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Abstract

Text mining is involved in a broad scope of applications in diverse domains that main-
ly, but not exclusively, serve political, commercial, medical and academic needs. Along
with the rapid development of the Internet technology in recent thirty years and the ad-
vent of online social media and network in a decade, text data is obliged to entail features
of online social data streams, for example, the explosive growth, the constantly changing
content and the huge volume. As a result, text mining is no longer merely oriented to
textual content itself, but requires consideration of surroundings and combining theories
and techniques of stream processing and social network analysis, which give birth to a
wide range of applications used for understanding thoughts spread over the world , such
as sentiment analysis, mass surveillance and market prediction.

Automatically discovering sequences of words that represent appropriate themes in
a collection of documents, topic detection closely associated with document clustering
and classification. These two tasks play integral roles in revealing deep insight into the
text content in the whole text mining framework. However, most existing detection tech-
niques cannot adapt to the dynamic social context. This shows bottlenecks of detecting
performance and deficiencies of topic models.

In this thesis, we take aim at text data stream, investigating novel techniques and
solutions for robust text mining to tackle arising challenges associated with the online
social context by incorporating methodologies of stream processing, topic detection and
document clustering and classification. In particular, we have advanced the state-of-the-
art by making the following contributions:

1. A Multi-Window based Ensemble Learning (MWEL) framework is proposed for
imbalanced streaming data that comprehensively improves the classification per-
formance. MWEL ensures that the ensemble classifier is maintained up to date and
adaptive to the evolving data distribution by applying a multi-window monitoring
mechanism and efficient updating strategy.

2. A semi-supervised learning method is proposed to detect latent topics from news
streams and the corresponding social context with a constraint propagation scheme
to adequately exploit the hidden geometrical structure as supervised information
in given data space. A collective learning algorithm is proposed to integrate the
textual content into the social context. A locally weighted scheme is afterwards
proposed to seek an improvement of the algorithm stability.

3. A Robust Hierarchical Ensemble (RHE) framework is introduced to enhance the
robustness of the topic model. It, on the one hand, reduces repercussions caused by
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outliers and noises, and on the other overcomes inherent defects of text data. RHE
adapts to the changing distribution of text stream by constructing a flexible docu-
ment hierarchy which can be dynamically adjusted. A discussion of how to extract
the most valuable social context is conducted with experiments for the purpose of
removing some noises from the surroundings and efficiency of the proposed.
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Chapter 1

Introduction

AS a conventional carrier of information and communication, the text has been the

most basic paradigm that combines the human understandable sequence of char-

acters, phrases, sentences or even paragraphs diffusing thoughts, ideas and knowledge,

while literacy is a milestone for individuals. The forms of text data are manifold, such

as news, emails, messages and Internet blogs that are surrounding peoples’ daily lives,

survey responses, marketing investigation and business reports that are covering social e-

conomics, and health records, medical prescriptions and diagnoses that are firmly bound

up with public health, which embody abundant natures of natural languages, local di-

alects, jargon and buzzwords, including the mixture of structured and unstructured data,

the inherent high-dimensionality, the high data volume and the context-sensitive seman-

tics expression.

Statistics of May 2018 from Forbes asserted that 90% of the data in the world was

generated during the last two years1 and will be expedited with the further growth of

Information and Communications Technology (ICT) industry and Internet of Thing (IoT).

Arose in the development of computing science, text mining assists us in obtaining useful

content and organising knowledge from information overload effectively, especially in

this era of information and big data, where the speed of data generation is predicted

as a factor of 10 from the year of 2013 to 2020, reaching 44 trillion gigabytes annually

and the quantum of digital universe will accumulate to 163 trillion gigabytes by 2015 2.

Among them, there is up to approximately 90% unstructured data which is not restricted

to pure text, including all formats of official files, text, pictures, XML, HTML, charts,

1https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/#12981b5460ba

2https://www.seagate.com/files/www-content/our-story/trends/files/
Seagate-WP-DataAge2025-March-2017.pdf

1

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/#12981b5460ba
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf
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images, audio and video files, that can be preprocessed and interpreted by text mining

techniques. In addition, the contents of this tremendous growth have been much more

than the volume growth itself, in which the scope of information spreading achieves a

higher level in both depth and breadth due to the ease of interaction improved by smart

devices over the past five years and further result in a highly complex social context over

the Internet. Therefore, the researches to text mining are nonetheless not just for problems

of textual content oriented but imperative for challenges of social context.

1.1 Background

In this section, we introduce the framework of text mining, followed by the discussion of

the background knowledge of online social network analysis and the challenges of text

mining in the social network context.
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Figure 1.1: An Example of Text mining framework and some confusing terms

1.1.1 Text mining

Text mining seeks to extract meaningful knowledge and associations for domain require-

ment from vast collections of the unstructured data, transferring them to structured data

for further usage, for example, the visualisation. It is roughly equivalent to the knowl-

edge discovery process in which users interact with a document collection and are pro-

vided expected information based on a certain step by step process and suitable data

mining techniques. Typically, text mining consists of the process of structuring and rep-

resenting input data, recognising patterns and mining knowledge from structured data,
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and evaluation and interpretation of rules and outcomes. A brief framework is depicted

in Fig. 1.1 including the following steps.

Information Retrial is the first step that uses locate targeted data that related to their

purposes and collect documents forming the input corpus. It can be manually proceed-

ed or automatically crawled from predefined information source with certain formats.

Fig. ?? gives two examples. Fig. 1.2a is an news example provided by dataset 20 News-

group, No.52726 including the subject, source and other meta information. Fig. 1.2b is an

example of tweets message that was collected by specifying user name and time period.

The record only includes lists of tweet id, time and hashtag message.

(a) An exmple of a news (b) An example of tweets collection

Preprocessing is an integral step to let the natural language understandable to com-

puters and mathematically computable. It always involves the following techniques:

• Segmentation is sometimes needed to identify paragraphs and sentences in a large

chunk of text.

• Tokenisation is the process of breaking long strings of text into small pieces of words,

excluding spaces, punctuation and special characters (&, #, %, $, etc.).

• Normalisation converts all letters into the same cases and removes punctuation. This

is necessary because the upper case and lower case of one letter have different codes

in the codding system.

• Stop word removal removes words that are meaningless for the evaluation of thse

document content, like ‘a’, ‘the’, ‘of’, etc. Stop words usually refer to most common

words in a language, for example, there is a fairly complete English Stop Word List

for English.

• Stemmin g and Lemmatization. Stemming removes tenses and suffix of a word, re-

ducing the words to their stems; while lemmatization identifies the base form of a
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word.

• Pruning discards terms either rarely appearing or too frequently because terms that

rarely appear in a document or terms that appear too frequently do not contribute

to identifying the topic of the document.

• Treating synonyms identifies two words or terms have the same meaning and if they

are synonyms we could replace them by one of them without taking the semantic

meaning of the word.

Text Representation encodes documents into a proper representation with language

models according to different application requirements, for example, bag of words mod-

el, n-gram model, word embedding model.

Feature Selection simplify the model with selecting a subset of relevant features that

not only save the time and space complexity of following mining algorithms, but also

always enhance the outcomes by reducing variance and overfitting.

Mining Operations This is the kernel stage where we apply algorithms on specific

application tasks to discover knowledge. Algorithms involved herein are from fields

including data mining, machine learning and even artificial intelligence. Tasks involved

in a broad scope of applications in diverse domains that mainly, but not exclusively, serve

to political, commercial, medical and academic needs. Regarding academic study, we list

the following tasks that have received considerable attention recently:

• Document clustering and classification algorithms automatically identify the types of

documents and categorize them into different groups with the minimum error so

that documents within a group highly similar comparing with others in different

groups, in which classification process is the supervised learning, assigning a docu-

ment to the correct class that has been learned with a training set, while clustering is

more likely the unsupervised learning that there is no clue and priori knowledge at

all before the corpus arrive. It is a fundamental technique that widely used in web

document searching, recommendation system, customer feedback analysis, etc.

• Topic detection algorithms monitor the given corpus and reveal latent topics that

documents tell with certain sequences of words. It dramatically reduces the labour

workload of identifying the relevant text files and summarising the central themes.

As an underneath knowledge discovery technique, it has become a major concern
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of academic research focuses. Besides being applied in research articles, news and

other traditional text files, topic detection has far more application scenarios, such

as auxiliary diagnosis and clinical decision in the medical system and trend anal-

ysis in the online social network. Also, topic detection is inextricably bound up

with document clustering and classification, in which the latent topics always cor-

respond to the boundaries of documents’ groups.

• Community detection algorithms studies the organisation structure of the network

that generate the text data. It is more relevant to graph theory that identifies rela-

tionships among groups of vertices and edges. In the range of text mining, com-

munity detection was introduced to obtain cooperation network through co-author

relationship in vast amounts of research papers. Recently, it is also widely used in

the areas of biology, social network analysis and the Web [122] where more atten-

tions are not content to discover the underlying mechanism of such systems, but

intend to involve in further knowledge mining process. For example, inquiring

about the association between emerging topics and grouping communities in the

online social network.

• Sentiment analysis algorithms discern authors’ attitude and standpoint between the

lines, for example, how enjoyable a reviewer is to watch the movie and how does a

custom satisfy the provided service. Intuitively, human feelings with respect to one

entity are complicated more than ‘yes’ or ‘no’ and more than one entities may be

mentioned together for comparison and demonstration. Therefore, it can be applied

to the data at different levels and views, including document-level, sentence-level,

aspect-based and comparative sentiment analysis [56]. In both academic and indus-

try community, it is an attractive research area with extensive application prospect,

ranging from custom feedback understanding to public opinion spreading predic-

tion, especially with the advent of the Internet and smart devices.

• Protein interactions and Gene-disease associations are two typical tasks of biomedical

text mining. Protein interactions algorithms identify associations of proteins a-

mong protein complexes, a production of protein-protein interactions, and protein-

protein interactions, which can help people with comprehension of diseases and

pharmaceutical research [9,123]. Gene-disease association benchmarks were devel-
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oped to cope with the gene prioritization problem recognising major gene linked to

genetic diseases [187].

Outcome Analysis and Visualisation. Last, sometimes there are requirements of sim-

ple, straight and declarative presentation of mining outcome as meaningful conclusions

and charts, such as the annual report and the decision-making process. For this purpose,

tools for further analysis and visualisation such as statistic software and link discovery

tool can be used.

This thesis mainly focuses on theories and techniques of two closely related tasks,

document clustering and classification and topic detection.

So far, we know that text mining is a broad concept of operations that involves series

techniques in steps, but for us, some concepts that are shown in Fig. 1.1 can be confusing

due to the sort of overlaps between the goals and research objects. Here, we differentiate

them from their intersection with text mining.

• Information Retrieval (IR) finds and presents information that relevant to user’s need

with a specific context, for example answering an input query. It is a hybrid area

using machine learning, text mining and natural language processing techniques.

In web searching, IR cares more about information interaction through web search

engines which is not only text though it is text most of the time.

• Nature Language Processing (NLP) eyes on human-computer interaction, processing

natural language and generating human understandable text. It has a more concen-

trated focus on improving computer’s human linguistic recognition and organisa-

tion capabilities so that automatically NLP system can be provided to users struc-

turing their unstructured input for further intentions, such as being retrieved and

being analysed.

• Data Mining (DM) is an umbrella term for techniques that reveal relations and pat-

terns from structured data, for example, tables with columns and rows, that can be

used for a variety of purposes. Data Structure is the essential difference between

data mining and text mining. Therefore, the mining operations of text mining in-

volve data mining algorithms and ideas to a great extent.

• Machine Learning is a kind of specific algorithms that can be implemented with com-

puter programs to solve different formalised problems for many domains. It em-
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bodies the solution depending on the context of other fields, including data mining

and artificial intelligence.

• Artificial Intelligence (AI) aims to build cognitive machine or system that can auto-

matically assist human activities. It is somehow the ultimate goal for all developing

research and techniques. But fundamental techniques for AI are also techniques de-

veloped for the above tasks.c

• Statistics and Visualisation generate charts, graphs or diagrams to better demonstrate

the result for users. Typically, they are intuitive analysis rather than hidden knowl-

edge mining.

1.1.2 Online Social Network

The advent of the online social network is a product of the mutuality of ICT, smart de-

vices and human natural social network that broaden horizons of Social Network Analy-

sis (SNA) in sociology and anthropology. Online social network is a social structure that

constructed by three factors of the Internet, where the subject is network individuals,

the object is network information and the carrier is network relations. Network indi-

viduals include entities, such as individual users, organisations, and groups, and virtual

individual, like a username of a web use. Relationships between network individual-

s range from real friends, sharing ideas, sending and receive messages to advertising

cooperation. Online communities consisting of network individuals are subsets of the

whole network relations, in which nodes are closely associated with each other in the

inner community while there is lack connection between nodes from different communi-

ties. Based on various interactions of network nodes, the network information is spread

across the network relations, which in turn affects network nodes’ further interpretation

reaction. Therefore, facilitated by ICT and smart devices, the social context that reflects

the content of human network is dramatically complicated by an invisible hand. Accord-

ing to “We Are Social” company’s recent statistics, there are 4.021 billion Internet users

and 3.196 billion social media users by 2018 which achieves high rates of growth at 7%

and 13% in the past 12 months3. Take the news consumption of social media in the US

as an example, Pew Research Centre reported that 68% adults are audiences of news on

3https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018

https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018
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Figure 1.2: Scientific problems in Social Network Analysis

social media, among which up to 70% are under the age of 504.

In general, there are following peculiarities of the online social network that are most

remarkable in comparison with the traditional social network:

• Convenience in accessing to information. What is provided by various smart devices

and social network services connected by the Internet is the ease of releasing and

receiving information from anywhere at any time.

• Extremely high speed and the wide range of information spreading. The information re-

leased from a network node will be spread exponentially that opens a way for social

network users to express themselves.

• Low cost of being an influencer. It is a great opportunity for a social network user to

be an influencer through activities in the online social network, playing a crucial

role as an opinion leader in the lifecycle of a network event, including emerging,

evolving and fading process.

• Grouping together as virtual community spontaneously. Online communities will e-

merge apace and spontaneously because of the reasons mentioned above.

SNA studies almost everything of network individuals, relations, information spread

among them and how their interactions work, in which there is a great demand for text

4http://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/

http://www.journalism.org/2018/09/10/news-use-across-social-media-platforms-2018/
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mining techniques in selecting and refining features from the network structure because

of the massively distributed unstructured data and human natural language. Though

extensive and in-depth discussion has been generated in the research and industry com-

munity, many open problems to solve. Fig. 1.2 illustrates research directions in terms of

the features of the above three factors of the online social network. Since SNA is not the

main concern of this thesis, we do not go into greater depth on the features and scientific

problems. Despite the requirement of text mining techniques for unstructured data, it

can be noticed that there are many overlaps between scientific problems in the two areas,

even at a superficial glance (roughly marked with red dashed box).

As text mining to SNA, the landscape of text mining has become increasingly broad

with influences of the vast online network and the constantly changing data universe.

Fig. 1.3 illustrates an example framework of test mining in association with the related

social context. As a result, text mining techniques are no longer merely oriented to textual

content itself but requires considering challenges posed by the social context, which we

summarise in the following.

1.1.3 Challenges of Text Mining in Social Network Context

1. Challenges in the vast dynamic data universe

The huge volume issue has been emphasised in recent years which seriously impact

on the traditional data collecting and processing method. A consensus is achieved

that the store-and-process model is no longer suitable for processing such a huge

volume of changing data due to the limitation of storage capacity, that means an in-

memory computing and abandoning mode, named as stream processing, is widely

adopted. However, the existing approaches of information retrieval and mining

for the targeted data cannot satisfy the demand of following this dynamic data

processing mode well since most of them rely on the massive data storage to dis-

cover insightful knowledge what we refer to as data concept or distribution. There-

fore, though it is impossible to implement the complete computing and abandoning

mode, efficient processing and mining methods capable of dealing quickly chang-

ing concept on real-time social network data stream is needed. The second chal-

lenge is to appropriately segment data stream to achieve performance enhancing
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Figure 1.3: Text mining framework in social network context

for further mining operations. It is also hard to tune the update frequency for a

particular tracking query without any empirical input. Nevertheless, the empirical

knowledge needs long-term observation. A novel adaptive learning mechanism

to track fluctuating data distribution is required for content evolving monitoring.

Last but not least, it is challenging to represent and make use of the tracked traces of

content evolving in the further mining tasks rather than just simply visualise them

for th demonstration.

2. Challenges in combining textual content with the social network context

Existing text mining techniques have been developed over the years around the
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content of unstructured data, text in particular. However, relations between people

hidden in the online social network will also provide auxiliary information that is

helpful for revealing the truth more precisely. Then the question has drawn much

attention that how to leverage the surrounding social information of the target-

ed text data. For example, absorbing surrounding information to improve the ac-

curacy of topic detection in social media is an emerging direction to improve the

traditional topic model. Challenges here are not only lie in the huge volume and

complicated structure of the online social network that highly related to challenges

mentioned above, but also in some fundamental problems, such as how to formu-

late the context of social network, including the network individuals and relations,

how to effectively select the most valuable network subset representing the real-

ly needed context and how to formalise the connection between the text data and

corresponding social context. Furthermore, how to keep the form consistency of

representation of social context is also a challenge for the auxiliary information ob-

tained from the online social network.

3. Challenges in achieving robust performance

When talking about the system reliability, the more data source we access to, the

more varied, uncertain and unbalanced data will be involved for processing. The

first challenge is to reduce repercussions of noises and outliers issue that may be

aggravated by introducing auxiliary information. Noises and outliers may cause

serious bias and errors which are bottlenecks of the existing mining methods. The

second challenge is to overcome mutual interference of dynamic data in a specific

time period and part of the network structure that will confuse boundaries of tex-

t content. The dynamic data is not merely the textual data, but also the relevant

data of social context. Therefore, text mining combining with social context has

a surging demand for a robust mechanism. Moreover, from the stream process-

ing view, the fluctuating distribution of data stream also requires a performance-

oriented method with minimised space and time consumption.

4. Other challenges

A diverse multilingual environment is formed through the Internet, connecting
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people from anywhere in the world in convenient and efficient ways, where mul-

tiple languages, local dialects, jargon, buzzwords and even emoticons are fused

together that poses unprecedented challenges to the preprocessing and represen-

tation step of text data. Each language has its unique cultural connotation and

melody but it is hardly telling by computers. The most commonly employed lan-

guage models so far are words based models, such as bag of words model and word

embedding model, which directly correlate to the model’s capability of processing

a particular language. That is to say, an auto multilingual text mining framework

is needed. Take the online media as an example, the auto multilingual text mining

framework not only applies to detecting news contents, but to analysing opinions

and comments of readers as well. For the moment, this problem also can be dis-

cussed with challenges in taking advantage of language-neutral network structure.

In addition, follow-up challenge of sentiment analysis across multilingual environ-

ment and putting intertwined communication in order will come.

1.2 Research Motivations and Problems

This thesis concerns the robust text mining in the online social network context, mainly

focusing on techniques of topic detection and algorithms of clustering and classification

with respect to above-mentioned first three challenges. The research problems of this

thesis are summarised from the following aspects:

1. How to identify the changing distribution in the data stream and maintain an

up-to-date classifier for imbalanced data stream?

Both imbalanced data and streaming data with changing concept are pervasively

distributed and appear together in various real applications; however, most exist-

ing studies still focused on either the former or the later, because it is hard to detect

and react to imbalanced distribution in a time-critical continuous data stream with

a space and time efficient method. For the task of classification on an imbalanced

data stream, an effective monitoring mechanism of changing distribution in streams

is needed to arrange with proper updating scheme for the classifier.
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2. How to combine existing text content representation with the corresponding so-

cial context in network individual level to boost the topic detection performance?

When giving a document released at a particular time step, the following reactions

around this document on a social network service platform, for example, readers,

communities, comments, time and area, reposts and mentions, etc. on Twitter can

be collected, which we named as the corresponding social context. There are many

ways to represent the social context from different levels and aspects. In this work,

we concentrate on the individual level of the social context, aiming to find a proper

combination between the input corpus and the corresponding social context for

topic detection task.

3. How to extract the inherent geometric structure from the data distribution and

maximise the effect?

Apart from the word features of a corpus, the interrelations among data points

which are often unspectacular and with little causal relations hiding in the geo-

metric structure of the data space also helps to distinguish semantic structure [24].

They usually are not apparent in high-dimensional textual data, as well as the cor-

responding network context. Additionally, most of them are so weak that hardly

be observed and leveraged. Therefore, inherent geometric structure mining and

enhancing scheme is required.

4. How to adaptively detect robust correct topics and implement meaningful docu-

ment clustering simultaneously?

Since the outlier and noises always cause various negative influences to mining

tasks, ranging from the low accuracy of clustering results to high information en-

tropy of topic detection result, especially on high-dimensional dynamic data space,

including our targeted text content and social context, improving the robustness

of model has been the central concern. Moreover, most existing studies assume a

pre-defined constant k as the specific number of latent concepts to guide the topic

detection and document clustering, which is incompatible with the quickly evolv-

ing and changing scenario of topics in the present social context. Thus, an adaptive

and robust topic detection method is required. As being closely associated with the
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topic detection, we will also discuss the accompanied document clustering at the

same time.

1.3 Thesis Contributions

The key contributions of this thesis against the problems mentioned above are listed in

this section.

1. A Multi-Window based Ensemble Learning (MWEL) framework for imbalanced

streaming data which comprehensively improves the classification performance:

• A multi-window monitoring mechanism that maintains four windows for the

current batch of instances, latest positive instances, sub-classifiers of the en-

semble classifier and instances employed to train existing sub-classifiers, re-

spectively.

• An effective updating strategies for weights corresponding to existing sub-

classifiers that keep the ensemble classifier being adaptive to the evolving data

distribution.

• An efficient updating strategies for sub-classifiers to guarantee the ensemble

classifier up-to-date when a change of data concept is detected and renewal is

necessary.

• An impartial re-sampling mechanism for both positive and negative instances

that generate new training set with an ideal imbalance ratio for updating sub-

classifiers.

2. A semi-supervised collective learning method for topic detection combining the

text content of the input corpus with the corresponding social context:

• A constraint propagation scheme that adequately exploits and enhance the

hidden geometrical structure, which is naturally very sparse and weak, in the

given data space.

• A user preference representation on the individual-level that formulate the

social context surrounding the input corpus.
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• A collective non-negative matrix factorization based topic model to combine

two parts of the corpus, the textual content and the social context, of the input

corpus as a whole.

• A locally weighted scheme to better approximate certain parts of the data ma-

trix in each iteration.

3. A Robust Hierarchical Ensemble (RHE) framework for topic detection via docu-

ment hierarchy in text corpus and the corresponding social context with severe

outliers and noise issue:

• A robust multiplicative updating rule based non-negative matrix factoriza-

tion algorithm for document clustering in which an orthonormal constraint

is added on the output cluster indicator matrix so that detected topics can be

generated at the same time.

• A top-down hierarchical algorithm to flexibly cluster documents that adapt

to the changing distribution of the input corpus and reduce the dependence,

achieving a logical and specific interpretation for clusters of the output.

• A hierarchy design includes the candidature selection policy, the pruning s-

trategy, the verification of outliers and two practical stopping criteria, which

also facilitate the robustness of the ensemble framework.

• A comparative analysis in the objective function level is conducted for the seri-

ous outliers and noise issue in complicated social context and high-dimensional

text data.

• A discussion on subset selection of network individuals that represents the

really valuable social context for the purpose of removing some noises from

the surroundings and efficiency of the proposed.

1.4 Thesis Structure

The organisation of this thesis is shown in Fig. 1.4. Chapter 2 provides introduction for

fundamental text mining techniques and review some typical research of topic model

and document clustering and classification. The literature reflecting the influence of the
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Figure 1.4: The organisation of the thesis

social network services will also be referred to. Chapter 3 presents a multi-window based

ensemble learning (MWEL) framework for imbalanced streaming data. Chapter 4 pro-

poses a semi-supervised collective learning method for topic detection combining the

text content of the input corpus with the corresponding social context. Chapter 5 propos-

es a robust hierarchical ensemble framework for topic detection via document hierarchy

in text corpus and the corresponding social context with serious outliers and noise issue.

Chapter 6 concludes this thesis followed by a discussion of future directions.



Chapter 2

Literature Review

Text mining tasks extract meaningful knowledge and associations for domain requirement from

vast collections of the unstructured data, mainly is natural language text. Before and after the advent

of ICT and IoT, many efforts have been made to achieve better automatically understanding and adap-

tively learning from the complicated and irregular unstructured data patterns. In this chapter, we first

introduce the key assumptions and the common thought of the text representation. Although many

primary techniques and tasks have been mentioned in Subsection 1.1.1, we concentrate on the litera-

ture of state-of-the-art topic detection and document clustering and classification methods which are

directly relevant to the target of this thesis, rather than review all of them here. To better understand

these methods, we will briefly introduce the VSM-based text representation and language models that

are widely adopted throughout the real applications as a preliminary. The literature reflecting the

influence of the social network services will also be referred to.

2.1 Introduction

Text mining is a content-oriented process of comprehending people’s communication.

Therefore, two crucial factors determine the scope of text mining, which are the semantic

space and the social relation. It should be clarified here that the social relation between

subjects of communication has always been there; however, what we emphasise across

the thesis is the online social context that can be regarded as an updated version of so-

cial relation promoted with the advancement of ICT, IoT and social network services.

Intuitive, formulating semantic features over the input corpus is an access point, which

results in a long period of development on Text Representation and Language Model.

The most typically used representation model for text document is the Vector Space

Model (VSM) [140], which in some simple case also referred to as Bag of Words (BoW).

The target of VSM is formulating a document d by a numerical vector so that the similar-

17
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ity between documents can be equivalent to the similarity between vectors, for example

d = [(t1, w1), (t2, w2), · · · , (tn, wn)], where ti is a term representing a semantic feature

and wi is the corresponding weight. The weight can be computed with the boolean value

(0-1), absolute word frequency, relative word frequency using Term Frequency-Inverse

Document Frequency(TF-IDF) or others, in which the TF-IDF is the most commonly used

technique. The model recognises a document as a collection by assuming that words are

independent of each other and ignoring the order and distance between words. And a

vital assumption established for TF-IDF is that The word that can better differentiate text

categories are those with large TF-IDF value in documents of this category but with a low

TF-IDF value in documents of other categories [196]. These natures lead to weaknesses of

VSM that the structural and semantic information of documents cannot be well expressed

[80]. Although many improved versions have been proposed based on the original VSM

to cope with the weaknesses, some attentions turn to an alternative for encompassing se-

mantic relations between words and utilising more meaningful weighted strategy in the

recent decade.

Graph-based text representation model extracts linguistic objects or entities as the ver-

tices of the graph and the semantic relations between objects as the edges forming mean-

ingful representative substructures. The linguistic objects are not only words, phrases,

sentences and paragraphs, but also semantic concepts. Chakravarthy et al. firstly pro-

posed two types of domain-independent graph representations, tree and star representa-

tion, in which domain knowledge is required to choose words and structure forming the

graph for a specific domain, for example, the email system [27]. Later on, the star rep-

resentation is employed commonly. Choudhary et al. adopted a Universal Networking

Language link method to represent sentences of a document with the homogenous rep-

resentation [36] that based on the assumption of “The more links to and from a universal

word, the more important the word is in a document”. Hensman afterwards proposed

conceptual graph representation methods which include two steps where semantic roles

are identified by using the verb lexicon VerbNet and the lexical database WordNet in the

first step followed by the second step of construction of conceptual graph with the roles

and some heuristic rules [68]. Besides the structure of the graph, efforts of this type of

model put forward a Degree Centrality (DEG) to replace the TF-IDF which determines
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the relative importance of a vertex by considering many aspects including the order, the

location and the frequency of a word [12]. Erkan et al. proposed a text summarisation

method LexRank to computing sentence importance in a document or a document col-

lection with the assessment of the Eigenvector Centrality (EVC) of each sentence [54].

EVC is calculated by the weighted sum of the EVCs of its neighbours with the idea that

“a central node is connected to other central nodes”. Furthermore, Betweenness Cen-

trality (BWC) which motivated by the assumption of “a node is important if it lies in

many shortest paths” [142] and Closeness Centrality (CLC) which measures the ability

of a vertex to quickly pass information through the graph as the inverse of the sum of

short distances between a vertex and all the neighbours [150] are introduced to weight

the vertices in the graph of linguistic objects. Although the graph-based text representa-

tion models are still very young, they have been applied in many tasks [40,61,65,153,164].

However, since the representation we employed in this thesis is based on VSM, we will

not go deeper into the graph-based text representation model in the following section of

this chapter.

Recently, an idea of social graph-based text mining was proposed since the mutual

interaction between individuals is noticeably affected by the popularity of online social

network services where people join to conversations and publish their fresh opinion-

s freely. The social graph identified from the textual communication records may be

able to provide us with a new way to reorganise the sequences of the data and discover

the logical connections from the sequences. For example, questions and answers during

a conversation section may be disordered with the timeline and consecutive dialogues

may correspond to different themes, especially conversations among multiple people.

Anwar et al. proposed a social graph construction technique associated with an n-gram

key-words extraction method to investigate possible criminal scenarios and groups from

MSN chat messages and digital logs [8]. Their work inspired us to consider the social

context the surrounds the textual content.

The rest of this chapter is organised as follows. We expand reviews on word repre-

sentation and language model to start the next section, then we transfer to the language

model to show how the development of language model promotes the advance of text

representation model. Next, we introduce the widely applied topic models and the state-
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of-the-art methods of topic detection and document clustering and classification. Last,

we review the improvement of methods facilitated by SNA and stream processing.

