circulating oven. After cooling, the residual mass was reweighed and the yield of the nanoparticles calculated based on the mass of the original sample solution. Nanoparticle size
optimization was achieved using the computer-aided experimental design software program MODDE 6.0 from Umetrics (Umeå, Sweden). Details of the optimization experimental design are presented in the supplement.

2.4 Film Fabrication

A dispersion technique commonly referred to as the "hot/cold" technique proposed by the Dow Chemical Company (2002) was used for HPMC film preparation. Briefly, 6 g of HPMC powder was dissolved in 20 mL of hot water (ca. 90°C) under continuous stirring. When the HPMC powder was dissolved, 40 mL of cold water was added and the solution was mixed for a further 30 min without heating. Different amounts of NP47 or NP117 GTE-loaded nanoparticle solutions, i.e. 30 or 60% w/w, were used to prepare the film solutions and the final concentration of dry nanoparticles in the films was 15% and 30% w/w respectively. The films were named based on the size and loading of the nanoparticles, i.e. NP47-15, NP47-30, NP117-15, and NP117-30. Two series of HPMC film solutions with nanoparticles that did not contain GTE, i.e. BK244-15 and BK244-30, were also prepared as control films along with neat HPMC film without nanoparticles.

Films were prepared by casting that was performed by pipetting a predetermined volume (ca. 6 mL) of solution onto rimmed glass plates (225 cm²) that were then placed on a smooth, level granite slab. The solution was spread evenly with a glass rod and allowed to dry overnight at room temperature to obtain film samples of ca. 20 μm thickness. The actual thickness of each of the films was measured using a hand-held micrometer (Mitutoyo, Japan) with a precision of 0.005 mm and an average of three measurements was taken for each film.
2.5 Nanoparticle and Film Characterization

2.5.1 Nanoparticle Size and Charge

A ca. 2% w/v solution of nanoparticles in DI water was prepared in order to measure size and surface charge of the nanoparticles. For particle size and polydispersity index (PDI) measurements, 12 mm square polystyrene cuvettes were used whereas disposable, folded capillary zeta cells were used for surface charge measurements. All samples were tested at 25.0 ± 0.1°C using a Zetasizer Nano ZS instrument from Malvern Instruments (Tarent Point, Australia) equipped with a He–Ne laser source (λ = 633 nm) with a scattering angle of 173°. The following sample settings were applied: refractive index: 1.330; viscosity: 1.000; dispersant: water; equilibration time: 2 min. Dynamic light scattering (DLS) was used to measure particle size; electrophoretic light scattering (ELS) was used for the measurement of particle surface charge; and the PDI was calculated using the cumulant method (Frisken, 2001; Lim, Yeap, Che & Low, 2013). All measurements were performed in triplicate.

2.5.2 Film Colour Measurement

A portable Chroma Meter CR-300 from Konika Minolta (Tokyo, Japan) with illuminant D65 and a 2° standard observer was used for the measurement of film colour. An 8 mm diameter measuring head area was used with diffuse illumination and 0° viewing angle, and a white chromameter standard plate (L = 97.47, a = 0.13, b = 1.83) was used for calibration. Sections of each film sample were placed on the standard plate to perform the measurements that were conducted at 25 ± 1 °C and in triplicate. The colour was determined using CIE $L^*a^*b^*$ colour space.
where \(L^* \) represents white \((L^* = 100)\) and black \((L^* = 0)\) opponent colours, positive/negative values of \(a^* \) represent red/green opponent colours respectively, and positive/negative values of \(b^* \) represent yellow/blue opponent colours respectively. Equations described by Yam and Papadakis (2004) were used to transform \(L, a, b \) values into \(L^*, a^*, b^* \) values.

