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1 Introduction

In 1967, Shisha and Mond [55, p. 301] proved the following reverse of Cauchy-Bunyakovsky-Schwarz inequality:
Theorem 1.1. Lera = (ay,...,a,) andb = (b1, ..., by) be two positive n-tuples with

0<m§Z—Z§M<ooforeachke{l,...,n}, M

then .
n n n
M — m)
0<|> ar > b7 — Y akb M = m)” 2: 2
- (k:lak k=1 k) k=1ak “= 4 (M +m) " ?

The equality holds in (2) if and only if there exists a subsequence (k1, ....kp) of {1, ..., n} such that

L M +3m_
2

Akm

Py = M foreverym =1, ..., p and ak = m for every k distinct from all k.

Recall some other classical reverses of Cauchy-Bunyakovsky-Schwarz inequality when bounds for each n-tuple are
available.

Leta = (a1,...,an)and b = (b1,...,b,) be two positive n-tuples with
O0<mi <a; <My <occand0 <mp <b; < My < o0; 3)
foreach i € {1,...,n}, and some constants m, m>, M1, M>.

The following reverses of the Cauchy-Bunyakovsky-Schwarz inequality for positive sequences of real numbers
are well known:
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a) Pdolya-Szego’s inequality [51]:

Zk—lak D k= 1b2 /Mle /mlmz
(Zk 1akbk mimz

b) Shisha-Mond'’s inequality [55]:

1 1
Yh=19%  Yi—iakbk _ (%)2_(ﬂ)2
> k=1 axbx k=1 b/% L \m2 M>

| I

c) Ozeki’s inequality [48]:

n 2
Zakzbk (Z akbk) E%(Mle—Immz)z-
k=1

k=1
d) Diaz-Metcalf’s inequality [17]:

k=1 =1 k=1
Ifw = (wy,...,wy) is a positive sequence, then the following weighted inequalities also hold:
e) Cassels’ inequality [58]. If the positive real sequences a = (ay,...,an) and b = (by,...,by,) satisfy the

condition (1), then

(Ck=1wkaz) (Xk=1 wib?) - +m)*
(k=1 wkakbk) 4mM
f) Greub-Reinboldt’s inequality [38]. We have

n n 2 n 2
2 2 (MiM> +mym>)
(Z wkak) (Z wkbk) = p— YA > wraghy |
k=1 k=1 k=1
provideda = (ay,...,ay) andb = (by,..., by) satisfy the condition (3).

g) Generalized Diaz-Metcalf’s inequality [17], see also [46, p. 123]. Ifu, v € [0,1]and v <u,u +v = 1 and (1)
holds, then one has the inequality

n n n
u Z wkb,% +ovMm Z wka,% < (vm +uM) Z Wrdibg.
k=1 k=1 k=1

h) Klamkin-McLenaghan’s inequality [40]. If a, b satisfy (1), then

() (E)-(E) (o S

i=1 i=1
For other recent results providing discrete reverse inequalities, see the monograph online [19].
The following reverse of Schwarz’s inequality in inner product spaces holds [20].

Theorem 1.2 (Dragomir, 2003, [20]). Let A,a € C and x, y € H, where H is a complex inner product space with
the inner product {-,-) . If

Re(Ay —x,x —ay) >0, (5
or equivalently,
a+ A 1
— yl<=|A- , 6
x= 225y = S1a=ally ©®)
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34 —— S.S. Dragomir DE GRUYTER OPEN

holds, then we have the inequality

0 < IxIZIylI* = Hx ) < — A —al* [Iy]*. ©)

N

The constant % is sharp in (7).
In 1935, G. Griiss [39] proved the following integral inequality which gives an approximation of the integral mean
of the product in terms of the product of the integrals means as follows:

b

[ewar <@-nar-n.  ®

a

1
b—a

b b
7 | Fogmax - [ reax.

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition

P fx)<P,y<gx)=<T )

for each x € [a, b], where ¢, ®, y, ' are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced by a smaller one.