2.2 Word Representation and Language Model

Word representation model formulates semantic characters of the natural language. As

we know that the essential semantic character is the word, word vectors in an article

become the first option to project linguistic features. Many works have been developed

towards the word representation in the past decades, among which the one-hot repre-

sentation is the most intuitive one. However, the distributed representation is a more

comprehensive alternative to the one-hot representation with more possibility of being

improved. No matter what kind of word representation is adopted, the obtained word

vectors of the document will be concatenated with some methods to a vector which is the

document representation.

2.2.1 One-hot Representation: Syntagmatic Models

Syntagmatic models concern the combinatorial relation between words, focusing on word-

s that exist together in the same text article. With the one-hot representation, a word

is formulated to a long vector with all elements valued with 0 except one element val-

ued with 1. The non-zero element is the feature represented this word. For example,

the first word “thesis”= [0, 0, 0, 1, 0, 0, · · · , 0, · · · ]T, and the second word “submission”=

[0, 1, 0, 0, 0, 0, · · · , 0, · · · ]T. The length of the vector is the number of words. Then the

words vector will be selected as features to fit the text representation model for further

tasks, including topic detection and document clustering. However, the limitations are

obvious, for example, high dimensional features and lack of semantic information be-

tween words since two vectors are always orthogonal, which will have a strong impact

on the performances of further tasks.
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word1
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word'1
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highly dimensional
sparse representation

low dimensional
dense representation

Figure 2.1: An example of comparison between a three dimensional one-hot representa-
tion and a two dimensional distributed representation.

2.2.2 Distributed Representation: Paradigmatic Models

Paradigmatic models emphasise the substitutional relation between words, focusing on

words that have the similar semantic function for the context but do not have to occur in

the same text region. The distributed representation is believed to be a lower-dimensional

dense vector that represents a word with its semantic information. For example, the word

“thesis”=[0.2, 1.6, 0.3,−0.5, 0, · · · ]T and “submission’=[0.4,−0.3, 1.2, 1, 0.7 · · · ]T”, where each

feature may not be necessary to correspond a word existing or not, then the semantic

similarity between these two words can be easily calculated. It was first proposed in [69]

based on the distributional hypothesis “You shall know a word by the company it keep-

s.” [58] which clarified the earlier opinion “the complete meaning of a word is always

contextual” [57]. The word “distributed” is different from the “distributional” 1, we will

explain the difference with the following different categories of methods. The only thing

is that since methods of distributed representation have the same fundamental hypothe-

sis, the main steps are the same which are:

1. Find a way to specify the context.

2. Find an expression for the relation between the targeted word and its context.

1http://www.marekrei.com/blog/26-things-i-learned-in-the-deep-learning-summer
-school/

http://www.marekrei.com/blog/26-things-i-learned-in-the-deep-learning-summer
-school/
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Normally, three categories of these methods are recognised as follows.

1. Matrix-based distributed representation is also referred to as distributional semantic

models or distributional representation directly [11]. This kind of methods de-

pends on a “word-context matrix” where the rows are words in the corpus, and

the columns represents different contexts. Basically, it is still a count-based method

beginning with the generation of a contextual matrix. Three methods are commonly

used to generate the contextual matrix, which are “words - document matrix” [92],

“words - words co-occurrence matrix” [132] and “words - n-grams co-occurrence

matrix” [151]. Then the values of the contextual matrix are further calculated on

the number of the co-occurrence with some techniques, including TF-IDF and P-

MI (Pointwise Mutual Information). So far, the contextual matrix is still a high-

dimensional and sparse matrix that does not satisfy the requirement of a dense

matrix; therefore the dimensionality reduction is always conducted here, for exam-

ple, the Singular Value Decomposition (SVD), Non-negative Matrix Factorization

(NMF), Principle Component Analysis (PCA) and Canonical Correlation Analysis

(CCA).

2. Clustering-based distributed representation is also referred to as distributional cluster-

ing [133]. This kind of methods using clustering algorithms to automatically group

words according to their occurrence in particular grammatical structure with other

words. Brown algorithm is a classic clustering algorithm based on n-gram model

and Markov chain for words clustering [88, 113]. It only considers the relationship

between two adjacent words and outputs a binary tree representing whether the

two words share a cluster label. The similarity between the two words depends on

the common clusters. Lin et al. proposed a scalable phrase clustering method using

the simple k-means algorithm later [101].

3. Neural network-based distributed representation is also referred to as distributed rep-

resentation directly or word embedding [14]. It draws many attentions recently

because it can express complicated context by using the flexible neural network

learning algorithms in a lower dimensional space, i.e. each concept can be repre-

sented by many neurons, and each neuron can also participate in the representation

of many concepts. Recently, this kind of learning methods goes further by taking
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advantages of Deep Learning techniques. Recently, Mitra et al. presented a model

combining distributed representation with local representation to train deep neural

networks for the document ranking task and achieve a higher performance than

the solo models do [116]. However, the disadvantages are lying two aspects, which

are the training process of word embeddings is complicated and can hardly be in-

terpreted. The training process of word embeddings is always accompanied by the

training of the language model for an input corpus. Next, we will briefly introduce

the language models.

2.2.3 Language Model

A Language model is an umbrella term that describes a variety of mathematical mod-

els for formulating, analysing and creating the text with natural language. Essentially

language model is used to judge whether the input text is reasonable and comprehen-

sible. It plays a vital role in tasks of information retrieval, machine translation, speech

recognition, etc.

Statistical Language Model

Assume there is a sequence S containing m words [w1, w2, · · · , wm], statistical language

model estimates the probability distribution P(S = w1:m) over S of [w1, w2, · · · , wm] to

represent the likelihood that S is a sentence, calculated as:

P(S = w1:m) =P(w1)P(w2|w1)P(w2|w1, w2)

· · · P(wi|w1, w2, · · · , wi−1) · · · P(wm|w1, w2, · · · , wm−1)

=P(w1)
m

∏
i=2

P(wi|w1:(i−1)) (2.1)

However, if too many words accrue in the text, it is hardly to estimate P(wi|w1, w2, · · ·wi−1)

because of sparsity. Alternatively, we can simplify it with an n-gram model that only con-

siders n previous words in the front of wi, known as the n-step transition probability of a

Markov chain:

P(wi|w1, w2 · · ·wi−1) ≈ P(wi|w1+i−n, w2+i−n · · · , wi−1) (2.2)
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Then how can we know the value of P(wi|w1, w2 · · ·wi−1)? Normally, we assume that

words in the text is subject to a polynomial distribution θ and use the maximum likeli-

hood estimation and Lagrange multiplier to estimate the value of θ.

When n = 1, it is called the unigram model and P(S = w1:m|θ) = ∏m
i=1 P(wi) which

indicates that words are independent from each other without any semantic and ordering

information. It is called the bigram model and trigram model when n = 2 and n =

3. Under the n-gram model, the conditional probability normally computed with the

frequency counting:

P(wi|w1+i−n, w2+i−n · · ·wi−1) =
count(w1+i−n, w2+i−n · · · , wi−1, wi)

count(w1+i−n, w2+i−n · · · , wi−1)
(2.3)

where count(w1+i−n, w2+i−n · · ·wi−1) is the times that words sequence [w1+i−n, w2+i−n, · · ·

, wi−1] appears in the text. Intuitively, a larger n will keep more ordering and semantic

information of the text, however, it also leads to a more severe sparsity issue with E-

q. 2.3. Therefore, the trigram model and other methods for smoothing purpose are usu-

ally adopted in real application. For example, to attenuate the noise caused by those co-

occurrences that happen rarely or never, the Golbal Vector Model, which is based on the

“words - words co-occurrence matrix” where the time of words wi and wj co-occurring

in a corpus is xi j, is added a weight function f (xi j) into the cost function with proper-

ties: 1) f (0) = 0; 2) f (x) is non-increasing and relatively small to xi j so that both rare and

frequent co-occurrences will not be overweighted [132].

Neural Network Language Model

Neural network language model stared from the following idea:

• The problem of estimating P(wi|w1:(i−1)) within a corpus containing a vocabulary V

of length |V| can be seem as a problem of multi-class classification and the number

of class is m. It can be formulated with follow:

Pk∈|V|

(
label(wi) = k|hi = label(w1:(i−1))

)
= fk(w1:(i−1), α) (2.4)

where, label(wi) is the predicted class label of word wi; hi = label(w1:(i−1)) is the

previous information of wi and fk(w1:(i−1), α) is a classification function which es-
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timate how probable the wi is the k-th word in the vocabulary with the constrain

∑V
k=1 fk(w1:(i−1), α) = 1, where α is a parameter.

The process of optimising a classifier can be coped with many methods of machine

learning, among which, the neural network model draws much attention. Xu et al. first

introduced the neural network model to the bigram language model [?]. Bengio et al. for-

mally proposed a neural network language model based on n-gram model [13, 14] be-

coming the representative work in this research direction. Typically, when we know the

first i words [w1, w− 2, · · · , wi−1], we estimate the i-th word wi with a neural network

language model consisting of the following three layers:

• Input layer maps [w1, w− 2, · · · , wi−1] as word embeddings [e1, e− 2, · · · , ei−1].

In this layer, a word wi is transformed to a dense real-valued vector ewi by ewi =

Mvi, where vi is the one-hot representation of a word wi and M ∈ Rt×|V| is a t-

dimensional word embedding matrix. Each column of M corresponds to a real-

valued vector of a word, we denote it as ewi . This procedure embeds a word into

the continuous semantic space and reduces the dimension of it from |V| to t.

• Hidden layer employs different types of neural networks, such as the Feed-forward

Neural Network (FNN), the Recurrent Neural Network (RNN) and many other

manifolds to compute a representation of linear distributional features of previous

information ht. FNN requires a fixed size for input vector; therefore, word em-

beddings from the input layer will be formed as a long x vector in successive and

ht = tanh(b1 + WX), where W is the input-to-hidden weights matrix and b1 is an-

other output biases.

• Output layer uses a classifier, yt = so f tmax(Oht + b2), maps the values of ht to a

vector yt ∈ R|V| that represents a probability distribution in which the j-th ele-

ments is the posterior probability that the t-th word is the j-th word in V, where

O ∈ R|v|×t′ is the hidden-to-output weights matrix and b2 is another output biases.

O can also be seen as another word embedding matrix, where each row is a new

word embedding.

Neural network language model has been a research hotspot in recent years. Many ef-

forts has been taken with different concerns, for example how to train word embeddings

[38, 198], how to improve the basic n-gram model [111] and introducing deep learning
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method to neural network language model [85, 117, 159].

The performance of language models depends on the input text and the training mod-

el and it will affect the performances of further tasks and applications. On the contrary,

methods designed for other tasks are tightly associated with the input text representation.

Next, we focus on the primary techniques of topic detection and document clustering

and classification tasks, starting with their common foundation, the topic model.

2.3 Topic Model

Generally speaking, a topic model discovers and represents the latent topics hidden

across the input corpus by grouping related words without any supervision. It holds

a basic assumption that words indicating similar topics will appear in a document fre-

quently. It is easily understood that topics are represented with a sequence of related

words. With the trained topic model, a document can be assigned to each topic with a

certain probability and can be categorised to a set of documents with the same proba-

bility. Hence, except conducts tasks of topic detection and document classification and

cluster, a topic model is also capable of outputting a representation of the text in the topic

space, so that the dimensionality of features space can be reduced. Fig. 2.2 illustrates the

connection between functions of a topic model.

One thing needs to be especially pointed out is that most topic models, to the best

of our knowledge, are based on BoW model with a global view, looking at words dis-

tributions and documents distributions across the entire corpus, which also ignore the

ordering of words and semantic information among them, although distributed repre-

sentation of words has been introduced to topic models in recent three years. The work

in this thesis is also based on BoW model, but integrating word embeddings with the

latent topic model will be our future direction. We will explain it in Chapter 6.

In the following, we introduce previous works for topic model from two aspects, in

terms of two categories of methods, the probabilistic distribution and the linear algebra, for

topic detection.



2.3 Topic Model 27

Input
corpus

Topic Modeling

...

D1       0.1             0.56           0.074       .....     

D2       0.8              0.01          0.03        ......     

D3       0.3            0.006          0.49        ......     

...

Unsupervised Learning

Classifying 
Clustering

Topic Space

Topic
Dimensionality reduction

Topic2

...

Topic3

...

Topic1

Figure 2.2: The Functions of A Topic Model

2.3.1 Methods for Topic Detecion

Non-probabilistic Methods

To discover the latent topic space, Latent Semantic Indexing (LSI), also referred to as La-

tent Semantic Analysis (LSA) in some works, explores the basic assumption of the topic

model and describes the similarity between documents with a latent space representa-

tion. The corpus, a collection of documents, is represented as a words-documents matrix

X ∈ Rm×n under VSM as we introduced above. Then, how to discover the latent space
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representation from the original space representation X? The answering is using the di-

mension reduction techniques on X. The first generation of LSI methods [41, 51, 91] are

Singular Value Decomposition (SVD) methods that decompose the original rectangular

matrix into the product of three matrices as X = U0∑0V0
T, where matrices U0 ∈ Rm×t,

V0 ∈ Rt×t have orthogonality on columns, UTU = I and VTV = I; ∑0 ∈ Rt×n is the

diagonal matrix of singular values and t is the rank of X. The theoretical background

is from a mathematical proof that any matrix can be decomposed perfectly by using no

more factors than the smallest dimension of the original matrix. However, differing from

the traditional SVD, LSI emphases a smaller size of U and adopted a reduced SVD on X

so that an approximation of X will be obtained as X ≈ X̂ = U∑VT, where U ∈ Rm×k,

∑ ∈ Rk×k and V ∈ Rk×n, and k � (m, n) is the pre-defined topic number, which can

be implemented simply by deleting coefficients in the diagonal matrix. Fig. 2.3 shows a

schematic of the SVD based LSI.

We interpret the decomposition as follows. Each element xij in X is the value of i-th

feature of document dj. After the SVD decomposition on X, uil is to what degree that

word wi is belong to this category of words cwl . vjp is to what degree that the document

dj is relevant to a topic Tp, and the middle matrix ∑ indicates the correlation between

categories of words and topics, which also indicates the relevant dependence between

the column U·p in U and the column V·p in V. Therefore, with SVD, we can obtain the

categories of similar words and the categories of documents simultaneously. Moreover,

the topic Tp can be represented by sequentially ordering words in Ul , where p ↔ l.

The documents-topics matrix V can be used for the computation of similarity between

documents, for example using the cosine distance, and the further clustering and classi-

fication. After some unnecessary noises are filtered out through SVD, the approximated

matrix X̂ can also be regarded as a purer words representation of the corpus. How to

conduct the SVD is a mature technology so that we do not say too much here.

LSI has attracted much attention once it was presented. It was employed by Dumais

et al. to a manuscripts-reviewing system to analyse the research interests and reviewers’

interests, and assign relevant papers to reviewers [52]. Bradford combined the technique

of entity extraction and LSI presenting an algorithm to generate and display an initial

estimate of nodes and links relevant to a chosen topic and applying it to generate Graphs
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of terrorist networks [22]. LSI can also be used in short text. Yang et al. proposed a hot

topic detection approach for Chinese microblogging data, in which LSI was used to map

a microblogging text vector to low-dimensional feature vector space [184].

Although LSI exhibited impressive results on a number of textual document, draw-

backs of SVD are noticeable. For example, the decomposing high dimensional input ma-

trix is very time-consuming for SVD, and the negative value obtained by SVD is challeng-

ing to interpret. Therefore, an improved LSI method, Non-negative Matrix Factorisation

(NMF), was proposed afterwards.

NMF decomposes the giving non-negative matrix X to two non-negative matrix U ∈

Rm×k and V ∈ Rn×k satisfying X ≈ UVT. The non-negativity constraints only allow the

representation additive xij ≈
(
UVT)

ij = ∑k
a=1 uiavja, which is in contrast to SVD and

PCA (Principal Components Analysi) where negative subtractions are allowed [93]. This

property also makes it output a parts-based representation that is easy to interpret [75],

and be considered as an unnormalized probability distributions over topics [154]. The

problem here is how to find the proper two matrix U and V. To measure the distance

of the approximation X ≈ UVT and conduct optimisation, two distance functions are

commonly used:

• Euclidean distance between X and UVT

f1 = ‖X−UVT‖2 = ∑
i,j

(
xij −

k

∑
a=1

uiavja

)2

F

(2.5)

• Divergence between X and UVT

f2 = D
(

X‖UVT
)
= ∑

i,j

(
xij log

xij

yij
− xij + yij

)
, where Y = {yij} = UVT (2.6)
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Here, the Frobenius norm is always used, but other norms, for example `1-norm [82, 89,

119] and `2,1-norm [76, 87, 191], are used recently. Fig. 2.4 graphically shows the NMF.

On the right hand, column U·a, a ∈ [1, k] represents the a-th topics and elements uij is the

correlation between the word wi and the topic Ta; while vja is the correlation between the

document dj and the topic Ta. Only two matrices are produced by NMF, so the similarity

between words is sacrificed.

Comparing to SVD based LSI, NMF owns advantages of easy interpretation and less

time-consuming. Moreover, NMF has probabilistic property to some extent. Many atten-

tions from research and industry communities have turned to NMF recently, and many

improvements for manifold NMF have proposed which lies in not only text mining area,

but also the image processing [102, 171] and bioinformatics [161, 170, 185] etc. For topic

detection, many efforts with NMF have been done. Vaca et al. utilised the time sequence

proposing a time-based factorization algorithm for topic discovery to monitoring news

[168]. Choo et al. proposed a semi-supervised NMF based topic model involving user

interactions and user’s prior knowledge in topic modelling processes [33]. Suh el. al pro-

posed an ensemble framework using residual matrix obtained from multiple times of

NMF iteratively to explore deeper semantic similarity and discrimination among words

to represent different topics better [157]. Du et al. applied the divide-and-conquer strat-

egy on NMF and proposed a fast algorithm for analysing large-scale data sets [50]. The

topic hierarchy started to get more attention because it can help the model discover the

potential relations between topics and adapt to the inherent distribution of the corpus,

relaxing the condition of the pre-defined number of topics. Chen et al. proposed a fast

progressive EM algorithm through hierarchical latent tree analysis [31]. Tu et al. pro-

posed a hierarchy NMF approach to detect and tracking the evolving process of the topic

hierarchy in a text stream. However, this method needs an extra cluster step to determine

the topic number [166]. Through mining the hidden geometrical structure of the original

data space, Cai and Liu et al. proposed graph regularized NMF and constrained NMF

for image representation [24,102]. Besides, NMF has been widely applied on the commu-

nity detection task [105, 109]. In addition, NMF methods for clustering and online data

stream emerged also, which will be reviewed in the rest of this chapter.
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Figure 2.5: An illustration of the assumption of probabilistic topic model [18]

Probabilistic Methods

Different from non-probabilistic LSI, probabilistic topic methods allow a model to ex-

tract sets of term probability distributions from the corpus and can be applied to new

documents. Since the intuition behind probabilistic methods is that multiple topics may

appear in one article [18], they always suppose that there is a jointly probability between

the words and the documents which are observed and there are also conditional prob-

abilities across the latent topics that describe the jointly probability with the marginal

probability of a document. Fig. 2.5 give an illustration of the assumption of probabilistic

topic model [18] where we can find that a document consists of a mixture of topics, and

each topic consists of a collection of words. There are two models have to mention here,

Probability Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA).

PLSA [72] introduced probabilistic distributions to LSI (LSA); therefore, some re-

searches treat it as an alternative to NMF rather than a real probabilistic method [18].

Ding et al. proved that PLSI and NMF with the divergence-based objective function are

equivalent since they optimise the same objective function [44]. But on the other hand,

PLSA is generally considered a particular case of LDA. So we review them together in

this thesis. Fig. 2.6 graphically demonstrates their idea, where grey nodes are observed

variables, and white nodes are hidden variables or parameters. Rectangles denote the

replication of the inside elements and the bigger number in the bottom right corner de-

notes the number of times to replicate, which also corresponds to the n documents within
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the corpus and mj words in the document dj. To explain the process, we have to clarify

that both of them are reversed generation process of documents we observed, rather than

finding topics in an existing collection of documents.

The process of PLSA is as follow:

1. Choose a document dj with the probability P(dj);

2. Choose a topic Ta to present in dj with conditional probability P(Ta|dj);

3. Generate a word wi in terms of Ta with conditional probability P(wi|Ta).

What we can observe in the corpus is the word and the documents (dj, wi), while

Ta is a hidden parameter. According to the manipulation between joint probability and

conditional probability, we have:

P(dj, wi) = P(dj)P(wi|dj) =
k

∑
a=1

P(wi|Ta)P(Ta|dj) (2.7)

where, P(dj), P(Ta|dj), and P(wi|Ta) are parameters of PLSI model and P(dj) can be ob-

i ∈ [1, ]mj

wiTadj

j ∈ [1, n]

i ∈ [1, ]mj

P( | )wi TaP( | )Ta dj
P( )dj

wi,jTi,jθjα
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a ∈ [1, k]

β

PLSA

LDA

j ∈ [1, n]

Figure 2.6: The graphical models for PLSA (up) and LDA (down)
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served directly from the input corpus. PLSI provides multinomial distributions with pa-

rameters P(Ta|dj) and P(wi|Ta) over topic space and vocabulary, and trains parameters

with the expectation-maximization algorithm (EM). We are not going to the technique

details here, but talking about another interpretation of the formula of the jointly proba-

bility of PLSI as follow:

P(dj, wi) =
k

∑
a=1

P(wi|Ta)P(Ta)P(dj|Ta) (2.8)

Which has a quite similar structure with the LSI model X ≈= U∑VT where the prob-

ability of the topic P(Ta) corresponds to the diagonal singular matrix of probabilities

of correlation between categories of words and topics; conditional probability P(dj|Ta)

corresponds to the documents-topics matrix V; and the conditional probability P(wi|Ta)

corresponds to the words-categories of words (i.e. topics to some extent) matrix U. The

full deduction can be referred in [44]. Hence, like LSI, PLSA can only discover topics for

documents that in the corpus, but do noting for a new documents because it does not

involve a parameter to model p(di). And, the overfitting issue raises naturally because

the number of parameters completely equals to the number of documents in the whole

corpus.

Blei et al. proposed LDA as a more far more flexible model for topic detection by

adding Dirichlet priors for the document-topic and word-topic distributions. Dirichlet

distribution is a distribution over distributions that each variable drew from the Dirichlet

distribution is a parameter of the multinomial distribution. The premise here is that

LDA assumes that topics are specified before any document has been generated [18]. In

Fig. 2.6, the generative process of LDA is:

1. For a document dj, randomly choose a distribution θj over topics from a dirichlet

distribution Dir(α): θj ∼ PDirichlet(θj|α);

2. For a word in this document wi,j, select a topic Ti,j from the distribution θj: Ti,j ∼

PMultinomial(Ti,j|θj);

3. Randomly select a word distribution ϕa over vocabulary for the topic Ti,j from an-

other dirichlet distribution Dir(β): ϕa ∼ PDirichlet(ϕa|β);

4. Randomly choose a word for this document wi,j from the distribution ϕa of the topic
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Ti,j: wi,j ∼ PMultinomial(wi,j|ϕa, Ti,j).

Where α is a super-parameter of θ and β is a super-parameter of ϕ. Since we used m to

denote the size of the vocabulary of the whole corpus already, mj denotes the number

of words in dj and a word in document dj is denoted as w·,j here. This process perfectly

reflects the assumption in Fig. 2.5 that each document exhibits topics in different distri-

bution and each word in each document is drawn from one of these topics. Beside, LDA

chooses a word distribution ϕa for each topic Ta, a ∈ [1, k]. This process can be formu-

lated with the following jointly probabilities of the hidden and observed variables with

parameters α and β:

P(ϕ1:k, θ1:n, T1:n, w1:n|α, β) =
k

∏
a=1

P(ϕa)
n

∏
j=1

P(θj)

( mj

∏
i=1

P(Ti,j|θj)P(wi,j|ϕ1:k, Ti,j)

)
(2.9)

And, algorithms based on Gibbs Sampling or Variational Bayesian can be used to opti-

mise above function.

To date, comparing to PLSA, LDA can be generalized to new document since the in-

put collection of documents are the training set for the Dirichlet distribution of documents-

topics and words-topics distributions. The words-document representation of a new doc-

ument can be projected to the low-dimensional topic space.

With many efforts to improve and modify PLSA and LDA, probabilistic topic mod-

els have become a core tool for the analysis of text mining. Steyvers et al. developed

idea of LDA and proposed probabilistic author-topic models that generate documents

with a two-stage stochastic process: authors-topics and topics-words, where the words

in a multi-author paper are assumed to be the result of a distribution of each authors topic

distribution [155]. Nallapati et al. proposed Pairwise-Link-LDA and the Link-PLSA-LDA

models in [118]. The Pairwise-Link-LDA model combines the LDA and Mixed mem-

bership stochastic block models [2] (another work in bioinformatics of LDA’s author)

for jointly modelling text and citations in the topic model framework focusing only on

the single domain of blog data. However, they found that Pairwise-Link-LDA model is

computationally expensive because of the operation conducted for every pair of docu-

ments. They proposed another model, Link-PLSA-LDA model, combines the LDA and

PLSA models into a single graphical model. Tang et al. presented three topic models
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for simultaneously modeling papers, authors, and publication venues which and further

integrated them into the random walk framework for academic search [160]. Ramage

et al. proposed a topic model for the credit assignment problem on social bookmarking

websites that constrains Latent Dirichlet Allocation by defining a one-to-one correspon-

dence between LDAs latent topics and user tags, named labelled LDA [136]. Andrze-

jewski and Zhu added partial supervised information, called topic-in-set knowledge, to

the latent topic model which can encourage LDA to recover topics relevant to user inter-

ests [7]. Foulds et al. inherited the idea of LDA but replaced the Dirichlet priors with a

tractable class of conditional random field (CRF) models over continuous random vari-

ables consists of a flexible probabilistic programming framework for designing custom

topic models [59]. To the universal assumption of the topic model that words are generat-

ed independently, Xie et al. proposed a Markov Random Field (MRF) regularised Latent

Dirichlet Allocation (LDA) model to take advantage of the rich similarity relationships

among words by encouraging words labelled as similar to share the same topic label. As

a result, the topic assignment of each word by their model is affected by the topic labels of

its correlated words [180]. Chou et al. proposed a method to estimate context-aware sen-

timent value for concepts on Chinese ConceptNet using LDA to generate a topic for each

context [34]. LDA model is also used in image data recently, for example, a nonlinear

compressed sensing-based LDA Topic (NCSLT) model was proposed to classify polari-

metric synthetic aperture radar (PolSAR) images [66]. Recently, Pham et al. introduced

LDA to generate the weighting attribute for the objects links to better find the most rele-

vant information within large-scale heterogeneous information networks [134]. Pavlinek

et al. proposed text classification method for very small labelled datasets which uses L-

DA topic model to extract features then passed forward to a self-training algorithm [128].

Hong et al. applied LDA to an internet topic evaluation model to explore the intrinsic

links among the news and extracted effective topics [74]. LDA was also applied to the

topic hierarchy. Paisley et al. proposed a nested hierarchical Dirichlet process for a hier-

archical topic model which allows each observed word to follow its own path to a topic

node in the tree [121]. On the other hand, probabilistic methods also have drawbacks,

for example, Choo et al.’s experiments indicated that the convergence of LDA is random,

which means it basically gives the user no control over the algorithm process. Besides,



36 Literature Review

there are also concerns about the less consistency from multiple runs and the complexity

in the formulation and the implementation of LDA comparing to NMF [33].

2.3.2 Document Clustering and Classification

Finding proper groups for documents in a corpus is a widely studied problem with many

applications, for examle, the information retrieval, document summarisation, document

organization and document classification. It is a product of jointing clustering and clas-

sification of machine learning and topic model and text representation of text mining.

Specific to text mining domain, one commonly adopted direction is based on matrix

factorisation, including SVD [120], NMF [183] and concept factorisation [23]. They can

be divided into two categories according to the method. One of them utilise the top-

ic model to reduce the text representation from the words space to the topic space, then

conducts other clustering and classification algorithm on the new topic space-based topic

representation. This paradigm is also called the feature selection on text since the dimen-

sionality reduction can effectively lower the noise of similarity measure and magnify the

semantic associations in the underlying data space [1]. [24] proposed an NMF based data

representation algorithm to encode the geometrical information by employing the idea

of the spectral clustering. [23] proposed a locally consistent concept factorisation by us-

ing graph Laplacian to smooth the document-to-concept mapping so that concepts with

respect to the intrinsic manifold structure can be extracted as soft labels and documents

associated with the same concept can be well clustered. Both of the two methods adopted

a k-nn clustering after the dimensionality reduction. So did [107, 171].

Another paradigm directly corresponds to the result of the reduced text representa-

tion on topic space of the topic model. For example, documents are clustered by exam-

ining topic distribution vector θ with LDA and intuitively a document dj is assigned to

cluster a if a = argmaxjθj [106]. Also In NMF, the output documents-topics matrix V can

be regarded as a cluster indicator and each element va j represents a value that similar to

the probability indicating that document dj belongs a-th cluster, a = argmaxjvij [174,183].

[183] simply added a requirement that the Euclidean length of each column vector in ma-

trix U is 1 to make the factorisation solution V and U unique. Many works [46, 87, 192]

improved the NMF for more rubust performance of document clustering so far. LDA-
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basd document clustering algorithms also move forwards. Papanikolaou et al. proposed

a Subset Labeled LDA to tackle the scalability issues for labelled LDA [136], making it

appropriate for extreme multi-label classification tasks [124].