2.5.3 Differential Scanning Calorimetry

The melting temperature \((T_m)\), melting enthalpy \((\Delta H_m)\) and degree of crystallinity \((X_c)\) of PLA nanoparticles and samples of the HPMC films containing PLA nanoparticles were determined by differential scanning calorimetry (DSC) using a Mettler-Toledo (Greifensee, Switzerland) DSC equipped with STARe Software (version 11.00) for data acquisition and analysis. Samples of ca. 5 mg were weighed and encapsulated in aluminium pans, and an empty aluminium pan (40 μL) was used as the reference. A single dynamic segment was applied over the temperature range of 50-200°C at a heating rate of 10°C min\(^{-1}\). The samples were kept under a 50 mL min\(^{-1}\) nitrogen gas flow during the analysis and single experiments were performed.

2.5.4 Fourier-transform Infrared Analysis

Fourier-transform infrared (FTIR) analysis was performed using a Perkin Elmer Frontier™ FTIR spectrophotometer (Waltham, USA) in attenuated total reflectance (ATR) mode using a diamond ATR crystal. The spectra of the nanoparticles, film samples, and neat green tea powder were recorded using 16 scans at a resolution of 2 cm\(^{-1}\) over the full mid-IR range \((4000–600\, \text{cm}^{-1})\). Data
acquisition and analysis were performed using the Perkin Elmer Spectrum software. All measurements were performed in triplicate and at 25 ± 1ºC.

2.5.5 Scanning Electron Microscopy

High-magnification images of nanoparticles and films were obtained using a scanning electron microscope (SEM). A drop of nanoparticle solution was deposited on an aluminium sample holder covered by double-sided conductive tape and all samples were left to dry. In the case of HPMC film samples, small pieces (ca. 3 × 3 mm) were cut and also deposited on an aluminium sample holder using conductive tape. All samples were subsequently sputter-coated with iridium using a Polaron SC5750 sputter coater (Quorum Technologies, Laughton, UK). The surface morphology of the nanoparticles and films was observed at 3 kV using a ZEISS Merlin Gemini 2 Field Emission SEM (ZEISS International, Oberkochen, Germany) in high-resolution column mode with images recorded at magnifications of up to 25,000×.

2.6 Green Tea Migration

Release studies were performed to determine the migration of GTE from the HPMC films into 50% v/v ethanol in water, a lipophilic food simulant, at 20ºC and 40ºC after 10 days. Double-sided total immersion migration tests were performed by placing 2 × 3 cm pieces of film in glass vials that were filled with 18 mL of the simulant. The absorbance of the samples was measured at 268 nm using a Hach DR 5000TM UV-visible spectrophotometer (Hach Australia, Notting Hill, Victoria, Australia). The spectrophotometric measurements were made against a blank comprised of the ethanol food simulant. The calibration curve of
GTE was determined by preparing standard solutions of GTE over the concentration range of 0.04% and 0.60% w/w prepared in 50% v/v ethanol in water. All samples were prepared in triplicate.

2.7 Film Antioxidant Capacity

The AO capacity (CAOX) of the GTE released from the active films and of the blank films was determined by the DPPH method (Pyrzynska & Pękal, 2013) using the solutions from the GTE migration test. For this test, five different dilutions of film extracts in methanol were prepared. The reaction was triggered by adding 100 μL of each extract dilution to 3.5 mL of a 30 μg g⁻¹ solution of DPPH in methanol. A blank solution of DPPH in methanol was also prepared and all samples were stored for 15 min in darkness prior to measuring the absorbance of the samples at 515 nm with the same spectrophotometer used in the GTE migration test. The spectrophotometric measurements were performed against a methanol blank and an additional calibration to check the DPPH concentration was also performed. For this purpose, standard solutions of DPPH at concentrations between 5 and 50 μg g⁻¹ were prepared in methanol.

The AO capacity of the samples was expressed as the percentage of inhibition of DPPH (I%) that was calculated according to the following formula:

\[I\% = \left(\frac{A_0 - A}{A_0}\right) \times 100 \]

where \(A_0 \) and \(A \) are the absorbance values of the blank (DPPH in methanol) and the extract sample (DPPH with extract) respectively. The value of \(I\% \) after 15 min was plotted against the concentration of the AO and a linear regression analysis
was performed to obtain the half maximal inhibitory concentration (IC₅₀) value which is inversely proportional to the AO capacity (Pyrzynska & Pękal, 2013). The results are represented as a percentage of the liberated substance.