In [22], in order to generalize the Griiss integral inequality in abstract structures the author has proved the
following inequality in inner product spaces.

Theorem 1.3 (Dragomir, 1999, [22]). Let (H, (-,-)) be an inner product space over K (K =R, C) and e € H,
llell = 1. If ¢, v, ®, T are real or complex numbers and x, y are vectors in H such that the conditions

Re (Pe —x,x —pe) >0and Re(T'e—y,y —ye) >0 (10)

hold, then we have the inequality

1
[{x. ) = (x.e) ey}l = 71—l [T =yl (11
The constant % is best possible in the sense that it can not be replaced by a smaller constant.

For other results of this type, see the recent monograph [25] and the references therein.

For other Griiss type results for integral and sums see the papers [1]-[3], [8]-[10], [11]-[13], [21]-[28], [35],
[49], [62] and the references therein.

In order to state some reverses of Schwarz and Griiss type inequalities for trace operators on complex Hilbert
spaces we need some preparations as follows.

2 Some facts on trace of operators

Let (H,(-,-)) be a complex Hilbert space and {e;};c; an orthonormal basis of H. We say that A € B(H) is a
Hilbert-Schmidt operator it

> Nl Aei|* < oo. (12)
iel
It is well know that, if {e; };c; and { f;} ;< ; are orthonormal bases for H and A € B (H) then
2
Yo ldeil> =Y NAf17 =Y 4% 5| (13)
iel jel jel

showing that the definition (12) is independent of the orthonormal basis and A is a Hilbert-Schmidt operator iff A*
is a Hilbert-Schmidt operator.
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Let B> (H) the set of Hilbert-Schmidt operators in 5 (H) . For A € By (H) we define

1/2
1]l = (Z ||Ae,»||2) (14)

iel

for {e; }; <; an orthonormal basis of H. This definition does not depend on the choice of the orthonormal basis.

Using the triangle inequality in /% (), one checks that By (H) is a vector space and that |-, is a norm on
B> (H), which is usually called in the literature as the Hilbert-Schmidt norm.

Denote the modulus of an operator A € B(H) by |A| := (A*A)l/2 .

Because ||| 4| x|| = ||Ax| for all x € H, A is Hilbert-Schmidt iff | 4| is Hilbert-Schmidt and || A, = |||4||»
From (13) we have that if A € By (H), then A* € By (H) and || A, = [|4%]|» .

The following theorem collects some of the most important properties of Hilbert-Schmidt operators:

Theorem 2.1. We have
(i) (B2 (H), |I'll5) is a Hilbert space with inner product

(A.B)y:= > (Ae;. Be;) =y (B*Aei.e;) (15)

iel iel

and the definition does not depend on the choice of the orthonormal basis {e; }; <,
(ii) We have the inequalities
A4l = 1412 (16)

forany A € B> (H) and
[AT |2, ITAll> < |IT1| |A]l2 a7

forany A€ By (H)and T € B(H);
(iii) B2 (H) is an operator ideal in B (H) , i.e.

B(H)B2(H)B(H) < B2 (H);

(iv) Brin (H) , the space of operators of finite rank, is a dense subspace of By (H) ;
(v) B2 (H) C K (H), where K (H) denotes the algebra of compact operators on H.

If {e; }; <y an orthonormal basis of H, we say that A € B (H) is trace class if

4l ==Y _{|Alei.ei) < 0. (18)
iel
The definition of || A4||; does not depend on the choice of the orthonormal basis {e; };<; . We denote by By (H) the
set of trace class operators in B (H) .
The following proposition holds:

Proposition 2.2. If A € B(H), then the following are equivalent:
(i) Ae By (H);
(ii) |A]"/? € B2 (H);
(ii) A (or |A|) is the product of two elements of B> (H) .

