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Abstract: Nanoparticles or microparticles created by physical complexation between two
polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural
polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan
can be potential candidates for this purpose. In this research, insulin particles were prepared
by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration
relationship involving polyelectrolytes offering individual particle size and zeta potential was
assessed by zetasizer and scanning electron microscopy (SEM). Insulin�tragacanth interactions
at varying pH (3.7, 4.3, 4.6, or 6), and concentration (0.1%, 0.5%, or 1% w/w) were evaluated by
differential scanning calorimetry (DSC) and ATR Fourier transform infrared (ATR-FTIR) analysis.
Individual and smaller particles, approximately 800 nm, were acquired at pH 4.6 with 0.5% of
tragacanth. The acid gelation test indicated that insulin could be entrapped in the physical hydrogel of
tragacanth. DSC thermograms of insulin�tragacanth showed shifts on the same unloaded tragacanth
peaks and suggested polyelectrolyte�protein interactions at a pH close to 4.3�4.6. FTIR spectra of
tragacanth�insulin complexes exhibited amide absorption bands featuring in the protein spectra and
revealed the creation of a new chemical substance.

Keywords: insulin; protein; peptides; PEC; hydrogels; gum tragacanth; insulin carrier; rheology;
drug delivery; biopolymers

1. Introduction

Development of an appropriate carrier system for the oral delivery of insulin is still the main
related problem due to compromised bioavailability hindered by the epithelial barriers of the stomach
and gastrointestinal destruction by proteolytic enzymes [1�3]. Thus, a suitable insulin carrier really
should provide biocompatibility as well as stabilisation under conditions in the gut in order to assure
that the primary fraction of the insulin would be biologically active when delivered on site [1�3].

Biopolymers, for example, chitosan, dextran sulphate, and alginates, have been extensively
studied due to their suitability for encapsulating proteins/peptides [4,5]. However, after encapsulation
with these biopolymers, the bioavailability of insulin after oral administration remained low. These
biopolymers can be complexed with insulin using various strategies, which include polyelectrolyte
complexation (PEC), emulsi�cation, ionotropic pregelation, and spray drying. Particles formed
through polyelectrolyte complexation have demonstrated potential for use as an oral insulin carrier.
PEC is generally created as soon as negatively and positively charged polyelectrolytes are mixed
together through electrostatic attractions [5]. To be able to form a complex, the two polymers need
to be ionised as well as carrying opposing charges. Therefore, the reaction could directly take place
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within pH values in the area of (typically) the pKa interval of the two polymers. At the time of
complexation, electrolytes may sometimes form a hydrogel [6]. However, in the case that the ionic
attraction is very strong, precipitation could occur and prevent hydrogel creation. Precipitation could
be prevented when electrostatic interaction is destabilised through enhancement of the ionic strength,
for example, by adding salts (NaCl). Salts can diminish the interactions between positively and
negatively charged electrolytes just by adding to the counter-ion environment. Therefore, basically no
phase separation occurs, and a viscous and macroscopically homogeneous mix that could create a gel
at a low temperature is also acquired [6].

Numerous studies have assessed the feasibility of various PECs for the delivery of insulin
including alginate�chitosan [7,8], chitosan�poly(g-glutamic acid) [9], and chitosan�arabic gum
systems [10]. The bene�t of these hydrogel systems is that the drug can be encapsulated easily by
creating a water-based ionotropic gel, which protects the bioactive structure of insulin [11]. One of the
main factors affecting functional properties of insulin�biopolymer complexes is pH. In alginate�insulin
systems, if the environment pH is reduced from 6 to 4, the insulin encapsulation ef�ciency of
the complexes increases [12]. This is also in accord with other research which showed that the
encapsulation ef�ciency of insulin was around 93% [13] and 97% [14]. A possible explanation for the
observed difference may be attributed to the environmental pH since it was under the isoelectric point
of insulin (pI = 5.3), which gave preference to alginate�protein electrostatic attraction [15]. In another
study, involving the dextran sulphate�insulin complexation, the protection has been attributed to the
ionic interaction between the amino acid residues in the insulin molecules and the sulphate groups in
the dextran sulphate [11]. This mechanism has also been studied when the complexation of polyion
and protein decreased the release of the protein [16]. The glycemic effect was prolonged with the
promotion of sustained insulin availability in vivo when dextran sulphate was included as a physical
mixture in the delivery systems composed of chitosan and/or polyethylenimine [11,17].