2.8 Statistical Analysis

A Student t test at a probability level of $p < 0.05$ was performed to determine whether there were significant differences between analysed films with the null hypothesis being that the analysed samples were the same. When an experimental value of t was greater than the t table value, the difference between samples was significant and the null hypothesis was rejected. All results are expressed as (mean ± standard deviation) with the exception of the TGA and DSC results where only one measurement of each sample was obtained.

3 Results and Discussion

3.1 Nanoparticle Characterization

The small size of nanoparticles is the key characteristic property that influences their unique properties such as active agent delivery and release (Gaumet, Vargas, Gurny & Delie, 2008; Roussaki et al., 2014). The high surface area-to-volume ratio of smaller nanoparticles facilitates a rapid active agent release and conversely, a greater amount of active agent can be encapsulated in larger nanoparticles resulting in slower release (Singh & Lillard, 2009). In the current investigation, two sizes of nanoparticles were synthesised with particle sizes of ca. 47 and 117 nm respectively. The incorporation of different sizes of nanoparticles can potentially impart a controlled active agent release capacity that is vital for enhancing the AO effect, extending the lifetime of the active
material, and prolonging the shelf-life of food products. One major problem that is often encountered in active packaging is the short effective lifetime of many active agents due to their rapid and complete release over a short period of time. However, when the AOs incorporated into the polymer act as radical scavengers, their release is not necessary to achieve an AO effect, as has been demonstrated in several publications (Carrizo et al., 2016). This behaviour opens the door to the possibility of encapsulating AOs to protect them in extrusion processes. Interestingly, the size of both types of unloaded nanoparticles was ca. 244 nm suggesting that the addition of GTE extract further modified the size of the PLA nanoparticles. The smaller size of the GTE-loaded nanoparticles may be due to the presence of the hydroxyl groups in the GTE catechins. These hydroxyl groups can interact with the carboxyl groups of PLA via hydrogen bonding, thus resulting in smaller sized nanoparticles (Arrieta, López, López, Kenny & Peponi, 2016). The size distribution of each of the different types of nanoparticles that were synthesized was calculated from measurements of the scattered light intensity produced by the particles. In all cases, monomodal size distributions were obtained and the width of the size distribution for the small nanoparticles (NP47) was approximately 100 nm whereas that of the larger nanoparticles (NP117) and blank nanoparticles (BK244) was approximately 200 nm.

Zeta potential is a measure of the magnitude of the electrostatic or charge repulsion/attraction between particles and is an important parameter that is related to nanoparticle stability or aggregation in solution (Patra & Baek, 2014). The PLA nanoparticles loaded with GTE exhibited negative zeta potentials that were -27 mV and -32 mV for NP47 and NP117 samples respectively. The results suggest that there is strong electrostatic repulsion preventing aggregation of the
GTE-loaded nanoparticles (Pool et al., 2012). The charge of the unloaded nanoparticles was only slightly negative (ca. -1 mV) suggesting that the incorporation of GTE affected not only the size but also the surface characteristics. The polydispersity index (PDI) was also determined with values between 0.21 and 0.27 indicating relatively homogeneous samples with moderate PDIs. In this case, the distribution of nanoparticles is neither extremely polydisperse, nor broad, nor in any sense narrow (Roussaki et al., 2014). A summary of the size, zeta potential and PDI results is presented in Table 1.