The following properties are also well known:

Theorem 2.3. With the above notations:
(i) We have
IAll; = |4, and || Al < ||All; (19)

forany A € By (H);
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36 —— S.S. Dragomir DE GRUYTER OPEN

(ii) By (H) is an operator ideal in B(H) , i.e.
B(H)B\ (H)B(H) < Bi(H):
(iit) We have
B2 (H) B2 (H) = B1(H):

(iv) We have
[Ally = sup{(4.B), | B € B2 (H). ||B|l < 1};

(v) (B1 (H), |||l;) is a Banach space.
(iv) We have the following isometric isomorphisms
Bi(H) =~ K(H)* and By (H)" = B(H),
where K (H)™ is the dual space of K (H) and By (H)™ is the dual space of B1 (H) .

We define the trace of a trace class operator A € B; (H) to be
tr(d) =Y (Aej.e;), (20)
iel
where {e; };<; an orthonormal basis of H. Note that this coincides with the usual definition of the trace if H is
finite-dimensional. We observe that the series (20) converges absolutely and it is independent from the choice of
basis.
The following result collects some properties of the trace:

Theorem 2.4. We have
(i)If A € By (H) then A* € By (H) and
tr(A*) = tr (A); (21)
(i)IfAe By (H)and T € B(H),then AT, TA € By (H) and
tr (AT) = tr(TA) and |t (AT)| < || A]l{ I T (22)

(iii) tr (-) is a bounded linear functional on By (H) with |tr| = 1;
(v)IfA, B € Bo (H) then AB, BA € B1 (H) and tr (AB) = tr (BA) ;
(v) Brin (H) is a dense subspace of By (H) .

Utilising the trace notation we obviously have that
(A.B), = tr (B*A) = tr (AB*) and [|4]3 = tr (A" 4) = tr <|A|2)

forany A, B € B> (H).
The following Holder’s type inequality has been obtained by Ruskai in [52]

tr(AB)] < tr(AB]) < [ur (14])]" [tr(|B|‘/“‘°‘>)]1_“ (23)

where & € (0,1) and A, B € B(H) with |[A|"/% , |B|"1~=% ¢ B, (H).
In particular, for o = % we get the Schwarz inequality

r(4B)| < (48] < [wr(1aP)] [ (182)] 24)

with A, B e Bo (H).
For the theory of trace functionals and their applications the reader is referred to [56].
For some classical trace inequalities see [14], [16], [47] and [61], which are continuations of the work of
Bellman [5]. For related works the reader can refer to [4], [6], [14], [36], [41], [42], [44], [53] and [57].
We denote by
Bi’_ (H):={P: P € By (H), P andis selfadjoint and P > 0}.

We obtained recently the following result [33]:
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Theorem 2.5. Forany A, C € B(H) and P € B{’_ (H) \ {0} we have the inequality

tr (PAC) tr(PA)tr(PC)
r(P)  w(P) w(P)

. 1 tr (PC)
<inf |[A—A-1g| —t C - 1 P
= ot ) r(’( w(P) H) D
1/2
tr(P |C|2) tr (PC) 2
< inf A=A -1g] - ,
Aec tr (P) tr (P)
where ||-|| is the operator norm.
We also have [33]:
Corollary 2.6. Let o, f € Cand A € B(H) such that
a+p 1
A— -1 <=|—ql.
Ja= 2P < Jip -

Forany C € B(H)and P € BI’_ (H) \ {0} we have the inequality

tr (PAC) tr(PA)tr (PC)
r(P)  w(P) t(P)

1 1 r(PC)
=3Pl “( (C " w(P) 1”) PD

Lo {“(P'CV) 2}1/2

tr (PC)
tr (P)

tr (P)

In particular, if C € B (H) is such that

Hc—“;’g-m < lp-al.
then
tr(P|C|2) tr (PC) 2
=T e | wp)
1 1 tr (PC)
=3P “(‘(C‘ w(P) 1”)PD
1/2
1 tr(P |C|2) tr(PC)|? 1 )
e Ll Barwry 2wl ey =g 1p-al
Also
tr(PC?)  (uw(PC))?
tr(P) _( tr(P))
1 1 tr (PC)
=3P “(‘(C_ w(P) IH)PD
1/2
1 tr(P |C|2) tr (PC)|? 1 )
el =em e | | Sl

For other related results see [33].

