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ON SEVERAL INEQUALITIES IN AN INNER PRODUCT SPACE

Silvestru Sever DRAGOMIR1 and Nicuşor MINCULETE2

Abstract

The aim of this arƟcle is to establish some idenƟty in an inner product space
and to prove new results related to several inequaliƟes in an inner product space.
Also, we obtain some applicaƟons of these equaliƟes and inequaliƟes.

2010 MathemaƟcs Subject ClassificaƟon: Primary 46C05; Secondary 26D15,
26D10
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1 IntroducƟon

Themany inequaliƟes in inner product spaces have important applicaƟons inMathe-
maƟcs in various fields, as: Linear Operators Theory, Nonlinear Analysis, ApproximaƟon
Theory, OpƟmizaƟon Theory, Geometry, Probability Theory, StaƟsƟcs and other fields.
An important inequality is the triangle inequality,

∥x+ y∥ ≤ ∥x∥+ ∥y∥ ,

for all x, y ∈ X , where X is a complex normed space. Several refinements of this
inequality can be find in [6] and [13].

Another inequality which plays the central role in an inner product space is the in-
equality of Cauchy-Schwarz [3], namely:

|⟨x, y⟩| ≤ ∥x∥ ∥y∥ ,

for all x, y ∈ X , whereX is a complex inner product space.
A proof of the Cauchy-Schwarz inequality is given by Aldaz in [1]. Dragomir [5,8]

studied the Cauchy-Schwarz inequality in the complex case. Many other proofs in the
real case and in the complex case can be found in [2],[6], [7] and [12], [15]. Several
improvements of this inequality can be found in [6] and [18].
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2Transilvania University of Braşov, Department of MathemaƟcs and InformaƟcs Iuliu Maniu Street no.
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Weobtained some reverses of the Cauchy-Schwarz inequality from [6], [13], [14] and
[19].

Clarkson [4] gives the noƟon the angular distance α [x, y] between nonzero vectors
x and y in X , by α [x, y] =

∥∥∥ x
∥x∥ − y

∥y∥

∥∥∥. A simple norm inequality related to α [x, y]

can be seen in [9]. The Cauchy-Schwarz inequality can be deducted from the following
equality, as in Aldaz [1] and Niculescu [17], in terms of the angular distance between two
vectors, thus

⟨x, y⟩ = ∥x∥ ∥y∥

(
1− 1

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2
)
,

for all x, y ∈ X , x, y ̸= 0. Kirk and Smiley in [12] gave another characterizaƟon of
inner product spaces by the angular distance between two vectors and improved a result
from [14].

In [10], Ilišević and Varošaneć showed the Cauchy-Schwarz inequality and its reverse
in semi-inner product C∗−modules.

The Schwarz, triangle, Bessel, Gram and most recently, Grüss type inequaliƟes have
been frequently used as powerful tools in obtaining bounds or esƟmaƟng the errors for
various approximaƟon formulae [7].

2 Main results

In this secƟon of the arƟclewe obtain several results related to the idenƟƟes for com-
plex inner product spaces, and thus we obtain a proof of the Cauchy-Schwarz inequality
in the complex case.

LetX be an inner product space over the field of real numbersRor complex numbers
C. The inner product ⟨·, ·⟩ induces an associated norm, given by ∥x∥ =

√
< x, x >, for

all x ∈ X , thusX is a normed vector space.
Theorem 1. In an inner product space X over the field of complex numbers C, we

have

1

∥y∥2
⟨αy − x, x− βy⟩ =

(
α− ⟨x, y⟩

∥y∥2

)(
⟨x, y⟩
∥y∥2

− β

)
− 1

∥y∥2

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 , (1)

for all x, y ∈ X , y ̸= 0, and for every α, β ∈ C.