To promote insulin absorption in the intestinal area, the PEC needs to adhere to the gastrointestinal
lining at the site of delivery. Therefore, polymers with enhanced mucoadhesive properties are
selected [18,19]. These types of mucoadhesive particles have the ability to extend the residence time
around the site of release, trigger contact with the intestinal barrier, and produce a drug concentration
gradient, which stimulates the transmission of the insulin via the intestinal membrane layer [18,20].
Recently, we reported that tragacanth gum (TG) could be used as a new polymer to deliver proteins
and peptides. It is highly acid-resistant with high mucoadhesive properties [18]. Tragacanth offers
special functional properties since it is safe, nontoxic, biocompatible, biodegradable, and stable over
a broad range of pH [21]. Moreover, it is the most effective natural emulsi�er intended for low pH
O/W emulsions [21]. TG offers distinct surface activity attributes and decreases water surface tension
ef�ciently even at very low quantities�lower than 0.25%�as well as encouraging emulsi�cation. The
zeta potential of tragacanth is about�21 mV. This can be related to the carboxylic groups of galacturonic
acid (negatively charged) which is the primary chain of tragacanthin (water-soluble fraction of TG). TG
is a viscous, odour-free biopolymer primarily containing two components: tragacanthin (water-soluble)
and bassorin (swellable). The ratio between the soluble and insoluble fractions of TG gum in water
differs considerably and depends on various Astragalus species [21]. Interaction with other material via
hydrogen bonding and crosslinking can be initiated by using these TG functional groups (i.e., carboxylic
acid and hydroxyl) [21].

The TG polymer has the capacity to create a gel via the carboxylic groups of tragacanth. Therefore,
tragacanth provides a possibility to create an interaction with insulin, particularly in an acidic
environment (under the pI of insulin) [18]. In other research, TG was applied in quercetin encapsulation
through structuring of the TG shell and polycaprolactone (PCL) core self-assembled micelles. The
quercetin release from these micelles showed a pH dependence. The rate of release was increased
considerably at pH 2.2 [21].

A gelation and mucoadhesion study indicated that tragacanth has the potential to become an
excipient for the oral administration of protein/peptides, for instance, insulin [18]. It is conceivable
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that tragacanth properties may enhance the drug loading capacity, encapsulation ef�ciency, and
the stability of the insulin encapsulated in the tragacanth particles through ionic attraction between
tragacanth and the amino groups of the amino acid residues in insulin. Herein, we report our result
on the use of tragacanth as an alternative choice and enhanced carrier for the oral administration of
insulin. The approach was designed to monitor the complexation of the polyelectrolyte in becoming
an insulin excipient. Systems produced from the complexation of polyelectrolytes at different pH and
stoichiometric relationships involving polyelectrolytes were freeze-dried and/or directly analysed to
verify interactions between tragacanth and insulin.

2. Materials and Methods

2.1. Materials

Tragacanth was obtained from Sigma�Aldrich (Castle Hill, Australia). GDL (Glucono-�-lactone)
powder from Sigma�Aldrich was also applied with no additional puri�cation. The insulin sample that
contains 100 U/mL of insulin was obtained from Novo Nordisk A/S (Bagsvaerd, Denmark). The water
utilised was of a Millipore level of quality.

2.2. Characterisation

2.2.1. Microparticle Preparation

TG stock solution (2% w/w) was well prepared by dissolving a proper amount of the powder in
MilliQ water at different pH levels (3.7, 4.3, 4.6, or 6), which was adjusted by adding an appropriate
quantity of glucono � lactone (GDL) powder. GDL dissociates in water, releasing gluconic acid and
lowering the pH of the solution. The advantage of this type of pH adjustment is that the change
is achieved at a slower rate without any change in the bulk volume. Sodium azide was included
throughout the preparation of samples (0.2 g/L) to prevent microbial growth. The resulting solution
was gently stirred with a magnetic rod at room temperature and kept overnight at 4 �C.