(25)

(26)

27

(28)
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38 —— S.S. Dragomir DE GRUYTER OPEN

3 Shisha-Mond type trace inequalities

For two given operators 7, U € B (H) and two given scalars «, f € C consider the transform
Cap(T.U)=(T*"—aU*)(BU —T).
This transform generalizes the transform
Ca.p(T) = (T* — &IH) Blg —T)=Cq.pg (T, 1),

where 1 g is the identity operator, which has been introduced in [31] in order to provide some generalizations of the
well known Kantorovich inequality for operators in Hilbert spaces.

We recall that a bounded linear operator 7 on the complex Hilbert space (H, (-,-)) is called accretive if
Re (Ty,y) > O0forany y € H.

Utilizing the following identity

Re (Cou.p (T,U) x,x) =Re (Cp.o (T, U) x, x) (29)
1 2
=|ﬂ—a|2||Ux||2—HTx—°‘+ﬁ-Ux
4 2
_ 1 2 2 Ol+/g 2
—Z|,5—CY| <|U| X,X>—<‘T— 5 Ul x,x

that holds for any scalars o, f and any vector x € H, we can give a simple characterization result that is useful in
the following:

Lemma 3.1. Fora, B € Cand T, U € B(H) the following statements are equivalent:
(i) The transform Cy, g (T, U) (or, equivalently, Cg o (T, U)) is accretive;
(ii) We have the norm inequality

1
e -8y < Lip—apux (30)
2 2
forany x € H;
(iii) We have the following inequality in the operator order
2
1
7-23L 0 < q-aliop

As a consequence of the above lemma we can state:

Corollary 3.2. Leta, B € Cand T, U € B(H). If Cy.g (T, U) is accretive, then

a+,3.
2

U

1
HT— =5 1B —ollU]. 3D

Remark 3.3. In order to give examples of linear operators T, U € B(H) and numbers o, B € C such that the
transform Cq g (T, U) is accretive, it suffices to select two bounded linear operator S and V and the complex
numbers z, w (w # 0) with the property that |Sx — zVx| < |w|||Vx| for any x € H, and, by choosing T = S,
U=V, a= % (z+w)and B = % (z —w) we observe that T and U satisfy (30), i.e., Co g (T, U) is accretive.

The following result is useful in the sequel:

Lemma 3.4. Let, either P € B4 (H), A, Be By (H)or P € Bi’_ (H),A,BeB(H)andy, T € C. Then

Re (r[P (A* —=yB*)('B—A4)]) =0 (32)
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if and only if

r
tr<P‘A—V—£B

2

1
)s4|r—y|2tr(P|B|2). (33)
To simplify the writing, we the say that (A, B) satisfies the P-(y, I')-trace property.

Proof. Doing the calculation, we have the equality

y+7T

1 r |? T
4|r—y|2P|B|2—P'A—V“2LB =P|:—|A|2+)H2—B*A+2A*B—Re(Fy)|B|2i| (34)

for any bounded operators A, B, P and the complex numbers y, I € C.
Taking the trace in (34) we get after some simple manipulation

1 r |
4|F—y|2tr(P|B|2>—tr(P’A—y—;B‘ ) 35)

- —tr(P |A|2) —Re(F?)tr(P |B|2)
+Re[7tr(PB*A)] + Re [Fm] .
Since
Re (tr[P (A* —7B*) ("B — A)]) = Re [Fm . (PB*A)] —tr (P |B|2> Re (7T) — tr (P |A|2) :
then we get

2
%|F—y|2tr(P BP) -t (p 'A— V’ZLFB‘ ) = Re (ir[P (4* —¥B*) (TB — 4)]), (36)

which proves the desired equivalence. O

Corollary 3.5. Let, either P € B4 (H), A, B € Bo(H) or P € Bi'_ (H),A, B e B(H)andy,T" € C. If the
transform C, 1 (A, B) is accretive, then (A, B) satisfies the P-(y, I')-trace property.

