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ABSTRACT This paper proposes a method to address misreadings and consequent inadequacy of
radio-frequency identi�cation data for social insect monitoring. Six-month worth �eld experiment data were
collected to demonstrate the application of the method. The data are transformed into a linear combination
of the Gaussian model and curve-�tted using an evolutionary algorithm. This results show that the proposed
method allows us to improve the quality of data that infer honey bee behavior at the colony level.

INDEX TERMS Apis mellifera, RFID, optimization, genetic algorithm, curve �tting, data quality.

I. INTRODUCTION
Pollinators play an integral role in food production, respon-
sible for 1/3 of all commercial crop pollination, and with an
estimated value of up to USD$ 200 billion per annum [1], [2].
Honey bees, bumble bees, and some European stingless
bees are exploited commercially as they are easily managed,
and live in colonies with large numbers of individuals. Yet
European honey bee (Apis mellifera) colony numbers in
Europe and North America especially have been reported to
decline over the last century [3]. Bee population decline has
a detrimental impact on food security, �oral biodiversity and
abundance; the consequential impacts for the landscape as a
result of bee losses have come to the attention of researchers.

In addition to their value in agriculture, honey bees
are used as a model organism for a range of studies in

neurobiology, including cognition, perception, vision, genet-
ics, and behavior [4]�[6]. Understanding the behavior of
social insects at an individual level is very challenging,
as each colony consists of a large number of individuals
which, within the same caste, are highly similar visually.
The effective collection of data pertaining to the location of
individuals requires the unique identi�cation of individuals
by marking or �tting identi�ers to each target individual.

Tagging insects with microdots [7], color patterns [8]
and QR codes [9] is commonplace in entomological
research. von Frisch [10], the Nobel Prize winner in Phys-
iology or Medicine for 1973, painted bees to reveal the
algorithm associated with the waggle dance of honey
bees. This approach is also known to have been used by
Darwin et al. [11].While extremely useful and relatively
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cheap, the use of microdots, QR codes and painting insects
are time-consuming and labor intensive procedures, requiring
either direct human observation or image recording and
sophisticated processing.

More recently radio-frequency identi�cation (RFID)
devices have been applied to social insects [12]�[14]. In fact,
RFID has become a popular tool in entomological research
in the last decade and is being widely used in bee research
groups in Europe [12], [15]�[20], North America [21], [22],
China [23], [24], and Australia [25].

The main advantages of this technology are that thousands
of bees in a single hive can be tagged so as to be individually
identi�able, by a small number of operators and relatively
quickly. Readings can be be recorded constantly and without
excessive human intervention. However, RFID technology is
known to fail when collecting information on bees passing
through gates (e.g. hives or feeders). This is likely to be
caused by the short-range of reach of the antennas, and bees
�ying too fast in and out of the hives and feeders. Further-
more, the orientation and spatial positioning of bees as they
enter hives could also cause misreadings due to the polariza-
tion of some RFID tags. A number of studies have reported
the success rate of such systems when reading insect RFID
tags, with results varying depending on, for example, exper-
imental setup, reader capabilities, RFID tag (i.e. antenna)
size, duty cycle, and the power of the electromagnetic sig-
nal. Here, we categorize the performance of the reader
as: low (i.e. less than 80% success readings) [26], medium
(i.e. between 80% and 90%) [21], [27], or high (i.e. greater
than 90%) [12], [18] read ef�ciency. As a consequence of a
low reading success rate, it becomes dif�cult to interpret what
behavior an individual bee was involved in and the duration
of that bee being inside and/or outside the hive.

Other concerns associated with tagging small insects are
the additional weight of the tag, and the alterations neces-
sary to the hive entry to accommodate readers and antennas.
Because most social insects have a short adult lifespan, typ-
ically from a few days to a couple of months, studying them
with the assistance of tags requires regular visits to colonies.
As a consequence hives are opened regularly, changing the
internal environment, stressing the colony as a whole and
killing some of the insects in the process. Some insects are
extremely sensitive to odors emitted by glues, and therefore
insects �tted with tags may be attacked by other individuals.