Tragacanth and insulin microparticles were prepared via mixing insulin (0.2 mg/mL) and TG
colloidal solutions containing a different concentration of tragacanth (0.1%, 0.5%, or 1% w/w) at a
predetermined pH. The complexation was allowed to proceed overnight by gently stirring the solution
with a magnetic rod at room temperature. The mixture was then centrifuged at 20,000� g for 60 min
at a room temperature using a high-performance centrifuge (Beckman Coulter Inc., Brea, CA, USA).
The sedimented PECs were then frozen at �20 �C and freeze-dried at 0 �C for at least 48 h using a
freeze-drier (model FD-300, Airvac Engineering Pty. Ltd., Dandenong, Australia).

2.2.2. Acid-Induced Gelation

GDL-induced acidi�cation was carried out to evaluate the capability of TG to entrap insulin
through acid-induced gelation [18]. Dynamic small amplitude oscillatory analysis was carried out
using a stress-controlled rheometer (MCR 301, Anton Paar GmbH, Ost�ldern, Germany) with a double
gap geometry (DG 26.7-SN. 24845, Anton Paar) to determine an acid gel point following a previously
described method [18]. The required amount of the GDL powder was added to a TG solution at 20 �C.
An exact volume of the sample (3.9 mL) was added directly into the testing system (double gap) at the
same temperature and allowed to stabilize for 100 min (time sweep) during which time changes in the
viscoelastic behaviour of the colloidal solution were recorded. The change of pH was concurrently
noted every 2.5 min in the remaining part of the sample by using a pH meter (Model 8417; Hanna
Instruments, Singapore) during the same period.

2.2.3. Particle Size and Zeta Potential Analysis

The particle size and zeta potential of the polymeric complexes created by mixing the insulin
solution (0.2 mg/mL) and the TG solution (0.1%, 0.5%, or 1% w/w tragacanth) at different pH (3.7, 4.3,
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4.6, or 6) were analysed using a zetasizer (ZEN3600, Malvern Instrument Ltd., Worcestershire, UK)
with a He�Ne laser beam at 658 nm. An appropriate aliquot of the insulin�tragacanth mixture was
diluted 1:100 with MilliQ and stored overnight before the measurement [18].

2.2.4. Measurement of Loading Ef�ciency

Loading ef�ciency was determined indirectly following centrifugation of the insulin and TG
dispersion upon mixing insulin (0.1 mg/mL) and TG colloidal solutions at different pH and tragacanth
concentrations. The PEC was centrifuged at 20,000� g for 60 min at room temperature using a
high-performance centrifuge (Beckman Coulter, Brea, CA, USA). The quantity of insulin in the
supernatant was analysed using the Bradford procedure at 595 nm [18]. The loading ef�ciency
was measured as

Loading ef�ciency (%) =
Total amount of insulin� Free insulin in supernatant

Total amount of insulin
� 100. (1)

2.2.5. DSC (Differential Scanning Calorimetry) Analysis

Thermal characteristics of particles were analysed using DSC, as explained earlier [15], with
some adjustments. Thermograms of TG solutions were gained by using a DSC (Mettler Toledo,
Schwerzenbach, Switzerland) �tted with an intracooler system and under an inert nitrogen gas
atmosphere. A sample (4�7 mg) obtained under described experimental conditions (variable pH and
tragacanth concentration) was put in a 40 �L aluminium lightweight pan, hermetically enclosed just
before insertion into the DSC, and then heated from 20 to 350 �C at a constant rate of 10 �C/min within
constant purging of nitrogen at 20 mL/min. An empty pan with the same weight functioned as the
reference. The DH values, onset, endset, and peak temperatures of the thermograms were documented.