Making use of the topic hierarchical structure is also a research centre that distinguish-

es document clustering and classification from flat clustering. Kuang and Park proposed

a fast rank -2 NMF method to hierarchical cluster document to a binary tree [90]. The bril-

liance of this fast rank -2 NMF method from NMF’s perspective is that it applied an two

block coordinate descent framework to solve the optimisation in NMF as a non-negative

least squares, that can be highly paralleled in implementation and performed extreme-

ly fast. Yang et al. proposed a hierarchical attention network mechanism for document

classification, in which a document vector is progressively built by aggregating impor-

tant words into sentence vectors and then aggregating important sentences vectors to

document vectors [186].

Recently, distributed representation model was introduced to Document Clustering

and Classification task. Yoon Kim trained the convolutional neural networks (CNN) on

pre-trained word vectors for sentence-level classification tasks [84]. Zhang et al. applied

CNN on characters and found the conclusion that when trained on large-scale textual

datasets, deep CNN does not require the knowledge of words [193], which is a further

finding of previous researches that CNN does not require the knowledge about the syn-

tactic or semantic structure of a language [64, 84].

2.4 Influence of social network service and stream processing

The advent of social network service brings many problems to topic detection and doc-

ument clustering and classification, such as how to catch the ever-changing concepts in

text stream and how to properly represent the short and sparse text. In the following, we

introduce some typical techniques and algorithms with respect to the topic detection and

clustering and classification.

Online topic models concerns about catching the temporal information and the life-

cycle of a topic, i.e. the emerging, evolving and fading process. We have mentioned

that various social network services sped up and complicated this process consider-
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ably. Therefore, developing the online topic detection that aims at the continuously data

spreading among online social network is very necessary.

An online NMF approach was proposed to detect latent factors and track their evo-

lution while the data evolve [25]. Online NMF (ONMF) can automatically and incre-

mentally update the latent factors and thus track the changes. Chou et al. proposed an

incremental probabilistic latent semantic indexing (IPLSI) method for event detection in

a continuous stream of multi-sources documents [35]. Above mentioned hierarchical N-

MF method [166] extended ONMF to generate topics in a hierarchical structure and dy-

namically adjust the hierarchy with the evolving process. IPLSI alleviates the threshold-

dependency problem to some extent and simultaneously maintains the storyline of the

latent semantics for developing events. AlSumait et al. proposed an online-LDA model

to capture the thematic patterns and identify emerging topics of text streams and their

changes over time automatically and continuously [5]. This method directly modified the

LDA in an online fashion to incrementally build an up-to-date model. Kasiviswanathan

et al. proposed an Online `1-dictionary learning algorithm to detect novel documents, or

saying carrier of novel topics, from a voluminous stream of textual documents and an `1-

penalty was adopted to compute the reconstruction error for the dictionary instead of the

squared loss [82]. Except had been applied on documents stream, this method was texted

on tweets stream as well. Twitter-LDA is a model designed for short tweets to discover

topics from a Twitter sample representation [194]. Sasaki et al. extended Twitter-LDA by

adding an online inference considering a sequence of tweets rather than assuming tweets

are independent and exchangeable [141]. Saha et al. proposed an online NMF framework

to rapidly analyse the information content in online social media streams with a temporal

regularisation that captures the emerging trends [139]. Spina et al. learnt tweets similarity

function with all types of Twitter signals and applied a clustering algorithm on the previ-

ously learned similarity function for reputation monitoring on Twitter [152]. For bursty

topic detection, Xie et al. proposed a sketch-based topic model integrated with dimension

reduction techniques based on hashing to achieve scalability on real-time detection [181].

Mirończuk et al. published a detailed survey about the state-of-the-art elements of text

classification [114]. Classification and clustering techniques for data stream are widely

used in text data [4, 6, 26, 127, 167].
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A Multi-window Based Ensemble
Learning for Imbalanced Data stream

Imbalanced data stream is pervasively distributed in various real applications, including the Inter-

net news, the email conversations, the capital flows and the trade transactions. Although it has attract-

ed much attention from data mining and machine learning research community in recent years, most

studies still focused on either imbalanced data or streaming data. However, the more serious problem

is that both imbalanced data and streaming data are always appear together in practice which brings

big challenge of catching and detecting the imbalanced distribution in time-critical continuous data

stream. In this chapter, we propose a multi-window based ensemble learning framework for the clas-

sification of imbalanced streaming data. Four types of windows are defined to store the current batch

of instances, the latest rare instances, sub-classifiers of the ensemble classifier and instances employed

to train existing sub-classifiers. The ensemble classifier consists of a set of up-to-date sub-classifiers,

which are combined with a majority weight voting scheme to predict the labels for newly arriving

instances. Training the new sub-classifier is only necessary when the concept drift is detected. Exten-

sive experiments on real datasets covering five different application scenarios and synthetic datasets

generated following three distributions demonstrate that the proposed multi-windows method can

efficiently and effectively classify imbalanced streaming data with outstanding performances across

comprehensive evaluation criteria compared to baseline approaches.

3.1 Introduction

CLASSIFICATION is one of the most important problems in the fields of data min-

ing and machine learning, and has attracted much attention in recent years. In con-

ventional methods of solving the classification problem, a classifier is generally trained

on a dataset that does not change over time. As such, the dataset is assumed to have all

the information required to learn the underlying concepts. However, in many real-world

39
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scenarios, including spam filtering [42], credit card fraud identification [172], intrusion

detection [126], and web-page classification [175], datasets are not static. Typically, the

dynamic data forms a continuous data stream following an emerging in-memory com-

puting paradigm where a process-once-arrival strategy is applied and the process are

time-critical. When dealing this kind of data, we assume that new instances may arrive

one by one or batch by batch, and incoming instances must be classified within a finite

period with finite resources. Regardless of whether new instances arrive incrementally

or in batch, only data received prior to the time step t can be used to train the classifier

and predict the instances arriving at the time step t+1. In other words, the classifier can

only be trained on an incomplete portion of the information.

The problem of class imbalance is very common in streaming data. For instance, in s-

pam filtering, the amount of spam is usually much less than the amount of normal mails;

the fraud is usually the minority comparing with normal customers in credit card fraud

identification, and intrusions are not common compared with normal actions. Thus, class

imbalance is a vital issue of data streams that cannot be ignored when dealing with real-

world problems. Because we are more interested in rare class instances, these are usually

denoted as positive instances and instances of the majority are denoted as negative in-

stances.

In an earlier stage of development, classification of streaming data and imbalance

problems were studied separately; however, increasing attention has been dedicated to

addressing these two problems together in recent year. Most researches combined model-

s designed for streaming and imbalanced data in a relatively simple manner [70], which

are almost equivalent to address these two problems separately, and few of them took

an insight look into these two problems together. In this chapter, we analyse the twin

problems in a novel way and propose a method using multi-window ensemble learning

for classification of imbalanced streaming data. Main contributions of this chapter are as

follows:

• A multi-window framework is proposed to record the current batch of instances, s-

elected positive instances, and the ensemble classifier along with the corresponding

instances used to train each sub-classifier. The framework enables us to accumulate

the latest positive instances, and enhance the usefulness of positive instances ac-
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cordingly. Furthermore, concept drift in data streams can be detected by the error

rate together with similarities between the current window and the history win-

dows used to train each sub-classifier.

• A novel ensemble learning mechanism is designed to classify the incoming in-

stances. The weight of each sub-classifier is kept updating by the latest classification

error rate of new instances and the window similarity. New instances are classified

using weighted majority voting. Adjusting the weight according to the error rate

can improve the classification accuracy, and weight adjustment based on window

similarity can solve the reoccurring concept drift issue [70] to a certain extent.

• Extensive experiments on both synthetic datasets and real datasets in different ap-

plication domains are conducted, from which optimal parameters for each dataset

are obtained and analysed. The proposed approach is demonstrated to generally

outperform baseline methods.

To simplify the model, we focus only on single-label two-class classification problems,

where each instance can belong only to a single class and only two classes are considered.

Single-label two-class classification tasks are found in many real-world applications, for

example, email messages can be classified into spam and normal messages; credit card

users can be labeled as fraudulent and regular users. Moreover, multi-label classification

problems can be divided into several single-label two-class classification problems [145].

Multi-class problems can also be subjected to divide and conquer strategies [78,104,138].

In addition, we mainly focus on low dimension problems because high dimension prob-

lems can always be reduced, as discussed in [148].

The remainder of this chapter is organized as follows. Works related to streaming

data classification and imbalanced classification are presented in Subsection 3.2. Sub-

section 3.3 proposes the multi-window based ensemble learning approach including the

multi-window framework, the updating policies and algorithms. The experimental eval-

uation and discussion on both real and synthetic datasets are demonstrated in Subsec-

tion 3.4, followed by a summary in Subsection 3.5.
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3.2 Related Work

Classification of streaming data has attracted much attention for some time, and has been

widely studied, particularly with problems related to concept drift. Meanwhile, numer-

ous researchers have focused on the imbalanced data classification problem. In recent

years, an increasing number of scholars have addressed problems involving either class

imbalance or concept drift. We briefly review these works in the following.

3.2.1 Classification of streaming data

Features among newly incoming data may vary over time, which causes sudden changes

in the latent generation function of existing data. When a classifier suffers such a non-

stationary contexts, concept drift may happens to this streaming dataset at anytime. We

can roughly divide previous methods for concept drift on data stream classification into

three groups which is adaptive based learning, training set modified learning and en-

semble learning.

In adaptive based learning, trainers are improved to self-adaptive the concept drift in

streaming data. Decision Tree provides us an intuitive perspective to analyse the entire

dataset. Hulten et al. proposed the Concept-adaptive CVFD (Very Fast Decision tree)

method [78] based on VFDT(Very Fast Decision Tree) [49] to keep classifier up-to-date

by add the ability to detect and respond the underlying concept change in data arriving

process with a sliding window by computing new split attributes and comparing them

with the old. Thereafter, many works based on CVFD turned up, for example, Bifet and

Gavalda proposed HWT(Hoeffding Window Tree), which advocates recomputing split

attributes once new item arrives, instead of waiting to the count of items equals to the

size of the window, by which the former can conquer the slowly adaptive of the later

[17]. At the same time, the authors also developed the HAT (Hoeffding Adaptive Tree)

to capture concept drift quickly by the adaptive window technique. Moreover, the kNN

algorithm was improved by Alippi and Roveri [?], who manage the situations with and

without concept drift separately.

While in the training set modified learning, the data or the relative weights are up-

dated to fit the target concept instead of retraining the exist trainer, which gained a
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wider application. Typical methods consist of windowing techniques and weighting

techniques. Windowing techniques train the classifier by the size of the latest incoming

data window. The easiest way for windowing techniques is fix the window size which

is difficult to decide with different data category in different discipline. Thus, a self-

adaption method FLORA3 was presented to fit the present concept [179]. Also, Game et

al. considered the dramatic increasing of error rate as the indication of concept drift [3].

When this happened, the latest arriving items will be used to renew the classifier. And

almost at that time, Bifet and Gevalda proposed two approaches to compute the size of

the window, of which ADWIN (adaptive window) calculates the similarity between da-

ta items within two windows that are big enough, but has a certain drawback of large

computation quantity; therefore the authors give another method named ADWIN2 with

the designing of a time and memory efficient data structure [16]. Whereas, weighting

techniques balance the concept drift by weight data items belongs to different classes. In

Alippi and Roveri’s work, all data items are weighted by their similarity compared with

current underlying concept [3]. This way, the items more similar to the concept will get

more weight and others allocated with a relatively low weight will help the concept drift

absorbed by the classifier during the data arriving progress.

Ensemble learning integrates the results from multiple sub-classifier, aims to better

the classification performance of single classifiers. SEA (Streaming ensemble algorithm)

trains the classifier in each non-overlapping window instances [156]. Newly trained clas-

sifiers are added to the classifier-list before reach its upper limit; otherwise, the worst

classifier to the current window is replaced by the new one. Wang et al. proposed a

method weighting each existing sub-classifiers to classify the incoming window of in-

stances [172]. The weights are determined by the results of last window. By contrast, D-

WM trains and adds a new sub-classifier to the classifiers list as well as assigns the weight

1 to it when an insistence is misclassified by the existing ensemble classifier and the

weights of misclassified sub-classifiers will be reduced [86]. Thus, when the weight less

than a certain threshold after certain iterations, the sub-classifier will be eliminated from

the list. The third weighting method is Learn++ which always trains new sub-classifier on

the test set of newly arrival window of instances and adding it to the ensemble classifier,

assigning the corresponding error rate to the new classifier as its weight[135]. Based on
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it, Elwell and Polikar proposed Learn++.NSE to deal with the non-stationary problem,

which classify the newly arrival instances with all existing sub-classifiers and adjusts

their weights according to their error rates, in spite of new or old [53].

3.2.2 Classification of imbalanced datasets

As discussed above, when dealing with imbalanced datasets, normally we are more con-

cerned with the positive class that fewer instances belong to, named as the minority class

here. Therefore, the minority class must be emphasized. Previous works can be divid-

ed into three categories depending upon the level on which the method targets [29, 67].

The first type eyes on the data-level, which seeks to balance the sizes of classes by data

sampling techniques, which are either increasing or decreasing the number of minority

or majority instances. For example, the classic SMOTE method, which creates synthet-

ic minority instances rather than duplicating instances, avoiding over-fitting problem of

minority instances [67]. In this case, the minority instances are simply oversampled. Ran-

dom under-sampling method under-sampled the majority instances by randomly delet-

ing some of them to fit the pre-setting imbalance ratio. And, heuristic under-sampling

methods focus on discovering instances which make no difference to the prediction result

with heuristic rules, then delete some of them according to the imbalance ratio. For ex-

ample, Tomek-line is used to locate redundant majority instances [163]. The second type

works on the algorithm level attempting to improve the performance of a specific model.

For example, Liu et al. proposed the CCPDT (Class Confidence Proportion Decision Tree)

[103]. Moreover, ensemble learning methods are considered to be a hopeful method to

handle imbalanced issue, with which Chawla et. al. proposed SMOTEBoost algorithm

[30] and Sun et al. proposed series methods of AdaC1, AdaC2 and AdaC3 [158]. Overall,

the issue of imbalance has been highly considered in recent year, however, there are still

more open problems [28] waiting for in-depth study and solution. For example, how can

we correctly identify the data distribution and how can we evaluate the identified data

distribution?
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3.2.3 Classification of Imbalanced streaming data

A more practical model is data with imbalanced feature in streams arrive over time which

has attracted more attentions from the research community in recent year. The boundary

definition (BD) approach was proposed to build classifiers based on boundary instances,

which are easily misclassified or hardly differentiated[100]. The approach divides the

majority instances into a correctly classified set and a misclassified set. Random under-

sampling is performed on them simultaneously to guarantee distribution consistency

after under-sampling. Eleftherios et al. proposed a method maintaining two windows

to record the positive and negative instances separately for multi-label stream classifi-

cation problem [182]. To save the space, only indexes of data instances are recorded in

the windows. Later on, a learning framework for the online imbalanced classification

problem, including an imbalanced class detector, a concept shift detector, and an online

learner, was proposed [173]. The researchers also proposed the so-called oversampling-

based online bagging (OOB) and under-sampling-based online bagging (UOB) methods

to improve predictive accuracy. In the chapter, concept drift was simplified to a change of

the imbalance ratio among classes. Thereafter, the authors proposed the sampling-based

online bagging (SOB) method, which aims at maximizing the G-mean value to balance d-

ifferent classes by adjusting the parameter λ of the poisson distribution in online bagging

[173]. Recently, a selective re-training approach based on clustering has been proposed

[190]. In this chapter, a new sub-classifier is trained on newly arrival data when there is

not any concept drift. It compares AUC measurement between the new classifier and the

old to determine whether or not updating the ensemble classifier with the newly trained

sub-classifier. When there is a sign of concept drift, those wrongly classified instances

will be blended into previous training sets of existing sub-classifiers respectively with a

certain probability to re-train new sub-classifiers, forming new ensemble classifier. This

method is computationally complex and time consuming since it trains sub-classifiers for

all data instances and makes comparisons of performances between the new and the old

classifiers.
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3.3 Framework Design

In this section, we first give a formal definition of the problems, followed by the pro-

posed framework, including the design of multi-window mechanism, strategy of updat-

ing classifiers and weights of each sub-classifiers, and the entire algorithm description.

The notations frequently used in this chapter are summarized in Tab. 3.1.

3.3.1 Problem Definition

Assume that, at time step t, the existing instances form a data sequence D = {(X0,

l0), (X1, l1), ..., (Xt, ln)} in chronological order, where Xi is a d-dimensional vector and

corresponds to a class label li . All class labels constitute a label sequence L = {li, L2, · · · , ln}.

In a two-class classification task, li ∈ {+,−}, where ‘+’ and ‘-’ represent positive (mi-

nority) and negative (majority) classes, respectively. For simple classification problem,

training a single classifier might be sufficient; however, the goal here is to train a set of

sub-classifiers on existing instances constituting an ensemble classifier under a strategy

that we will describe later so that the classifier can as accurately as possible to predicate

the label of the incoming instance Xt+1 at time step t = 1; and, once Xt+1 is predicated, we

are aware of the true label of Xt+1, denoted by lt+1. If the data is unstable, for example the

data distribution changes over time, p(l1, l2, · · · , ln|Dt+1) 6= p(l1, l2, · · · , ln|Dt), we say

the concept drift occurs in the data stream. In addition, we say the dataset is imbalanced

if the ratio of the instances’ quantities in different classes exceeds a predefined threshold

θ, for example #{(Xi, li)|li =′ +′}/#{(Xj, lj)|lj =
′ −′} > θ, i, j = 0, 1, · · · , n. Therefore,

Table 3.1: Summary of notations

Symbols Description

Xi An data instance or an data sample
li Class lable of instance Xi

WB Window of batch containing certain number of instances
WM Window of minority containing certain number of positive instances
WC Window of classifier containing certain number of sub-classifiers
WI Window of instances that used to train the corresponding sub-classifiers
Mb The size of WB

maxWM The size of WM
maxWC The size of WC
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Instances Flow: Imbalanced Streaming Data

(t-2) WB (t-1) WB (t) WB
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{sub-classifiers} 
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WM 
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Multi-window mechanism

Train sub-classifiers

Generate sub-training set

Generate Minority window

Figure 3.1: Multi-window mechanism.

the task in this section is to build an ensemble classifier that keep self-updating on an

imbalanced data stream with possible concept drift issue and obtain acceptable results.

In our study, we adopt a window approach or batching approach, where the optimal

window size is pre-calculated and fixed by experiments. We denote the sliding window

size as Mb. The sliding window keeps moving forward and the windows on the data

stream are non-overlapping and in chronological order. Suppose that, n instances arrive

as a sequence at time step t and are divided into n/Mb windows or bathes according to

their sequences. Then, each window containing Mb instances will be the input of our

method. When Mb = 1, the batching approach is equivalent to incremental learning,

where a single instance is processed at a time.

3.3.2 Multi-window Mechanism

The multi-window mechanism is shown in Fig. 3.1 where four types of windows, WB,

WC, WI and WM, are kept. Before we start to describe our multi-window ensemble

learning algorithm in detail, we must determine the size of the sliding window (WB).

An overly small window cannot adequately represent the class characteristics, and may

result in a classifier with poor generalization. However, an overly large window size
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(t-2) WB (t-1) WB (t) WB

Minority Window (size = 5)

Instance generated by (t-1) windowInstance generated by (t-2) window

Instance generated by (t) window Instance replaced by new generated
minority instance

Figure 3.2: An example of updating minority window.

will require too much acquisition time and computing resources, which are restricted in

practical applications. For instance, a window may not have acquired sufficient instances

within the limited time available after which a prediction is expected. To our knowledge,

it is lack of theoretical guidance for determining an optimal window size. Meanwhile, the

data distribution also restricts a universal window size. Therefore, for datasets from dif-

ferent scenarios, the most reasonable choice is training an optimal window size through

experiments and we will discuss it in Section 3.4.

Algorithm 3.1: Update the WM
Input: WM, WB and size limit maxWM of WM
Output: Updated minority window WM′

1 for each instance wb ∈WB do
2 if classLabel(wb) = ‘+′ then
3 if |WM| < maxWM then
4 WM|WM| ← wb
5 else
6 for i = 0, 1, · · · , maxWM − 2 do
7 WMi ←WMi+1
8 end
9 WMmaxWM−1 ← wb

10 end
11 end
12 end

In circumstance of imbalanced data, positive instances are always sparse, or even be
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absent from some of the sliding windows. As a result, classifiers trained on these win-

dows may be unable to represent the positive class. Therefore, we use a minority window

(WM) to record the newly arrived minority or positive instances. Minority window has

also been used in the BD approach [100], although the WM employed in BD consumed

excessive time and resources; moreover, early acquired minority instances ran the risk of

becoming outdated due to the concept drift happened along the stream. For this issue,

an updating strategy on minority window has been proposed in REA approach [32]. In

detail, REA fix the minority window size and add minority instances which are similar

to the current positive instances into the WM. However, it is time consuming to select

the closest instances when the window size is large. Moreover, the closest instances may

not be of the same concept. Consequently, we alternatively utilize a simple substitution

strategy herein with fixed size, adding minority instances into WM before reaching its

upper size limit; otherwise, the oldest instance will be replaced by the newest. Thus, the

WM always represents up-to-date positive instances over time. We show an example of

updating minority window in Fig. 3.7 and the algorithm is summarized in Algorithm 3.1.

Our experiment results show that it is reasonable to set the size of WM in the range of

[0.5, 1] times that of the size of WB.

In addition, we use a classifier window (WC) to record the requisite number of newly

trained sub-classifiers and their corresponding weights WCweight, as well as the windows

of instances WI used to train each sub-classifier. The size of WC is also determined in ad-

vance through experiments and fixed. Newly trained sub-classifiers will be added to WC

before reaching the predefined upper bound; otherwise, the oldest sub-classifier will be

replaced. Moreover, the corresponding weights will also be updated. We summary how

to update WC in Algorithm 3.2, where errorRate = 1− accuracy and give an example in

Fig. 3.3. We will further explain when and how to update WC in the next subsection.

3.3.3 WC updating strategy

Notice that, though it is very important for ensemble classifier to increase the insid-

e diversity to enhance its robustness and performance. However, training a new sub-

classifier on instances with little concept drift only increases computational cost rather

than the diversity. Therefore, our approach does not update or add a new classifier to
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WC in each time step. In other words, unless we find that the existing classifier can not

works well on the instances of current WB, we train new classifier for this WB. Then the

problem comes to how to measure whether the classification result is good or not. The

most common and simple metric is accuracy; however, accuracy is not always reliable

for imbalanced data. For example, given 99 normal email messages and 1 spam in the

dataset, the classifier can treat all 100 messages as normal to obtain an accuracy as high

as 99%. Therefore, it is necessary to evaluate the classification result with respect to each

class, including class of minority, simultaneously under imbalanced circumstance. In this

study, we use the precision of both the minority and majority classes to evaluate the clas-

sification performance. We can see the difference between accuracy and precision with

Instances Flow: Imbalanced Streaming Data

(t) WB

Sub-classifier Window (WC) (size = 5)

existing sub-classifiers

Classify instances with existing classifiers

2

When condidtions not satisfied

Training new sub-classifiers

Resample(WB)
+WM 

3 4 5

newly trained sub-classifiers

1

removed sub-classifiers

Before update

After update

1 2 3 4 5

Figure 3.3: An example of updating classifier window.
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Algorithm 3.2: Update the WC
Input: WC, WB, WI, new classifier c′, list of weights Weight corresponding to

sub-classifiers, errorRate and size limit maxWC of WC
Output: Updated classifier window WC′, updated list of weights Weight′ and

updated window of instances WI′

1 if |WC| < maxWC then
2 WC|WC| ← c′

3 WCweight|WC| ← 1− errorRate
4 WI|WC| ←WB
5 else
6 for i = 0, 1, · · · , maxWC − 2 do
7 WCi ←WCi+1
8 WCweighti ←WCweighti+1

9 WIi = WCinsi+1

10 end
11 WC(maxWC)−1 ← c′

12 Weight(maxWC)−1 ← 1− errorRate
13 WI(maxWC)−1 ←WB
14 end

Tab. 3.2. Accuracy is the ratio of correctly predicted instances to the total instances which

can be computed as:

accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(3.1)

While precision concerns about the ratio of correctly positive instances with respect to all

predicted positive instances. Then to minority and majority, precisionmin and precisionmaj

are as follows respectively:

precisionmin =
True Positive

True Positive + False Positive
(3.2)

precisionmaj =
True Negative

True Negative + False Negative
(3.3)

Table 3.2: Confusion Matrix

Predicted Class

Actual Class
Positive Negative

Positive True Positive False Negative
Negative False Positive True Negative
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If the precisions of both the majority class Precisionmaj and minority class Precisionmin of

the existing classifier are less than 0.5 which indicates that the old classifier is worse than

a random guess, we believe that new classifier is needed. But it is notable that considering

the possibility of imbalance issue, we train new classifier on resmapled instances which

are not same to original instances in this WB. It will be elaborated later. Then, if the

Precisionmaj and Precisionmin of the newly trained classifier are both greater than 0.5, we

add it into the WC. In addition, its weight is set to 1− errorRate, and instances in current

WB used to train this new classifier are saved in the WI. Otherwise, if the new classifier

fails in the precision test, it will be discarded.

3.3.4 Multi-window Ensemble Learning

The overall processing conducted by our Multi-window ensemble learning (MWEL) is

shown in Algorithm 3.3. When the first window arrives, WC and WM are initialised

with empty sets; and the first classifier is trained on the first window. If the precisionmaj

and precisionmaj satisfies the conditions mentioned above, (Algrithm 3.3 line 7), we add

this classifier to WC as the first sub-classifier and set its weight to 1. WI is also be filled

with instances in this window. Later on, for the following sliding windows, whether

or not training or adding a new sub-classifier to WC is determined by the WC updating

strategy described in Subsection 3.3.3. If WC is considered to be updated with a new clas-

sifier c trained on current WB, instances used to train old sub-classifiers and classifiers’

weights are necessary to update together as shown in Algorithm 3.2. Whether WC is up-

dated or not, we always update WM according to rules described in Subsection 3.3.2. As

show in line 35 of Algorithm 3.3, the WM is updated for current WB before next window

of instances arrives. Here, we simplified the procedure saving only the latest minori-

ty instances for the space and time efficiency rather than keeping all minority instances

[148] or select the nearest instance to the current window [3]. The primary procedure is

described in Algorithm 3.1.

In particular, when the next window arrives at time step t, it become to the current

window denoted by WBt. We must update the weights of all sub-classifiers in WC before

we use them on WBt to fit the concept in the window since the window. We firstly com-

pute and normalize the similarity between the current window and existing windows in
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Algorithm 3.3: Multi-window ensemble learning (MWEL)
Input: Instances D = {(X0, l0), (X1, l1), · · · , (Xn, ln)} and size limits Mb of WB,

maxWC of WC, maxWM of WM
Output: WM, WC, WI, Weight and predicted labels L = l0, l1, · · · , lMb

1 Initialise: WB = {}, WM = {}, WC = {}, WI = {} and
Weighti = 1, i = 0, 1, · · · , maxWC

2 for each sequencial instance in D do
3 WB← getBatchO f Instances(maxWB)
4 if |WC| is empty then
5 c← trainClassi f ier(WB)
6 precisionmin, precisionmaj, errorRate, L← classi f y(WB, c)
7 if precisionmin > 0.5 and precisionmaj > 0.5 then
8 WC = WC ∪ c with Algorithm 3.2
9 Weight1 = 1

10 else
11 WB′ ← resample instances in WB using Algorithm 3.4
12 WB′ = WB′ ∪WM
13 c′ ← trainClassi f ier(WB′)
14 precisionmin, precisionmaj, errorRate, L← classi f y(WB, c′)
15 if precisionmin > 0.5 and precisionmaj > 0.5 then
16 WC = WC ∪ c′ with Algorithm 3.2
17 Weight1 = 1
18 end
19 end
20 else
21 for each window of instances in WI do
22 compute Weighti for each subclassifier in WC with Eq. 3.4
23 end
24 precisionmin, precisionmaj, errorRate, L← classi f y(WB, WC)
25 if precisionmin < 0.5 or precisionmaj < 0.5 then
26 WB′ ← resample instances in WB using Algorith 3.4
27 WB′ = WB′ ∪WM
28 c′ ← trainClassi f ier(WB′)
29 precisionmin, precisionmaj, errorRate, L← classi f y(WB, c′)
30 if precisionmin > 0.5 and precisionmaj > 0.5 then
31 WC = WC ∪ c′ with Algorithm 3.2
32 end
33 end
34 end
35 WM← updatetheWM using Algrithm 3.1
36 end

WI to modify the weights of sub-classifiers in WC based on the following observation:

Observation 3.1. The greater the similarity between window Wi and window Wj, the closer are
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the corresponding concepts within them. Therefore, those sub-classifiers trained on windows more

similar to the current window should be given larger weights as follows.

Weighti =
Weighti

(1− sim(WB, WIi) + ε)
, i = 1, 2, ..., maxWC (3.4)

Here, Weighti is the weight of the ith sub-classifier in WC, sim(WB, WIi) is the similarity

between the current window and WIi, and ε is a small constant. Moreover, this obser-

vation can be used to target reoccurring concept drift because an existing sub-classifier

corresponding to a reoccurring concept will obtain a larger weight, which is expected to

provide better results.

For an instance Insk in WB, the predicted class label is determined by a majority

weighted voting scheme. The output value of the majority weight voting scheme can be

a soft label representing to what extent Insk belongs to a class or an exact value of 0 or 1

indicating Insk should belong to a class or not. We adopt the second method that output

the hard class label for each instance. Using WCi(Insk) to denote the classification of new

instances using the sub-classifiers in ci we have the following formulation:

lInsk =


1,

|c|
∑

i=1
Weighti · ci(Insk) > 0.5

0, else
(3.5)

Algorithm 3.4: Resample
Input: WB, expected imbalance rate γ
Output: sampled instances S

1 truePositive, trueNegative, f alsePositive, f alseNegative← classi f y(WB)
2 while |Minority|

|Majority| < γ do
3 sampleMinority← SMOTE( f alseNegative)
4 sampleMajority← randomUnderSample(trueNegtive)
5 end
6 S = truePositive ∪ f alsePositive ∪ sampleMinority ∪ sampleMajority

After classification of the current WB with existing sub-classifiers in WC, we com-

pare the predicated label with the true label of each instance in WB not merely to judge
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whether new sub-classifier is needed, but also see whether there is an imbalance issue.