Despite these limitations, RFID tagging of insects is
becoming the most practical available tool to investigate indi-
vidual behavior in a colony on a large scale. Using RFIDs
is now more popular and, despite missing some readings,
the behavior of the colony can be reasonably well captured
in those experiments using electronic tags.

In this paper, we estimate the number of bees engaged in
three different behaviors (e.g. by the entry, short mission, and
foraging) by applying a classi�cation method to the entire
colony’s activity data as tagged bee pass readers mounted
at the hive entrance. This work addresses the key limitation
of one popular method in the electronic tagging of social

insects: lost readings do not allow accurate interpretation of
individual behavior.

The main contribution of this paper is the development
of a method that allows the estimation of how many active
bees in a hive will likely be foraging at a given moment
(e.g. 3:30pm) or within a given time period (e.g. between
10 am and 2 pm). Here, ‘‘foraging’’ refers to those activities
bees undertake in order to search for and collect resources
for the colony, mainly food resources such as nectar and
pollen, as well as hive resources including water and resin.
The activities include searching for new food sources as well
as exploiting current ones that the bee knows about, either as
a result of previously visiting the source or by observing a
waggle dance performed by another bee that has visited the
source.

The paper is structured in the following manner:
Section 2 describes the methodology and Section 3 presents
the experimental results obtained. A discussion and conclu-
sion will be provided in Section 4 and Section 5, respectively.

II. MATERIALS AND METHODS
A. FIELD EXPERIMENT
The dataset utilized for this work was obtained from a �eld
experiment conducted in Tasmania, Australia. We set up four
beehives with a radio-frequency identi�cation (RFID) reader
installed at each hive’s entrance, as illustrated in Figure 1a.
We visited the hives on a regular basis (e.g. once or twice a
week) to tag bees with RFID tags (Section II-B). Using this
setup, the bee passes through the hive entrance and is detected
at a particular reader (Figure 1b); the individual detected,
and the date and time of detection are recorded. The data is
organized in individual daily CSV �les, based on UTC time.

B. BEE TAGGING
Adult worker bees were tagged at the hive using 2:5� 2:5�
0:4 mm RFID tags (Hitachi Chemical, Japan) secured to
the thorax using cyanoacrylate super glue (Cyberbond LLC,
Batavia, Illinois, USA). Each tag weights 2.4mg, one-third
of an adult honey bee’s maximum foraging weigh. Live bees
were restrained against the honeycomb using a modi�ed dis-
section probe, by applying gentle pressure between the thorax
and abdomen. The tag was applied on the thorax between
the wings, ensuring that both wing pairs were free before
releasing the bee. The bee was then observed to be able to
�y prior to proceeding to the next bee. Each tag is coded in
hexadecimal format with a unique bee identi�cation number,
consisting of a range of parameters including the country in
which the experiment is taking place, the hive number within
an apiary the bee originated from, and the bee’s species,
strain, and caste.

C. CLASSIFICATION OF BEE BEHAVIORS
Bee activity is, for the purpose of this paper, the detec-
tion of a bee �tted with an RFID tag passing through the
entry. Bee behavior is the interpretation of what the bee
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FIGURE 1. The bee experiment conducted at Geeveston, Tasmania: (a) hive entrance; and (b) RFID reader installed underneath the entrance that
detects the passage of tagged bees.

was actually doing. The assessment of what behavior a bee
was exhibiting usually needs to take into account several
successive RFID detections.

The daily activity of bees is greatly affected by external
factors, especially the weather, and in particular temperature,
precipitation, solar radiation, and wind speed [28]. If, for
example, the hive becomes too hot, bees can leave the hive
and ‘‘beard’’ at the entrance, or use their wings to ventilate at
the entry of the hive. If the temperature is too low (i.e. typ-
ically below 10�C) bees will not leave the hive, and instead
form a cluster on the comb of the brood nest to maintain the
optimal brood temperature of 34:5�C . Bees do not �y during
storms or during high wind speeds. If the external temperature
is mild and on a sunny, calm day, bees will likely be found
foraging in large numbers.