2.2.6. FTIR Analysis

FTIR spectra of the particles at different pH (3.7, 4.3, 4.6, 6) and concentrations of tragacanth
(0.1%, 0.5%, and 1%) were acquired by using a Perkin Elmer ATR-FTIR spectrometer equipped with a
Diamond TM ZnSe single re�ection ATR plate (Perkin-Elmer, Norwalk, CT, USA). The actual spectrum
of every sample was acquired from 16 scans from 600 to 4000 cm�1 having a resolution of 4 cm�1

as well as strong apodisation. This particular measurement was adjusted towards the background
spectrum of the solvent. Baseline manipulation and data acquisition were gained using Shimadzu IR
solution software v1.40 [18,22].

2.2.7. Scanning Electron Microscope (SEM)

Particle morphology was studied using scanning electron microscopy (SEM). For SEM analysis,
samples of microparticulate complexes were installed on metal stubs, gold covered under vacuums
and then analysed in a JEOL NeoScope JCM-5000 A SEM (10 kV, Tokyo, Japan).

2.3. Statistics

The information acquired from particle size analysis was arranged in a randomised block design
using pH as the primary factor. These assessments were duplicated at least once, with subsequent
subsampling providing a number of independent observations of at least n � 4. Final results were
analysed using one-way ANOVA, SAS (1996). Tukey’s Studentized Range (HSD) analysis was applied
for multiple comparisons of means. The degree of signi�cance was predetermined at p = 0.05.

3. Results and Discussion

The application of a biopolymer as a multiparticulate excipient for protein/peptide delivery has
long been extensively recorded in the scienti�c literature [2,23]. This kind of matrix currently has great
potential to be applied for the controlled release of drugs because of its relatively small molecular size.
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Furthermore, bioavailability and drug absorption could be improved as a result of a large surface
area to volume level ratio, which leads to signi�cantly more intimate contact along with the mucus
layer [11,23].

In this study, initially, microparticulate polyelectrolyte complexes between insulin and tragacanth
were created, including the mild mixing of two aqueous solutions of tragacanth and insulin. To test
the ability to create a gel, GDL was added to the mixture, and an acid gelation test was conducted.

It can be seen from Figure 1 that during the acid gelation test, as the pH was decreasing, at pH
around 4.3, the storage modulus was greater than that at other pH levels. Almost all of the systems
with viscoelastic properties possess both viscous (liquid) and elastic (solid) elements, in which the
shear stress is between 0 and 90 degrees. In these systems, the stress element that is in-phase with the
shear strain is in charge of the elastic element and is identi�ed as the storage modulus (G0), which
depicts the material elasticity. The value of the storage modulus is proportional to the quantity of
permanent interactions and the strength of the interactions existing in the biopolymers. Therefore, G0

is a measure of the structure of the biopolymers [24]. A time sweep offers the viscoelastic properties of
biopolymers as a function of time, in which the strain, frequency, and temperature are kept constant.
The gel networks of biopolymers continue to develop throughout a time sweep. This can be noticed
from the increase in the value of the storage modulus as a function of time [24]. In our system, during
the time sweep, a change of pH was measured (as described in Section 2.2.2). Therefore, a storage
modulus vs pH graph was created. The increase in the storage modulus (maximum at pH 4.3), which
is close to the gelling point of tragacanth and insulin [18], was an indication that insulin was likely
entrapped in the tragacanth gel (hydrogel creation). Carboxylic groups from tragacanth may be
involved in this process. Most of the pH-sensitive biopolymers consist of pendent basic or acidic
groups, which either take or give protons in reaction to the solvent pH [25]. Polyacid biopolymers
are unswollen in an acidic environment since their acid groups are unionised and protonated [25].
Upon increasing the pH, a negatively charged polymer would swell. The opposing patterns are
noticed in polybasic biopolymers, considering that the ionisation of the basic groups increases the
following decline in pH [26]. Some instances of pH-sensitive biopolymers having anionic groups are
polycarboxylic acids (PAA) or poly-methacrylic acid (PMA) and poly-sulfonamides (derivatives of
p-aminobenzene sulfonamide). In an acidic environment, hydrophobic interactions dominate and
carboxyl groups are protonated, resulting in volume withdrawal involving the biopolymer consisting
of carboxyl groups. In a basic environment, carboxyl groups dissociate into carboxylate ions, causing
higher charge density in the biopolymer, resulting in swelling. The chain con�guration of a weak
polyacid is a function of the pKa of the biopolymer [27].
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Figure 1. Evolution of storage modulus (G0) during acid-induced gelation of tragacanth dispersions at
� 0.1% w/w, � 0.5% w/w, and 1% w/w. Measurements were performed at 20 �C at constant strain
(1%) and frequency (1 Hz).
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This type of gel is called a physical gel due to the fact that the networks tend to be retained
by molecular entanglements and/or weak forces including hydrophobic, H-bonding, or ionic
interactions [28]. The network porosity of such hydrogels changes along with electrostatic repulsion.
An ionic gel consisting of carboxylic and/or sulfonic acid groups demonstrates either immediate or
slow changes in their particular dynamic or equilibrium swelling behaviour due to the change in the
environmental pH. The ionisation degree of those hydrogels is determined by a number of pendant
acidic groups within the gel, causing enhanced electrostatic repulsions involving negatively charged
carboxyl groups at various chains. This, consequently, leads to increasing hydrophilicity of the network
as well as a higher swelling ratio within a higher pH [28]. On the other hand, a hydrogel consisting of
basic pendant groups, including amines, will ionise as well as demonstrate electrostatic repulsion in
an acidic environment [28].