Table 1. Size, distribution and zeta potential of unloaded and GTE-loaded nanoparticles. All measurements were performed in triplicate.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Particle size/nm</th>
<th>Zeta potential/eV</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK244</td>
<td>244.4 ± 4.5</td>
<td>-1.38 ± 0.01</td>
<td>0.23 ± 0.02</td>
</tr>
<tr>
<td>NP47</td>
<td>47.0 ± 0.5</td>
<td>-27.33 ± 0.15</td>
<td>0.25 ± 0.01</td>
</tr>
<tr>
<td>NP117</td>
<td>117.4 ± 0.4</td>
<td>-32.47 ± 0.12</td>
<td>0.27 ± 0.02</td>
</tr>
</tbody>
</table>

3.2 Film Colour Analysis

The CIE $L^*a^*b^*$ parameters for all HPMC samples are presented in Figure 1. Analysis of L^* values representing the whiteness of the film samples suggests no significant difference was obtained in the case of neat HPMC samples and both types of HPMC mixed with unloaded PLA nanoparticles. In the case of the HPMC samples mixed with GTE-loaded nanoparticles and neat nanoparticles at different concentrations, the addition of 30% w/w NP47 particles to the HPMC matrix clearly darkened the films. Since smaller nanoparticles have a larger surface area than larger ones, the active ingredient, in this case dark green GTE, will be sorbed
in a greater amount on the shell of the smaller nanoparticles. As a consequence, this may result in the observed decrease in the white coloration of the HPMC film. The addition of other types and concentrations of GTE-loaded nanoparticles had no significant influence on the film whiteness. The addition of all sizes, concentrations, and GTE loadings of PLA nanoparticles into the HPMC films significantly changed the a^* parameter, increasing the redness. The results suggest that this change is primarily influenced by the addition of the nanoparticles rather than the addition of the active agent. Conversely, the b^* parameter remained relatively unchanged with the addition of any type of nanoparticle at the various concentrations that were investigated. Overall, the most significant colour difference was that observed between the neat HPMC film and the sample containing 30% w/w NP47 nanoparticles.
3.3 Thermal Properties

Differential scanning calorimetric analysis was used to determine the thermal properties of the nanoparticles and films with examples of the obtained DSC thermograms presented in Figure 2. The resulting melting points, melting enthalpies and crystallinities are presented in Table 2. The results show that the samples of PLA nanoparticles (both unloaded and loaded) have melting points between 148ºC and 153ºC compared with the pure PLA pellets that melted at 157ºC. The result for the pure PLA polymer is slightly higher than that previously reported for the same batch of material (Tawakkal, Cran & Bigger, 2014) and this may be due to differences in the dryness of the sample at the time of recording.
the DSC thermogram. The melting of bulk materials is generally different to that
which occurs at a nanoscale and this occurs mainly as a result of the ratio of
surface atoms to the total atoms in the material. Therefore, in the case of PLA, a
clear difference in the melting point is observed between the PLA pellet and the
nanoscale PLA (Jha, Gupta & Talati, 2008; Kim & Lee, 2009; Takagi, 1954). The
same effect was observed in the case of the calculated melting enthalpies and
crystallinity results.