If one or both of precisionmin and precisionmaj is less than 0.5, an imbalance issue is very

likely to exist within WB, and all instances in WB will be resampled (Algorithm 3.3, line

11 and 26). The resampling is presented in Algorithm 3.4. Correctly classified positive

instances (Ture Positive) remain unchanged because they are not likely to be helpful in

increasing the precision, while wrongly classified positive instances (False Negative) are

over-sampled to increase their quantity when used to train a new sub-classifier. Here,

SMOTE [29] is used to oversample minority instances; while random under-sampling

will be applied on correctly classified majority instances (True Negative) to decrease

the quantity of majority. The iteration of resampling stops when the imbalance ratio

gradually decreases to the predefined threshold. Finally, correctly classified minority in-

stances, wrongly classified majority instances, oversampled wrongly clas-sified minority

instances, and under-sampled correctly classified majority instances consist of the new

training set. New classifier will be trained on it and tested on original instances of WB. If

precisionmin and precisionmaj of this new classifier satisfy the condition that both greater

than 0.5, we add it to WC with Algorithm 3.2. Note that the new classifier will receive

the largest weight by default on the basis of the following observation.

Observation 3.2. Considering the influence of time factor, the latest classifier is more likely to

represent the concept of the current window, and, therefore, this classifier deserves a larger weight.

In general, the majority weight voting method is reasonable and comprehensive method

by integrating the factors of time, similarity between instances and accuracy and preci-

sion of classifiers.

3.4 Experiment and Evaluation

We evaluated our approach on both real-world and synthetic datasets using a variety of

metrics. Experiments were initially conducted to obtain optimal window sizes for the

different datasets. The results of the proposed method were compared with those of two

existing approaches.
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Figure 3.4: The Resampling procedure.

Table 3.3: Dataset Statistics

ID Name # of Instances # of Positive
Instances

# of Negative
Instances

# of Attributes Positive
Index

Negative
Index

Imbalance
Rate

ele Elec 45,312 19,237 26,075 8 1 2 1:1.35
for Forest 286,048 2747 283,301 54 4 2 1:103
air Airlines 539,383 240,264 299,119 7 2 1 1:1.24

mus Mush 8,124 3,936 4,188 23 1 2 1:1.06
th1 Thyroid1 6,832 166 6,666 21 1 3 1:40
th2 Thyroid2 7,034 368 6,666 21 2 3 1:18
po1 Poker1 454,958 39,706 415,252 11 3 1 1:11
po2 Poker2 367,967 17,473 350,494 11 4 2 1:21
gcd GCD 100,000 24,652 75,348 20 2 1 1:3
scd SCD 100,000 25,178 74,822 20 2 1 1:3
rcd RCD 100,000 24,280 75,720 20 2 1 1:3

3.4.1 Datasets

As shown in the first eight rows of Tab. 3.3, we conducted experiments on eight real-

world datasets. The Elec, Forest, Airlines, Poker1, and Pocker2 datasets are publicly

available at MOA datasets1. The Mushroom, Thyroid1, and Thyroid2 datasets are pub-

licly available at the UCI Machine Learning Repository2.

• Elec (ele) was collected from the Australian New South Wales electricity market to

predict the rise and fall of electricity prices, where prices are affected by market

supply and demand, and are set every five minutes.

1http://moa.cs.waikato.ac.nz/datasets/
2http://archive.ics.uci.edu/ml/datasets.html
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• Airlines (air) was used to predict whether or not a flight would be delayed.

• Mushroom (mus) includes descriptions of hypothetical samples corresponding to

23 species of gilled mushrooms, where each species is identified as either edible or

poisonous.

• Thyroid datasets (th1, th2) were used to identify whether or not a patient has thy-

roid disease. To form naturally imbalanced data, we selected class 1 and class 3 to

form th1 and class 2 and class 3 to form th2.

• Poker datasets (po1, po2) consist of five playing cards drawn from a standard deck

of 52 cards. Each card is described using its suit or rank.

Moreover, experiments are conducted on three types of synthetic datasets generated

by algorithms provided in MOA3 which is shown in Fig. 3.5. During the instance genera-

tion, we randomly removed some instances from one class to form imbalanced datasets.

• Gradual concept drift (gcd), where a gradual concept drift begins at the 30,000th

instance to the 100,000th instance.

• Sudden concept drift (scd) takes place suddenly at the 50,000th instance, and the

dataset maintains the new concept until the 100,000th instance.

• Reoccurring concept drift (rcd) occurs at the 30,000th instance, and begins to shift

back to the original concept at around the 50,000th instance until the 100,000th in-

stance.

3.4.2 Evaluation criteria

We employ accuracy (AC), precision, Recall, F1 and G-mean (G-MEAN) to evaluate our

method in this chapter. As discussed in Subsection 3.3.3, the accuracy may be skewed to

the majority. To properly measure how many positive instances our algorithm labelled

3http://moa.cms.waikato.ac.nz/
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(a) (b) (c)

Figure 3.5: Distribution of synthetic datasets given in Tab. 3.3.

are truly positive and how many negative instances our algorithm labelled are truly neg-

ative, we us the following two criteria:

Recallmin =
TruePositive

TruePositive + FalsePositive
(3.6)

Recallmaj =
TrueNeagtve

TrueNegative + FalseNegative
(3.7)

Since we consider that the positive instances are easily dominated by negative instances

under imbalanced circumstance, we put more attention on Recallmin. However, we do not

want to ignore the majority when we sample more minority instances. We use G-MEAN

that considers the recalls of both minority (Recallmin) and majority (Recallmaj) together,

and therefore it will only be large when they are large, which is a better choice under

imbalanced conditions.

G−mean =
√

Recallmin × Recallmaj (3.8)

Then for the measurement of entire data stream, we adopt a previously adopted s-

trategy [100], that assumes the number of total instances is n and n/Mb batches will be

input sequentially and uses the average performance over all batches in the data stream

as follows.

F =
1

dn/Mb e

dn/Mb e

∑
i=1

fi

f , F ∈ {Accuracy, Precisionmin, Precisionmaj,
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(a) AC vs. Window size (b) G-MEAN vs. Window size

(c) Minority Recall vs. Window size (d) Time vs. Window size

Figure 3.6: Sliding window size for different datasets.

Recallmin, Recallmaj, F1min, F1maj, G−mean} (3.9)

Here, f is the indicator of each sliding window, and F is the average indicator of the data

stream. We compared all the indicators in our experiments, but, owing to length restric-

tions, we report here only the results regarding AC, G-MEAN, Recallmin, and processing

time. Many real-world applications are expected to accomplish necessary processing

within a finite period, where a batch must at least be processed before the next batch

arrives. Therefore, data streaming algorithms require a tradeoff between efficiency and

effectiveness.

3.4.3 Sliding window size setup

As discussed in Subsection 3.3.2, there are not widely accepted standards available for

selecting an optimal sliding window size with regard to different types of datasets. A

larger window size provides a smaller number of windows with respect to a specific



60 A Multi-window Based Ensemble Learning for Imbalanced Data stream

dataset length, which reduces the frequency of classifier training, whereas, contrarily, a

smaller window size introduces a greater number of windows with respect to a specific

dataset length, increasing the frequency of classifier training. Moreover, a smaller win-

dow size also provides less training time for each classifier. Therefore, in present study,

experiments were first conducted to determine the optimal sliding window size for dif-

ferent datasets.

Fig. 3.6 shows how the sliding window size affects the classification results, and sub-

stantial differences in the various indicators are observed for different datasets. For in-

stance, in Fig. 3.6a, the for, th1, th2, po1 and po2 datasets exhibit quite high AC when the

window size is 1000, and the AC remains relatively stable with increasing window size

in datasets for, th1, po1 po2, but decreases slowly in the th2 dataset.

However, as shown in Fig. 3.6b, the maximum G-MEAN value for the for dataset oc-

curs at a window size of 500, whereas maximum values are obtained at 400 and 600

for the th1 and th2 datasets, respectively. By comparing the Recallmin values shown in

Fig. 3.6c, we find that, along with the window size increases, the Recallmin values for th1

and th2 datasets, which lack positive instances, decline sharply, leading to decreasing

G-MEAN values. This indicates that the density of minority instances be-comes increas-

ingly sparse with increasing window size. Furthermore, we note from Fig. 3.6d that an

increasing window size initially decreases the training and classifying time; however, for

a window size greater than 1000, the time cost exhibits a general trend of slow growth

for all datasets considered except scd. For a fixed data stream length, the processing time

is the product of two parts: the training and classifying time of each window and the

number of windows. The initial reduction in the processing time is due to the decreas-

ing number of windows, whereas the longer processing time required for each window

results in the general rise in later stages with increasing window size.

Based on considerations of the effectiveness and processing efficiency, we establish

the optimal window size for each dataset. The values are listed in Tab. 3.4, and the fol-

lowing experiments were conducted according to this standard.

It is necessary to point out that, in actual applications, it is unrealistic to calculate the

optimal sliding window size in advance. As an alternative, the optimal sliding window

size can be determined based on a small set of available instances. Here, we focus on
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Table 3.4: Optimal sliding window sizes for different datasets

ele for air mus th1 th2 po1 po2 gcd scd rcd

Window size 1300 1300 800 900 100 200 600 1000 1400 1400 1300

examining the effect of window size on different datasets, and a self-adaptive optimal

sliding window is reserved for future study.

3.4.4 Minority window size setup

We examined the influence of the minority window size on the classification perfor-

mance, and present the results in Fig. 3.7. The results indicate that most datasets are

insensitive to the minority window size. However, the mus, gcd, scd, and rcd datasets

exhibit a decreasing AC with increasing minority window size, as shown in Fig. 3.7a. As

shown in Fig. 3.7b, the G-MEAN values of most datasets, except air, gcd, scd, and rcd, re-

main stable around a window size of 100. Since the minority win-dow is designed to im-

(a) AC vs. Window size (b) G-MEAN vs. Window size

(c) Minority Recall vs. Window size (d) Time vs. Window size

Figure 3.7: Minority window size for different datasets.
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Table 3.5: Optimal minority window sizes for different datasets

ele for air mus th1 th2 po1 po2 gcd scd rcd

Window size 500 700 700 100 300 300 100 200 800 800 900

prove the probability of identifying positive class instances under imbalanced conditions,

the results in Fig. 3.7c demonstrate that an increasing window size increases the values

for most datasets. However, the for, ele, th1, and mus datasets remain nearly unchanged

regardless of the window size because minority instances within these four datasets are

distributed more evenly than in the other datasets. In addition, the ele dataset has a low

imbalance rate (1:1.35), and, thus, the window size has little influence on.

Fig. 3.7d indicates that the processing time typically increases as the minority window

size increases, although the processing times of th1 and th2 remain nearly unchanged be-

cause the total numbers of minority instances within these two datasets are only 166 and

368. Based on considerations of effectiveness and efficiency, we established the optimal

size of the minority window for each dataset, as listed in Tab. 3.5, and the following

experiments were conducted according to this standard.

3.4.5 Classifier window size setup

Because we employ an ensemble classifier and weighted majority vote, experiments were

conducted to determine the optimal classifier window size, and the results are show in

Fig. 3.8.

As show in Fig. 3.8a, the accuracies of th2 and scd initially increase with increasing

classifier window size, and then remain stable, whereas gcd and rcd are observed to

decrease, particularly for small window sizes. The other datasets however appear to be

insensitive to the classifier window size. The G-MEAN values shown in Fig. 3.8b exhibit

very similar trends to those of the AC. However, the Recallmin values shown in Fig. 3.8b

decrease slowly with increasing classifier window size, indicating that a large number of

sub-classifiers is not always a good choice. The processing time consumed with respect

to the classifier window size is show in Fig. 3.8d. Based on considerations of effectiveness

and efficiency, the optimal classifier window sizes for most of the datasets considered are

less than 6.
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(a) AC vs. Window size (b) G-MEAN vs. Window size

(c) Minority Recall vs. Window size (d) Time vs. Window size

Figure 3.8: Classifier window size for different datasets.

3.4.6 Comparison with existing methods

The performance of the proposed MWEL (MW) method is compared with two state-of-

the-art approaches, denoted as the BD [100] and CS [190] approaches.

• BD propagates positvie instances and misclassified instances in the negative class

to make the boundary instances as distinguishable as possible, thus increasing pre-

cision while minimally affecting recall.

• CS treated conditions with or without concept drift differently to apply different

classifier updating polices after balances the dataset with sampling method and

trians new sub-classifier on the training set. Specifically, when the concept drift is

detected, data instances represented new concepts are injected into old training sets

corresponding to existing sub-classifiers with a certain probability p to re-train sub-

classifiers for the ensemble classifier. While no concept drift found, CS selectively

update the sub-classifiers according to their AUC value. Follow the author, we set
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p = 0.75.

We choose them for the reason that the authors claimed that their approaches per-

formed better than those to which they were compared, but these two methods have not

been compared directly with each other under equivalent evaluation metrics. The results

of the comparison are shown in Fig. 3.9.

(a) AC vs. Window size (b) G-MEAN vs. Window size

(c) Minority Recall vs. Window size (d) Time vs. Window size

Figure 3.9: Distribution of synthetic datasets given in Tab. 3.3.

Fig. 3.9a shows that the AC of MW is comparable those of BD and CS for most of

the datasets considered. Because MW focuses greater attention on minority instances,

the precision of the majority instances suffer, which affects the AC. Fig. 3.9b shows that

the G-MEAN values of MW are generally close to those of BD; and MW outperforms

CS for all datasets. When considering G-MEAN and Recallmin in Fig. 3.9c together, we

note that, for th1 and th2, BD exhibits obvious advantages in relative to MW, while

the advantages are reversed with respect to G-MEAN. BD obtains better Recallmin results

because the approach accumulates all positive instances to build successor sub-classifiers.

However, an excessive number of minority instances may overwhelm the majority, and,
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Table 3.6: Wilcoxon signed rank test statistics for comparing methods

p− value

AC G-MEAN Recallmin Time

MW vs. BD 0.27832031 0.14746094 0.14746094 0.03222656
MW vs. CS 0.46484375 0.00488281 0.76464844 0.00976563
BD vs. CS 0.14746094 0.00097656 0.36523437 0.32031250

thus, the G-MEAN results suffer. In addition, a large number of minority instances also

incurs greater processing time, as shown in Fig. 3.9d. MW is much more efficient than

BD, except for datasets for and mus, which are nearly balanced, and is consistently more

efficient that CS except for datasets po1 and po2. In actuality, the processing time for BD

on the air dataset was greater than twenty hours, but we set it to 280 s as the upper bound

for display purposes.

In addition to the visual comparison given in Fig. 3.9, we also applied the Wilcoxon

signed rank test to compare the statistical differences among MW, BD and CS, and the

corresponding p-values are listed in Tab. 3.6. Although BD achieves larger G-MEAN

and Recallmin values than MW for some datasets, no statistically significant difference is

observed among the three methods in terms of AC with a significance level ℵ = 0.05 .

However, for G-MEAN and , MW is better than CS. As for processing time, MW performs

better than BD and CS at the given significance level.

3.5 Summary

In this chapter, we proposed a multi-window based ensemble learning (MWEL) frame-

work to predict the class labels of newly arriving instances for classification of imbal-

anced streaming data. We utilize multiple windows to preserve the current data batch,

selected positive instances, and the set of latest sub-classifiers as well as the correspond-

ing sets of instances used to train each sub-classifier. Moreover, before predicting the

label of incoming instances, we update the weight of each sub-classifier by calculating

the similarity between the current window and previous windows used to train each

sub-classifier. A weighed majority voting strategy is then used to predict the class label.
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A new sub-classifier is trained only when the current ensemble classifier exhibits low

precision for one or both minority and majority classes. Under conditions of substantial

imbalance, we oversampled minority instances and under-sampled ma-jority instances.

Extensive experiments on both real-world datasets and synthetic datasets demonstrated

that our method can process imbalanced stream data efficiently and effectively, and, in

certain respects, outperforms existing methods, particularly with respect to processing

time.



Chapter 4

Semi-supervised Topic Detection for
Text stream in Online Social Context

As an important research direction of text mining, topic detection and tracking (TDT) under mod-

ern media circumstances has been dramatically innovated with the ever-changing online social net-

work and inconspicuous connections among participants in the Internet communities. Apart from the

word features of analysing materials, such as news articles and personal or professional comments, the

auxiliary information attracts increasing attention from the research community. Meanwhile, numer-

ous interrelations hiding in the corpus and corresponding network participants also promote topics’

evolving, not only apparent solid connections, for example two documents that have the same tags and

two participants who are close colleague, but also weak connections which are often unspectacular and

with little causal relations. Therefore, answering the question how to exploit and use this hidden in-

formation in the social network will extend the landscape of research on TDT. In this paper, we employ

the followers’ preference extracted from Twitter as the social context that accompanied the correspond-

ing news articles and explore the interior links among them to develop a non-negative factorization

methods with semi-supervised information derived from the original data. Furthermore, experiments

are conducted on real and semi-synthetic data sets to test the performance of topic detection and fea-

ture selection for further documents clustering with k-NN algorithm. The results demonstrate that

the proposed method outperforms baselines and state-of-the-art methods.

4.1 Introduction

TOPIC detection and tracking (TDT) is no doubt a well-studied research field under

the circumstance of information overload, as well as the rise of new media, for

example social media and we media. The various platforms of the latter, like the online

social networking services, have provided the means that people can find things out

with their own version of the truth for themselves and share their views instantly, which

67
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dramatically changed the way how society is informed. However, as the classic 80-20

rule was widely observed in many fields, not just business and management, traditional

medium still reigns supreme, spreading the so-called most powerful ideas and only the

perspectives they want people know to the gullible public. In spite of this, the new media

actually innovate the information transmission on width and depth, as well as the speed.

Therefore, the research of TDT gradually attempts to combine text analysis and social link

together to robustly design topic models. Many benefits come with this progress. First

of all, it could alleviate some of the multiple problems caused by the lexical variation,

lexical sophistication and lexical errors people used to describe a particular event or idea

to some extent. And secondly, it would be a more realistic version of the analysis for text

content and social context, which mutually restricts and supports each other. In addition

to these, it is not in contradiction with the research of community detection and social

links mining in social media, but enhance each other and open a new avenue for both of

them.

Most of the traditional content-based topic discovery methods, including matrix de-

composition based methods [25,91,112] and probabilistic approaches [20,72,147], mainly

focus on textual content mining for latent topics, rather than other incidental informa-

tion, such as the geography location, time and user related records. Nevertheless, the

real implication of words is highly dependent on the context, in which they occur, not

only because of the complexity of vocabulary, but also because of the various expressing

forms. Different time and circumstances may give spectators different perspectives even

for the same article. For example, we will have absolutely different thoughts to Donald

Trump’s profiles in the past year and several years ago. An article of Trumps profiles

was merely a matter of celebrity resume several years ago. Maybe it was a little piece

in a stack of commercial documents in five years ago, which might involve corporate

development, investment, financing and so on. While seeing his profile in the last year,

the most likely topic was about the US election under America’s political problems and

it has been more of a national political issue even concern to other countries around the

world after his election victory. That is to say, his profile plays a role in affecting the read-

ers’ political stands, rather than a normal description of a celebrity nowadays. We could

observe similar changes in many other occasions, most of which are always ignored by
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many classical topic discovery algorithms.

Normally, the internal coherence of user’s preference in a particular period helps us

to find groups of people that share same common interests and topics. Based on this

“issue of common concern” view, Kalyanam etc. [81] assumes that the latent topics can

also be expressed by users’ distribution apart from textual contents. Hence, by combin-

ing these two parts, their method works out more precise topics. But in the meantime,

the algorithm complexity increases dramatically as the amount of users becomes very

huge. The distribution of users plays a defining role, which is always changing with the

arising, evolving and defusing of topics over time. Moreover, the total amount of users is

immense, comparing with the quantity of textual features caused by the enormous vol-

ume of participants the online social network brings. In a twist, the previous hypothesis

can be understood as the perspective of “users with common shares”. In other words,

the distribution of posts and shares can also represent users’ preferences. In this paper,

we will use two matrices to denote the relational information of the textual content and

the social context, then factorize each of them with a generalized function, bonding fac-

tors from different matrices together. To associate above two parts, we propose a novel

non-negative matrix factorization (NMF) approach based on collective matrix factoriza-

tion approach [149]. To our knowledge, existing NMF algorithms in the domain of topic

discovery are unsupervised learning which lack features to exploit implicit associations

inside of the data matrix. To retrieve and leverage these relations, we consider the con-

straint propagation, which has applied to spectral [107] and validate on image clustering

[171] recently.

For the research of topic detection, it is infeasible to utilise either fully labelled training

set or a part of labelled data as the works in image processing and face recognition [102,

107,171] did, not merely due to the expensive cost [16], but because the topic labels, which

is known as “hard” or inherent constraints, is the target that we seek in its own right. This

implies that all the data points we have are unconstrained with respect to each other in

the initialization phase of textual content and social context. In this paper, to overcome

this unfavourable precondition, we propose a constraint propagation scheme to explore

the pairwise constraints within data points which are perceived as “weak” or potential

constraints that may be influenced by certain circumstances. We construct two weight
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matrices respectively on the initial data matrices’ local structures in the first step and

propagate the restriction between two data points over the whole matrix in both vertical

and horizontal directions until convergence. New weight matrices will be developed

later with the pairwise constraints for each original data matrices, and will be applied

as regularization terms to preserve and consolidate the geometrical structure in the low-

dimensional representation space in the following collective NMF step. Furthermore,

we propose a locally weighted matrix factorization (LWNMF) method on both textual

content and social context matrices to obtain reliable approximation. This weight scheme

is used to precisely measure the geographical distance between the original data points

and the approximate value, which can be used in the next iteration as an updated weight

matrix to locally minimize the cost function.

The main contributions reported in this Chapter are summarised as follows:

• When discover topics in online text streams, the auxiliary information, the corre-

sponding social context in particular, is considered as a influence factor because of

the challenges the online social media brings. We propose a collective NMF method

for multi-domain to comply with this trend.

• We leverage the constraint propagation scheme to adequately exploit the hidden su-

pervised information in both text content matrix and social context matrix. The su-

pervised information will helps preserve the geometric structure in low-dimensional

representation space during the optimisation of the collective NMF objective func-

tion.

• Differing from the state-of-the-art collective NMF method on topic detection task,

LETCS [81], which treats the joint matrices as an extra feature to the same domain

and ignore the fact that users in the matrix reflecting the social context are practi-

cally impossible to complete at the beginning, our method is capable of processing

cases with changing and evolving groups of users. The user preference will be used

as the auxiliary information which is independent from the corpus to some extent.

In other words, our method can be also adopted to scenarios without social context.

• We implement the proposed Collective NMF method with the Constraint Propa-

gation (NMFCP) on real datasets and synthetic datasets over different scenarios.
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Experimental results show that our method can improve the topic detection and

documents clustering performance greatly and also validate the effectiveness of

the constraint propagation scheme.

• We afterwards propose a locally weighted scheme to precisely measure the ge-

ographical distance between the original data points and the approximate data

points after each iteration. The weight will be used to better approximate certain

parts of the data matrix in later iterations. Applying this weight scheme on N-

MFCP is to seek an improvement of the algorithm stability, which is verified by

experiments focusing on topic detection task.

The rest of this paper is organised as follows. Section 4.2 briefly reviews the previous

work on topic detection and tracking. We give a preliminary definition of our model in

section 3. Section 4 explains our constraints propagation scheme in detail. Section 5 pro-

poses our multi-domains NMF with constraints propagation methods with the updating

rules and computational complexity analysis. Section 6 shows the experimental results

and section 7 concludes the paper.

4.2 Previous Work

Topic detection and tracking has been a fundamental problem in a wide range of appli-

cations, such as news event analysis[108], information discovery [79, 177], social interest

discovery [43,99], social emotion learning [197] and expert system [137]. Though method-

s of TDT in above applications for different domains have been paid particular attentions

to, nearly all of them are developed on the basis of latent topic models which represented

by pLSA (probabilistic latent semantics analysis [73]) and LDA (latent dirichlet allocation

[20]). Latent topic model, generally speaking, aims to model representations to indicate

the latent variables, topics in particular, in underlying structure of discrete data. In this

paper, we primarily concerned with two roughly categories of topic modelling approach-

es. One is probabilistic model based approaches [20, 147] and another one NMF-based

approaches [81, 157].

Comparing to the basic latent semantic analysis (LSA) [91], pLSA [72] model each

topics as multinomial distributions over words, which extend the SVD based LSA with
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the statistical distribution. LDA [20] developed pLSA with a Dirichlet distribution on the

distribution of topics for each article and words distribution to this topic is multinomial

distribution. To exploit the link structure among documents, PHITS [37] extend the pLSA

by defining a generative process for citations as hyperlinks. Erosheva et al. propose a

similar idea Link-LDA [55]. Nallapati et al. [118] developed pairwise Link-LDA and

Link-PLSA-LDA by emphasizing directional citations and asymmetric citing links. For

dynamic features in data streams, Blei et al. further extended LDA to Dynamic Topic

Model (DTM) [19] which is a representation of discrete dynamic topic model (dDTM).

In the counterpart of dDTM, known as continuous time dynamic topic model (cDTM),

Wang et al. [169] employed Brownian motion to model continuous evolution topics in

sequential time-series data. With the prevalent trend of social media, for example posts

and comments on Twitter, some works [115, 165] are proposed to overcome challenges

including text shortness, low meaningful description and high velocity stream. Twevent

[96] is a feature-pivot methods, in which tweet segments are used to detect and cluster

events.

Non-negative matrix factorization (NMF) [94] has been a mainstream method of part-

based representation for research communities of information retrieval, pattern recogni-

tion and computer vision. Previous works [44, 62] have demonstrated the close con-

nection between NMF and pLSA. Xu [183] proposed a NMF-based document clustering

method resorting to LSA [91] idea, in which it does not require the decomposed matrices

are orthogonal and it guarantees that feature values of all documents are non-negative in

all latent semantic directions and each document can be presented as additive combina-

tion of the base latent topics. Cao et al. proposed Online-NMF in [25] to detect and track

the moving of latent factors in data streams, considering multiple topics coocurrence. A

quite similar optimization strategy to NMF was used as dictionary learning in [82], which

identifies the incoming observation documents as a novel one or not with `1-penalty to

measure reconstruction error and new dictionary will be learnt with novel documents.

Other NMF-based dynamic approaches [139,168] were proposed to capture the evolving

set with temporal regularization terms. Recently, Suh et al. [157] impose ensemble model

on NMF-based method to discover more precise local topics under noisy circumstance.
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4.3 Preliminary and Problem Formulation

The study of Non-negative Matrix Factorization can be traced back to Lee and Seungs

work [94] in which the non-negative constraint was added and parts-based learning of

objects was figured out for computers as human brains do. Manifolds of NMF has been

developed after that. In this section, we briefly introduce the fundamental contributions

that related to our problem made by previous works and formulate our problem followed

by.

4.3.1 Standard Non-negative Matrix Factorization (NMF)

Given an input matrix X ∈ Rm×n
+ with n data points of m dimensional features, the stan-

dard NMF decomposes the original X to two low-rank non-negative matrices H ∈ Rm×k

and V ∈ Rn×k, whose linear product approximates as close to the original matrix as

possible and normally the new rank K � min(M, N). The formulation is as follow:

X ≈ HVT

argmin
H,V≥0

D(X, HVT) +R(H, V) (4.1)

Where, loss function D(X, HVT) quantifies the cost of the approximation and R(H, V)

is the regularization penalty. From the definition, we can always find two entities and

a relation between them. The NMF process, in essence, is a linear regression, which

determines the relation description between the two entities by given that the relation

exists.

4.3.2 Collective Matrix Factorization (CMF)

By considering the complicated interactions in real application, [149] proposed the col-

lective NMF aims to trade on the correlations between matrices that contain more than

one relation and associates the factors involving in different relations together with a

generalised-linear link function. Take a two-relation schema as an example: two data

matrices, X ∈ Rm×n representing the users-movies relation and U ∈ Rn×l representing

the movies-genres relation, we use the shared factor V in both constructions and have
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the decomposition and objective function as follows:

X ≈ HVT and U ≈ VGT (4.2)

argmin
H,V,G≥0

µD(X, HVT)+(1− µ)D(U, VGT) +R(H, V, G) (4.3)

Where µ ∈ [0, 1] is a trade-off parameter to weight the relative importance between two

relations. If necessary, a third or more relations, movies-actors, can be involved. Then the

objective function of CMF can be extended to:

argmin
H,V,G,W,···∈{C}

(
µ1D(X, HVT) + µ2D(U, VGT) + µ3D(Z, GWT) + · · ·

)
+R(H, V, G, · · · )

(4.4)

H, V, G, W, · · · ∈ {C} represents constraints that latent factors subject to and trade-off

parameter µi of ∑i µi = 1 regulates the relative weight among different relations.

Collective Matrix Factorization can be further categorised into two types, multi-view

CMF [48] and multi-relation CMF [149]. Let us take CMF in topic detection as an exam-

ple. The two types of methods combines relevant external information beyond textual

information itself in principle; however, they have different assumptions on the newly

involved matrix. LETCS [81] represents multi-view CMF. It treats the new factor, user-

s, in the second relation matrix as features of documents in the user matrix; while our

method explores users’ preference by the combination of documents from the second

relation matrix. At the same time, multi-relation CMF utilise the users’ preference to

constraint the relations of documents in the first relation matrix.