It can also be noticed from Figure 1 that tragacanth at a higher concentration (1%) exhibited
stronger viscoelastic properties than at the lower concentrations (0.5% and 0.1%). If this is linked to
pI, the achievable entrapment of a protein and/or a peptide by TG is most likely achieved under the
isoelectric point (pI) of insulin [18]. For instance, the pI of insulin can vary from 5.5 to 6.4, based on its
origin. At a pH higher than its pI value, insulin will be mainly negatively charged [29]. This insulin
characteristic could be utilised to create insulin�biopolymer complexes through electrostatic attraction
with tragacanth. At pH around 4.3 and 4.6, TG may undergo coacervation with insulin as well as
simultaneously creating a hydrogel which is able to entrap insulin since, at this pH, insulin can be
positively charged close to the determined gelling point of TG [18,30].

After a mixture of a gel-like formation was created, it was then freeze-dried, and a loading
ef�ciency (LE) was examined at different levels of pH and concentrations. The pH variety was selected
to obtain opposite charges of electrolytes as well as suitable complex creation. Within this particular
pH range, electrostatic attraction involving proteins and biopolymers occurs. It can be observed from
Figure 2 that the reduction of pH from 6 to 3.7 resulted in an increase of LE, especially at pH 4.6.
However, if the pH of the aqueous solution was set to 3.7 or 4.2, the particles become much larger
(>800 nm). In this pH range, some parts of tragacanth begin to precipitate [31], which may play a role in
the increased mean particle size (Table 1). Therefore, insulin was partly bound ionically to the insoluble
uronic acid of tragacanth. The interaction involving biopolymers and insulin is mostly ionic. However,
one should also consider hydrogen bonding as well as van der Waals forces [32,33]. It can be seen
from Table 2 that negative zeta potential (ZP) values are acquired because of the carboxylic groups [34]
of tragacanth [18]. Moreover, the ZP values depend on the dispersion pH [34]. In general, if the ZP
values are less than �10 mV (in most cases, from �25 to �30 mV, Table 2), it can predict an excellent
colloidal stability because of the high energy barrier between particles [34]. Positive amino radicals of
insulin are highly and electrostatically interacted with by carboxylic/sulphate groups. At pH 4.3 or 4.6,
insulin is primarily positively charged (pI of insulin: 5.3) [35] and is therefore attracted to the partly
negative tragacanth, while at pH 6, positive charges are minimised on the amino acid, which could
prevent attractive interactions with the negative charges on the tragacanth. As a result, the insulin LE
is less at pH 6 than at other, lower pH. For that reason, pH 4.6�at which microparticles were produced,
and a high insulin LE was acquired�was selected as the most appropriate pH. The outcomes acquired
suggested that the af�nity of insulin for tragacanth carboxylic groups is greatest at pH 4.3 or 4.6, as
pointed out by examining the LEs of the created complexes. A tragacanth concentration of 0.5% (w/w)
tends to be the optimum concentration for complexation. Particularly, at pH 4.3, the LE increased from
65% (0.1%, w/w of TG) to 89% for TG concentration 0.5% (w/w).
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Table 1. Particle size of polymeric complexes created by mixing insulin solution (0.2 mg/mL) and
tragacanth solution at 0.1%, 0.5%, or 1% w/w concentration at different pH (3.7, 4.3, 4.6, or 6) adjusted
by addition of glucono � lactone (GDL) at room temperature and equilibration under very low magnetic
stirring overnight. The results are presented as means of at least �ve independent observations (n � 5)
with �SE.