Proof. Using the axioms: conjugate symmetry, ⟨x, y⟩ = ⟨y, x⟩, and linearity in the first
argument, ⟨αx, y⟩ = α ⟨x, y⟩, ⟨x+ y, z⟩ = ⟨x, z⟩+⟨y, z⟩, we obtain ⟨x, βy⟩ = β ⟨x, y⟩,
and

1

∥y∥2
⟨αy − x, x− βy⟩ = α

⟨x, y⟩
∥y∥2

+ β
⟨x, y⟩
∥y∥2

− αβ − ∥x∥2

∥y∥2
=(

α− ⟨x, y⟩
∥y∥2

)(
⟨x, y⟩
∥y∥2

− β

)
− 1

∥y∥2

(
∥x∥2 − |⟨x, y⟩|2

∥y∥2

)
.
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But, it is easy to see that
∥∥∥x− ⟨x,y⟩

∥y∥2 y
∥∥∥2 = ∥x∥2 − |⟨x,y⟩|2

∥y∥2 . Therefore, we obtain the
relaƟon of the statement.

Corollary 1. In an inner product spaceX over the field of real numbers R, we have

1

∥y∥2
⟨αy − x, x− βy⟩ =

(
α− ⟨x, y⟩

∥y∥2

)(
⟨x, y⟩
∥y∥2

− β

)
− 1

∥y∥2

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 , (2)

for all x, y ∈ X , y ̸= 0, and for every α, β ∈ R.

Proof. Since ⟨x, y⟩ = ⟨x, y⟩ and β = β, we apply Theorem 1 and we deduce equality
(2).

Corollary 2. Let E3 be the Euclidean punctual space. Then

1

∥y∥2
⟨αy − x, x− βy⟩ =

(
α− ⟨x, y⟩

∥y∥2

)(
⟨x, y⟩
∥y∥2

− β

)
− 1

∥y∥4
∥x× y∥2 , (3)

for all x, y ∈ E3, y ̸= 0, and for every α, β ∈ R.

Proof. In relaƟon (2), we use the relaƟon∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 = ∥x∥2 − |⟨x, y⟩|2

∥y∥2
=

1

∥y∥2
(
∥x∥2 ∥y∥2 − ⟨x, y⟩2

)
and the Lagrange idenƟty, ∥x∥2 ∥y∥2 − ⟨x, y⟩2 = ∥x× y∥2, and we obtain the rela-

Ɵon of the statement.

Corollary 3. In an inner product space X over the field of complex numbers C, we
have

∥x− αy∥2 =
∣∣∣∣α ∥y∥ − ⟨x, y⟩

∥y∥

∣∣∣∣2 + ∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 , (4)

for all x, y ∈ X , y ̸= 0, and for every α ∈ C.

Proof. We apply Theorem 1 for α = β, and we deduce

1

∥y∥2
∥x− αy∥2 =

∣∣∣∣α− ⟨x, y⟩
∥y∥2

∣∣∣∣2 + 1

∥y∥2

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 .
Consequently, we deduce the statement.

Remark 1. It is easy to see that

inf
α∈C

∥x− αy∥ =

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥ =

√
∥x∥2 − |⟨x, y⟩|2

∥y∥2
.
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Corollary 4. In an inner product space X over the field of complex numbers C, we
have

∥x− αy∥ ≥
∥∥∥∥x− ⟨x, y⟩

∥y∥2
y

∥∥∥∥ , (5)

and

∥x− αy∥ ≥
∣∣∣∣α ∥y∥ − ⟨x, y⟩

∥y∥

∣∣∣∣ , (6)

for all x, y ∈ X , y ̸= 0, and for every α ∈ C.

Proof. Using relaƟon (4) and that
∣∣∣α− ⟨x,y⟩

∥y∥2

∣∣∣2 ≥ 0 and 1
∥y∥2

∥∥∥x− ⟨x,y⟩
∥y∥2 y

∥∥∥2 ≥ 0, we
obtain the relaƟons of the statement.

Remark 2. From relaƟon (6), for α = 0, we obtain the inequality of Cauchy-Schwarz:
∥x∥ ∥y∥ ≥ |⟨x, y⟩|.