We have the following result:

Theorem 3.6. Let, either P € By (H), A, B € Bo(H) or P € BI" (H), A, B € B(H) and y, ' € C with
r+y#o0.
(i) If (A, B) satisfies the P-(y, I')-trace property, then we have

R ) Retr (PB*A) +1 ) Imtr (PB*A
\/tr(P|A|2)tr(P|B|2)§ e(y + ) Retr( ) +Im(y + ) Imtr( ) 37
[T+l
Lr —yP >
—-————tr|P|B
ey (P 18P)
L —y? >
<|uw(PB*A -——1tr| P |B|7).
= lw (PEE )+ 115 «(P18P)
(ii) If the transform C,, T (A, B) is accretive, then the inequality (37) also holds.

Proof. (i) If (A, B) satisfies the P-(y, I')-trace property, then

r 2\ 1
wlpPla—VT 15 §f|I‘—y|2tr(P|B|2)
2 4

that is equivalent to

T -yl (PlBP).

N

tr(P |A|2) —Re[(7 +T) tr (PB*4)] + i T + y|2tr(P |B|2) <
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40 — S.S. Dragomir DE GRUYTER OPEN

which implies that
1 A— 1

tr(P |A|2> +5IT+ y|2tr<P |B|2) <Re[(7+T)u(PB*4)]+ ;T - y|2tr(P |B|2) . (38)

Making use of the elementary inequality
2pq <p+4q, p.q =0,
we also have
2 2\1'/? 2\, 1 2 2
|I‘+y|[tr(P|A| )tr(P|B| )] §tr(P|A| )+Z|I‘+y| tr(P|B| ) (39)
Utilising (38) and (39) we get
1/2 _

IT + 7| [tr (P |A|2) tr (P |B|2)] <Re[(7 +T)tr (PB*4)] + % T —yPu (P |B|2) . (40)

Dividing by |I" + y| > 0 and observing that
Re[(¥ 4+ T)tr(PB*A)] =Re(y + I')Retr (PB*A) + Im (y + I') Imtr (PB* A)

we get the first inequality in (37).
The second inequality in (37) is obvious by Schwarz inequality

(ab + cd)? < (a2 + 02) (b2 + d2) ca,b,c,d €R.
The (ii) is obvious from (i). O

Remark 3.7. We observe that the inequality between the first and last term in (37) is equivalent to

0< \/tr<P |A|2) tr(P |B|2) — | (PB*4)| < iwu (P |B|2) . 1)

Corollary 3.8. Let, either P € By (H), A€ Bx(H)or P € Bi" (H)y,AeB(H)andy,T € Cwithy + T #0.
(i) If A satisfies the P-(y, I')-trace property, namely

Re (r[P (A* —71g) (Tlg — A)]) = 0 (42)

)

or, equivalently

r
tr(P‘A—Verlﬂ T —yPuw(P), 43)

=

then we have

2 Retr(PA) Imu(PA)
w(PIAF) Re(r+T)SEEL +im(+ T AL 1 jr oy "
tr(P) T+ y| 4 I +y|
tr(PA)| 1T —y?
“lua(P)| 4T+yl’
(ii) If the transform C,, T (A) is accretive, then the inequality (37) also holds.
(iii) We have
2
tr(PIAI ) tr(PA)| _ 1|0 —y|?
— < - . (45)
tr (P) tr(P) |~ 4T +vy|
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DE GRUYTER OPEN Trace inequalities of Shisha-Mond type for operators in Hilbert spaces =— 41

Remark 3.9. The case of selfadjoint operators is as follows.