pH

Particle Size, nm
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4.3 667 � 37 811 � 20 957 � 56
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Table 2. Zeta potential of polymeric complexes created by mixing insulin solution (0.2 mg/mL) and
tragacanth solution at 0.1%, 0.5%, or 1% w/w concentration at different pH (3.7, 4.3, 4.6, or 6) adjusted
by addition of GDL at room temperature and equilibration under very low magnetic stirring overnight.
The results are presented as means of at least �ve independent observations (n � 5) with �SE.
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Insulin and biopolymer complexes could be produced at the isoelectric point (pI) of insulin. The
pI of insulin is around 5.5�6.4. At a pH under the pI value, insulin is positively charged; the converse
is also true [2]. These attributes of insulin have been used in the creation of insulin�biopolymer
complexes through electrostatic interaction with a negatively charged biopolymer (alginate) as well as
positively charged biopolymer (chitosan), which are protonated at pH values under its pKa (6.5) [2].
TG has the propensity to form a complex with insulin at a pH under the pI of insulin [18]. Conversely,
a positively charged biopolymer such as chitosan can form a complex with insulin if the pH is altered
over the pI of insulin [36,37].

DSC thermograms in Figure 3 show variations involving individual biopolymers and, after
complexation, suggest ionic interactions indicated by the change of endothermic peaks as well as by
the shift in exothermic peaks associated with decomposition temperature. The DSC curves exhibit a
wide endothermic peak between 100 and 200 �C for isolated polyelectrolyte and its physical mixture.
All samples exhibited exothermic peaks between 220 and 285 �C.
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the destruction of polyelectrolytes as a result of dehydration as well as depolymerisation reactions,
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stability of the microparticle; therefore, more energy was required in order to eliminate residual water
adsorbed onto the mixture (endothermic peak changed to increased value), and a lesser amount of
energy was discharged by breaking ionic attractions and through microparticle thermal decomposition
(exothermic peak change to increased value) [41].

Like alginate and pectin, TG possesses a carboxyl group (galacturonic acid). Consequently, the
charge variations in TG are caused by this particular carboxyl group. The most typical negatively
charged side groups on polysaccharides are usually sulphate groups or carboxylate groups. The
negative charge of agars and carrageenans comes from sulphate groups, but pectins and alginates
obtain their negative charges from carboxylate groups [42]. TG has a previously documented pKa
value of 3 [18].

The optimum ionic attraction between tragacanth and insulin was achieved at lower pH. Almost
similar to alginate, tragacanth gel shrunk at lower pH levels due to a decrease in the pore size of the
tragacanth matrix [18,43]. For that reason, at pH 4.3 or 4.6 it is feasible that microparticles introduced
a more powerful robustness than at pH 6. Interactions between tragacanth and insulin have been
identi�ed to become pH-dependent together with more powerful complexes that were previously
acquired at pH close to 4.2�4.7 [18].

The inclusion of insulin within microparticulate complexes can certainly be seen by the postponing
of its endothermic peak. The two endothermic peaks in connection with insulin, which are related
to water loss and the denaturation process [42], started to be indistinct and changed themselves
into a single peak following entrapment in the microparticulate complexes. Insulin-loaded models
achieved this particular endothermic peak at a lower temperature in comparison to insulin-free models,
apparently showing an attraction involving the protein and the tragacanth. Furthermore, looking
at the exothermic conditions of insulin-loaded and unloaded particles, the onset point began at a
lower temperature for insulin-loaded microcomplexes; this probably suggests that entrapped insulin
initiated decomposition at higher temperatures (235�241 �C) than when analysed in isolation from the
particles (231 �C).