Either by observation or experience, honey bee activity
data can be classi�ed here into four behavior categories:
By The Entry (BTE): Bees classi�ed as being ‘‘by the

entry’’ are those with successive detections of the same
bee by an RFID antenna at a maximum time interval
between successive readings of less than three min-
utes. For example, a bee could be by the entry for
30 minutes, and it will be classi�ed as BTE provided
successive readings are within three minutes or less.
This behavior is usually associated with hive main-
tenance, including cleaning and control of hive tem-
perature, defense, or after returning from a foraging
trip [29]�[31].

Short Mission (SM): Bees engaged in short missions are
those with successive detections intervals between
three and six minutes. This means the bees left the entry
for a period of time no longer than six minutes. Bees
engaged in short missions are those believed to be mak-
ing short orientation or defecation �ights, inspecting
the surroundings, or engaged in defense activity [32].

Foraging (FG): Bees will be classi�ed as foraging when
the gap between successive detections is longer than
six minutes. During the day, a bee may be detected
many times and, in most cases, the time intervening
between the �rst and last detections of the day will be

considered foraging, except when successive readings
indicate the bee is by the entry or on short missions.
Bees with recorded �rst and last detections will only
be considered as foraging between sunrise and sunset.
Foraging periods almost certainly incorporate periods
of time when bees return from the �eld and stay inside
the hive before going out again. Foraging is a crucial
behavior of bees and can be associated with differ-
ent roles: scouts, which spontaneously search for new
food/water sources; exploiters and water carriers are
individuals that make repetitive �ights to food and
water sources, respectively; recruits are individuals that
search for food sources with a prior awareness of the
approximate location of the source after observing a
waggle dance [32]�[34]. In principle, using RFID tech-
nology, bees should be detected at every instance of
leaving and returning to the hive and this would pro-
vide some insight into the duration bees spent foraging
and how long they stay inside the hive before leaving
again. However, misreadings of RFID systems make
this task practically impossible. A way to overcome
this dif�culty is to associate the sporadic detection of
bees to a foraging behavior. Therefore, the bee will be
engaged in foraging activities for a long period of time,
comprising several missions. Rather than recording
each mission as a discrete event, the overall behavior
is de�ned as a foraging role.

Departed bees (DB): Bees that leave the hive and never
return, either because they die or because they swarm
(including absconding) [35], [36]. Swarming was not
observed in our hives during the experiment.

Table 1 presents a summary of bee behaviors as described
above. For the purpose of this work, we also performed data
curation to �lter out erroneous data in accordance with empir-
ical study based on �eld observations and an initial investiga-
tion of the data. One of the main issues relates to continuous
readings with extremely short time intervals (according to
our rules, this is classi�ed as BTE). This can happen when
a dead bee, with its RFID still attached, is located within the
reading range of the reader. To overcome this, we con�gured
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TABLE 1. Categorization of bee behaviors using RFID data. These behaviors reflect the duration of and time between consecutive readings and are used
to report the most relevant results.

the software in such a way that BTE reads with a duration of
more than 30 minutes were discarded. Similarly, FG durations
of more than six hours were omitted, as this is most likely
attributable to instances of missed readings.

The classi�cation criteria for bee behavior proposed above
can be altered to accommodate other users’ needs, without
further limitations to the model implemented in the current
work. For example, if a beekeeper or an entomologist under-
stands their bees are at the entry for no longer than two
minutes, it is possible to change the model to incorporate this
observation. These behaviors are described for the European
honey bee, Apis mellifera, and are not necessarily the same
for other bee species.

D. INTERPRETING BEE POPULATION BEHAVIOR
The behaviors described above are applied to the recordings
of bee activities to identify the behavior of each individ-
ual bee. After this step, a collective distribution for each
bee behavior is generated. The diurnal distribution of all
of the inferred behavior categories over the whole dataset
resembles normal distributions (Figure 4). The resulting his-
togram is least-squared curve �tted using a Gaussian model
(Section II-E).