Let A, B be selfadjoint operators and either P € B4 (H), A, B € Bo(H) or P € BI" (H),A, BeB(H)
andm, M € Rwithm + M # 0.

(i) If (A, B) satisfies the P-(m, M)-trace property, then we have

(M —m)? >
Jir (PA2) tr (PB2) < Retr (PBA) + Tl (P82 (46)

(M —m)? )
<t (PBA)| + —— " (PB
< Jer( )|+4|M—i—m|r( )

M — 2
0 < \/tr (PA2) tr (PB2) — Retr (PBA) < ‘(HT:?M w(PB?).

(ii) If the transform C,y pr (A, B) is accretive, then the inequality (46) also holds.

(iii) If (A—mB) (MB — A) > 0, then (46) is valid.

We observe that the inequality (46) in the case when M > m > 0 is the operator trace inequality version of
Shisha-Mond inequality (1) from Introduction.

and

Corollary 3.10. Let A, B be selfadjoint operators and either P € B4 (H), A, B € Bo(H) or P € Bii— (H), A,
BeB(H)andm, M € Rwithm + M # 0.
(i) If (A, B) satisfies the P-(m, M )-trace property, then we have

(\/tr (PA2) + \/tr(PBZ))Z —u(P(A+B)?) < Mtr (pB?) @7)

and

Jor(PA2) + \Ju (PB2) = \Jur (P (4 + B)?) < ?M‘/n(mﬂ). 8)

Proof. Observe that

(o) i) o (p a+57)
=2 ( tr (PA2) tr (PB2?) — Retr(PBA)) ,

Utilising (46) we deduce (47).
The inequality (48) follows from (47). O

4 Trace inequalities of Griss type

Let P be a selfadjoint operator with P > 0. The functional (-,-), p defined by
(A,B), p :=tr(PB*A) = tr (APB™) = tr (B*AP)
is a nonnegative Hermitian form on B> (H) ,i.e. (-,), p satisfies the properties:
(h) (A, A), p > 0forany A € B> (H);
(hh) (-, -),_p is linear in the first variable;

(hhh) (B, A), p = (A, B), p forany A, B € B> (H).
Using the properties of the trace we also have the following representations

14]3 p o= tr(P |A|2) = tr(APA¥) = tr(|A|2 P)

and
(A.B), p = tr (APB*) = tr (B*AP)
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42 —— S.S. Dragomir DE GRUYTER OPEN

forany A, B € B> (H).
The same definitions can be considered if P € Bf' (H)and A, Be B(H).
We have the following Griiss type inequality:

Theorem 4.1. Let, either P € B4 (H), A, B, C € By (H) or P € B} (H), A, B, C € B(H) with P |A|*
P |B|2, P |C|2 #0and A, T,6, A€ Cwithy +T # 0,8 + A # 0. If (A, C) has the trace P-(A,T")-property
and (B, C) has the trace P-(8, A)-property, then

2
tr(PB*A) twr(PC*A) tr(PB*C)
_ (49)
tr(P|C|2) tr(P|C|2)tr(P|C|2)
o 2iA_s2 | tw(PlAP) (P |B)?
SIS TN M )
IT'+yl [A+§] I:tr(Plc|2):|
Proof. We prove in the case that P € B4 (H) and A, B, C € B2 (H).
Making use of the Schwarz inequality for the nonnegative hermitian form (-,-), p we have
(4. B), p|* < (4.4)5 p (B.B)s p
for any A, B € B> (H).
Let C € B2 (H), C # 0. Define the mapping [-,-], p.¢ : B2 (H) x B2 (H) — Cby
(4. Bl2.p.c = (4, B)2.p ICI3,p = (4.C2.p (C. B)a.p
Observe that [-, ], p ¢ is a nonnegative Hermitian form on B> (H) and by Schwarz inequality we also have
> 2
’(A»B)Z,P ICl2.p —(A4.C)a p <C’B>2,P’
2 2 2 2 2 2
= (1437 1C13.p = [(4.Chap ] [1B13.5 1€ 13,5 — (B, Ca.p[]
for any A, B € B> (H) , namely
it (PB*4)tr (P [CI?) = (PC* ) (PB* c)‘ (50)