4.3.3 Problem Definition

Though the new articles generates incrementally in real scenario, at a time step, we col-

lect a batch of new articles released in a time interval from the news stream as a corpus

represented by a term-document matrix X = [X1, X2, · · · , Xn], and each document Xi is a

tf-idf vector over the vocabulary of m terms. Under this view, the m terms are textual fea-

tures. As soon as an article releases, reactions of readers to it, such as leaving comments

on it and reposting it, will be continually generated as a flow in the social network plat-
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forms. We regard these reactions as a user preference reflecting the latent social context

and similarly fix the time interval in which reactions are collected as the second relation

between articles and users to form a collective matrix factorization problem as follow:

minimise µD(X, HVT) + (1− µ)D(U, VGT) +R(H, V, G)

subject to H, V, G ≥ 0 (4.5)

Where, non-negative matrix U = [U1, U2, · · · , Ul ] ∈ Rn×l , where l users are activated in

this time interval and n articles are involved as features. By definition, each column in

matrix U is also a data point, but the preference feature is n dimension.

4.4 Constraint Propagation

As the NMF is an unsupervised method which optimise the convex objective function to

obtain good result, the supervised information of the data set are not being used general-

ly. [171] mentioned that class labels and pairwise constraints are two commonly accepted

sources of supervised information for a data set. The former, our target, is what fixed in

the internal nature of each data point, while the later just gives us a weak pairwise con-

nection of two data points, whether the two points can be linked or not. Intuitively,

the later can be derived from the former, for example, points with the same label share

a must-link connection and otherwise a cannot-link appears between them, vice versa;

however, we cannot do such inverse deduction on the pairwise constraints that embod-

ies its weakness. On the other hand, the pairwise constraints can be obtained more wide-

ly and enhanced by some propagation mechanisms in graph theory [107, 171]. In this

section, we explain how the constraints will propagate for data points in the original ma-

trices X and U from horizontal and vertical view. An illustration can be found in Fig. 4.1.

At the beginning, we construct the initial pairwise constraint matrices ZX =
{

ZXij
}

n×n

and ZU =
{

ZUij
}

l×l with Eq. 4.6. Because the constraint propagation procedures of ma-

trices X and U will follow the same schema, we demonstrate one matrix Z instead of both

of them here for concision. Then, in the following, unique definitions will not be made

for matrices X and U separately. For original n-dimensional data point-feature matrix,

denotes Ci as the feature set involved by data point and Z = {zij}n×ncan be initialized
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as:

zij =


+1, r > α

−1, r < β

0, otherwise.

(4.6)

Where r =
|Ci

⋂
Cj|

|Ci
⋃

Ci | . α and β are the adjustable parameters for deciding whether two

data points can be linked by the same label, in our case, same topic. Jaccard similarity

coefficient is used here to measure the similarity between the pair of data points.

……

A

B

C

D

E

F

…
…

…
…

…
…

…
…

…
…

……

……

……

……

……

Pairwise Constraints Propagation 
(Vertical and Horizontal) 

Original Space

Low Dimensional Space

Figure 4.1: After pairwise constraints propagated in vertical and horizontal directions,
more connections been found and enhanced.

We have directly obtained the pairwise constraints with little information loss by far.

It can be found that some pairs of data points are not constrained (i.e. zij = 0), that

is, the corresponding data points xi and xj are initially unlabelled. Therefore, the goal

is to transductive infer the labels of the unlabelled points [195]. Here we denote the

propagated pairwise constraints matrix as F = { fij}n×n :
∣∣ fij
∣∣ ≤ 1. More concretely, Z is

the initial status of F .
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The weight matrix W =
{

wij
}

n×n is used to show the proximity of two data points

xi and xj. For document processing tasks in IR community, the dot-product weighting

is pretty common [24]. Here, we use normalized dot-product, which is also known as

cosine similarity of the two vectors to initially define W as

wij =


xi ·xj

|xi ||xj| , r ≥ α

0, otherwise.
(4.7)

Construct a symmetric matrix L = S−1/2WS−1/2 with a diagonal matrix S in which

diagonal elements sii = ∑j wij and off-diagonal elements sij = 0. The following iterations

are executed from vertical and horizontal perspectives, showing how each data points

takes over the information from its neighbours and keep its initial information.

1. For the vertical constraint propagation, iterate

Fv(t) = δLFv(t− 1) + (1− δ)Z (4.8)

until converge, where the parameter δ ∈ (0, 1) specifies the ratio of information

from itself and its neighbours.

2. For the horizontal constraint propagation, iterate Fh(t) = δFh(t− 1)L + (1− δ)F ∗v ,

where F ∗v = (1− δ)(I− δL)−1Z is the limit of {Fv(t)}.

Proof. By previous definition, F (0) = Fv(0) = Z. By the Equation (3), we have

Fv(1) = (δL)Fv(0) + (1− δ)Z

Fv(t) = (δL)tZ + (1− δ)∑t−1
i=0 (δL)iZ. (4.9)

Since 0 < δ < 1 and the eigenvalues of L in [−1,+1], according to the principle of

infinite geometric series, we have

lim
t→∞

(δL)t = 0 andlim
t→∞

t−1

∑
i=0

(δL)i = (I− δL)−1
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Therefore, Fv(t) converges to

F ∗v = (1− δ)(I− δL)−1Z (4.10)

3. Denote F ∗ = F ∗h is the final representation of the propagated pairwise constraints,

where F ∗h = (1− δ)F ∗v (I− δL) is the limit of {Fh(t)}.

Proof. By step 2) we have FT
h (t) = δLTFT

h (t− 1) + (1− δ)F ∗vT = δLFT
h (t− 1) +

(1− δ)F ∗vT. That is, the horizontal propagation converges as the vertical propaga-

tion did.

F ∗Th = (1− δ)(I− δL)−1F ∗v
T (4.11)

Hence, the pairwise constraint matrix can be final represented as

F ∗ = F ∗h = (1− δ)F ∗v (I− δL)−1

F ∗ = (1− δ)2(I− δL)−1Z(I− δL)−1 (4.12)

In the next step, the pairwise constraint matrix F ∗ is used to regulate the original

weight matrix W. To make it clear, we use a new weight matrix W̃ =
{

wij
}

n×n

w̃ij =


1− (1− f ∗ij)(1− wij), f ∗ij ≥ 0

(1 + f ∗ij)wij, f ∗ij < 0.
(4.13)

The procedures of constraint propagation for text context and user preference matri-

ces are summarised in Algorithm 4.1.

In the following steps, W̃ will be used for constrained non-negative matrix factoriza-

tion. From the algorithm we designed above, W̃ shows the following nice properties:

1. W̃ is symmetric and non-negative.
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Algorithm 4.1: Constraint Propagation for Textual Content Matrix and Social Con-
text Matrix

Input: Article matrix X ∈ Rm×n, user preference matrix U ∈ Rn×l , parameter δ
Output: Weight matrices W̃X ∈ Rn×n, W̃U ∈ Rl×l

1 Construct the initial pairwise constraints matrices ZX and ZU by Eq. 4.6
2 Initialize propagated pairwise constraints matrices FX and FU with ZX and ZU

correspondingly
3 Define weight matrices WX and WU by Eq. 4.7
4 Construct symmetric matrices LX = S1

−1/2WS1
−1/2 and LU = S2

−1/2WS2
−1/2,

where diagonal matrix S1 =
{

∑j wij

}
n×n

and S2 =
{

∑j wij

}
l×l

5 Update FX and FU from vertical and horizontal perspectives by the limit F ∗ in
Eq. 4.12

6 Compute New weight matrices W̃X and W̃U by Eq. 4.13

Proof. The symmetric feature is inherited from the symmetric of both matrix F ∗

and W. By the definition, wij ∈ [0, 1] and
∣∣ fij
∗∣∣ ≤ 1, then we have

w̃ij =

 1− (1− f ∗ij)(1− wij) ≥ 1− (1− wij) ≥ 0, f ∗ij ≥ 0

(1 + f ∗ij)wij > 0, f ∗ij < 0
.

2. W̃ is adjusted by F ∗ with no distinction between f ∗ij ≥ 0 and f ∗ij < 0.

Proof. w̃ij is differentiable at wij = 0 and for all f ∗ij ,
dw̃ij /dwij = 1−

∣∣∣ f ∗ij ∣∣∣.
3. W̃ shows that the pairwise constraint between two data points has been reinforced

after propagation.

Proof. The Equation (8) is a monotonically increasing function of f ∗ij . Therefore, the

new weight matrix W̃ increases w̃ij ≥ wij with f ∗ij ≥ 0 and decreases w̃ij < wij with

f ∗ij < 0.

As mentioned before, more potential pairwise information gained from the constrain-

t propagation procedure is incorporated into new weight matrices W̃X ∈ Rn×n and
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W̃U ∈ Rl×l . The properties above guarantee that data points sharing the same topic-

s have relatively larger associated scores and vice versa. Next, we will perform non-

negative matrix factorization with weight matrices.

4.5 Semi-supervised Non-Negative Matrix Factorization with Con-
straint Propagation

According to the traditional non-negative matrix factorization, the original non-negative

data matrix will be decomposed to two non-negative matrices, whose linear product ap-

proximates as accurate to the original matrix as possible. In our case, we decompose the

articles matrix X = [xri] ∈ Rm×n and the user preference matrix U =
[
uip
]
∈ Rn×l in

terms of latent topics. We firstly set the number of topics as k, which is usually smaller

than n, l and m. Then, we have:

X ≈ HVT s.t. H, V ≥ 0 (4.14)

U ≈ VGT s.t. V, G ≥ 0 (4.15)

Where, H ∈ Rm×k is a topic matrix. Each column H·k′ represents a latent topic ex-

pressed as a combination of several terms. Each row Vi = [vi1, · · · , vik]
T of the matrix

V ∈ Rn×k can be regarded as a low dimensional representation of Xi under the new ba-

sis H, that is how each article is arranged in terms of the latent topics discovered in H.

The decomposition of matrix U is sharing the same V to fulfil our assumption that users

will only be concerned with the news what interest them. Therefore, Equation Eq. 4.15

illustrates how users are grouped in terms of the articles having the same latent topics.

Similar to the role of matrix V in Equation Eq. 4.14, each row Gp =
[
gp1, · · · , gpk

]T of

the matrix G ∈ Rl×k can be regarded as the low dimensional representation of U with

respect to the new basis V and each column in G represents a community consisting of

users who have the similar interest in terms of a topic at this moment.

Here, we choose Euclidean distance to measure the dissimilarity of data points under

the lower dimensional representation V and G. To combine the constraint propagation
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information obtained a in Section 4.4, we have the following enhanced distance terms:

φ(V) =
1
2

n

∑
i,j=1

∥∥Vi −Vj
∥∥2 · W̃Xij (4.16)

φ(G) =
1
2

l

∑
p,q=1

∥∥Gp − Gq
∥∥2 · W̃Upq (4.17)

The properties of weight matrices W̃X and W̃U ensure that in low dimensional repre-

sentation, minimising φ(V) and φ(G) can draw similar data points closer and distance

data points belong to different topics in geometrical space which consistent with the in-

trinsic relationships of data points in original data matrix. Since the distances show the

geometrical affinity between data points, they are also called geometrical regularization

terms. In the following, we incorporate the two terms into our collective matrix factor-

ization problem.

4.5.1 The Objective Function

To maximum the approximate decomposition, our optimization problem is minimise the

error between original data matrices and approximation matrices as follow:

f (V, H, G) = argmin
V,H,G

µ(
∥∥∥X−HVT

∥∥∥2

F
+ λ1φ(V)) + (1− µ)(

∥∥∥U−VGT
∥∥∥2

F
+ λ2φ(G)) +R

s.t. V, H, G ≥ 0 (4.18)

Here, we use l1-norm based regularizationR = γ1‖V‖1 + γ2‖U‖1 + γ3‖H‖1 to promote

the sparsity. The regularization parameters λ1 and λ2 controls the contribution propor-

tions of the supervised information parts in our objective function. Parameter µ ∈ [0, 1]

controls the balance between text content part and social context part. If µ = 0, the text

content would be ignored and only users be grouped together with topics.

4.5.2 Updating Rules

The objective function f (V, H, G) is not convex in all the variables together because of

the non-negative constraint. Therefore, we turn to find its local minima instead of the
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WX: pairwise constraint matrix

X: term-document matrix

WU: pairwise constraint matrix 

U: document-user matrix

Linear link

V: document clustering  G: user preference  

matrix multiplication

H: latent topics 

Figure 4.2: An Illustration of Algorithm NMFCP.

global minima with the classical multiplicative updating rules [94]. We first rewrite it as

follow:

f (V, H, G) =µ(
∥∥∥X−HVT

∥∥∥2

F
+

1
2

λ1

n

∑
i,j=1

∥∥Vi −Vj
∥∥2 · W̃Xij)

+ (1− µ)(
∥∥∥U−VGT

∥∥∥2

F
+

1
2

λ2

l

∑
p,q=1

∥∥Gp − Gq
∥∥2 · W̃Upq) +R

=µ(
∥∥∥X−HVT

∥∥∥2

F
+ λ1

n

∑
i=1

VT
i ViD̃Vii − λ1

n

∑
i,j=1

VT
i VjW̃Xij

)

+ (1− µ)(
∥∥∥U−VGT

∥∥∥2

F
+ λ2

l

∑
p=1

GT
p GpD̃Gpp − λ2

l

∑
p,q=1

GT
p GqW̃Upq) +R

=µ
(

tr(X−HVT)(X−HVT)T) + λ1 tr(VTD̃VV)− λ1 tr(VTW̃XV)
)

+ (1− µ)
(

tr((U−VGT)(U−VGT)
T
) + λ2 tr(GTD̃GG)− λ2 tr(GTW̃UG)

)
+R (4.19)
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Here, tr(�) is the trace of a matrix and D̃V and D̃G is diagonal matrices whose diagonal

elements D̃Vii = ∑n
j=1 W̃Xij and D̃Gpp = ∑l

q=1 W̃Upq . Denote L̃X = D̃V − W̃X and L̃U =

D̃G − W̃U, which are symmetric matrices. Then, the objective function can be shown as:

f (V, H, G) =µ(tr
(
(XXT)− 2 tr(XVHT) + tr(HVTVHT) + λ1 tr(VTL̃XV)

)
+ (1− µ)

(
tr(UUT)− 2 tr(UGVT) + tr(VGTGVT) + λ2 tr(GTL̃UG)

)
+R (4.20)

This variation applied properties tr(A+ B) = tr(A)+ tr(B), tr(A) = tr(AT) and tr(BAT) =

tr(ABT). With the Karush Kuhn Tucker condition, we have the primary feasibility V ≥

0, H ≥ 0 and G ≥ 0. We define the Lagrangian as:

L(V, H, G, Ψ, Φ, Ω) = f (V, H, G) + tr(ΨVT) tr(ΦHT) + tr(ΩGT) (4.21)

Let Ψ, Φ and Ω be Lagrange multiplier matrices and their elements ψik′ , φrk′ and ωpk′

are the Lagrange multipliers for constraints vik′ ≥ 0, hrk′ ≥ 0 and gpk′ ≥ 0 respectively.

The partial derivatives of the objective function in Equation Eq. 4.21 with respect to each

variable are:

∂L/∂V = µ(−2XTH + 2VHTH + 2λ1L̃XV)

− (1− µ)(2UG + 2VGTG) + Ψ + γ1eeT (4.22)

∂ f /∂H = −2XV + 2HVTV + Φ + γ2eeT (4.23)

∂ f /∂G = −2UTV + 2GVTV + 2λ2L̃UG + Ω + γ3eeT (4.24)

Where vector e = [1, 1..., 1]T. Using the complementary slackness: ΨV = 0, ΦH = 0 and

ΩG = 0, the update equations are derived as follows:

V← V� µXTH + (1− µ)UG + µ · λ1W̃XV− γ1eeT

V(µHTH + (1− µ)GTG) + µ · λ1D̃VV
(4.25)

H← H� XV− γ2eeT

HVTV
(4.26)

G← G� UTV + λ2W̃UG− γ3eeT

GVTV + λ2D̃GG
(4.27)
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Obviously, when λ1, λ2 → 0, the above updating rules reduce to the updating rules

in origin NMF [94]. The algorithm is summarized in Algorithm 4.2.

Algorithm 4.2: Semi-supervised NMF with Constrain Propagation

Input: Article matrix X ∈ Rm×n, user preference matrix U ∈ Rn×l ,weight matrices
W̃X ∈ Rn×n, W̃U ∈ Rl×l , 1 ≤ k ≤ min(n, l, m), regularization parameters
λ1, λ2, γ1, γ2andγ3, trade-off parameter µ and convergence controller ε

Output: H ∈ Rm×k, V ∈ Rn×k, G ∈ Rl×k

1 Initialize H, V, G by random matrices
2 Construct weight matrices W̃X, W̃U by using Algorithm 4.1
3 while Eq. 4.18 > ε do
4 Fix H and G, update V by Eq. 4.25
5 Fix V and G, update H by Eq. 4.26
6 Fix H and V, update G by Eq. 4.27
7 end

4.5.3 Convergence Study

Regarding the updating rules above, we have the following theorem:

Theorem 4.1. The objective function in Eq. 4.18 is non-increasing under updating rules in E-

q. 4.25 to Eq. 4.27.

A convergence proof of standard NMF example can be found in [94]. Thus, we follow

the similar procedure starting with the definition of an auxiliary function as following:

Definition 4.1. J(x, x′) is an auxiliary function for F(x) if it satisfies: J(x, x′) ≥ F(x) and

J(x, x) = F(x).

For an auxiliary function J(x, x′) of F(x): we have F(x) is non-increasing under fol-

lowing condition:

x(t+1) = argmin
x

J(x, x(t)), (4.28)

derived from

F(x(t+1)) = J(x(t+1), x(t+1)) ≤ J(x(t+1), x(t)) ≤ J(x(t), x(t)) = F(x(t)).
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Proof of Theorem 4.1

Under the Definition 4.1, the key step to prove Theorem 4.1 is to find a proper auxiliary

function with respect to V, H and G. We rewrite the objective function in Eq. 5.1 as

follow:

O = µ

(∥∥∥X−HVT
∥∥∥2

F
+ λ1 tr(VTL̃XV)

)
+ (1− µ)

(∥∥∥U−VGT
∥∥∥2

F
+ λ2 tr(GTL̃UG)

)
+R

(4.29)

We use FV, FH and FG to denote the part of O which is only relevant to V, H and G

respectively.

Updating V While fixing H and G, we can separately minimize O with respect to each

element vab of V. Then, we rewrite the objective function relevant to V as:

FV =µ

(∥∥∥X−HVT
∥∥∥2

F
+ λ1 tr(VTL̃XV)

)
+ (1− µ)

∥∥∥U−VGT
∥∥∥2

F
+ γ1 ‖V‖1 (4.30)

Lemma 4.1. Function

J(v, v(t)ab ) =FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab )

+

(
V[µHTH + (1− µ)GTG] + µ · λ1D̃VV

)
ab

v(t)ab

(v− v(t)ab )
2 (4.31)

is an auxiliary function for FV.

Proof. J(v, v) = FV(v) is trivial. Then we only need to prove J(v, v(t)ab ) ≥ FV(v). To do

this, we have the Taylor series expansion of FV(v):

FV(v) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

1
2

F′′V(v
(t)
ab )(v− v(t)ab )

2. (4.32)

For each element vab in V, it is easy to derive that

F′V(v
(t)
ab ) =

∂FV

∂vab

=µ[(−2XTH + 2VHTH)ab + (2λ1LXV)ab] + (1− µ)[(−2UG)ab + (2VGTG)ab] + γ1
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and

F′′V(v
(t)
ab ) =µ[(2HTH)bb + 2λ1L̃Xaa] + (1− µ)(2GTG)bb.

Thus, by Eq. 4.31 and Eq. 4.32, J(v, v(t)ab ) ≥ (FV)ab(v) is equivalent to:

(
V[µHTH + (1− µ)GTG] + µ · λ1D̃VV

)
ab

v(t)ab

≥ 1
2

F′′V(v
(t)
ab )

Which is

(
V[µHTH + (1− µ)GTG] + µ · λ1D̃VV

)
ab

≥
(

µ[(HTH)bb + λ1L̃Xaa] + (1− µ)(GTG)bb

)
· v(t)ab (4.33)

We have:

µ(VHTH)ab = µ
k

∑
i=1

v(t)ai (H
TH)ib ≥ µv(t)ab (H

TH)bb,

and

(1− µ)(VGTG)ab ≥ (1− µ)
l

∑
p=1

v(t)ap (GTG)pb = (1− µ)v(t)ab (G
TG)bb,

and

(λ1D̃VV)ab = λ1

n

∑
j=1

D̃Vajv
(t)
jb ≥ λ1D̃Vaav(t)ab ≥ µλ1(DV − W̃X)aav(t)ab = µλ1L̃Xaav(t)ab .

Thus, Eq. 4.33 holds and J(v, v(t)ab ) ≥ FV(v).

Then, We can derive the following updating rule for vab by replacing auxiliary func-

tion in Eq. 4.28 with Eq. 4.31:

v(t+1)
ab = v(t)ab − v(t)ab

F′V(v
(t)
ab )(

V[µHTH + (1− µ)GTG] + µ · λ1D̃VV
)

ab

= v(t)ab

(
µXTH + (1− µ)UG + µ · λ1W̃XV− γ1eTe

)
ab(

V(µHTH + (1− µ)GTG) + µ · λ1D̃VV
)

ab
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Since Eq. 4.31 is an auxiliary function, FV is non-increasing under this updating rule.

Updating H We focus on updating H while fixing V and G. We rewrite the objective

function as:

FH = µ
∥∥∥X−HVT

∥∥∥2

F
+ γ2 ‖H‖1 (4.34)

Lemma 4.2. Function

J(h, h(t)ab ) = FH(h
(t)
ab )+F′H(h

(t)
ab )(h− h(t)ab ) +

(HVTV)ab

h(t)ab

(h− h(t)ab )
2 (4.35)

is an auxiliary function for FH.

Proof. J(h, h) = FH(h) is obvious. Then we only need to prove J(h, h(t)ab ) ≥ FH(h). Similar

to the proof of Lemma 4.1, we first write the Taylor series expansion of FH(h) as:

FH(h) = FH(h
(t)
ab ) + F′H(h

(t)
ab )(h− h(t)ab ) +

1
2

F′′H(h
(t)
ab )(h− h(t)ab )

2 (4.36)

where F′H(h
(t)
ab ) = (−2XV + 2HVTV)ab + γ2, and F′′H(h

(t)
ab ) = 2(VTV)ab. By comparing

Eq. 4.35 with Eq. 4.36 we find that J(h, h(t)ab ) ≥ FH(h) is equivalent to

(HVTV)ab

h(t)ab

≥ (VTV)ab (4.37)

We have (HVTV)ab = ∑k
i=1 h(t)ai (V

TV)ib ≥ h(t)ab (V
TV)ab. Thus, the matrix inequality in

Eq. 4.37 holds and J(h, h(t)ab ) ≥ (FH)ab(h).

We can now demonstrate the convergence of Eq. 4.18 under the following updating

rule by replacing Eq. 4.28 with J(h, h(t)ab ) in Eq. 4.35:

h(t+1)
ab = h(t)ab − h(t)ab

F′H(h
(t)
ab )

(HVTV)ab
= h(t)ab

(XV− γ2eeT)ab

(HVTV)ab

Since Eq. 4.35 is an auxiliary function, FH is non-increasing under this updating rule.
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Updating G We focus on updating G while fixing V and H. We rewrite the objective

function relevant to G as

FG =
∥∥∥U−VGT

∥∥∥2

F
+ λ2 tr(GTL̃UG) + γ3 ‖G‖1 (4.38)

Lemma 4.3. Function

J(g, g(t)ab ) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
(GVTV + λ2D̃GG)ab

g(t)ab

(g− g(t)ab )
2 (4.39)

is an auxiliary function for FG.

Proof. J(g, g) = FG(g) is obvious. Then we only need to prove J(g, g(t)ab ) ≥ FG(g). We

compare the Taylor series expansion of FG(g) as:

FG(g) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
1
2

F′′G(g(t)ab )(g− g(t)ab )
2 (4.40)

where F′G(g(t)ab ) = (−2UTV + 2λ2L̃UG)ab + 2(GVTV)ab + γ3 and F′′G(g(t)ab ) = 2λ2L̃Uaa +

2(VTV)bb. By comparing Eq. 4.39 with Eq. 4.40, we find that J(g, g(t)ab ) ≥ FG(g) is equiva-

lent to

(GVTV + λ2D̃GG)ab

g(t)ab

≥ 1
2
(FG)

′′
ab = λ2L̃Uaa + (VTV)bb (4.41)

Since, we have

(GVTV)ab =
k

∑
i=1

g(t)ai (V
TV)ib ≥ g(t)ab (V

TV)bb

and

(λ2D̃GG)ab = λ2

l

∑
p=1

D̃Gapg(t)pb ≥ λ2D̃Gaag(t)ab ≥ λ2(D̃G − W̃U)aag(t)ab = λ2L̃Uaag(t)ab

Thus, Eq. 4.41 holds and J(g, g(t)ab ) ≥ FG(g).
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We can now replace Eq. 4.28 by J(g, g(t)ab ) in Eq. 4.39 to derive the update rule:

g(t+1)
ab = g(t)ab − g(t)ab

F′G(g(t)ab )

(GVTV + λ2D̃GG)ab
= g(t)ab

(UTV + λ2W̃UG− γ3eeT)ab

(GVTV + λ2D̃GG)ab

since Eq. 4.39 is an auxiliary function, FG is non-increasing under this updating rule.

4.5.4 Computational Complexity Analysis

Next, we analyse the computational complexity of our algorithm NMFCP comparing

with the origin NMF. Intuitively, we assume the multiplicative update iteration stops at

time t, the overall cost of the origin NMF is O(tMNK), where the input data matrix is an

M dimensional matrix with N data points and K is set as the number of latent factors.

In our case, the multiplicative updates cost for non-negative factorization is O(tMnK +

tnlK). Before this, the NMFCP needs O(n2M + l2n) to construct the weight matrices for

X and U, respectively. Therefore, the maximum overall cost for NMFCP is O(MnK +

tnlK + n2M + l2n).

4.6 A Locally Weighted Algorithm

In this section, based on above proposed NMFCP, we propose a locally weighted NMF

algorithm (LWNMF) which measures the geography distance between the original data

points and the approximate data points on each iteration of optimisation and tunes up

the optimising focus for next iteration to better emphasise certain parts of the data matrix.

Notice that the local weight proposed in this section is not the same one that described

in Section 4.4 reflecting the weak constraint between original data points. We use symbol

Q to denote this local weight matrix. It will be updated in the beginning of the new

iteration according to the approximation result of the last iteration. In the following, we

will give details about the weight setting function, the incorporated objective function

and the computation of LWNMF.
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4.6.1 Weight Setting

The geographical distance between the original matrix and approximated matrix is mea-

sured by a diagonal weight matrix Q . Intuitively, this distance monotonically decreases

along with the iteration of approximation. We use the Gaussian kernel function wij =

exp
(
− 1

2

(
dij
σ

)2
)

to update Q as follow:

q(t+1)
ii = exp

−
∥∥∥Xi − X(t)

i

∥∥∥2

F
2σ2

 , σ > 0 (4.42)

Where q(t+1)
ii is the local weight of data point Xi in the iteration t + 1.

∥∥∥Xi − X(t)
i

∥∥∥2

F
is the

geographical distance between the original data point Xi and the approximation point in

the iteration t. exp(�) is the exponential function and σ is a free parameter determining

the width of Gaussian kernel, which is the scale of the weight qii under our definition.

If Xi and X(t)
i is very close (

∥∥∥Xi − X(t)
i

∥∥∥2

F
≈ 0), qii will approaches 1; while X(t)

i is far

from Xi (
∥∥∥Xi − X(t)

i

∥∥∥2

F
� 0 ), qii goes to 0. The selection of parameter σ is very crucial

for performance and a challenge problem that engaged much attention from research

community [24, 178].

4.6.2 The Weighted Objective Function

We know that a bigger value of qii indicates a better approximation of a data point in

one iteration and more weight should be given for the next iteration. With the above

definition of locally weight matrix Q , we express the approximation of data points as

Xi ≈ ∑K
k=1 hkvikqii. Through minimizing the following objective function, we will find

the above approximation:

f (V, H, G) = argmin
H,V,G

µ(
∥∥∥X−HVTQX

∥∥∥2

F
+ λ1φ(V))

+ (1− µ)(
∥∥∥U−VGTQU

∥∥∥2

F
+ λ2φ(G)) +R

s.t. V, H, G ≥ 0 (4.43)
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subject to V ≥ 0, H ≥ 0 and G ≥ 0, where φ(V) = 1
2

n
∑

i,j=1

∥∥Vi −Vj
∥∥2 · W̃Xij and

φ(G) = 1
2

l
∑

i,j=1

∥∥Gp − Gq
∥∥2 · W̃Upq are two geometrical regularization term mentioned in

Section 4.5. λ1 and λ2 are the regularization parameters respectively. Weight matrix QX

and QU are initially constructed with identity matrix I = diag(1, 1, ..., 1) and updated in

the beginning of each iteration until Eq. 4.43 approaches the local minima.