The proposed method considers the overall activity as
a linear combination of each type of possible activity
(i.e. Gaussian Mixture Model) related to bee behavior. There-
fore, the linear combination of Gaussian curves can be
written as:

GALL D � GBTE C � GSM C � GFG (1)

where each component of this equation is a Gaussian curve
(G) expressed as:

G(x;BKG; I ;T�;T� ) D Ie
� (x�T�)2

2 T 2� C BKG (2)

where x is the data point (time of day in this case) to be
estimated, BKG is a given background, I is the intensity, and
T� and T� are the mean and the standard deviation of the dis-
tribution respectively. The parameters (�, � and � ) represent
the relative number of bees involved in different behaviors

within the colony, calculated using the area under the curve
for different Gaussian Probability Density Functions (PDFs).

For the purpose of this work, Gaussian parameters to be
curve-�tted are as follows:

i Background-effect (BKG): The data ‘normalisation’
which ensures that the PDF to be curve-�tted com-
plies with the shape of a distribution. This is needed
because brief visits to the hive entry (BTE and SM)
occur regularly at night time. They are associated with
bee defense or bees working to better climatise the
colony (e.g., temperature or moisture control). Such
events are considered a background (BKG) activity and
are homogeneously distributed during the entire day and
night. An example of such phenomena can be observed
in Figure 4, where BTE detections occur between the
hours of sunset and sunrise.

ii Intensity (I ): The height of the PDF indicating the over-
all probability of a particular activity taking place.

iii The average of time in a day (T�): The time of day in
which a particular bee activity is most likely to occur
(highest I ).

iv The standard deviation of time of day (T� ): The spread
of the PDF of bee activity in a day.

Curve �tting is performed with the experimental data to
determine the parameters of the Gaussian curves and their
relative contribution to the overall distribution of behavior.
Once the curve �tting is achieved, two key questions can be
answered:

1. How many bees are performing a given behavior at
a given moment of the day? This is determined by
the relative intensity of each curve at the moment of
interest.

2. How many bees are performing a given behavior dur-
ing a given period of the day? This is determined by
calculating the area under the curves during the period
of interest.

E. CURVE FITTING USING GENETIC ALGORITHMS
Genetic Algorithm (GA) is a meta-heuristic method to
generate a near-optimal solution for an optimization
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TABLE 2. Summary mathematical representations for the data set (D).

problem by evolving a pre-de�ned genetic representation
(i.e. chromosome design), using natural selection process
(e.g. selection, crossover, and mutation), towards a better
solution. The following sub-sections discuss the requirement
to perform GA in detail: (i) data notation; (ii) parame-
ter initializations and constraints; (iii) chromosome design;
and (iv) �tness function.

1) DATA NOTATION
First of all, we discuss the procedure we use to formalise the
problem (Figure 4) in a mathematical way, and the notations
to be used within the following sub-sections. The dataset is
divided into two levels:

i Bee behavior. Let A D fa1; a2; a3g D fBTE; SM ;FGg
be a list of distinct behaviors with I D 3 as discussed in
Section II-C.

ii Time of day. The time (t) in a day T D
ft1; t2; � � � ; tj; � � � ; tJ g which is associated with its bin
counts. In this work, we analyze the data in 30-minute
intervals within a day resulting in J D 24hr � 30min D
48 elements.

Based on the categorisation procedure above, we can now
represent our dataset as: D D fd1;1; d1;2; � � � ; di;j; � � � ; dI ;J g
with each datum (di;j) representing the count/frequency of
activity occurred at ith activity A and jth time of day T .
A summary of these notations is given in Table 2.

We further denote dataset representations so that we could
specify the particular category to obtain a sub-set of data from
it. To illustrate this, some examples are shown below:

D D fd V d 2 Dg
D fd1;1; d1;2; � � � ; di;j; � � � ; dI ;J g

Di D DiDx

D fd V d 2 D ^ i D xg
D fdx;1; dx;2; � � � ; dx;j; � � � ; dx;J g

Dj D DjDy

D fd V d 2 D ^ j D yg
D fd1;y; d2;y; � � � ; di;y; � � � ; dI ;yg

where x and y are arti�cial notations that depend on user
input. Such representations will be used in the following
sub-sections.