[tr(P|A| )i (PICI?) =i (PC*a)] ]
x[w(P1BP)u(PICP) - w(PB*C)P].

where for the last term we used the equality |(B, Ch.p |2 = |(C, B), p |2
Since (A, C) has the trace P-(A, I')-property and (B, C) has the trace P-(§, A) -property, then by (41) we have

0< \/tr(P |A|2) tr(P |C|2) — | (PC*4)| < iwtr (P |C|2)

and

0< \/tr(P |B|2) tr(P |C|2) ~[w(PC*B)| <5 ||A +5||2 (P |C|2)

which imply

0w (PIAP)w(PICP) ~[ir(pCma)? 6n
< i'fr +’/y|| w(PICP) <\/tr(P 417) (P ICP) + ’tr(Pc*A)|)
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< ;Mtr (P |C|2) \/tr(P |A|2) tr(P |C|2)

and

0= (PIBR)w(PICP) -~ (P C)] (52)
< i'@ +8;| w(PICP) <\/tr(p|3|z)tr(},|c|z) N |tr(PC*B)|)
= ;||A+;| (P|C|2) \/tr(P|B|2)tr(P|C|2)_

If we multiply the inequalities (51) and (52) we get

[tr(P |A|2) tr(P |C|2) . |tr(Pc*A)|2] (53)
x [n: (P |B|2) tr (P |C|2) - \tr(PB*c)yz]

%. m '@;‘35"2 tr(P |C|2> \/tr(P |A|2) tr(P |C|2)

x tr(P |C|2) \/tr(P |B|2) tr(P |C|2).

If we use (50) and (53) we get

IA

r(PB*4)tr (P |C?) — e (PC*4) tr(PB*C)‘z (54)
i HHAA;‘S; r(P|C|2) \/tr(P|A|2)tr(P|C|2)

x tr(P |C|2) \/tr(P |B|2) tr(P |C|2).

Since P |C |2 # 0 then by (54) we get the desired result (49). O

IA

Corollary 4.2. Let, either P € B4 (H), A, B € By or P € By (H), A, B € B(H) with P |A]>, P |B|*> # 0
and A, T, §, A € Cwithy +T # 0,8 + A # 0. If A has the trace P-(A,T')-property and B has the trace
P-(8, A)-property, then

w(PB*A) w(PA)u(PBY[ 1 [T -y |A—8P w(P1aP)w(P1BP) (55)
w(P)  w(P) w(P) | 4 [Tyl [A+4 [tr (P)]? '

The case of selfadjoint operators is useful for applications.

Remark 4.3. Assume that A, B, C are selfadjoint operators. If, either P € By (H), A, B, C € By (H) or
P € Bf (H), A, B, C € B(H) with PA%, PB%, PC? # Oandm, M,n, N € Rwithm + M,n + N # 0. If
(A, C) has the trace P-(m, M )-property and (B, C) has the trace P-(n, N)-property, then

tr (PBA) tr(PCA) tr (PBC) 2 _L M- m)> (N —n)> | tr (PA2)tr (PB2) 56)
r(PC2) «(PC?)w(PC?)| ~— 4 |M+m| [N +n| [tr(PC2)]2 '
If A has the trace P-(k, K)-property and B has the trace P-(l, L)-property, then
tr (PBA) 2 1 (K- k)2 (L —1)* [t (PA?)t (PB2) 7
tr (P) wr(P) w(P)| — 4 |K+k| |[L+I [tr (P)]?

wherek + K, 1 + L # 0.
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5 Applications for convex functions