4.6.3 Computation and Convergence

The objective function in Eq. 4.43 is also not convex in all the variables together as ex-

plained in Subsection 4.5.2. Next, we find its local minima instead of the global minima

by iteratively updating one variable while fixing others. We first define its Lagrangian

function with Lagrange multipliers Ψ, Φ and Ω as follow:

L(V, H, G, Ψ, Φ, Ω) =µ

(∥∥∥X−HVTQX

∥∥∥2

F
+ λ1 tr(VTL̃XV)

)
+ (1− µ)

(∥∥∥U−VGTQU

∥∥∥2

F
+ λ2 tr(GTL̃UG)

)
+R+ tr(ΨVT) + tr(ΦHT) + tr(ΩGT) (4.44)

Computing the partial derivatives of Eq. 4.44 with respect to each variable and using

the KKT conditions, we will obtain the minima with setting partial derivatives to zero,

(∂L/∂H ) hrk′ = 0, (∂L/∂V ) vik′ = 0 and (∂L/∂G ) gpk′ = 0. Since the locally weight ma-

trices QX and QU are symmetrical diagonal matrices, denote Q̃X = QXQX
T = diag(q2

ii)

and Q̃U = QUQU
T = diag(q2

pp). The updating equations are derived as follows:

V← V� µ(QXXTH + λ1W̃XV) + (1− µ)UQUG− γ1eTe
µ(Q̃XVHTH + λ1D̃VV) + (1− µ)VGTQ̃UG

(4.45)

H← H� XQXV− γ2eTe
HVTQ̃XV

(4.46)

G← G� QUUTV + λ2W̃UG− γ3eTe
Q̃UGVTV + λ2D̃GG

(4.47)

Regarding the updating rules above, we have the following theorem:
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Theorem 4.2. The objective function in Equation Eq. 4.43 is non-increasing under updating

rules in Eq. 4.47 to Eq. 4.47.

We give theoretical proof to Theorem 4.2 separately with respect to each variables in

the rest of this section.

Proof of Theorem 4.2

Under the Definition 4.1, we should first properly define auxiliary function for V, H and

G with reference to the objective function in Eq. 4.43. We use FV, FH and FG to denote the

part of O which is only relevant to V, H and G respectively.

Updating V While fixing H and G, we rewrite FV as follow:

FV =

(
µ

[∥∥∥X−HVTQX

∥∥∥2

F
+ λ1 tr(VTL̃XV)

]
) + (1− µ)

∥∥∥U−VGTQU

∥∥∥2

F
+ γ1 ‖V‖1

)
ab

(4.48)

Considering any element vab in V, we can easily derive that:

F′V(v
(t)
ab ) =

∂FV

∂vab

=µ[QXaa(−2XTH)ab + Q̃X
T
aa(2VHTH)ab + (2λ1LXV)ab]

+ (1− µ)[(−2UQUG)ab + (2VGTQ̃UG)ab] + γ1 (4.49)

and

F′′V(v
(t)
ab ) =µ[2Q̃X

T
aa(H

TH)bb + 2λ1L̃Xaa] + (1− µ)(2GTQ̃UG)bb. (4.50)

Lemma 4.4. Function

J(v, v(t)ab ) =FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab )

+

(
µ(Q̃XVHTH + λ1D̃VV) + (1− µ)VGTQ̃UG

)
ab

v(t)ab

(v− v(t)ab )
2 (4.51)

is an auxiliary function for FV.
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Proof. J(v, v) = FV(v) is obvious. Then we only need to prove J(v, v(t)ab ) ≥ FV(v). To do

this, we have the Taylor series expansion of FV(v):

FV(v) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

1
2

F′′V(v
(t)
ab )(v− v(t)ab )

2. (4.52)

Thus, by Eq. 4.51, Eq. 4.52 and Eq. 4.50, J(v, v(t)ab ) ≥ (FV)ab(v) is equivalent to:

(
µ(Q̃XVHTH + λ1D̃VV) + (1− µ)VGTQ̃UG

)
ab

v(t)ab

(4.53)

≥ µ[Q̃X
T
aa(H

TH)bb + λ1L̃Xaa] + (1− µ)(GTQ̃UG)bb (4.54)

We have:

µ(Q̃XVHTH)ab = µ
k

∑
i=1

v(t)ai Q̃Xaa(HTH)ib ≥ µv(t)ab Q̃Xaa(HTH)bb,

and

(1− µ)(VGTQ̃U G)ab ≥ (1− µ)
l

∑
p=1

v(t)ap (GTQ̃UG)pb = (1− µ)v(t)ab (G
TQ̃UG)bb,

and

(λ1D̃VV)ab = λ1

n

∑
j=1

D̃Vajv
(t)
jb ≥ λ1D̃Vaav(t)ab ≥ µλ1(DV − W̃X)aav(t)ab = µλ1L̃Xaav(t)ab .

Thus, Eq. 4.54 holds and J(v, v(t)ab ) ≥ FV(v).

Then, We can derive the following updating rule for vab by replacing auxiliary func-

tion in Eq. 4.28 with Eq. 4.51:

v(t+1)
ab = v(t)ab − v(t)ab

F′V(v
(t)
ab )(

µ(Q̃XVHTH + λ1D̃VV) + (1− µ)VGTQ̃UG
)

ab

= v(t)ab

(
µQ̃XXTH + (1− µ)UQ̃UG + µλ1W̃XV− γ1eTe

)
ab(

µ(Q̃XVHTH + λ1D̃VV) + (1− µ)VGTQ̃UG
)

ab

Since Eq. 4.51 is an auxiliary function, FV is non-increasing under this updating rule.
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Updating H We focus on updating H while fixing V and G. We rewrite the objective

function as:

FH = µ
∥∥∥X−HVTQX

∥∥∥2

F
+ γ2 ‖H‖1 (4.55)

Considering any element hab in H, it is easy to derive

F′H(h
(t)
ab ) = (−2XQXV + 2HVTQ̃XV)ab + γ2 (4.56)

and

F′′H(h
(t)
ab ) = 2(VTQ̃XV)ab (4.57)

Lemma 4.5. Function

J(h, h(t)ab ) = FH(h
(t)
ab )+F′H(h

(t)
ab )(h− h(t)ab ) +

(HVTQ̃XV)ab

h(t)ab

(h− h(t)ab )
2 (4.58)

is an auxiliary function for FH.

Proof. J(h, h) = FH(h) is obvious. Then we only need to prove J(h, h(t)ab ) ≥ FH(h). Similar

to the proof of Lemma 4.4, we first write the Taylor series expansion of FH(h) as:

FH(h) = FH(h
(t)
ab ) + F′H(h

(t)
ab )(h− h(t)ab ) +

1
2

F′′H(h
(t)
ab )(h− h(t)ab )

2 (4.59)

By comparing Eq. 4.35 with Eq. 4.36 and Eq. 4.57, we find that J(h, h(t)ab ) ≥ FH(h) is equiv-

alent to

(HVTQ̃XV)ab

h(t)ab

≥ (VTQ̃XV)ab (4.60)

Since we have (HVTQ̃XV)ab = ∑k
i=1 h(t)ai (V

TQ̃XV)ib ≥ h(t)ab (V
TQ̃XV)ab. Thus, the matrix

inequality in Eq. 4.37 holds and J(h, h(t)ab ) ≥ (FH)ab(h).

We can now demonstrate the convergence of Eq. 4.43 under the following updating
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rule by replacing Eq. 4.28 with J(h, h(t)ab ) in Eq. 4.58:

h(t+1)
ab = h(t)ab − h(t)ab

F′H(h
(t)
ab )

(HVTQ̃XV)ab
= h(t)ab

(XVQX − γ2eeT)ab

(HVTQ̃XV)ab

Since Eq. 4.35 is an auxiliary function, FH is non-increasing under this updating rule.

Updating G We focus on updating G while fixing V and H. We rewrite the objective

function relevant to G as

FG =
∥∥∥U−VGTQU

∥∥∥2

F
+ λ2 tr(GTL̃UG) + γ3 ‖G‖1 (4.61)

Lemma 4.6. Function

J(g, g(t)ab ) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
(Q̃UGVTV + λ2D̃GG)ab

g(t)ab

(g− g(t)ab )
2 (4.62)

is an auxiliary function for FG.

Proof. J(g, g) = FG(g) is obvious. Then we only need to prove J(g, g(t)ab ) ≥ FG(g). We

compare the Taylor series expansion of FG(g) as:

FG(g) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
1
2

F′′G(g(t)ab )(g− g(t)ab )
2 (4.63)

where F′G(g(t)ab ) = (−2QUaaUTV + 2λ2L̃UG)ab + 2QUaa(GVTV)ab + γ3 and F′′G(g(t)ab ) =

2λ2L̃Uaa + 2Q̃Uaa(VTV)bb. By comparing Eq. 4.39 with Eq. 4.40, we find that J(g, g(t)ab ) ≥

FG(g) is equivalent to

(Q̃UGVTV + λ2D̃GG)ab

g(t)ab

≥ 1
2
(FG)

′′
ab = λ2L̃Uaa + Q̃Uaa(VTV)bb (4.64)

Since, we have

(Q̃UGVTV)ab = QUaa

k

∑
i=1

g(t)ai (V
TV)ib ≥ g(t)ab Q̃Uaa(VTV)bb
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and

(λ2D̃GG)ab = λ2

l

∑
p=1

D̃Gapg(t)pb ≥ λ2D̃Gaag(t)ab ≥ λ2(D̃G − W̃U)aag(t)ab = λ2L̃Uaag(t)ab

Thus, Eq. 4.64 holds and J(g, g(t)ab ) ≥ FG(g).

We can now replace Eq. 4.28 by J(g, g(t)ab ) in Eq. 4.62 to derive the update rule:

g(t+1)
ab = g(t)ab − g(t)ab

F′G(g(t)ab )

(Q̃UGVTV + λ2D̃GG)ab
= g(t)ab

(QUUTV + λ2W̃UG− γ3eeT)ab

(Q̃UGVTV + λ2D̃GG)ab

since Eq. 4.62 is an auxiliary function, FG is non-increasing under this updating rule.

4.7 Experiment and Evaluation

We conduct the experiments focusing on two tasks: detecting the on-going topics and

clustering the documents to corresponding topic. The topics are represented by each

column of H, while the document clustering results are obtained by an extra k-means

cluster algorithm on matrix V.

Four evaluation metrics are employed from these two perspectives, which are Nor-

malized Discounted Cumulative Gain, Mean Average Precision, Accuracy and Normal-

ized Mutual Information. We compare our proposed method with five other NMF-

related algorithms, i.e., NMF [94], GNMF [24], JPP [168], LETCS [81] and CMF [149]

on two types data sets.

4.7.1 Compared Algorithms

• NMF [94]: Standard NMF method implemented with multiplicative updating rules

and F-norm formulation.

• GNMF [24]: Geometric information is utilized as a p-nearest neighbour graph ex-

tracted from the original data set. We search 5 nearest neighbours of each data

sample to build the Laplacian graph and set the regularisation parameters λ to 103

by the author.



4.7 Experiment and Evaluation 97

• JPP [168]: A time-based model jointly decomposes the past and the present textual

matrix with a transition matrix to simulate evolution status between two consecu-

tive time steps. We its prarmeter used to balances the present and the past informa-

tion to 107 by the author.

• CMF [149]: A method associates the factors involving in different relations together

with a generalised-linear link function.

• LETCS [81]: A collective matrix factorization method models topic evolution ex-

tended from JPP by adding social context matrix and its transition matrix. The

parameteres used to balance the present and the past information are also set to

107.

4.7.2 Datasets

To evaluate the effectiveness of introducing the social content information as collective

NMF and applying constraint propagated weight on unsupervised NMF, we select two

types of data sets. The first one is provided by [81] consisting of all the articles published

by 80 international news sources in a period of 14 days in April, 2013 and a list of all

tweets which link to each articles within 12 hours after the corresponding article’s pub-

lication. The hashtags (#) quoted by tweets were treated as ground truth topics of the

documents which were associated with those tweets and the links between tweets and

articles were used to construct the social context matrix. In our experiments, we selected

two categories hashtags 5 topics which are defined as: 1) Content-stable hashtags are those

that did not evolve too much in terms of text content, but keep attracting varied atten-

tion during the period of collecting; 2) Community-stable hashtags are relatively stable for

their community, but the real events they referring to vary a lot. For example, #WolrdCup

and #GRAMMYs. We will abbreviate them to TS and CS in the following experiments.

The second is a serious of semi-synthetic data sets generated from NIST Topic Detection

and Tracking (TDT2)1 text corpus. The full TDT2 corpus is composed of data collected

from 6 news sources during 180 days of 1998. Here, we use a short version provided by

Cai2, keeping documents labelled with only one topic. We chose the given topic number
1 http://www.itl.nist.gov/iad/mig/tests/tdt/1998/
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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5,7,10,15,20 and 25 and for each of them, generated 20 random non-repeat datasets to

tests with algorithms NMF, GNMF and our NMFCP. Since the continuous streaming

feature does not exist on generated synthetic datasets, JPP and LETCS are not suitable

and without social context domain, CMF reduced to NMF. Tab. 4.1 shows the results

of TDT2 where values in bold are significant improvements using the paired Wilcoxon

signed rank test with p ≤ 0.05.

4.7.3 Evaluation Metrics

To evaluate the algorithms’ capability of detecting the on-going topics, we use Normal-

ized Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP) as met-

rics. We use the top 10 and ranking words as the relevant words to express the ground

truth topics as well as the topics obtained by the algorithms, mapping the latter to the

former with the cosine similarity and setting the ground truth relevance values as bina-

ry values. For topics clustering performance, we use Accuracy and Mutual Information

with a k-means clustering algorithm applying on the returned documents-words ma-

trix to compare with ground truth topic clusters. The ground truth topic of ith article

Vtrue(i) is extracted from hashtags appearing in the associated tweets and the ground

truth topics-words distribution Htrue is calculated by Htrue = XVtrue.

Normalized discounted cumulative gain (NDCG): Similar to the assumption of highly

relevant documents, we have the following assumption:

Assumption 4.1. Highly relevant words are more useful when ranking higher in the topics-

words distribution.

Assumption 4.2. The relevance scores of relevant words are set as equivalent value 1.

The NDCG is defined as:

NDCG(H, Htrue) = (∑k
i=1

DCGk

IDCGk
)/k

Here, k is the number of latent topics. DCGk = ∑r
j=1

relj
log 2(j+1) is the discounted cumula-

tive gain of the kth topic. relj is the relevant score of jth relevant word and r is the number

of relevant words for the kth topic detected by algorithms. IDCGk = ∑R
j=1

relj
log 2(j+1) is the
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ground truth DCG (Ideal DCG). R is the number of relevant words in ground truth. By

the top 10 ranking word representing method, we have r ≤ R = 10. A higher NDCG

score indicates a closer approximation to the ground truth.

Mean average precision (MAP) calculate the mean of average precision (AP) for all the

topics which reflect the algorithms global performance.

APi = (∑R
j=1

j
rank j

)/R

, where R = 10 is the number of relevant words for the topic in ground truth and rank j

is the sequence number of relevant word j in retrieved words list. j
rank j

= 0 if relevant

word j is not retrieved by algorithms in topic i. The formula of mean average precision is

shown as follows:

MAP = (∑k
i=1 APi)/k.

The metrics Accuracy and Normalized Mutual Information is used to evaluate the

clustering performance of documents. We compare the documents-words distribution

matrix V obtained by algorithms to the real distribution, ground truth Vtrue.

Before testing the clustering performance, a k-means clustering algorithm is applied

to each data point in V (that is, the article di ∈ n) to get the exact cluster label li of di. The

ground truth label is l gnd given by Vtrue. To some extent, the results would depend on

the clustering results.

Accuracy (AC) simply measures the percentage of correct labels for all the articles. It

defines as:

AC =
∑n

i=1 δ(li, l gndi)

n

δ(li, l gndi) is the delta function that equals to 1 if li = l gndi and equals to 0 otherwise.

n is the total number of data points.

Normalized Mutual information (NMI): Mutual information of two variables X and Y

describes the mutual dependence between the two variables, for example in our case,

the cluster labels l of data points in V and the ground truth cluster labels l gnd of Vtrue.

More specifically, it is the average reduction of the uncertainty about the label of a data

point in V when knowing its ground truth label in Vtrue. Normally, the uncertainty of a

set of clusters C = {c1, c2, ..., ck}corresponding to X is represented by entropy as H(X) =
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− ∑
ci∈C

P(ci) log P(ci) = − ∑
ci∈C

|ci |
n log |ci |

n . Analogously, a set of cluster C′ = {c′1, c′2, ..., c′`}

of another variable Y has the similar entropy H(Y) to quantity its uncertainty. Sometimes

they are also written as H(C) and H(C′). Intuitively, the value of the mutual information

of these two variables MI(X, Y) ∈ [0, min(H(X), H(Y))] with the following formula:

MI(X, Y) = ∑
k

∑
`

P(ci, c′ j)log2
P(i, j)

P(ci)P(c′ j)

= ∑
k

∑
`

∣∣ci
⋂

c′ j
∣∣

n
log2

n
∣∣ci
⋂

c′ j
∣∣

|ci|
∣∣c′ j∣∣

Where P(ci) = |ci |
n or P(c′ j) =

|c′ j|
n denote the probabilities that a data point belongs

to cluster ci in C or c′ j in C′. P(i, j) =
|ci
⋂

c′ j|
n denotes the joint probability distribution

that a data point belongs to cluster ci in C and to c′ j in C′. As MI(X, Y) is bonded by

their entropies, rather than a constant value, it is necessary to use normalized mutual

information for easy comparison between the results of different variable pairs.

Table 4.1: Detection and Clustering Performance

#Topic (k) 5 7 10 15 20 25

NDCG
NMF 0.746 0.716 0.636 0.571 0.54 0.472

GNMF 0.777 0.731 0.676 0.584 0.518 0.493
NMFCP 0.806 0.769 0.679 0.592 0.556 0.495

MAP
NMF 0.765 0.725 0.633 0.571 0.506 0.423

GNMF 0.766 0.65 0.581 0.509 0.437 412
NMFCP 0.816 0.773 0.673 0.561 0.512 0.429

AC
NMF 0.864 0.876 0.819 0.724 0.665 0.659

GNMF 0.933 0.739 0.79 0.762 0.737 0.729
NMFCP 0.956 0.945 0.906 0.821 0.768 0.728

NMI
NMF 0.772 0.805 0.806 0.745 0.718 0.720

GNMF 0.800 0.553 0.71 0.728 0.729 0.763
NMFCP 0.837 0.851 0.841 0.785 0.767 0.756

4.7.4 Detection Results of NMFCP

The detection results are examined by the matrices Normalized discounted cumulative gain

and Mean average precision. We set δ = 0.2 and regularization parameters λ1 = λ2 =
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103 for our NMFCP algorithm. Similar, we set regularisation parameter λ = 103 and

neighbour p = 5 for geometric structure of GNMF. The left two lists in Tab. 4.1 shows

the detection results on TDT2 data set. Our proposed method almost outperforms other

two algorithms on all NDCG and MAP value. The comparisons with NMF and GNMF

indicate that the constraint propagation on the potential links of data points is effect,

which will be discussed in the later section. What is interesting is that, the origin NMF

algorithm performs well for some case, even better than GNMF. This is consistent with

some of the experiments results in [102, 171] with image datasets. The figures below also

show that NMFCP algorithm can get better results than others in most cases varying

parameters, especially when facing the complicated social context(CS dataset). However,

the detection results on TS dataset (e.g. Figs. 4.3a and 4.4a) are always unsatisfactory

comparing to GNMF, which is probably due to the interference caused by social context

part.

4.7.5 Clustering Results of NMFCP

The detection results are examined by the matrices AC and NMI. From Tab. 4.1, we

can see our NMFCP performs almost as well, dramatically better than NMF and GN-

MF when number of topics below 15. When topic number increases, the accuracy and

normalized mutual information decrease on all algorithms as a common trend. On CS

dataset, LETCS obtained outstanding clustering results (e.g., Figs. 4.5b, 4.6b, 4.9b, 4.10b,

4.13b and 4.13b) because it treats the whole set of users as a feature set of the documents,

which is equivalent of clustering documents with users’ distribution. However, as we

mentioned ahead, this is unpractical for real application, data streams in our daily social

network in particular. Besides LETCS, algorithms involving pairwise links between data

points (i.e. GNMF and NMFCP) outperforms others in almost all cases. The perfor-

mance varies with parameters will be discussed in the following section. The interesting

thing is that LETCS detection performance is relatively low on CS dataset (e.g., Figs. 4.3,

4.4, 4.7a and 4.8a), on the contrary, the corresponding clustering results are surprisingly

good (e.g.,Figs. 4.5b, 4.6b, 4.9b and 4.10b).
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Figure 4.3: The NDCG performance versus parameter µ
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Figure 4.4: The MAP performance versus parameter µ
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Figure 4.5: The AC performance versus parameter µ

4.7.6 Parameters Discussion for NMFCP

Our NMFCP algorithm has three basic parameters. The trade-off parameter µ deter-

mines the relatively importance of collective domains. Therefore, it only works in col-
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Figure 4.6: The NMI performance versus parameter µ

lective methods LETCS, CMF and NMFCP. The regularisation parameter λ1 and λ2

controls to what extent the supervised information works, corresponding to matrix X

and matrix U in shown in Eq. 4.18. Figs. 4.3 to 4.14 show the average performance of

algorithms during the period of 14 days with varying µ, λ1 and λ2, respectively.
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Figure 4.7: The NDCG performance versus parameter λ1

As we can see in Figs. 4.3 to 4.6, µ influences the results of LETCS, CMF and NM-

FCP, even in the content-stable dataset(TS), the social context information helps promote

the performance. LETCS is affected most obviously since it is highly related to the so-

cial information as features. What is unsatisfactory is that the changing trends of detec-

tion and clustering performance on TS and CS datasets are inconsistent. For example,

the best detection performance on CS was achieved for (Figs. 4.3b and 4.4b), but from

Figs. 4.5b and 4.6b we can find that the performance degrade in that range. Nevertheless,

this inconsistent between detection and clustering results are not unique, the other two
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Figure 4.8: The MAP performance versus parameter λ1
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Figure 4.9: The AC performance versus parameter λ1
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Figure 4.10: The NMI performance versus parameter λ1

collective methods (LETCS and CMF) show the similar contradiction to some extent. It

may be because that the two tasks are separate problems. We evaluated the performance

of topic detection using matrix H, while obtained clusters of documents through an extra
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k-means clustering algorithm on matrix V. However, this will remain to be one of our

future work.
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Figure 4.11: The NDCG performance versus parameter λ2
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(b) CS

Figure 4.12: The MAP performance versus parameter λ2
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Figure 4.13: The AC performance versus parameter λ2
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Figure 4.14: The NMI performance versus parameter λ2

Figs. 4.7 to 4.10 show the performance of NMFCP versus parameterλ1, which con-

trols how much the supervised information of text content would contributes. It seems

that both detection and clustering performances of NMFCP are relatively outstanding

when λ1 is in the range of
[
102, 103] and tends to be decrease after reached the peak, ex-

cept the clustering performance on CS dataset. But comparing to others, the results of

λ1 = 103 are still acceptable. So the value of λ1 can be set to 103.

Figs. 4.11 to 4.14 show the performance of NMFCP versus parameterλ2, which is

unique to NMFCP, controlling how much the supervised information of social context

would contributes. It can be seen that the detection performance of NMFCP is stable

with respect to its clustering performance, especially on the TS dataset, that indicates λ2

affects detection performance slightly. The clustering performance of NMFCP improved

as λ2 increases in the range of
[
102, 103] and keep relatively stable after λ2 reaches 103.

Therefore, we can also set λ2 to 103.

4.7.7 Constraint Propagation Effect

The effect of constraint propagation is evaluated on TDT2 dataset by varying the pa-

rameter δ. When δ = 1, the soft constraints are not propagated among data points and

NMFCP almost reduced to GNMF without social context information; while δ = 0, the

pairwise soft constraints among data points are fully propagated among data points ver-

tically and horizontally. As shown in ??, when δ = 1, the performance of NMFCP get

close to GNMF. We observe that the best detection and clustering performances were



4.7 Experiment and Evaluation 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

δ

N
D

C
G

 

 

NMF
GNMF
NMFCP

(a) δ vs. NDCG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

δ

M
A

P

 

 

NMF
GNMF
NMFCP

(b) δ vs. MAP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.86

0.88

0.9

0.92

0.94

0.96

0.98

δ

A
C

 

 

NMF
GNMF
NMFCP

(c) δ vs. AC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

δ

N
M

I

 

 

NMF
GNMF
NMFCP

(d) δ vs. NMI

Figure 4.15: Performance versus propagation parameter δ on TDT2

achieved for δ ∈ [0.2, 0.6] and drop rapidly when δ approaches 1. The results also indi-

cate that constraint propagation is of great help.

4.7.8 Detection Performance of LWNMF

We first show the detection evaluation results on TDT2 datasets with Tab. 4.2. For each

given topic number k, we generated 20 random non-repeat datasets to conduct eval-

uations with algorithms NMF, GNMF, NMFCP and LWNMF. For topic number k =

7, 8, 9, 10 and 15, the LWNMF significantly outperforms other comparing algorithms ac-

cording to the paired Wilcoxon signed rank test with p ≤ 0.05. As a matter of fact, for

k = 5 and 20 topics, there are no significant differences in the detection performances

between NMFCP and LWNMF algorithms.

We also evaluate the algorithm on real datasets. Except CS and TS mentioned in Sub-

section 4.7.2, we involve mixed-stable hashtags (MS) which are defined for those topics

that are normally community-stable and content-stable. We can find in Tab. 4.16, NM-
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Table 4.2: Detection Performance of LWNMF

#Topic NDCG MAP

(k) NMF GNMF NMFCP LWNMF NMF GNMF NMFCP LWNMF

5 0.746 0.776 0.811 0.812 0.765 0.766 0.826 0.830
6 0.702 0.771 0.771 0.774 0.712 0.808 0.804 0.806
7 0.685 0.769 0.775 0.780 0.687 0.786 0.795 0.800
8 0.695 0.725 0.725 0.733 0.704 0.734 0.739 0.749
9 0.637 0.689 0.689 0.698 0.633 0.691 0.694 0.707
10 0.652 0.687 0.693 0.701 0.649 0.661 0.694 0.705
15 0.571 0.578 0.581 0.593 0.575 0.525 0.558 0.577
20 0.537 0.531 0.556 0.558 0.508 0.484 0.532 0.532

FCP and LWNMF outperform others in most cases, except on MS, where LETCS shows

special good performance; however, this is a single case. As we can see, the performance

of LWNMF is relatively stable comparing to NMFCP, especially in TS and MS data set,

which indicates that the smoothness improved by local weight.

4.7.9 Parameter Analysis for LWNMF

We focus on discussing two of our essential parameters: the trade-off parameter µ and the

bandwidth parameter σ of the weight scale. Fig. 4.16 and Fig. 4.17 show the performance

of our method varies with the parameters µ and σ, respectively.

When vary µ, we empirically set the regularization parameters λ1 = 103 and λ2 =

100, constraint propagation parameter δ = 0.2. And remember, only collective matrix

factorization based methods varies with respect to µ, while others remain unchanged.

With the value of µ increasing in TS from 0, the curve dropped slightly maybe because of

the interference from the social context. As more proportion moves back to text content

where µ ≥ 0, 5, the performance rose correspondingly. The experience results also imply

that CS data set is difficult to detect since the performances of all algorithms are relatively

low. But the social context helps as the curve continuously increasing when µ goes larger.

We also notice that LETCS performs extraordinary well oin MS when µ ≤ 0.9 as shown in

Fig. 4.16e and Fig. 4.16f which is not consistent with the performances of LETCS on other

datasets. By contrast, the performances of LWNMF and NMFCP increase reasonably.

The parameter σ determines the width of the Gaussian kernel. In statistics, it is the

standard deviation. In our case, we consider the Gaussian kernel as a weighting function
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(c) µ vs. NDCG on CS
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Figure 4.16: Performances of LWNMF versus trade-off parameter µ

and refer to σ as a weight scale which subject to σ ≥ 0 . Therefore, the proper value

of σ is very crucial to the performance. From Fig. 4.17, we can see a dramatically raise

of performances before approaches 0.5 in each data set and curves remain relatively flat

after a slight decrease in the range of [0.5, 1]. Apparently, the best performance of different

dataset is achieved at different σ. The highest performance of TS appears in 0.3 ≤ σ ≤

0.4, while for MS, the summit appears in 0.6 ≤ σ ≤ 0.9, and for CS, it shows in the range

of [0.6, 0.7].
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Figure 4.17: Performances of LWNMF versus bandwidth parameter σ

4.8 Summary

In this paper, we present a semi-supervised collective non-negative factorization method

for topic detection and tracking, which leverage not only the basic text content, but also

the concomitant social context as incidental information to face the ever-changing social

network and varied vocabulary challenge. The model firstly applies constraint propaga-

tion technique to reveal the interrelations among the data points in each domain and the
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propagated constraints are incorporated as regularisation term to help optimize the NM-

F objective function. The experimental results demonstrate that the propagation can im-

prove the topic detection and document clustering performance effectively. Our methods

have been conducted on datasets with social context and outperform others in most cas-

es. Furthermore, we propose a locally weighted matrix factorization (LWNMF) method

on both textual content and social context matrices to obtain reliable approximation. The

improvement on stability of NMFCP is also validated by the experiments.





Chapter 5

Robust Hierarchical Ensemble
Learning for Adaptive Text Mining

Topic detection finds the meaningfulness word representations over the corpus; while its associa-

tive task, document clustering assigns documents into the same number of clusters such that the

documents in the same cluster share highly similar topics. To remove repercussions caused by outliers

in the input documents corpus and overcome other nature properties of online text data, the semantic

diversity and volatility of some words as well as the volatility of ongoing latent topics for example,

we address the twin problem in this chapter by proposing a novel ensemble framework using Non-

negative Matrix Factorization (NMF) with an orthonormal constraint for topic detection through

hierarchical document clustering, integrating collective NMF that involves more than one relation-

al matrix collected from online social network and semi-supervised NMF that consider and enhance

weak constraints extracted from original data space. To better adapt to the data distribution, we use

a dynamic cluster number k to build a flexible k-ary tree for hierarchy. To investigate the robust-

ness of NMF, we use both `2,1-norm and F-norm objective function with two optimization methods,

augmented Lagrangian multiplier and Multiplicative updating rules, deducing RHE series methods

(RHEs) on one hand, and exclude outliers obtained through the construction of hierarchy, on the other

hand. Through extensive experiments on real datasets and semi-synthetic datasets, RHEs exhibit the

robust and remarkable performance for both topic detection and document clustering. Moreover, we

comparatively analyse the differences brought by `2,1-norm and F-norm objective functions based on

our experimental results.