Since this work is based on a ‘data-driven’ modelling
process, it is necessary to calculate the ‘importance’ of each

datum in order to compute the mean � and standard devi-
ation � of a particular activity’s occurrence within a day.
Therefore, the signi�cance (denoted by the ‘weight’ W D
fw1;w2; � � � ;wj; � � � ;wJ g) of each datum (i.e. time index
in day T ) corresponds to the data availability (di;j) and is
addressed by utilising the weighted mean (��) and standard
deviation (� �) equation as below:

��(V ;W ) D
P N

i wi � vi
P N

i wi
(3)

� �(V ;W ) D
� P N

i wi � (vi � ��)2
P N

i wi

� 1
2

(4)

where V is a list of data with each datum denoted using vi
(i.e. V D fv1; v2; � � � ; vn; � � � ; vN g).

2) INITIAL PARAMETERS ESTIMATION AND CONSTRAINTS
The BKG-effect is estimated using the mean value of data
Di (i.e. ith activity A) that holds the minimum Coef�cient of
Variation (CV) of the �rst n�rst and last nlast data within time
of day:

arg min
n�rst ;nlast

CV
�

(Di)n�rst [ (Di)nlast

�
(5)

where n�rst datum (Di)n�rst D fDi;jDy V y 2 Z^y � n�rst g and
nlast datum in time-of-day (Di)nlast D fDi;jDy V y 2 Z^nlast �
y � Jg. Thus, the BKGi at activity i is obtained by:

BKGi D �
�

(Di)n�rst [ (Di)nlast

�
(6)

and its constraint:

C(BKGi) D �
�

(Di)n�rst [ (Di)nlast

�
(7)

where �() and� () corresponds to the minimised Equation 5.
Then, let time T�rst;last D ftx 2 Z ^ n�rst < y < nlast g

be a sub-set of T and its corresponding datum Ui D fDi;jDy V
y 2 Z ^ n�rst < y < nlast g. The remaining parameters for
individual Gaussian Gi of distinct activity (ai) are estimated
in the following:
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where u denotes each datum within Ui and Ui;unq;(n�2) is
the third largest ‘unique’ value within Ui (represented using
an order statistic). Lastly, note that the lower and higher
boundary (search space) for the optimization is in the form:

Clo D Estimation� Constraint
Chi D EstimationC Constraint (8)

3) GA’S CHROMOSOME DESIGN
Also called chromosome encoding and decoding, is a crucial
step required to quantify the problem into an ‘individual’ for
the optimization process. In this work, we designed a single
individual using the following approach [37], [38]: Based on
Equation 1, a complete distribution of the data consisting
of I D 3 activities (BTE, SM, and FG) and 4 parameters
(BKG; I ;T� and T� , as in Equation 2) is required to gener-
ate one single Gaussian distribution. Therefore, in our case,
one individual will consist of 12 elements (3 activities �
4 parameters) with values between 0 and 1. In order to
decode the value of a particular element within the individual,
the following equation is employed:

p(x;Clo;Chi) D Clo C x � (Chi � Clo) (9)

where x and p are the encoded and the decoded value of a
particular Gaussian parameter respectively; Clo and Chi are
the constraint values calculated from the previous section
(Equation 8). Figure 2 demonstrates the design of a single
individual with a decoding example for a parameter I of the
Gaussian distribution Gi.

FIGURE 2. An illustration of the chromosome design utilized in this work,
where each element within the individual holds a value between 0 and 1,
and B denotes the background (BKG). An encoding and decoding
example for the intensity (Ii ) parameter of distribution Gi is also
presented. In this case, assume that we have element Ii with value 0:7615
(encoded) within the individual which is equivalent to 205:32 (decoded)
after applying Equation 9.

4) FITNESS FUNCTION
The quality of a particular individual is assessed by minimiz-
ing the sum of the chi-square (�2) function [37] for different

bee activities:

�tness D
IX

i

�2
i (10)

�2
i D

1
J � Np

JX

j

(di;j � Gi;j)2

di;j C 1
(11)

where J is the number of elements in a day (see Table 2); Np is
the number of parameters to be optimized (four in this case);
and Gi;j is the estimated value using Gi at time tj. Note that the
C 1 within the denominator on the right-side of Equation 11 is
employed to avoid a divide-by-zero error, which could occur
if the number of data points was extremely low.