In the paper [34] we obtained amongst other the following reverse of the Jensen trace inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that Sp (4) C [m, M| for some scalars m,
M withm < M. If f is a continuously differentiable convex function on [m, M] and P € By (H) \ {0}, P > 0,
then we have

o (P (A (tr(PA))
- tr(P) tr(P)
w(Pf (A)A)  tr(PA) tr(Pf’(A))
ST w we) uw(P)
Pla=t5 1)

L o) — £ ) ez

(58)

<
tr(P F(A)—1ELD) IHD
5 (M —m) :
2 tr(P)
1/2
w(PA? 2
3L () — 1 (m)] [ o - (55) ]
<

tr(P) w(P)

1/2
4 2
LM —m) [tr(P[f @r) (tr(Pf’(A)))z}

IA

L1 On = 7 ] (M —m).

Let M, (C) be the space of all square matrices of order n with complex elements and A € M,, (C) be a Hermitian
matrix such that Sp (4) C [m, M| for some scalars m, M withm < M.If f is a continuously differentiable convex
function on [m, M], then by taking P = I, in (58) we get

o< BUEN (i) )
n n
r(f (A4 w(d) w(f(4)
- n n n
L ) = f Gy SA= 55 )
- | £/ (a)—LA)
(A2 271/2
aﬁmn—ﬁmmf%i—G%ﬁ]

1/2
([ (AT 2 2
;(M—m)[ ( n >—(“(f,fA”) }

A

1
< Z[f/(M)—f'(m)] (M —m).
The following reverse inequality also holds:

Proposition 5.1. Let A be a selfadjoint operator on the Hilbert space H and assume that Sp (A) € [m, M] for
some scalars m, M withm + M # 0. If f is a continuously differentiable convex function on [m, M| with f’ (m) +
f/ (M) #0and P € By (H)\ {0}, P > 0, then we have

o< TP A) (tr(PA))

- tr(P) tr (P) (60)
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_w(PfI(A)A)  w(PA) w(Pf(4)
w(P)  w(P)  «(P)

_L M —ml|f (M)~ f ()] 4tr(PA2)tr(P[f’(A)]2)
"2 lm+ M1 m)+ fF MO\t (P) tr(P)

The proof follows by the inequality (57) and the details are omitted,

Let A € M,, (C) be a Hermitian matrix such that Sp (A) C [m, M] for some scalars m, M withm + M # 0.
If f is a continuously differentiable convex function on [m, M| with f/ (m) + f’ (M) # 0 then by taking P = I,
in (60) we get

o< U (A) _f(tr(A)) 1)
n n
_w(ff (DA w) u(f(4)
- n n n

1 Ml — ] (a2) o (P

T2 Vim A MY () + f (M) n n :
We consider the power function £ : (0,00) — (0,00), f (t) = " with ¢ € R\ {0}. For r € (—00,0) U [1,00), f
is convex while for r € (0, 1), f is concave.

Let 7 > 1 and A be a selfadjoint operator on the Hilbert space H and assume that Sp (4) C [m, M| for some
scalars m, M with 0 < m < M.If P € B (H) \ {0}, then

- tr (PA") tr (PA)\"
=~ uw(P) _(tr<P>)

tr (PA")  tr(PA) tr(PA™!)
"Iv@) T uw®)  w(p)

(62)

_ r—1 _ . r—1 2 2(p—1)
Lo m) (M m™ 1)t (PA2?) u (PA )
-2 (m+M)1/2 (mr—l_i_[‘/[r—l)l/2 tr (P) tr (P)

Consider the convex function f : R — (0,00), f (t) = expt and let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (4) C [m, M| for some scalars m, M withm < M. If P € Bi" (H) \ {0}, then using
(60) we have

- tr (P exp A) B tr (PA)
= ey ( w(P) ) ©
- tr(PAexp A) tr(PA) tr(PexpA)

w(P)  w(P)  tr(P)

- 1|M —m| (exp (M) —exp (m)) 4/tr (PAZ) tr (P exp (24))
T2 /Im+M|Jexpm +expM tr(P) tr (P)
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