The polymer crystallinity expressed as ΔH_m was obtained from DSC
thermograms in reference to the melting enthalpy of 100% crystalline polymer
matrix which is 93 J g$^{-1}$ for PLA (Battegazzore, Bocchini & Frache, 2011). The
addition of nanoparticles to the HPMC matrix decreased the melting temperature
of the materials. Conversely, the melting enthalpies of each of the HPMC films
containing PLA nanoparticles were always higher than that of the neat HPMC
film. It was observed that the melting enthalpy of HPMC films prepared with 30%
w/w of any type of nanoparticle solution was lower than that of HPMC films
containing 15% w/w of nanoparticle solution. Pure HPMC is a totally amorphous
polymer that does not display endothermic peaks upon melting (data not shown).
The DSC thermogram of the neat green tea powder is also shown for comparison
and exhibits a broad melting peak at ca. 132°C. The neat green tea powder is
comprised of a complex mixture of many different components including
carbohydrates (cellulose), lipids, trace minerals, vitamins and polyphenols (Chu
& Juneja, 1997).
Figure 2. DSC thermograms of green tea powder, PLA pellet, nanoparticles and HPMC films. Letters in brackets refer to: (P) pellet; (NP) nanoparticles; and (F) film. Single experiments were performed.
Table 2. Peak melting points, melting enthalpies and crystallinity of nanoparticles and HPMC films. Single experiments were performed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$T_m /^\circ$C</th>
<th>$\Delta H_m /J g^{-1}$</th>
<th>X_c%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT powder</td>
<td>132</td>
<td>331</td>
<td>-</td>
</tr>
<tr>
<td>PLA pellet</td>
<td>157</td>
<td>437</td>
<td>4.7</td>
</tr>
<tr>
<td>BK244</td>
<td>153</td>
<td>73</td>
<td>0.8</td>
</tr>
<tr>
<td>NP47</td>
<td>148</td>
<td>68</td>
<td>0.7</td>
</tr>
<tr>
<td>NP117</td>
<td>152</td>
<td>54</td>
<td>0.6</td>
</tr>
<tr>
<td>HPMC</td>
<td>132</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td>BK244-15</td>
<td>97</td>
<td>376</td>
<td>-</td>
</tr>
<tr>
<td>BK244-30</td>
<td>100</td>
<td>295</td>
<td>-</td>
</tr>
<tr>
<td>NP47-15</td>
<td>129</td>
<td>272</td>
<td>-</td>
</tr>
<tr>
<td>NP47-30</td>
<td>93</td>
<td>249</td>
<td>-</td>
</tr>
<tr>
<td>NP117-15</td>
<td>130</td>
<td>268</td>
<td>-</td>
</tr>
<tr>
<td>NP117-30</td>
<td>120</td>
<td>242</td>
<td>-</td>
</tr>
</tbody>
</table>

3.4 Structural Properties

The structure of the PLA nanoparticles and HPMC film samples were elucidated by ATR FTIR analyses and the spectra of selected materials are presented in the supplement. The spectrum of the neat PLA nanoparticles corresponds to the spectrum of pure PLA characterised with a summary of the key peaks presented in Table 3. The absence of a broad peak between 3700-3000 cm$^{-1}$ confirms the absence of moisture in the dried PLA which has been shown previously for the same batch of PLA (Tawakkal, Cran & Bigger, 2016) and in other PLA systems ((Xiao et al., 2012)). In the case of the PLA
nanoparticles loaded with GTE, the spectra are very similar to that of the unloaded PLA nanoparticles with some changes observed in the peak at 1640 cm\(^{-1}\) which undergoes a bathochromic shift in the case of the loaded PLA nanoparticles. This peak corresponds to C=C and/or C-N stretches in the GTE (Senthilkumar & Sivakumar, 2014) and the shift may indicate some interaction between the GTE and the PLA.

In the case of the HPMC films, the various characteristic peaks associated with this material are also presented in Table 3. When combined with the PLA nanoparticles, changes in peak intensities were observed between samples with different concentrations of loaded nanoparticles. In general, the higher loadings of nanoparticles resulted in lower HPMC peak intensities as expected due to the reduced HPMC content. An exception was observed in case of the peak at 1760 cm\(^{-1}\) which can be attributed to the carbonyl groups from PLA which are introduced into the HPMC matrix (Okunlola, 2015). This peak is shown in Figure 3(a) for the various film samples where lower peak intensities are observed for the films containing 15% w/w PLA nanoparticles as compared with the same films containing 30% w/w PLA nanoparticles. When these peaks are normalized to a characteristic HPMC peak (1050 cm\(^{-1}\)) as shown in Figure 3(b), the most intense peak is produced by the sample containing the smaller (47 nm) GTE-loaded nanoparticles at the highest loading of these in the polymer. This, in turn, suggests the greatest interaction between the nanoparticles and the HPMC polymer matrix occurs in that sample.
Table 3. Summary of key ATR-FTIR spectral peaks of PLA nanoparticles and HPMC films.