III. EXPERIMENTAL RESULTS
This section provides the results obtained from the exper-
iment. Figure 3 depicts the overview throughout the
entire experiment, commenced on April 2nd and ended
on November 11th, 2014. During the period, a total
of 2,425 RFID tags were deployed; however, only 1,101 bees
�tted with RFIDs were detected at least once after being
tagged. Such a phenomenon can be explained by: (i) misread-
ings of the RFID system; (ii) the tag was not �tted properly
so that the bee was able to remove it; and (iii) tags lost during
the tagging process resulting from environmental conditions
(e.g., on a windy day). The number of bees alive increases on
the day our team members make a �eld visit to tag bees, and
it is shown that approximately 30% of the tagged bees will be
detected at least once on the following days.

Although data was collected between April and November,
the analyses in the following sections were only undertaken
on data collected between May and October to accommodate
for the build up and decline of tagged bee numbers in the
instrumented hives as shown in Figure 3, allowing for more
robust results.

A. BEE ACTIVITY
Eight months of experimental data from 1,101 bees were
recorded in CSV �les. Bee detections were classi�ed using
the previously established rules (Section II-C) in order to
assess each bee’s behavior at a given time. Once the behavior
was determined, the data were grouped according to the time
of day the activity occurred.

The daily distribution of bee behavior over the period of
eight months is shown in Figure 4. The �gure shows that
bee activity starts to increase at approximately 7 am, and
declines at approximately 8 pm. During that period, bees are
most active between 12 pm and 1 pm. It is also observed that
there are some detections before and after 7 am and 8 pm
respectively which have been classi�ed as by the entry. The
analysis in this work removes Australian daylight savings
time for consistency across data.

Figure 5 shows when bee activity is assigned to the
category ‘departed bee’. Departed bees are those that left
the hive and never returned. Occurrences after sunset and
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FIGURE 3. Summary information of field visits for tagging bees and daily number of bees alive throughout the experiment.
In this case, the lifespan of an individual bee (referred as ‘alive’ bee) is estimated from the first day it was tagged until the very
last day of its detection.

FIGURE 4. Cumulative plot of six months experimental data, illustrating bee behavior distributions
throughout the day.

FIGURE 5. Daily distribution of events associated with departed bees. These are events where bees are
detected for the last time. The events occurring between dusk and dawn are likely to be of bees that died
inside the hive and were transported out of the hive by other workers.

before sunrise are likely to be associated with bees that
died inside the hive and were transported out by worker
bees.

B. CURVE FITTING
Figure 6 shows the result for the curve �tting of each behav-
ior (by the entry, short missions, foraging) for the entire
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FIGURE 6. A visualisation produced by the curve-fitting program developed for this work that demonstrates the
Gaussian PDF of distinct bee activities in a day. The x-axis shows the time of day and the y-axis is the
frequency/count of activities. The dots (in different colors corresponding to the histogram values in Figure 4)
represent the data to be curve fitted with BTE, SM, FG denoted in blue, green, red respectively. The solid lines are
the curve fitted Gaussian PDFs for isolated activities (GBTE ; GSM ; GFG) and the combined ones (GALL in black
dashed-line) where the curve fitting used the optimization approach proposed in this work (Section II-E).

FIGURE 7. The proportion of bee behaviors relative to time of day.

period of the experiment. The sum of each behavior overlaps
relatively well with the overall bee activity (black dots).
It suggests that bees start foraging at approximately 7 am
and �nish at 8 pm. Around noon (between approximately
12 pm and 1 pm), most bees are involved in foraging role
(e.g. exploiter, recruit, scout, water carrier); followed by by-
the-entry activities (e.g. hive defense, temperature control);
and lastly, on short missions (e.g. orientation �ights, wander-
ing around the nest).

The proportion of bees involved in different behaviors
varies relative to time of day. Therefore, a normalisation of the
curve �tted Gaussian PDF (Figure 6) is depicted in Figure 7.
The normalized curve reveals that approximately 80% of the
workers within the colony are engaged in BTE and � 20%

are in SM during early morning (before sunrise) and late at
night (after sunset).