The obtained FTIR spectra are represented in Figure 4a�c, and show two shoulders on the complex
absorption bands in Amide I (�1644 cm�1) as well as in Amide II (�1531 cm�1) that are properties
of the protein spectra. The monomer of insulin has numerous ionizable groups because of six amino
acid residues able to attach a positive charge and ten amino acid residues able to attain a negative
charge [44,45]. These kinds of characteristics are, therefore, probably responsible for the entrapment of
insulin into tragacanth microparticles.
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The bands at 1416 and 1369 cm�1 are associated with the symmetric stretching of carboxylate
groups as well as the methyl groups in methyl esters of galacturonic acid, respectively, while the
actual vibrational modes of COOH in galacturonic acid and its salts and esters contain asymmetric
stretching (1740�1600 cm�1). Polygalacturonic acids possess the highest possible absorption band in
this region, having quite strong absorptions at 1017 and 1020 cm�1, and optimum absorption bands at
1018 and 1019 cm�1 representing the occurrence polysaccharides which have galactose, for example,
arabinogalactans and galactans [18,46].



Materials 2018, 11, 79 11 of 14

It can be seen that tragacanth carboxyl peaks close to 1627 cm�1 (symmetric COO� stretching
vibration) and 1416 cm�1 (asymmetric COO� stretching vibration) broadened and shifted a little from
1627 to 1616 cm�1 and 1416 to 1415 cm�1 following complexation with insulin. Moreover, the FTIR
spectrum of tragacanth exhibits a peak associated with an amide bond at 1645 cm�1. Noticed shifts in
the absorption bands of the carboxyl groups, amide bonds, and amino groups could be assigned to an
ionic attraction between the carboxyl group of tragacanth and insulin [47]. Also, the peak absorbance
of amino groups of tragacanth at 1149 cm�1 existed right after complexation. Similar observations
were noted previously [48�50]. These �ndings indicate an effective interaction between biopolymers
corresponding to the stoichiometric ratios between them, which indicate the occurrence of TG at the
end of the mixture [15,51].

Surface morphology information for freeze-dried microspheres has been acquired by SEM analysis
and is presented in Figure 5a. The carrier exhibited an irregular shape and had a somewhat wrinkled
surface. Apparently, the spherical shape of the microspheres was lost after drying. We speculate that
insulin entrapped in tragacanth, as in Figure 5b, explains the results of SEM observation. It could be
seen that, at the beginning, the tragacanth creates a homogenous network from the core to the edge.
Insulin is then entrapped inside the network. The negatively charged tragacanth creates a complex
with the positively charged insulin [52,53]. The microstructure (SEM) of the tragacanth hydrogels after
freeze-drying exhibits the porous morphology, with pore size greater than the submicron range. The
pore structure and size were similar to other acidi�ed gel biopolymers including tragacanth-milk [54]
and pectin-sodium caseinate systems [55]. These morphological characteristics are related to the
exchange of insulin-loaded microparticles. The destruction of hydrogels is followed by the discharge
of insulin from hydrogels. These morphological properties have been connected with water exchange
and swelling of hydrogels. Swelling characteristics of hydrogels are essential for material transfer
when applied to insulin carriers [56].
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Figure 5. SEM image of (a) a complex between insulin (0.1 mg/mL) and 0.5% of tragacanth at pH 4.6
with the best exhibited ef�ciency and (b) proposed polyelectrolyte complexation (PEC) model of insulin
entrapment in a tragacanth network.

4. Conclusions

Insulin was entrapped in physical hydrogel and polyelectrolyte complexes (PECs) created using
biodegradable biopolymer�tragacanth. Microparticulate complexation between tragacanth and
insulin was revealed by FTIR and DSC measurement. These microparticles appear to have potential
functional properties for oral insulin delivery, especially those that contain tragacanth polyelectrolytes
at pH 4.3 and 4.6, although additional in vivo research should be carried out to ensure the presence of
these properties.
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