<table>
<thead>
<tr>
<th>Wave-number(s)/cm⁻¹</th>
<th>PLA functional groups</th>
<th>HPMC functional groups</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000-2800</td>
<td>C-H stretching</td>
<td>C-H symmetric and asymmetric valence vibrations from CH₃</td>
<td>Lopes, Jardini and Filho (2014), Sekharan, Palanichamy, Tamilvanan, Shanmuganathan and Thrupathi (2011)</td>
</tr>
<tr>
<td>1760-1750</td>
<td>C=O stretching</td>
<td>C=O stretching or deformation, O-CO stretching</td>
<td>Okunlola (2015)</td>
</tr>
<tr>
<td>1640-1650</td>
<td>C=C and/or C-N stretches in GTE, absorbed water</td>
<td></td>
<td>Senthil Kumar and Sivakumar (2014), Sakata, Shiraishi and Otsuka (2006)</td>
</tr>
<tr>
<td>1383</td>
<td>CH₃ symmetric bending, CH bending, or C-CH₃ stretching</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
<tr>
<td>1359</td>
<td>C-COO stretching, O-CH stretching, O-CO stretching, or C=O in-plane bending</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
<tr>
<td>1130</td>
<td>CH bending or O-CH stretching</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
<tr>
<td>1080</td>
<td>C-CH₃ stretching, CH₃ rocking, or skeletal COC bending</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
<tr>
<td>871</td>
<td>C-COO stretching, C-CH₃ stretching, O-CO stretching, skeletal COC bending, or C=O deformation</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
<tr>
<td>760</td>
<td>C-CH₃ stretching, skeletal COC bending, C=O in-plane bending, or C=O out-of-plane bending</td>
<td></td>
<td>Kang, Hsu, Stidham, Smith, Leugers and Yang (2001)</td>
</tr>
</tbody>
</table>
3.5 Nanoparticle and Film Imaging

The SEM micrographs of selected loaded and unloaded nanoparticles and HPMC films are presented in Figure 4. It can be observed that the neat nanoparticles are significantly larger than the GTE-loaded nanoparticles and this is consistent with results obtained using the light scattering particle sizing instrument. It is interesting to note that the neat PLA appears to form not only nanoparticles but also nanofibers whereas the GTE-loaded PLA nanoparticles are primarily spherical and much smaller. Although image analysis of the HPMC films was challenged by some damage to the films caused by the SEM beam, the images...
of neat HPMC film and those containing the different types and concentrations of nanoparticles demonstrated mainly smooth, homogeneous surfaces as shown in images (c) to (g). It can therefore be suggested that the nanoparticles incorporated into the HPMC matrix remained separate and this is in accordance with the strong negative charge of the particles identified by the zeta potential measurements.
Figure 4. SEM micrographs of: (a) neat nanoparticles; (b) loaded NP2 nanoparticles; (c) neat HPMC film; (d) HPMC film with 30% neat nanoparticle solution; (e) HPMC film with 60% nanoparticle solution; (f) HPMC film with 30% NP2 solution and (g) HPMC film with 60% NP2 solution. Scale bars are 200 nm.
3.6 Green Tea Migration and Antioxidant Capacity

In general, the timely migration of encapsulated active compounds is critical in providing sustained and adequate AO activity. The results of migration testing of the GTE from the PLA nanoparticles incorporated in the HPMC film matrix are presented in Table 4. The data show that there was no significant difference between the samples for the migration test performed at 20°C. It can be clearly seen that a significantly higher extent of GTE migration occurred at 40°C, particularly in the case of the smaller nanoparticles (NP47). The latter suggests that the small nanoparticles impart a greater active agent release due to their high surface area-to-volume ratio. A comparison between the same types of nanoparticles at different loadings reveals that more active compound was liberated in the case of the higher nanoparticle loading as expected.