Corollary 5. In an inner product space X over the field of complex numbers C, we
have

∥x∥2 ∥y∥2 = |⟨x, y⟩|2 +
∥∥∥∥∥y∥x− ⟨x, y⟩

∥y∥
y

∥∥∥∥2 , (7)

∥x∥2 ∥y∥2
∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 = |∥x∥ ∥y∥ − ⟨x, y⟩|2 + ∥x∥2 ∥y∥2 − |⟨x, y⟩|2 , (8)

for all x, y ∈ X , y ̸= 0, and

Re ⟨x, y⟩ = 1

2

(
∥x∥2 + ∥y∥2 − ∥x− y∥2

)
, (9)

Im ⟨x, y⟩ = 1

2

(
∥x∥2 + ∥y∥2 − ∥x− iy∥2

)
, (10)

for all x, y ∈ X .

Proof. From relaƟon (4), for α = 0, we obtain relaƟon (7).
From relaƟon (4), for α = ∥x∥

∥y∥ , we obtain

∥x ∥y∥ − ∥x∥ y∥2 = |∥x∥ ∥y∥ − ⟨x, y⟩|2 +
∥∥∥∥∥y∥x− ⟨x, y⟩

∥y∥
y

∥∥∥∥2 ,
which is equivalent to

∥x∥2 ∥y∥2
∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 = |∥x∥ ∥y∥ − ⟨x, y⟩|2 +
∥∥∥∥∥y∥x− ⟨x, y⟩

∥y∥
y

∥∥∥∥2 .
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But, we have the equality
∥∥∥∥y∥x− ⟨x,y⟩

∥y∥ y
∥∥∥2 = ∥x∥2 ∥y∥2−|⟨x, y⟩|2. Therefore, we

deduce the equality of the statement.
For y = 0, equality (9) is true. In the case y ̸= 0, from relaƟon (4), for α = 1, we

obtain

∥x− y∥2 =

∣∣∣∣∥y∥ − ⟨x, y⟩
∥y∥

∣∣∣∣2 + ∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 =
=

(
∥y∥ − Re ⟨x, y⟩

∥y∥

)2

+
Im2 ⟨x, y⟩

∥y∥2
+

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 .
But, we have

Im2 ⟨x, y⟩
∥y∥2

+

(
∥y∥ − Re ⟨x, y⟩

∥y∥

)2

=
Im2 ⟨x, y⟩

∥y∥2
+ ∥y∥2 − 2Re ⟨x, y⟩+ Re2 ⟨x, y⟩

∥y∥2
=

∥y∥2 − 2Re ⟨x, y⟩+ Re2 ⟨x, y⟩+ Im2 ⟨x, y⟩
∥y∥2

= ∥y∥2 − 2Re ⟨x, y⟩+ |⟨x, y⟩|2

∥y∥2
,

and
∥∥∥x− ⟨x,y⟩

∥y∥2 y
∥∥∥2 = ∥x∥2 − |⟨x,y⟩|2

∥y∥2 . It follows that ∥x− y∥2 = ∥x∥2 + ∥y∥2 −
2Re ⟨x, y⟩, which prove relaƟon (9).

For y = 0, equality (10) is true. Now, for y ̸= 0, using relaƟon (4), for α = i, we
obtain

∥x− iy∥2 =

∣∣∣∣i ∥y∥ − ⟨x, y⟩
∥y∥

∣∣∣∣2 + ∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 =
Re2 ⟨x, y⟩

∥y∥2
+

(
∥y∥ − Im ⟨x, y⟩

∥y∥

)2

+

∥∥∥∥x− ⟨x, y⟩
∥y∥2

y

∥∥∥∥2 .
Similarly as above, we have

Re2 ⟨x, y⟩
∥y∥2

+

(
∥y∥ − Im ⟨x, y⟩

∥y∥

)2

=
Re2 ⟨x, y⟩

∥y∥2
+ ∥y∥2 − 2Im ⟨x, y⟩+ Im2 ⟨x, y⟩

∥y∥2
=

= ∥y∥2 − 2Im ⟨x, y⟩+ Re2 ⟨x, y⟩+ Im2 ⟨x, y⟩
∥y∥2

= ∥y∥2 − 2Im ⟨x, y⟩+ |⟨x, y⟩|2

∥y∥2
,

and
∥∥∥x− ⟨x,y⟩

∥y∥2 y
∥∥∥2 = ∥x∥2 − |⟨x,y⟩|2

∥y∥2 . It follows that ∥x− iy∥2 = ∥x∥2 + ∥y∥2 −
2Im ⟨x, y⟩, which implies relaƟon (10).