C. BEE BEHAVIOUR
Once each individual bee behavior has been initially inter-
preted and following the curve �tting process, we can deter-
mine the proportion of bees performing a speci�c task at a
given moment of the day or during a speci�c period of the
day. If we consider the cohort of bees �tted with electronic
tags to be representative of the entire bee population in a hive,
it is possible to estimate how many bees would be engaging
in, for example, foraging activities.

The result shows the proposed method is reasonable and
the area under each curve should represent the number of bees
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FIGURE 8. The proportion of bee colony behaviors for different months. The histogram (in yellow) presents the data
availability for each month.

TABLE 3. Gaussian parameter values for each month of data reported in Figure 8. The ‘Area(%)’ column indicates the percentage of detections recorded
of bees undertaking particular behaviors, relative to the total detections for that period.

undertaking distinct behaviors throughout the day. Monthly
proportions (from May to October) of bees foraging, in short
missions or by the entry are shown in Figure 8 and values
of the Gaussian parameters summarizing this data are given
in Table 3. Figure 8 shows an overall increase of foraging
behavior in the long term, and a decrease in by the entry
behavior and short missions. Also, it shows that the data

availability dropped signi�cantly in July, most probably due
to the markedly decreased temperature during the winter
period in Tasmania (as further discussed in the Discussion
section).

Furthermore, based on Table 3, the standard devia-
tion of the Gaussian parameter (T� ) during winter period
(i.e. June to August) is lower compared to other months
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TABLE 4. Summary of the proposed bee behavioral model and its level of certainty for insects monitored under the current empirical study. The
‘Threshold’ column gives the cut-off points for two successive readings within the classification procedure for the raw bee detection data; whilst,
the ‘Duration’ column indicates the range of valid bee behavior durations. For instance, BTE durations of more than 30 minutes will be omitted.

(e.g. T� < 80min overall). This was probably caused by
(i) lower temperatures during the winter months that reduces
bee activity, and (ii) the fact that the sun rises later and sets
much earlier than in other seasons [28], [39].

IV. DISCUSSION
RFID systems where readers are installed in the �eld
with limited power availability, operating with high reading
frequency to capture every potential bee tagged leav-
ing or returning the hive, in con�ned spaces like a bee-
hive entry and with tags small enough to �t on bees are
operationally challenging. Missing readings were inevitable
and this fact makes the interpretation of each individual bee
behavior very dif�cult. This work addresses this problem by
developing a method that assigns a behavior for each bee
based on roles and extrapolates that behavior for a cohort of
bees doing the same activity.

Foraging behaviors were restricted to daylight hours, typ-
ically between 5 am and 8 pm; our data correlates well
with nature, as bees will not forage when ambient tempera-
ture or solar radiation levels are too low. Additionally, the pro-
portion of bees undertaking various behaviors varies over the
course of the day. An increased probability of bees undertak-
ing short missions and remaining by the entry is seen during
the hours when bees are not actively engaged in foraging
activities. This is likely due to forager role plasticity result-
ing in the reallocation of foragers to defensive or hygienic
roles, or simply a matter of proportions altering as numbers
of bees engaged in BTE and SM increases relative to FG
(Figure 7).

Not only was activity variable over the daily cycle, but our
six months of data include a distinct shift in behavior over the
long term (Figure 8). The bee tagging period was commenced
in April and terminated in October. In April and November
tagged bee numbers within the hives were much lower than
in the intermediate months as a result of tagged populations
becoming established and dying out respectively (Figure 3).
As a result of this, only data from May to October was
included in the analysis. A signi�cant decrease in read-
ings was observed in July (Figure 8) due to predominantly
cold weather, higher rainfall, and decreased solar radiation

when compared to the months of September through April.
Furthermore, a proportional increase in foraging behaviors
was observed over the course of the experiment. This may be
due to an improvement in operator skill over time, resulting in
more ef�cient tagging and a reduction in tagging-associated
mortality, or adjustment of the colony to the colder winter
temperature after the initial shock in July. Increased activity
is expected, and observed, concurrent with the increase in
temperatures into the spring months.