The AO capacities of the solutions obtained from the migration tests are also presented in Table 4. The absorbance of DPPH in the presence of the control samples was the same as those in methanol so no AO capacity was observed in the case of the unloaded nanoparticle film samples. As expected, the samples investigated in the migration tests performed at 40°C and those with higher nanoparticle loadings were all characterised by higher CAOX values of the solutions. Moreover, the smaller (47 nm) nanoparticles incorporated into the HPMC matrix (NP47) produced higher CAOX values than those films containing the larger (117 nm) particles. A recent study of the AO capacity of crude green tea extract reported an IC$_{50}$ value of ca. 250 μg g$^{-1}$ (Kusmita, Puspitaningrum & Limantara, 2015). Clearly, it is difficult to make comparisons between studies given the high variability in the composition of GTEs, the method of extraction, and the method of AO capacity testing. However, the result of Kusmita,
Puspitaningrum and Limantara (2015) is significantly numerically higher than the CAOX values found in the present study for the NP47-30 film at both temperatures and that of the NP47-15 film at 40°C suggesting that the active agent encapsulated in PLA nanoparticles has an apparently greater AO capacity.

Table 4. Results of migration testing after 10 days and subsequent antioxidant capacity of migration solution. All measurements were performed in triplicate.

<table>
<thead>
<tr>
<th>Sample</th>
<th>GTE Liberation (%)</th>
<th>IC\textsubscript{50}/μg g-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20°C</td>
<td>40°C</td>
</tr>
<tr>
<td>NP47-15</td>
<td>35 ± 13</td>
<td>51 ± 10</td>
</tr>
<tr>
<td>NP47-30</td>
<td>36 ± 14</td>
<td>84 ± 16</td>
</tr>
<tr>
<td>NP117-15</td>
<td>38 ± 4</td>
<td>39 ± 13</td>
</tr>
<tr>
<td>NP117-30</td>
<td>39 ± 1</td>
<td>56 ± 3</td>
</tr>
</tbody>
</table>

Although the application of PLA nanoparticles has been previously reported in the area of controlled drug delivery systems (Lee, Yun & Park, 2016), there are very few commercially available active packaging materials incorporating PLA nanoparticles that are specifically designed to extend the shelf-life of food products (Kuorwel, Cran, Orbell, Buddhadasa & Bigger, 2015). Moreover, there are very few reports of controlled release AOs encapsulated in PLA nanoparticles used in food packaging applications. However, various challenges in the production of PLA nanoparticles have been reported in the scientific literature. One of them is the low reproducibility between batches and the heterogeneity in shape and size of nanoparticles (Kumar, Shafiq & Malhotra, 2012; Mitragotri, Burke & Langer, 2014; Yun, Lee & Park, 2015). In the present study, the
systematic application of the MODDE software for the optimisation of the synthesis, highly reproducible, homogeneous shape and size nanoparticles were obtained. Moreover, the physico-chemical characterization of PLA nanoparticles in the recent literature, particularly those loaded with active agents, is relatively limited (Lee, Yun & Park, 2016). The present study, is an important step in ascertaining some of these critical properties.

4 Conclusions

A new active bio-based material utilizing HPMC incorporated with GTE-loaded PLA nanoparticles was successfully developed. The optimization of the synthesis of PLA nanoparticles resulted in the production of GTE-loaded nanoparticles that were spherical and uniform in size. When incorporated into HPMC film, a slight change in film redness was observed with both loaded and unloaded PLA nanoparticles. Thermal and infrared analyses suggested some molecular interactions between PLA and GTE as well as the PLA and HPMC matrix. Migration and AO capacity testing confirmed that higher AO capacity was observed when the GTE was liberated at a higher temperature as expected and the release was generally dependent on the size of the nanoparticles. The results of the present study suggest that HPMC films containing GTE-loaded PLA nanoparticles could be used for packaging applications aimed at extending the shelf life of food products with high fat contents. Furthermore, such active HPMC films could be used as an inner layer in multilayer packaging that could further extend the potential applications.
5 Acknowledgment

M. Wrona acknowledges the FPU grant (reference number AP2012-2716) received from the MEC, Ministerio de Educación, Cultura y Deporte, Spain. Thanks are given to Project AGL2012-37886 from MINECO (Spain) and FEDER funds for financial support.

6 References

Pyrzynska, K., & Pękal, A. (2013). Application of free radical diphenylpicrylhydrazyl (DPPH) to estimate the antioxidant capacity of food samples. *Analytical Methods, 5*(17), 4288.

37