Remark 3. From relaƟon (8) applied in an inner product space X over the field of
real numbers R, this becomes
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1

2
∥x∥ ∥y∥

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2 = ∥x∥ ∥y∥ − ⟨x, y⟩ , (11)

for all x, y ∈ X,x, y ̸= 0. This implies the idenƟty given in [1].
Remark 4. In relaƟons (9) and (10), wemake the subsƟtuƟons x −→ x

∥x∥ , y −→ y
∥y∥ ,

and, we deduce the relaƟons, given by Aldaz in [1]:

Re ⟨x, y⟩ = ∥x∥ ∥y∥

(
1− 1

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2
)
, (12)

Im ⟨x, y⟩ = ∥x∥ ∥y∥

(
1− 1

2

∥∥∥∥ x

∥x∥
− iy

∥y∥

∥∥∥∥2
)
, (13)

for all non-zero vectors x, y ∈ X .
Remark 5. Adding equaliƟes (9) and (10), andusing theparallelogram idenƟty, ∥x+ y∥2+

∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
, we deduce

2 (Re ⟨x, y⟩+ Im ⟨x, y⟩) = ∥x+ y∥2 − ∥x− iy∥2 , (14)

for all x, y ∈ X .
Finally, we present several applicaƟons of these idenƟƟes and inequaliƟes.
Theorem 2. In an inner product space X over the field of complex numbers C, we

have

∥x− ⟨x, e⟩ e∥2 = (α− ⟨x, e⟩)
(
⟨x, e⟩ − β

)
− ⟨αe− x, x− βe⟩ , (15)

for all x, e ∈ X , ∥e∥ = 1, and for every α, β ∈ C.

Proof. If we take y = e, with ∥e∥ = 1, then (1), becomes

⟨αe− x, x− βe⟩ = (α− ⟨x, e⟩)
(
⟨x, e⟩ − β

)
− ∥x− ⟨x, e⟩ e∥2 ,

which implies the statement.

If we takeRe in relaƟon (15), we get the well known idenƟty:

∥x∥2 − |⟨x, e⟩|2 = ∥x− ⟨x, e⟩ e∥2 = (16)

= Re
[
(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)]
− Re [⟨αe− x, x− βe⟩] ,

which was used to prove various Grüss type inequaliƟes (see [6]).
Remark 6. From a different perspecƟve, if we take the modulus in relaƟon (15), we

have

∥x− ⟨x, e⟩ e∥2 =
∣∣∣(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)
− ⟨αe− x, x− βe⟩

∣∣∣ ≥∣∣∣(α− ⟨x, e⟩)
(
⟨x, e⟩ − β

)∣∣∣− |⟨αe− x, x− βe⟩| ,
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which implies that

∥x− ⟨x, e⟩ e∥2 + |⟨αe− x, x− βe⟩| ≥
∣∣∣(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)∣∣∣ , (17)

or

∥x− ⟨x, e⟩ e∥2 +
∣∣∣(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)∣∣∣ ≥ |⟨αe− x, x− βe⟩| . (18)

Theorem 3. In an inner product space X over the field of complex numbers C, we
have

∥x∥2 − |⟨x, e⟩|2 ≤ 1

4
|α− β|2 +

∥∥∥∥x− α+ β

2
e

∥∥∥∥2 . (19)

for all x, e ∈ X , ∥e∥ = 1, and for every α, β ∈ C.

Proof. From (16) we also get

∥x∥2 − |⟨x, e⟩|2 = Re
[
(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)]
+ Re [⟨αe− x, βe− x⟩] . (20)

But

Re
(
ab̄
)
≤ 1

4
|a+ b|2 , for any a, b ∈ C,

and

Re ⟨u, v⟩ ≤ 1

4
∥u+ v∥2 , for any u, v ∈ X.