5.1 Introduction

TOPIC detection finds the given number of word representations over the coming

document corpus such that documents can be interpreted in great depth and mean-

ingfulness, which has been investigated and discussed for many years in the text mining

113



114 Robust Hierarchical Ensemble Learning for Adaptive Text Mining

area [130, 131, 157]. Its associative task, document clustering [24, 129], divides the docu-

ments into the given number of clusters such that the documents in the same cluster tell

about highly similar topics.

Nonnegative matrix factorization (NMF) has been widely used in tasks of text min-

ing because of its high interpretability and comprehensibility [10, 81, 139]. However, it

has a vital challenge to avoid outlier issues for high dimensional data and noises in real

applications. The outliers and noises can hardly be thoroughly removed through data

pre-process, so that problems they caused have been batted around for ages and con-

cerned in statistic machine learning methods [?, 77, 192].

Besides the noise and outlier problem mentioned above, with regard to text data, oth-

er essential features makes it discriminated between data from other fields. One case is

called semantic diversity that the meaning of a polysemous words may vary a lot when

the word appears in different ranges of linguistic contexts [71]. For instance, the word war

can be mentioned in movies, in military operations, in political consultations or even in

someones memories. It also happens sometimes accompanied by homonyms with mul-

tiple unrelated meanings. Another case is caused by the versatility of some words that

are highly domain specific [157]. Those words are easy to be recognised as keywords for

all the topics under this or related domains; however, the results of the detection hardly

present further specific information since the keywords are of no distinctiveness in the

inner of domains. For example, the word algorithm is a distinct term for articles of com-

puting science rather than those of other fields, however, within the computing science

domain, it is not enough to discriminate which specific topic, like cloud computing or

health informatics, the article is working on. And worse than that is the rapid generation

of text data facilitated by the online social network platforms which brings more com-

plicated textual content and social context that results in the constantly changing latent

topics.

To remove the repercussions caused by outliers and overcome nature properties of

text data mentioned above, in this chapter, we take inspirations from two perspectives.

One perspective focuses on robustness of loss function. Formally, a corpus can be

represented by a term-document matrix X = [X1, · · · , Xn], and each document Xi is a

tf-idf vector over the vocabulary of m terms. NMF factorises X into two non-negative
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matrices H ∈ Rm×k
+ , V ∈ Rn×k

+ as X ≈ HVT where k � min(m, n) is the number of

clusters and H reveals the k topics by sequences of terms. Typically, the number m can

become pretty large, which brings researchers the high dimension problem and a sig-

nificant chance of outliers; no matter what kind of linguistic representation model and

topic model being applied. For this challenge, many works turn towards emphasising

the robustness of applied models, for example making use of constraints between data

points in the original data space [102], reducing the domination of errors in optimization

objectives [47, 87] and developing collect matrix factorization with supplementary infor-

mation obtained from social context. However, the uncertainty of additional outliers and

noises also arises along with the combination of supplementary information, returning

to the essential requirement of robustness. In this chapter, to boost the robustness of the

optimisation process, we fisrt introduce `2,1-norm to construct collective NMF objective

function. Comparing with F-norm based objectives, we demonstrate the corresponding

performance through our experiments over several real datasets.

The other perspective is based the topic hierarchy to address the semantic diversity

and versatility. In real scenarios, it is very common to find that both the positive and

negative opinions of a topic that appearing in a moment will develop into various per-

spectives and evolve into different related topics in the following consecutive days until

the attention from the public quiets down. Thus, the upcoming topics may have some-

what correlations comparing to others which are completely irrelevant. Based on this

observation, we propose a hierarchical topic detection scheme here to discover topics in-

crementally. This scheme is implemented with the hierarchical document clustering. A

similar work can be reviewed in [90] which always divide a set of documents into two

parts; however, our method will be more flexible and practical with regard to the real

data. We first roughly partition the whole set of documents into several parts which can

be more than two, followed by further partitioning. And, more remarkable, with the par-

titioning, dissidents will be removed from a cluster in an early stage, and the subsets will

be cleaner. NMF is also known as an excellent soft clustering and data representation

method. In our work, it is embedded in our hierarchy to output explicit clustering labels

of documents and corresponding topics.

Another related matter is how to decide the number of topics in practical. Among
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the existing topic models [131, 157], a common practice is to pre-define a constant k as

the specific number of latent concepts, which means that the number of unknown topics

is assumed without prior knowledge of data distributions. As a usual strategy in topic

detection and document clustering, it is pragmatic to most applications to some extent,

but not always suitable for discovering the quickly evolving and changing scenario of

topics under the present age. To adapt the unknown topic distribution, we design a

strategy of pruning to stop hierarchy when there is no more meaningful sub-category

of existing leaf nodes. To judge the meaningfulness of candidatures, the leaf nodes, we

design a two-step examining policy, checking how many valuable parts the candidatures

can be divided into and how effective if a candidature is selected to be subdivided further.

We will expand on this policy in Section 5.5, including the pruning strategy and outlier

verification. In addition, we obtained the clusters of documents from the uniqueness of

the orthonormal NMF [46].

Overall, the main contributions of this chapter are:

• We propose a Robust Hierarchical Ensemble (RHE) framework based on collective

non-negative matrix factorization algorithm for topic detection associated with hi-

erarchical document clustering in data with serious outliers and noises.

• During the hierarchical clustering, we use an adaptive k for clustering in each level,

which gives us a flexible and practical interpretation of the topic detection pro-

cedure and reduces the dependence of the algorithm on a predefined number of

topics. Therefore, the total number of topics in a time-step can be either set or not,

that may only determine the termination condition of the hierarchy algorithm since

it will stop at a moment when there is no more meaningful sub-topic containing in

existing topics.

• For correctness of hierarchy, we scrutinise outliers carefully including the exclu-

sion of suspects, and re-examination of dataset without these suspects followed by

reversion of excluded set if necessary.

• Both `2,1-norm and F-norm based objective functions are discussed, and three up-

dating rules are provided for optimisation.
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• Extensive experiments on both real datasets and synthetic datasets demonstrate

the remarkable effectiveness of hierarchy structure. The results also confirm that

our RHE methods significantly outperforms other baselines in robustness. Besides,

a comparative analysis of the performance results of different objective functions

that use `2,1-norm and F-norm is conducted based on our results.

The rest of the paper is organised as follow. We first discuss some related works in

Section 5.2 and review the existing NMF based methods as preliminaries and clarify the

notations in Section 5.3. In Section 5.4, we propose our objective function and deduce up-

dating rules for optimisation. In Section 5.5, we introduce our adaptive k-ary tree based

hierarchical structure in detail, including the hierarchy construction, the candidature s-

election, the pruning strategy and the outlier verification. The experiments on real data

sets are shown in Section 5.6 followed by conclusion in Section 5.7.

5.2 Related work

There is a large concentration of researchers focusing on the improvements in topic detec-

tion algorithms and topic models [131,157] confined to textual data itself. Generally, there

are two directions. The first type of works eyes on datasets. Some of them [24, 143, 144]

imposed an extra regularisation term of the local manifold information extracted from

the original data space and succeed in leveraging the intrinsic geometry of the data dis-

tribution. We will review this approach in the next section as a significant preliminary.

[102] followed this idea proposed an upgrade version, using so-called hard constraints,

for particular datasets, of which partially labelled data is available. However, apparen-

t auxiliary information is always limited to obtain, and sometimes it has no symmetry

and transitivity, for example in multi-cluster or soft-cluster tasks. Therefore, some others

[107, 171] exploited constraints more in-depth with a constraint propagation scheme in

the entire data set. Another type of works improves the factorization optimisation func-

tion. No matter what kind of optimization solution is adopted, such as active-set method

[90], Lagrange multiplier method [170, 192] and coordinate descent method [157], the

conventional Frobenius norm (F-nrom) loss function used to measure the convergence

is pointed out [76] that it would be significantly prone to ambient noises and outliers
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under F-nrom framework because of the squared error; however, the alternative l1-norm

function fails to fulfill the rotation invariance [47, 119]. Be aware of this, some works

[76,87,192] innovated the objective function by using a mixed norm, l2,1-norm, as a more

robust and adaptive option for practical data.

Meanwhile, other ideas emerged with the rise of online social network. Inspired by

collective matrix factorization (CMF) for multi-view data [48] and multi-relation data

[149], Kalyanam et al. proposed LETCS algorithm adopting textual content related so-

cial information that was collected from social service providers as a component of their

multi-view matrices [81]. Our work [176] in last chapter put forward a CMF algorith-

m of multi-relational topic detection by exploiting the correlation between relations of

terms-documents and documents-users, that has demonstrated that the supplementary

information, representing by the relational matrix of documents-users where users are

grouped by their interested documents, is helpful for discovering ongoing topics.

Before our work, the structure of categories and sub-categories with regard to topic

definition were recognised and widely used as a novel view for organising and under-

standing text corpus. For example, in Reuter Corpus Volume I [95] adopted a topics

hierarchy for Reuters documentation including 103 topic codes which distribute on dif-

ferent hierarchy, subordinating to the parent topic code of each. For clustering tasks out

of text mining, hierarchical clustering developed upon the clustering objective functions

of K-means, Gaussian mixture and MinMaxCut can be categorised as either bottom-up

agglomerative approach or top-down divisive approach [45]. Fred and Jain proposed a

clustering ensemble combining strategy by exploring the idea of evidence accumulation

[60]. Their method applied certain combination techniques to combine different cluster-

ing partitions of a given data set in order to obtain a partition that is better than any

individual partition. Gionis et al. formally stated the clustering aggregation problem in

[63] where various algorithms making use of the connection between clustering aggrega-

tion and the problem of correlation clustering were proposed for the problem and large

datasets. Both of them are bottom-up methods. As for hierarchy method integrating N-

MF clustering, to our best knowledge, research is still at the starting stage. There is only

a few works can be found. Kuang and Park proposed a rank-2 NMF method with active-

set-type algorithm to implement recursively clustering the text corpus into two parts [90].
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Tu and Chen et al. proposed an adaptively hierarchical online method based on ONMF

[110] algorithm for text stream which always relies on an initial clustering of documents

determining the topic number [166].

5.3 Preliminary on Non-Negative Matrix Factorization

5.3.1 Notations

In our paper, matrices are written in boldface capital letters, such as X and H. Vectors are

the column vectors of a matrix, written in italic capital letters, such as X. Lowercase with

subscript, such as Xm and xij, refers to the element of a vector or a matrix respectively.

For the matrix X = {xij}, Xj denotes the j-th column vector of X. tr(X) is the trace of X

and all the parameters are represented by Greek lowercase letters.

5.3.2 Clustering with Standard NMF

In Chapter 4, we have formalised the NMF problem for topic detection problem. It has

also been widely used as a clustering approach [183, 191] owing to the multiple expla-

nations of H and V. Columns of H are the basis vectors of the new low-rank space [90]

or cluster centroids [192] and V is the low-dimensional feature representation [191] or

the weights of data points associated with cluster centroids [76]. With the constraint of

orthogonality on columns of V applied, V is more likely to be the cluster indicator for

clustering columns of X. The orthogonal non-negative matrix factorization is defined as

X ≈ HVT, s.t.VTV = I. Through orthogonal NMF, each column Xj of X represents a

document dj ∈ D, the input corpus, then the columns of H can be directly interpreted to

separate topics extracted from D, while the position of the maximum value in each row of

V represents the document clustering label cj = argmaxjvij of data point Xj. The objective

function that quantifies the approximation of standard NMF using Euclidean distance is

the square of Frobenius norm minH,V≥0 ‖X−HVT‖2
F. Previous works [24, 94] indicated

that only local minima with regard to each variable could be found for this problem and

[94] proposed an iterative “multiplicative update rules” which is efficient and also easy

to implement compared to existing gradient descent methods of quick convergence. We
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will recount our proposing method under this updating rule in Section 5.4.

5.3.3 Semi-supervised NMF

By adding some auxiliary information of the original data space, for example, hard con-

straint, like the label information of some of the data points [102], or the inherent weak

connection between data points in the original space [24],supervised information was

introduced into standard NMF spawning semi-supervised NMF. Objective functions are

minH,Z≥0 ‖X−HZTAT‖2
F and minH,V≥0 ‖X−HVT‖2

F +λ tr(VTLV) correspondingly, where

A is the label matrix and Z is the auxiliary matrix for approximation of the original ma-

trix for the former and L = D−W denotes the Laplacian graph matrix which came from

the assumption of spectral clustering that higher weight wij will be given to if two data

points are close to each other, while low weight corresponds to those far from each other.

Each diagonal element dii = ∑n
j=1 wij of degree matrix D denotes the sum of weights of

data points adjacent to the data point i and other off-diagonal elements dij = 0. However,

since the connections between data points are too weak to be efficiently leveraged. Pre-

vious work [171] developed this assumption by enhancing the inter-connections of data

points in image with similar objective functions. in last chapter, we proposed two man-

ifold collective NMF algorithms working on text data delighted by this idea. For more

details, please refer to Chapter 4.

5.3.4 Collective NMF

The idea of collective non-negative matrix factorization is also an important foundation

of our works. Recently, it has been used in text data analysis with the prevalent of online

social networks. We have discussed the theory in last chapter, Section 4.3.2 and have to

emphasise the importance of outlier issue that may caused by the combination of social

information. From this point of view, the motivation of finding a robust model for topic

detection and document clustering for text data under online social context is necessary.
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5.3.5 `2,1-norm NMF: Seeking Robustness

The above algorithms were implemented with Frobenius norm. For robust purpose,

`2,1-norm based objective function was proposed to avoid the disadvantage of being

prone to noises. Under the definition of the norm in `p-space, `2-norm of a vector X =

{x1, · · · , xm}T ∈ Rn is defined as ‖X‖2 =
√

∑m
i=1 x2

i . It was firstly extended to a matrix

in [47] with the name `2,1-norm of the matrix X and its form ‖X‖2,1 = ∑n
j=1

√
∑m

i=1 x2
ij =

∑n
j=1 ‖Xj‖2 satisfies following conditions [87]:

1. Rotational invariance: ‖A‖2,1 = ‖Rotate(A)‖2,1;

2. Positive scalability: for all scalar α, |α|‖A‖2,1 = ‖αA‖2,1;

3. Triangle inequality: ‖A + B‖2,1 ≤ ‖A‖2,1 + ‖B‖2,1;

4. non-negative valued: ‖A‖2,1 ≥ 0 and 5) definiteness: ‖A‖2,1 = 0 ⇐⇒ aij = 0.

The objective function of `2,1-norm NMF thereby changes into minH,V≥0 ‖X−HVT‖2,1

and theoretically, the impact caused by noises and outliers could be reduced because of

the square root of Euclidean distance adopted on data approximation. Furthermore, a

novel updating method was introduced to iterative process of `2,1-norm NMF, Augment-

ed Lagrange Multiplier (ALM) [15], which has faster convergence and allows a slackness

of constraints on X ∈ Rm×n
+ for particular tasks.

5.4 Robust NMF via `2,1-norm

In this chapter, we propose the following Collective Non-negative Matrix Factorization

objective function for our joint task: hierarchical document clustering assisted topic de-

tection.

f = argmin
H,V,G

µ ftext + (1− µ) fcom

s.t. VTV = I and H, V, G ≥ 0

(5.1)

where ftext = ‖X−HVT‖2,1 + λ1 tr(VTLXV) represents the approximation factorization

on the information of textual content and fcom = ‖U−VGT‖2,1 + λ2 tr(GTLUG) cor-

responds to the approximation factorization on the social community context. We use
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X ∈ Rm×n
+ and U ∈ Rn×l

+ to emphasise the active l users and released n documents,

represented by the linear combination of m words. These two parts constitute our above

collective NMF optimization problem. The parameter µ ∈ [0, 1] balances the relative

proportion of two parts. Thus, the surrounding community can be completely ignored

by setting µ to 1 as existing majority topic detection works do. Differ from the Frobenius

norm objective function, ‖ · ‖F is substituted to ‖ · ‖2,1 in the objective in Eq. 5.1, neither of

which is convex in all of the above variables. Alternatively, we turn our target into find-

ing its local minimum instead of a global minimum updating each of the variables. Since

the constraints of our new objective function are remained non-negative, transforming

the universal used multiplicative updating rule to fit our proposed objective function is

one intuitive option for updating the variables, utilising the Augmented Lagrange Multi-

plier (ALM) is also a possible way we considering. We will present the derivations of our

updating rule for both methods in the next parts of this section, followed by the actual

performances of each method tested on real data sets shown in the experiments section.

5.4.1 Optimization with Lagrangian Multiplier and Multiplicative Update Rules

We use notations ωkk′ , ϕik, ψjk and ρpk as the Lagrangian multipliers for enforcing con-

straints (VT
t Vt − I)kk′ = 0 and vik ∈ V, hjk ∈ H and gpk ∈ G ≥ 0 respectively, and

Ω = [ωkk′ ], Φ = [ϕik], Ψ = [ψjk] and P = [ρpk]. Now we can define the Lagrangian

function L as:

L = f + tr(Ω(VTV− I)
T
+ ΦVT + ΨHT + PGT) (5.2)

Generally, for Lagrangian multipliers Ω, there are no specific constraints from KKT

conditions. Also, the off-diagonal entities do not need to be zero. And, because of the ro-

tational invariance property, Ω is a symmetric matrix of size k× k. Similar to the widely-

adopted Multiplicative update rules [94], we follow the standard Lagrangian multiplier

theory to update each variable by fixing the others and equivalently address the follow-

ing partial derivatives respect to each variable plus Lagrangian multipliers as:
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∂L
∂V

=
∂( f + tr(Ω(VTV− I)T

+ ΦVT))

∂V
= 0 (5.3)

∂L
∂H

=
∂(||X−HVT||2,1 + tr(ΨHT))

∂H
= 0 (5.4)

∂L
∂G

=
∂(||U−VGT||2,1 + λ2tr(GTLUG) + tr(PGT))

∂G
= 0 (5.5)

We use KKT conditions to solve this inequality constrained optimization problem. Be-

sides the above stationarity conditions, We have the complementary slackness of ϕikvik = 0,

ψjkhjk = 0 and ρpkhpk = 0. Taking the stationary condition in Eq. 5.3 and the primal fea-

sibility VTV = I, we have Ω = VT
t � (− ∂ f

∂Vt
).

Before iteratively update variables until the objective function converges, we define

two auxiliary diagonal matrices Dx ∈ Rn×n and Du ∈ Rl×l to simplify expressions of

updating rules. Their diagonal elements are defined as Dxii =
(√

∑m
j=1 (X−HVT)

2
ji

)−1

and Dupp =
(√

∑n
i=1 (U−VGT)

2
ip

)−1
.

The above equations lead to the following update rules:

V← V� A + VVTB
VVTA + B

(5.6)

H← H� XDxV
HVTDxV

(5.7)

G← G� DuUTV + λ2WUG
DuGVTV + λ2DGG

(5.8)

where A = µ(DxXTH + λ1WXV) + (1− µ)UDUG and B = DXVHTH + λ1DVV. If F-

norm based objective function is adopted, the updating rules could be derived similarly

as follows:

V← V� A′ + µλ1VVTDVV
µVVTA′ + µλ1DVV

(5.9)

H← H� XV
HVTV

(5.10)

G← G� UTV + λ2WUG
GVTV + λ2DGG

(5.11)

where A′ = µ(XTH + λ1WXV) + (1− µ)UG.
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5.4.2 Convergence of Lagrangian Multiplier Method

Regarding the updating rules derived in last section, we have the following two theorem:

Theorem 5.1. With the updating rules in Eq. 5.6 to Eq. 5.8, the objective function in Eq. 5.1 is

non-increasing.

Theorem 5.2. With the updating rules in Eq. 5.9 to Eq. 5.11, the F-norm based objective function

in Eq. 5.1 where `2,1-norm is replaced by F-norm is non-increasing.

Next, we follow the details in Section 4.5.3 to prove Theorem 5.1 and Theorem 5.2

separately.

Proof of Theorem 5.1

Because of Definition 4.1, the key step to prove Theorem 5.1 is to find a proper auxiliary

function with respect to V, H and G. We rewrite the objective function in Eq. 5.1 as

follow:

O =µ

(∥∥∥X−HVT
∥∥∥

2,1
+ λ1 tr(VTLXV)

)
+ (1− µ)

(∥∥∥U−VGT
∥∥∥

2,1
+ λ2 tr(GTLUG)

)

We use FV, FH and FG to denote the part of O which is only relevant to V, H and G

respectively.

Updating V We focus on updating V while fixing H and G, then we rewrite the objec-

tive function relevant to V as:

FV =µ

(∥∥∥X−HVT
∥∥∥

2,1
+ λ1 tr(VTLXV)

)
+ (1− µ)

∥∥∥U−VGT
∥∥∥

2,1
(5.12)

Lemma 5.1. Function

J(v, v(t)ab ) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

(VVTA + B)ab

v(t)ab

(v− v(t)ab )
2 (5.13)

is an auxiliary function for FV.
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Proof. J(v, v) = FV(v) is trivial. Then we only need to prove J(v, v(t)ab ) ≥ FV(v). To do

this, we have the Taylor series expansion of FV(v):

FV(v) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

1
2

F′′V(v
(t)
ab )(v− v(t)ab )

2. (5.14)

For each element vab in V, it is easy to derive that

F′V(v
(t)
ab ) =

∂FV

∂vab

=µ[DXaa(−2XTH + 2VHTH)ab + (2λ1LXV)ab]

+ (1− µ)[(−2UDUG)ab + (2VGTDUG)ab],

and

F′′V(v
(t)
ab ) = µ[DXaa · (2HTH)bb + (2λ1LX)aa] + (1− µ) · (2GTDUG)bb.

Thus, by Eq. 5.13 and Eq. 5.14, J(v, v(t)ab ) ≥ (FV)ab(v) is equivalent to:

(VVTA + B)ab

v(t)ab

≥ 1
2

F′′V(v
(t)
ab ) (5.15)

=µ[DXaa(H
TH)bb + λ1LXaa] + (1− µ)(GTDUG)bb

We have:

(VVTA)ab ≥ (1− µ)(VVTUDUG)ab = (1− µ)(VGTDUG)ab

≥ (1− µ)
l

∑
p=1

v(t)ap (GTDUG)pb = (1− µ)v(t)ab (G
TDUG)bb,

and B = (DXVHTH + λ1DVV)ab, where

(DXVHTH)ab ≥ µ(DXVHTH)ab = µDXaa

k

∑
i=1

v(t)ai (H
TH)ib ≥ µDxaa · v

(t)
ab (H

TH)bb,
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and

(λ1DVV)ab = λ1

n

∑
j=1

DVajv
(t)
jb ≥ λ1DVaav(t)ab ≥ µλ1(DV −WX)aav(t)ab = µλ1LXaav(t)ab .

Thus, Eq. 5.15 holds and J(v, v(t)ab ) ≥ FV(v).

We can derive the following updating rule for vab by replacing auxiliary function in

Eq. 4.28 with Eq. 5.13:

v(t+1)
ab = v(t)ab − v(t)ab

F′V(v
(t)
ab )

(VVTA + B)ab
= v(t)ab

(A + VVTB)ab

(VVTA + B)ab

Since Eq. 5.13 is an auxiliary function, FV is non-increasing under this updating rule.

Updating H We focus on updating H while fixing V and G. We rewrite the objective

function as:

FH = µ
∥∥∥X−HVT

∥∥∥
2,1

(5.16)

Lemma 5.2. Function

J(h, h(t)ab ) = FH(h
(t)
ab )+F′H(h

(t)
ab )(h− h(t)ab ) +

(HVTDXV)ab

h(t)ab

(h− h(t)ab )
2 (5.17)

is an auxiliary function for FH.

Proof. J(h, h) = FH(h) is obvious. Then we prove J(h, h(t)ab ) ≥ FH(h). Similar to the proof

of lemma 1, we first write the Taylor series expansion of FH(h) as:

FH(h) = FH(h
(t)
ab ) + F′H(h

(t)
ab )(h− h(t)ab ) +

1
2

F′′H(h
(t)
ab )(h− h(t)ab )

2 (5.18)

where F′H(h
(t)
ab ) = (−2XDXV + 2HVTDXV)ab, and F′′H(h

(t)
ab ) = 2(VTDXV)ab. By compar-

ing Eq. 5.17 with Eq. 5.18 we find that J(h, h(t)ab ) ≥ FH(h) is equivalent to

(HVTDXV)ab

h(t)ab

≥ (VTDXV)ab (5.19)

We have (HVTDXV)ab = ∑k
i=1 h(t)ai (V

TDXV)ib ≥ h(t)ab (V
TDXV)ab. Thus, the matrix in-
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equality in Eq. 5.19 holds and J(h, h(t)ab ) ≥ (FH)ab(h).

We can now demonstrate the convergence of Eq. 5.1 under the following updating

rule by replacing Eq. 4.28 with J(h, h(t)ab ) in Eq. 5.17:

h(t+1)
ab = h(t)ab − h(t)ab

F′H(h
(t)
ab )

(HVTDXV)ab
= h(t)ab

(XDXV)ab

(HVTDXV)ab

Since Eq. 5.17 is an auxiliary function, FH is non-increasing under this updating rule.

Updating G We focus on updating G while fixing V and H. We rewrite the objective

function relevant to G as

FG =
∥∥∥U−VGT

∥∥∥
2,1

+ λ2 tr(GTLUG) (5.20)

Lemma 5.3. Function

J(g, g(t)ab ) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
(DUGVTV + λ2DGG)ab

g(t)ab

(g− g(t)ab )
2 (5.21)

is an auxiliary function for FG.

Proof. J(g, g) = FG(g) is obvious. Then we only need to prove J(g, g(t)ab ) ≥ FG(g). We

compare the Taylor series expansion of FG(g) as:

FG(g) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
1
2

F′′G(g(t)ab )(g− g(t)ab )
2 (5.22)

where F′G(g(t)ab ) = (−2DUUTV+ 2λ2LUG)ab + 2DUaa(GVTV)ab and F′′G(g(t)ab ) = 2λ2LUaa +

2DUaa(VTV)bb. By comparing Eq. 5.21 with Eq. 5.22, we find that J(g, g(t)ab ) ≥ FG(g) is

equivalent to

(DUGVTV + λ2DGG)ab

g(t)ab

≥ 1
2
(FG)

′′
ab = λ2LUaa + DUaa(V

TV)bb (5.23)

We have (DUGVTV)ab = DUaa ∑k
i=1 g(t)ai (V

TV)ib ≥ DUaag(t)ab (V
TV)bb and (λ2DGG)ab =

λ2 ∑l
p=1 DGapg(t)pb ≥ λ2DGaag(t)ab ≥ λ2(DG −WU)aag(t)ab = λ2(LU)aag(t)ab . Thus, Eq. 5.23

holds and J(g, g(t)ab ) ≥ FG(g).
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We can now replace Eq. 4.28 by J(g, g(t)ab ) in Eq. 5.21 to derive the update rule:

g(t+1)
ab = g(t)ab − g(t)ab

F′G(g(t)ab )

(DUGVTV + λ2DGG)ab
= g(t)ab

(DUUTV + λ2WUG)ab

(DUGVTV + λ2DGG)ab

since Eq. 5.21 is an auxiliary function, FG is non-increasing under this updating rule.

Proof of Theorem 5.2

We rewrite the objective function in Eq. 5.1 replacing `2,1-norm by F-norm as follow:

O′ =µ

(∥∥∥X−HVT
∥∥∥2

F
+ λ1 tr(VTLXV)

)
+ (1− µ)

(∥∥∥U−VGT
∥∥∥2

F
+ λ2 tr(GTLUG)

)
(5.24)

and use FV, FH and FG to denote the part of O′ which is only relevant to V, H and G

respectively. Same to above, because of Definition 4.1, the key step to prove Theorem 5.2

is to find a proper auxiliary function with respect to V, H and G.

Updating V We focus on updating V while fixing H and G, then we rewrite the objec-

tive function in (5.24) relevant to V as:

FV =µ

(∥∥∥X−HVT
∥∥∥2

F
+ λ1 tr(VTLXV)

)
+ (1− µ)

∥∥∥U−VGT
∥∥∥2

F
(5.25)

Considering any element vab in V, it is easy to derive that

F′V(v
(t)
ab ) =

∂FV

∂vab
=µ[(−2XTH + 2VHTH)ab + (2λ1LXV)ab]

+ (1− µ)[(−2UG)ab + (2VGTG)ab],

and

F′′V(v
(t)
ab ) = 2µ(HTH)bb + 2µ(λ1LX)aa + 2(1− µ)(GTG)bb.

Since F′′V(v
(t)
ab ) ≥ 0, the element-wise updating rule of Eq. 5.9 is sufficient to be proved as

non-increasing. We continue the standard convergence proof with the auxiliary function
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in the following.

Lemma 5.4. Function

J(v, v(t)ab ) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

(VVTA′ + µλ1DVV)ab

v(t)ab

(v− v(t)ab )
2 (5.26)

is an auxiliary function for FV.