Bee behavior classi�cation can be interpreted on the basis
of the frequency of readings. By considering issue of misread-
ings in the RFID system, we are able to de�ne the levels of
certainty for the behavioral characterizations in our proposed
model (Table 4).

High frequency reads are associated with the constant pres-
ence of a bee by the colony entry. This leads to a high degree
of certainty about the assignment of a behavior of a bee to
be ‘by the entry’ or ‘short mission’. A departed bee is also
very clear as the last recording of a bee could be con�dently
assigned as a bee that never returned to the hive.

The foraging behavior of bees is, by its very nature, com-
plex. Bees could leave and return to the hive in missions
lasting as long as an hour (and possibly longer) several times
in a day. If the RFID system does not miss any readings,
we would be able to con�rm with absolute certainty when the
bee left the hive, and when the same bee returned. We would
also be able to say how long the bee was inside the hive
between outdoor missions and for how long each mission
lasted. When a single reading is missing, however, it becomes
almost impossible to determine the bee’s behavior at a given
time with absolute certainty. With our approach we are able to
estimate with some degree of con�dence when the bees were
engaged in foraging activities. This is possible because our
rules are de�ned in such a way that single readings exclude
BTE behaviors, and long durations between readings exclude
SM behaviors, leaving only FG.

Figure 9 illustrates an example of an effort logging record
throughout the lifetime of an individual bee. In this instance,
this bee was tagged on 13th August 2014 at Hive 001 and
last detected on 31st August 2014. It is very likely that this
bee was tagged when it was very young because: (i) a ‘single
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FIGURE 9. Screenshot of a visualisation tool developed to analyze individual bee activity using the bee behavior classification described in
Section II-C. Each row represents a day that the bee was active (i.e. detected at least once in that day); and the horizontal axis is the time of day,
showing the times at which different bee behaviors occurred. Within each day, the times of sunrise (yellow) and sunset (green) are also indicated.
For this example, the colored bars represent: (i) blue bar in the first row, the day the individual was tagged; (ii) red, single detection in that day;
(iii) light blue, by the entry; (iv) orange, short mission; and (v) purple, foraging period.

detection’ is observed on August 14th and 17th; and (ii) the
bee started to forage on 18th August, despite the fact that it
was tagged on August 13th. This bee is very likely to be a
forager (e.g., scout, recruit, exploiter) throughout its lifetime.
Note that the ‘partitioned’ foraging period indicates that there
were detections with more than six minutes intervals between
successive readings within its foraging period. This could, for
example, be explained by assuming that the bee was either

out exploiting food sources during these intervals or that it
was in the hive depositing nectar or pollen before undertaking
further foraging activities.

V. CONCLUSIONS
The proposed method allows for a robust use of data from
social insect monitoring based on RFID devices. Misread-
ings, which are common in RFID-based experiments, can be
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better managed by combining insect behavior with activity
data. The classi�cation proposed in this paper (Section II-C)
is based on results reported in the literature and on obser-
vation of our bees. However, depending on different bee
species or other factors, it is possible to change the software
con�guration (i.e. model parameters) associated with bee
activity.

Under traditional techniques, once the detection of the
insect fails, RFID data become useless. The proposed method
addresses this problem by assigning a given behavior for each
tagged insect, then combining results for the entire tagged
population using curve �tting based on genetic algorithms.

One limitation of this work is the inability to determine the
number of data required in order to have a good representation
of the results. For example, the curve �tting of monthly data
(Section III-C) does not include April and November because
those months do not have enough bee activity data for the
curve-�tting purposes. Another limitation is the fact we have
a small number of hives which limits the replicability of
the experiments. And �nally, the ideal calibration is to have
another independent method to determine the activity of the
bees. While we have scales in some of the hives, a camera, and
an image processing technique could be used to determine
when the bees leave and return as a mean to calibrate our
results. Such an approach will be used in the future.

The method proposed in this paper could be used by other
research groups using RFID to study social insects to better
analyze the RFID data and overcome the issue of missed
readings which are commonly experienced with electronic
tagging. This has an important and positive implications for
those using RFID data in insect behavior modelling. Study in
the design of environmental sensor networks which involves
animal-borne instruments as mobile sensor nodes [40] could
also bene�t from this work.
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