So, we obtain

Re
[
(α− ⟨x, e⟩)

(
⟨x, e⟩ − β

)]
≤ 1

4
|α− β|2 (21)

and

Re [⟨αe− x, βe− x⟩] ≤ 1

4
∥αe+ βe− 2x∥2 =

∥∥∥∥α+ β

2
e− x

∥∥∥∥2 . (22)

Taking into account relaƟons (20), (21) and (22), we get the relaƟon of the statement.

Remark 7. Inequality (19) is of interest since if we take,∥∥∥∥x− α+ β

2
e

∥∥∥∥ ≤ δ,

then we have the reverse inequality for Cauchy-Schwarz’s inequality

∥x∥2 − |⟨x, e⟩|2 ≤ 1

4
|α− β|2 + δ2.
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Theorem 4. In an inner product space X over the field of complex numbers C, we
have

|⟨x, y⟩ − ⟨x, e⟩ ⟨e, y⟩| ≤ (23)(
1

4
|α− β|2 +

∥∥∥∥x− α+ β

2
e

∥∥∥∥2
)1/2(

1

4
|λ− µ|2 +

∥∥∥∥y − λ+ µ

2
e

∥∥∥∥2
)1/2

.

for all x, y, e ∈ X , ∥e∥ = 1, and for every α, β, λ, µ ∈ C.

Proof. It is well known [6] that for all x, y ∈ X , and e ∈ X , ∥e∥ = 1 we have

|⟨x, y⟩ − ⟨x, e⟩ ⟨e, y⟩| ≤
(
∥x∥2 − |⟨x, e⟩|2

)1/2 (
∥y∥2 − |⟨y, e⟩|2

)1/2
. (24)

Combining inequality (24) with inequality (19), we deduce inequality (23).

Remark 8. In parƟcular, x, y, e ∈ X , ∥e∥ = 1, and for every α, β, λ, µ ∈ C, if∥∥∥∥x− α+ β

2
e

∥∥∥∥ ≤ δ and
∥∥∥∥y − λ+ µ

2
e

∥∥∥∥ ≤ ε,

with δ, ε > 0, then we have the Grüss type inequality

|⟨x, y⟩ − ⟨x, e⟩ ⟨e, y⟩| ≤
(
1

4
|α− β|2 + δ2

)1/2(1

4
|λ− µ|2 + ε2

)1/2

. (25)

3 ApplicaƟons

1. If
∥∥∥ x
∥x∥ − y

∥y∥

∥∥∥ =
√
2 and using relaƟon (12),

Re ⟨x, y⟩ = ∥x∥ ∥y∥

(
1− 1

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥2
)
,

which is equivalent to

Re ⟨x, y⟩ = ∥x∥ ∥y∥
(
1− 1√

2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥)(1 + 1√
2

∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥) ,

then we deduce Re ⟨x, y⟩ = 0, and if
∥∥∥ x
∥x∥ − y

∥y∥

∥∥∥ ≤
√
2, then Re ⟨x, y⟩ ≥ 0 and∥∥∥∥ x

∥x∥
− y

∥y∥

∥∥∥∥ ≥
√
2

(
1− Re ⟨x, y⟩

∥x∥ ∥y∥

)
. (26)

2. We present some applicaƟons of the above theorems to Sn numbers. Recall that
if (X; ⟨·, ·⟩) is a inner product space and {e1, e2, ..., en} is an orthonormal system of
vectors ofX , then for any vectors x, y ∈ X , we define as in [6, 11]:
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Sn (x, y) = ⟨x, y⟩ −
n∑

k=1

⟨x, ek⟩ ⟨ek, y⟩ .

KechrinioƟs andDelibasis [11] gave a generalizaƟon of Grüss inequality in inner prod-
uct spaces.

For all x, y ∈ X, and for every α, β, λ, µ ∈ C, if∥∥∥∥x− α+ β

2
ek

∥∥∥∥ ≤ δ and
∥∥∥∥λ− λ+ µ

2
ek

∥∥∥∥ ≤ ε, k = 1, n

with δ, ε > 0, then from relaƟon (25), we have the Grüss type inequality

|⟨x, y⟩ − ⟨x, ek⟩ ⟨ek, y⟩| ≤
(
1

4
|α− β|2 + δ2

)1/2(1

4
|λ− µ|2 + ε2

)1/2

.

But, we see that

Sn (x, y)− (n− 1) ⟨x, y⟩ =
n∑

k=1

(⟨x, y⟩ − ⟨x, ek⟩ ⟨ek, y⟩) ,

which implies

|Sn (x, y)− (n− 1) ⟨x, y⟩| ≤
n∑

k=1

|⟨x, y⟩ − ⟨x, ek⟩ ⟨ek, y⟩| ≤

n

(
1

4
|α− β|2 + δ2

)1/2(1

4
|λ− µ|2 + ε2

)1/2

.

Therefore, we obtain

|Sn (x, y)− (n− 1) ⟨x, y⟩| ≤ n

(
1

4
|α− β|2 + δ2

)1/2(1

4
|λ− µ|2 + ε2

)1/2

. (27)

3. If we take the vectors x =
−−→
AB, y =

−→
AC in relaƟon (3), we obtain the following

inequality:

1∥∥∥−→AC∥∥∥2
⟨
α
−→
AC −

−−→
AB,

−−→
AB − β

−→
AC
⟩
=

=

α−

⟨−−→
AB,

−→
AC
⟩

∥∥∥−→AC∥∥∥2


⟨−−→
AB,

−→
AC
⟩

∥∥∥−→AC∥∥∥2 − β

− 1∥∥∥−→AC∥∥∥4
∥∥∥−−→AB ×

−→
AC
∥∥∥2 , (28)

which implies the relaƟon
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⟨
α
−→
AC −

−−→
AB,

−−→
AB − β

−→
AC
⟩
=

=
(
α
∥∥∥−→AC

∥∥∥− ∥∥∥−−→AB∥∥∥ cosA)(∥∥∥−−→AB∥∥∥ cosA− β
∥∥∥−→AC∥∥∥)− 4∆2∥∥∥−→AC∥∥∥2 , (29)

where∆ is the area of the triangle ABC.
If α = β, then equality (29) becomes∥∥∥−−→AB − α

−→
AC
∥∥∥2 = (∥∥∥−−→AB∥∥∥ cosA− α

∥∥∥−→AC∥∥∥)2 + 4∆2∥∥∥−→AC∥∥∥2 , (30)

For α = 1 in equality (30), we deduce∥∥∥−−→BC
∥∥∥2 = (∥∥∥−−→AB∥∥∥ cosA−

∥∥∥−→AC∥∥∥)2 + 4∆2∥∥∥−→AC∥∥∥2 , (31)

If we take
∥∥∥−−→AB∥∥∥ = c,

∥∥∥−→AC∥∥∥ = b,
∥∥∥−−→BC

∥∥∥ = a in relaƟon (31), we deduce

a2 = (c cosA− b)2 +
4∆2

b2
. (32)

Therefore, we use the cosine law, cosA= b2+c2−a2

2bc and we find the relaƟon

4a2b2 =
(
c2 − a2 − b2

)2
+ 16∆2. (33)

From relaƟon (33), we find two relaƟons for the area of the triangle ABC.
First, by squared, we deduce the following formula [16]:

16∆2 = 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4. (34)

Second, equality (33) can be wriƩen as 4a2b2 −
(
c2 − a2 − b2

)2
= 16∆2, which

means that
(
2ab− c2 + a2 + b2

) (
2ab+ c2 − a2 − b2

)
= 16∆2. It follows that(

(a+ b)2 − c2
)(

c2 − (a− b)2
)
= 16∆2, and if s is the semi-perimeter, then

∆ =
√

s (s− a) (s− b) (s− c), (35)

which is the well known Heron formula( see e.g. [13], p.54).
Equality (30) becomes, for α = −1, thus,∥∥∥−−→AB +

−→
AC
∥∥∥2 = (∥∥∥−−→AB∥∥∥ cosA+

∥∥∥−→AC∥∥∥)2 + 4∆2∥∥∥−→AC∥∥∥2 . (36)

If we take
∥∥∥−−→AB∥∥∥ = c,

∥∥∥−→AC∥∥∥ = b and ma, the length of the median from A, in
relaƟon (36), we obtain

4m2
a = (c cosA+ b)2 +

4∆2

b2
. (37)
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