Proof. J(v, v) = FV(v) is obvious, then we only need to prove J(v, v(t)ab ) ≥ FV(v). To do

this, we have the Taylor series expansion of FV(v):

FV(v) = FV(v
(t)
ab ) + F′V(v

(t)
ab )(v− v(t)ab ) +

1
2

F′′V(v
(t)
ab )(v− v(t)ab )

2. (5.27)

Thus, by Eq. 5.25 and Eq. 5.26, J(v, v(t)ab ) ≥ (FV)ab(v) is equivalent to:

(VVTA′ + µλ1DVV)ab

v(t)ab

≥ 1
2

F′′V(v
(t)
ab ) (5.28)

Since we have:

(VVTA′)ab =
(

VVT((µ(XTH + λ1WXV)) + (1− µ)(UG))
)

ab

Then, we have:

µ(VVTXTH)ab = µ(VHTH)ab = µ
k

∑
i=1

v(t)ai (H
TH)ib ≥ µv(t)ab (H

TH)bb,

and

(1− µ)(VVTUG)ab = (1− µ)(VGTG)ab = (1− µ)
k

∑
i=1

v(t)ai (G
TG)ib ≥ (1− µ)v(t)ab (G

TG)bb,

and

µλ1(DVV)ab = µλ1

n

∑
j=1

DVajv
(t)
jb ≥ µλ1DVaav(t)ab ≥ µλ1(DV −WX)aav(t)ab = µλ1LXaav(t)ab .

Thus, Eq. 5.28 holds and J(v, v(t)ab ) ≥ FV(v).
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We can derive the following updating rule for vab by replacing auxiliary function in

Eq. 4.28 with Eq. 5.26:

v(t+1)
ab = v(t)ab − v(t)ab

F′V(v
(t)
ab )

(VVTA + µλ1DVV)ab
= v(t)ab

(A + µλ1VVTDVV)ab

(VVTA + µλ1DVV)ab

Since Eq. 5.26 is an auxiliary function, FV is non-increasing under this updating rule.

Updating H We focus on updating H while fixing V and G. We rewrite the objective

function relevant to H as:

FH = µ
∥∥∥X−HVT

∥∥∥2

F
(5.29)

Considering any element hab in H, we define the following lemma:

Lemma 5.5. Fucntion

J(h, h(t)ab ) = FH(h
(t)
ab ) + F′H(h

(t)
ab )(h− h(t)ab ) +

(HVTV)ab

h(t)ab

(h− h(t)ab )
2 (5.30)

is an auxiliary function for FH.

Proof. J(h, h) = FH(h) is obvious. Then we prove J(h, h(t)ab ) ≥ FH(h). Similar to the proof

of lemma 1, we first write the Taylor series expansion of FH(h) as:

FH(h) = FH(h
(t)
ab ) + F′H(h

(t)
ab )(h− h(t)ab ) +

1
2

F′′H(h
(t)
ab )(h− h(t)ab )

2 (5.31)

where F′H(h
(t)
ab ) = (−2XV + 2HVTV)ab, and F′′H(h

(t)
ab ) = 2(VTV)ab. By comparing Eq. 5.30

with Eq. 5.31, we find that J(h, h(t)ab ) ≥ FH(h) is equivalent to

(HVTV)ab

h(t)ab

≥ (VTV)ab (5.32)

We have (HVTV)ab = ∑k
i=1 h(t)ai (V

TV)ib ≥ h(t)ab (V
TV)ab. Thus, the matrix inequality in

Eq. 5.32 holds and J(h, h(t)ab ) ≥ (FH)ab(h).

We can now demonstrate the convergence of Eq. 5.10 under the following updating
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rule by replacing Eq. 4.28 with Eq. 5.30:

h(t+1)
ab = h(t)ab − h(t)ab

F′H(h
(t)
ab )

(HVTV)ab
= h(t)ab

(XV)ab

(HVTV)ab

Since Eq. 5.30 is an auxiliary function, FH is non-increasing under this replace rule.

Updating G We focus on updating G while fixing V and H. We rewrite the objective

function relevant to G as

FG =
∥∥∥U−VGT

∥∥∥2

F
+ λ2 tr(GTLUG) (5.33)

Considering any element gab in G, we define the following lemma:

Lemma 5.6. Function

J(g, g(t)ab ) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
(GVTV + λ2DGG)ab

g(t)ab

(g− g(t)ab )
2 (5.34)

is an auxiliary function for FG.

Proof. J(g, g) = FG(g) is obvious. Then we only need to prove J(g, g(t)ab ) ≥ FG(g). We

compare the Taylor series expansion of FG(g) as:

FG(g) = FG(g(t)ab ) + F′G(g(t)ab )(g− g(t)ab ) +
1
2

F′′G(g(t)ab )(g− g(t)ab )
2 (5.35)

where F′G(g(t)ab ) = (−2UTV+ 2λ2LUG)ab + 2(GVTV)ab and F′′G(g(t)ab ) = 2λ2LUaa + 2(VTV)bb.

By comparing Eq. 5.34 with Eq. 5.35, we find that J(g, g(t)ab ) ≥ FG(g) is equivalent to

(GVTV + λ2DGG)ab

g(t)ab

≥ 1
2
(FG)

′′
ab = λ2LUaa + (VTV)bb (5.36)

We have

(GVTV)ab =
k

∑
i=1

g(t)ai (V
TV)ib ≥ g(t)ab (V

TV)bb
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and

(λ2DGG)ab = λ2

l

∑
p=1

DGapg(t)pb ≥ λ2DGaag(t)ab ≥ λ2(DG −WU)aag(t)ab = λ2(LU)aag(t)ab

Thus, Eq. 5.36 holds and J(g, g(t)ab ) ≥ FG(g).

We can now replace Eq. 4.28 by J(g, g(t)ab ) in Eq. 5.34 to derive the update rule:

g(t+1)
ab = g(t)ab − g(t)ab

F′G(g(t)ab )

GVTV + λ2DGG)ab
= g(t)ab

(UTV + λ2WUG)ab

(GVTV + λ2DGG)ab

since Eq. 5.34 is an auxiliary function, FG is non-increasing under this updating rule.

5.4.3 Optimization with Augmented Lagrangian Method

A novel method for solving the `2, 1-norm NMF optimization problem, called Augment-

ed Lagrangian Method [76,192], comparing to the method of Lagrangian Multiplier, con-

verts the original inequality constraints to equality constraints with slack variables and

adds an additional quadratic penalty term for each equality constraint to the end of the

objective function with a big penalty coefficient. For example, to solve following con-

strained optimisation problem:

min f (X)

subject to h(X) = 0

where f : Rn → R and h : Rn → Rm. The standard Lagrangian function can be defined

as:

L(X, a) = f (X) + ah(X)

where a is the Lagrangian multiplier.

While the Lagrangian function of penalty term based method can be written as:

L(X, α) = f (X) + αp(X), p(X) = hTh
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where α is the penalty coefficient to regulate the penalty for the violation of equality

constraint in h(X) and αp(X) is the penalty term. The standard form of the augmented

Lagrangian function is:

L(X, a) = f (X) + 〈Y, h(X)〉+ α

2
‖h(X)‖2

F (5.37)

for the optimal Lagrangian multiplier Y, where 〈A, B〉 = tr(ATB) and α is the penalty

coefficient here.

Now back to our problem. Before we define our augmented Lagrangian function, we

introduce some auxiliary variables P1 = X−HVT, P2 = U− VGT and slack variables

Q1 = V, Q2 = G to form the necessary equality constraints. Then, the objective function

in Eq. 5.1 can be rewritten to fit into the augmented Lagrangian method as follow:

fALM = arg min
P1,P2,Q1,Q2,H,V,G

µ(‖P1‖2,1 + λ1tr(QT
1 LXV)) + (1− µ)(||P2||2,1 + λ2tr(QT

2 LUG))

s.t. P1 = X−HVT, P2 = U−VGT, Q1 = V, Q2 = G, VTV = I and Q1, Q2 ≥ 0

(5.38)

Here, we relax the non-negative constraint of H since it can be derived from X is non-

negative and VTV = I. Then, For the above optimisation problem, we define the aug-

mented Lagrangian function:

LALM = arg min
P1,P2,Q1,Q2,H,V,G

µ(||P1||2,1 + λ1tr(QT
1 LXV)) + (1− µ)(||P2||2,1 + λ2tr(QT

2 LUG))

+
〈

Y1, X−HVT − P1

〉
+
〈

Y2, U−VGT − P2

〉
+ 〈Y3, (Q1 −V)〉+ 〈Y4, Q2 −G〉

+
α

2
(
∥∥∥X−HVT − P1

∥∥∥2

F
+ ‖Q1 −V‖2

F +
∥∥∥U−VGT − P2

∥∥∥2

F
+ ‖Q2 −G‖2

F)

s.t. VTV = I and Q1, Q2 ≥ 0 (5.39)

Here, matrices Y1, Y2, Y3 and Y4 are the Lagrangian multipliers and α is the penalty co-

efficient. We alternatively update each variable and multiplier while fixing others with

following rules:
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P1i =


Bi · (1− µ

α ·
1
‖Bi‖2

), µ
α < ‖Bi‖2

0, otherwise
(5.40)

P2i =


Cp · (1− 1−µ

α ·
1
‖Cp‖2

), 1−µ
α <

∥∥Cp
∥∥

2

0, otherwise
(5.41)

Q1ij = max(Eij, 0) (5.42)

Q2ij = max(Fij, 0) (5.43)

H =

(
X− P1 +

1
α

Y1

)
V (5.44)

V = PQT (5.45)

G =
1
2

(
(UT − PT

2 +
1
α

YT
2 )V + Q2 +

1
α

Y4 +
(1− µ)λ2

α
LUQ2

)
(5.46)

where Bi is the i − th column of matrix B = X − HVT + 1
α Y1; Cp is the p − th column

of matrix C = U − VGT + 1
α Y2; E = V − 1

α Y3 − λ1
α LXV; F = G − 1

α Y4 − λ2
α LUG; and

P ,Q are left and right singular matrices of the SVD of S = Q1 +
1
α Y3 − µλ1

α LXQ1 +

(X− P1 +
1
α Y1)

T
H + (U− P2 +

1
α Y2)G ∈ Rn×k.

5.4.4 Computation of Augmented Lagrangian Multiplier Method

In the following, we elaborate the computation of each variable when fixing others ex-

tracting sub-object function with respect to variables.

Updating P1 We rewrite the augmented Lagrangian function in Eq. 5.39 relevant to P1

in brief as:

LP1 = arg min
P1

1
2

∥∥∥∥X−HVT − P1 +
1
α

Y1

∥∥∥∥2

F
+

µ

α
‖P1‖2,1 (5.47)

Let B = X − HVT + 1
α Y1 herein, Eq. 5.47 can be simplified to arg min

P1

1
2 ‖P1 −B‖2

F +

µ
α‖P1‖2,1. Now, We can use the Proposition 1 presented in [188] and Lemma 3.1 proved

in [76] to compute P1 in Eq. 5.40.
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Proof. Eq. 5.47 is equivalent to

LP1 = ∑n
i=1 arg min

P1i

1
2
‖P1i −Bi‖2

F +
µ

α
‖P1i‖2 (5.48)

where, ‖P1i‖2 =
√

PT
1iP1i. According to the element-wise derivation rule, we have ∂‖P1i‖2

∂P1i
=

P1i/
√

PT
1iP1i, P1i 6= 0

γ, P1i = 0
, γ is a subgradient vector for those non-differentiable kinks or

cusps and ‖fl‖2 ≤ 1. Taking Eq. 5.48 differentiate with respect to P1i, we have

∂LP1

∂P1i
=


P1i −Bi +

µ
α · P1i/

√
PT

1iP1i, P1i 6= 0

1
α fl−Bi, P1i = 0

Let
∂LP1
∂P1i

= 0, if P1i = 0, we have µ
α fl − Bi = 0, which implies µ

α ≥ ‖Bi‖2; if P1i 6= 0,

we have P1i − Bi +
1
α · P1i/

√
PT

1iP1i = 0 that is equivalent to P1i =
‖P1i‖2

‖P1i‖2+1/α
· Bi. Let

δ =
‖P1i‖2

‖P1i‖2+1/α
, we can thereby reach P1i = Bi − 1

α ·
δBi

δ
√
BT

i Bi
= Bi(1− µ

α ·
1
‖Bi‖2

).

Updating P2 We rewrite Eq. 5.39 relevant to P2 in brief as:

LP2 = arg min
P2

1
2

∥∥∥∥U−VGT − P2 +
1
α

Y2

∥∥∥∥2

F
+

1− µ

α
‖P2‖2,1 (5.49)

Let C = U − VGT + 1
α Y2 herein, Eq. 5.50 can be simplified to arg min

P2

1
2 ‖P2 − C‖2

F +

1−µ
α ‖P2‖2,1. Thus, referring to the above derivation of P1i, we would have the updat-

ing rule in Eq. 5.41 for p = 1, 2, · · · , l, where Cp ∈ Rn×1 is the Cp is the p− th column of

matrix C.

Updating H We rewrite Eq. 5.39 relevant to H in brief as:

LH = arg min
H

α

2

∥∥∥∥X−HVT − P1 +
1
α

Y1

∥∥∥∥2

F
(5.50)

Denote D = X− P1 +
1
α Y1, Eq. 5.50 can be transformed into

LH = arg min
∥∥∥D −HVT

∥∥∥2

F
= tr((D −HVT)

T
(D −HVT))
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To minimise LH, we let ∂LH
∂Ht

= −2DVt + 2HtVT
t

Vt = 0. Considering our input constraint

VTV = I, we have the update rule H = DV for H.

Updating Q1 We rewrite the augmented Lagrangian function relevant to Q1 as:

LQ1 = arg min
Q1≥0

λ1tr(QT
1 LXV) + tr(YT

3 · (Q1 −V)) +
α

2
‖Q1 −V‖2

F (5.51)

By removing the irrelevant terms, we get the following equivalent equation:

LQ1 = arg min
Q1≥0

tr

(
2λ1

α
(QT

1 LXV) + Q1QT
1 − 2Q1(V−

1
α

Y3)
T
)

Let E = Vt − 1
α Y3 − λ1

α L XV, the above equation is equivalent to arg min
Q1≥0

‖Q1 − E‖2
F.

To satisfy the constraint Q1 ≥ 0, we derive the element-wise updating rule of Q1 as

Q1ij = max(Eij, 0).

Updating Q2 We rewrite the augmented Lagrangian function relevant to Q2 as:

LQ2 = arg min
Q2≥0

λ2tr(QT
2 LUG) + tr(YT

4 � (Q2 −G)) +
α

2
‖Q2 −G‖2

F (5.52)

Denote F = G− 1
α Y4 − λ2

α L UG, similar to above, we can derive the element-wise up-

dating rule as Q2ij = max(Fij, 0) for Q2.

Updating V Eq. 5.39 with respect to V yield the equation below:

LV = arg min
VTV=I

µ
(

λ1tr(QT
1 LXV)

)
+ tr(YT

1 · (X−HVT − P1))

+ tr(YT
2 · (U−VGT − P2)) + tr(YT

3 · (Q1 −V))

+
α

2

(∥∥∥X−HVT − P1

∥∥∥2

F
+
∥∥∥U−VGT − P2

∥∥∥2

F
+ ‖Q1 −V‖2

F

)
(5.53)

We denote S = Q1 +
1
α Y3− µλ1

α LXQ1 +(X− P1 +
1
α Y1)

T
H+(U−P2 +

1
α Y2)G and rewrite

Eq. 5.53 in the following brief form:

LV = arg min
VTV=I

‖V− S‖2
F (5.54)
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Notice that when we take the derivative of V on eq.(38), it is equivalent to Eq. 5.53 by

removing irrelevant terms. With the cyclic property and transpose property of the trace,

we have:

‖V− S‖2
F = tr((V− S)T(V− S) = tr(VTV)− 2tr(VTS) + tr(STS)

Then, the optimisation problem in Eq. 5.54 is equivalent to

LV ⇒ max
VT

t Vt=I
〈Vt,S〉 (5.55)

To solve this problem with Lagrangian Multiplier Method, we denote the Lagrangian as:

L′ = tr(VT
t S) + tr(Λ(VT

t Vt − I))

where, Λ is the Lagrangian multiplier matrix. Let ∂L′
∂V = S + V(Λ + ΛT) = 0, we have

S = V(Λ + ΛT) and VTS = Λ + ΛT. Then we get S = VVTS , so that we have VVT = I

hold. Meanwhile, we know that Λ + ΛT is a symmetric matrix and therefore we have

STV = VTS (5.56)

Since n � k herein, according to the thin singular-value decomposition (reduced

SVD), we have S = PΣQT, where P ∈ Rn × k, Q ∈ Rk × k and Σ = diag(σ1, σ2, ..., σk) ∈

Rk×k.

As we mentioned in Chapter 2, reduced SVD only calculate k columns of P cor-

responding to rows of Q, where columns of P are orthogonal vectors and P satisfies

PTP = I, whileQ is an orthogonal matrix satisfyingQTQ = QQT = I. Now with (5.56),

we have:

VTPΣQT = QΣTPTV = QΣPTV

Comparing the two sides, we have VT
t P = Q ⇒ VtVT

t P = VtQ which finally leads to

the updating rule Vt = PQT in Eq. 5.45. Besides, the property VTV = I holds obviously.
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Updating G Eq. 5.39 with respect to G is as follow:

LG = arg min
G

(1− µ) λ2tr(QT
2 LUG) + tr(YT

2 · (U−VGT − P2))

+ tr(YT
4 · (Q2 −G)) +

α

2
(
∥∥∥U−VGT − P2

∥∥∥2

F
+ ‖Q2 −G‖2

F) (5.57)

Combining the constraint VTV = I, we can reconfigure the above function to

arg min
G

(1− µ) λ2tr(QT
2 LUG) + tr(YT

2 · (U−VGT − P2))

+ tr(YT
4 · (Q2 −G)) +

α

2
(
∥∥∥VT(U− P2)−GT

∥∥∥2

F
+ ‖Q2 −G‖2

F) (5.58)

By using Lagrangian multiplier method on Eq. 5.58, we have the updating rule G =

1
2

(
(U− P2 +

1
α Y2)TV + Q2 +

1
α Y4 +

(1−µ)λ2
α LUQ2

)
in Eq. 5.46 for G.

In our implementation, we take turn updating variables in the same order as de-

scribe above, followed by the computation of other parameters, including Lagrangian

multipliers Y1, Y2, Y3,Y4 and penalty coefficient α in one iteration. According to [34](page

232-236), we have the following updating rules:

Y1 = Y1 + α(X−HVT − P1) (5.59)

Y2 = Y2 + α(U−VGT − P2) (5.60)

Y3 = Y3 + α(Q1 −V) (5.61)

Y4 = Y4 + α(Q2 −G) (5.62)

α = κα (5.63)

where parameter κ controls the convergence speed as a larger value of κ leads to a bigger

step size with less precision and greater error of the objective functions value.

5.5 Robust Hierarchical Ensemble Method

Hierarchical clustering approaches developed among the first generation of clustering

methods which can be categorised as either bottom-up agglomerative approach or top-

down divisive approach. Intuitively, hierarchical structure enhances the interpretability
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Algorithm 5.1: Orthonormal NMF with Augmented Lagrangian/Multiplicative
Updating Rule

Input: X, U, k, µ, λ1 and λ2, convergence threshold ε and maximum allowed
iteration maxiter

Output: V
1 Initialise V and G with kmeans(X) and kmeans(U)
2 Initialise H = XV
3 while Jt −Jt−1 > ε and iterated less than maxiter do
4 Update variables in turn with rules in Eq. 5.6-Eq. 5.11 or Eq. 5.40-Eq. 5.46
5 Compute J for objective function with Eq. 5.1 or Eq. 5.38

of the topic model and presents integrated clustering result for input data, especially for

those data with highly sophisticated and mutable distribution. Here we propose a new

top-down fashion based Robust Hierarchical Ensemble NMF method (RHE) for docu-

ment clustering using the above Robust CMF objective with the updating algorithm and

an adjustable k-ary tree, where all input documents form the root node in the beginning.

In this section, we will present details about how we construct the hierarchical structure,

including how we determine which node to split in each step, when the construction will

be terminated, the pruning strategy, as well as what standard we take to identify and ex-

clude outliers. Generally, in our RHE method, the topics expand hierarchically as a tree

structure, in which each node represents a clurster document of related topics.

5.5.1 Hierarchy Construction

Existing works commonly input a predefined number K representing the number of la-

tent topics in whole corpus, corresponding to K clusters of all input documents no matter

what topic detection task they applied to, such as, static data or data streams. Despite

how to select the value of K for static dataset, it is inappropriate to keep a constant K for

a flow of data. However, the difficulty of setting a proper K has not been resolved. Stan-

dard NMF algorithm has been applied to document clustering task in [21] in which each

element vij of V is treated as the degree of document di belonging to cluster cj, and the

hard cluster label cli of the document di is determined by cli = argmaxj vij in the i-th row

of V. As a compromise, our method provides flexible stopping criteria for constructing

the hierarchical structure, while the most important thing is our method can offer more
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Algorithm 5.2: Robust Hierarchical Ensemble Method
Input: X, U, K, k, threshold θ and maximum trial allowance γ for outlier

verification
Output: CL: cluster labels of documents and H

1 Create a root node with all input documents {X1, · · · , Xnd} ∈ X;
2 while number of leaf nodes < K do
3 S← set of all (new) leaves;
4 k′ ← min(K− number of leaf nodes + 1, k) ;
5 for s in S do
6 p = k′, s backup = s, D← {} ;
7 while p > 1 do
8 i← 0;
9 while i < γ do

10 try to split documents in s into p clusters Ls = {s1, s2, · · · } with
proposed Robust CMF;

11 if |Ls| < p then
12 p = |Ls|, break;
13 end
14 if D 6= {} and D{end} cannot be verified as outliers then
15 s = s ∪D{end} ;
16 split s into p clusters Ls =

{
s1, s2, · · · , sp

}
with Robust NMF

method in Algorithm 5.1;
17 break;
18 end
19 if

∣∣sj
∣∣ < θ · |s| and score(sj) < the minimal score of existing leaves and

score(s− sj) > score(s) then
20 drop sj as a suspected outlier: s = s− sj, D = D∪ sj, i = i + 1;
21 else
22 break;
23 end
24 end
25 if i == γ then
26 s = s backup, p = p− 1, Priority(s) = 1;
27 else
28 Priority(s) = p, break;
29 end
30 end
31 end
32 C← leaves with max(Priority);
33 c← leaf with max(score) in C;

34 actually split c into clusters Lc =
{

c1, c2, · · · , cmax(priority)

}
;

35 add Lc to the tree as children of c;
36 end
37 Clusters = K leaves;
38 CL← cluster labels of all documents according to Clusters;
39 V = onehot(CL);
40 H = XV
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potential to practice on new datasets without the prior knowledge.

Generally, our algorithm consists of a series of sub-clustering of the candidatures s-

tarting from the root node. At first, the root node takes all documents. And then, the

algorithm repeatedly select a node to split until the algorithm terminate. We pre-defined

a k ≥ 2 representing the maximum number of wanted sub-clusters for each split step,

which does not have to be 2. Therefore, the current candidature, the root node, will be

divided into at most k child nodes. Note that, different from the mentioned pre-defined

cluster number K before, here k only indicates a upper bound of the number of each sub-

clustering, and the real resulting sub-clustering number is adaptive depending on the

data distribution and our hierarchy algorithm. Then in each following step, we selected

a candidature, one current leaf node, to partition until the tree meets the stop criterion.

When the algorithm terminates, all the generated leaf nodes represent the final clusters

of documents.

In the following of this section, we denote a node containing a set of document exam-

ples N with k children as a pair (k,N ), and accordingly its i-th child node as (∼, CNi)

where symbol ∼ refers to an unknown number before the partition of this child node.

5.5.2 Candidature Selection

When it comes to the essential issue, how to choose the next node to split, we have the

following principles:

1. A set of documents, representing by a current leaf node in the hierarchical structure,

which contains more potential clusters, up to k evidently, is more valuable to be

partitioned as early as possible.

2. For those nodes with the same number of potential clusters, we calculate a score

indicating the usefulness of a node that if it is chosen for the following splitting.

The score is derived from the product of modified Normalized Discounted Cumulative

Gain (mNDCG) of all child nodes of (k,N ) as score(k,N ) = ∏k
i=1 mNDCG(∼, CNi),

which can be referred in previous works [90].

Specifically, each time we select a candidature, we first need to know how many chil-

dren each leaf would potentially have. For example, for a new leaf (∼,N ), we try clus-

tering its documents, using proposed robust OCNMF algorithm to obtain the representa-
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tion of its children. Assume the document-word matrix and the topic vector of the node

(∼,N ) is X(∼,N ) and H(∼,N ), respectively. By OCNMF, we obtained the approximation

X(∼,N ) ≈ H′V′T, where its k children (∼, CN 1), · · · , (∼, CN k) are found according to the

k clusters in V and the corresponding k topic vectors H1, · · · , Hk, as well. Then, we com-

pute mNDCG scores for all of its child nodes (∼, CN i)|ki=1 by comparing ranked words

of the father node H(∼,N ) and the child node H(∼,CN i). In fact, mNDCG(∼, CN i) reflects

the extent to which the topic of this child is related to its father’s topic and the varying

degree of topics between two generations, allowing score(k,N ) possessing the following

properties:

• score(k,N ) will be large if child nodes describe well-separated topics and all of

which are highly related to the parent node.

• score(k,N ) will be small if child nodes describe close topics, indicating the father

should not be split any more.

• score(k,N ) will be small if only some child nodes are relevant to their parent node

and others describe entirely different topics, which indicates outliers were involved

in the father node from its previous splitting.

5.5.3 Pruning Strategy

NMF performs well on interpretation of detected topics and the corresponding document

clusters, however, a problem appears that the number of clusters obtained from above

rules (Eq. ??-Eq. ?? or Eq. ??-Eq. ??) may be less than the wanted k because of the complex

data distribution, which has not been discussed in previous works, but does occur in

the real data sets among our experiments. Herein we hypothesise that if a set of data

points can only be clustered to k′ < k arts, their subsets are unlikely to be able to be

divided into k clusters while up to k clusters could be obtained in the next partition,

which further implies that if only k′ < k clusters be found among the data points in this

node, its k′ children (clusters) are highly homogeneous already and no further partition

is needed. Therefore, we stop building branch for these children. Once a child node’s

branch is pruned, it will no longer be considered as a candidate of the further hierarchy

construction, but it is still a leaf node representing a cluster of documents, i.e., a separate

topic, in the final result, and score(k′, CNi) < 0 will be assigned to it for distinguishing it
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Figure 5.1: An illustration of cases that may emerge in a partition process of the node
(k,N ) containing a set of document examples N by k clusters. The solid lines depict the
actions in this step, while the dashed lines indicate actions may happen in the further
steps. Three cases are demonstrated: 1) PRUNING: terminate nodes represented by the
two-side child nodes (k

′
, CN1) and (k

′′
, CN k) because of k

′
, k
′′
< k. They will be labelled

as indivisible with a negative score and lose the opportunity to be chosen for further s-
plitting. 2) OUTLIERS: represented by the second right node (∼, CN k−1). Therefore, the
verification process and more trial splitting on (k,N ) ensue. 3) QUALIFIED CANDIDA-
TURES: represented by (k, CN 2) and (k, CN 3). The one with the largest score among
them will be selected to fulfill the following hierarchy construction before it terminates.

from other real candidates.

In Subsection 5.5.5, we will introduce another pruning case accompanied by outlier

verification.

5.5.4 Stopping Criteria

We propose two stopping criteria for our algorithm. i) One is that the incremental num-

ber of leaf nodes reaches the upper limit K of the topic number. When one leaf node is

selected to split, the increment of leaf nodes is, at best, k− 1 and in the last round of split,

the number of wanted clusters will be specified to K− k + 1 because we do not restrict

the tree to be a binary tree so that a change of k should be allowed. ii) For applications in

which we have no idea about the distribution of document clusters, a feasible and prac-

tical alternative is that the construction of the hierarchical structure terminates following

our above pruning strategy until when all leaf nodes are pruned.

The datasets we used to conducted experiments in this work are well predefined with

the specific K clusters; therefore, for ease of demonstrating and comparing the perfor-

mance, we use the first stopping criterion.
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5.5.5 Verification of Outliers

Outlier verification is two-step in each round of split. First, the algorithm identifies the

outliers. A Node will be considered as outliers with two following conditions:

1. Too few documents were divided into this node, or

2. The score of this node is smaller than the current minimum score of candidates.

In the former case we apply a threshold θ1 to judge whether a cluster is too small com-

pared to its parent node. And avoiding the latter case guarantees the relative effective-

ness of a new leaf node among all existing leaf nodes.

Then a verification of the outlier suspects will be applied to confirm the outliers. And

we will illustrate the details of this process by example. As shown in Fig. ??, the parent

node (k,N ) contains a set of documents N , and a subset of documents CNk−1 ⊂ N is

divided into the (k-1)-th child node (the second right child) while |CNk−1| < θ|N |. Since

the number of documents in this child node is too small, we do not actually split this

node but temporarily assign score(∼, CNk−1) = 0 to it, which results in this document

set CNk−1 being identified as a suspected outlier and excluded from the whole sample

set of the parent node for now,N ′ = N −CNk−1. Therefore, one more tentative split step

will be arranged. At the next trial, ideally, k new child nodes will be generated and the

verification of CNk−1 will be carried out here by comparing two scores between (k,N )

and (k,N ′). If the new score declines instead of increasing, we countermand the last

exclusion and recover the sample set to the previous state N . Otherwise, a new round

of outlier identification will be carried on the k new child nodes until no outliers are

detected or the predefined trial allowance γ reaches.

Before selecting the next candidature node, we adopt this two-step verification policy

to enhance the credibility of confirmed outliers. If outliers of this node (k,N ) still exist

after γ times of trial splits2, in other words, no valid partition under k obtained, the

algorithm will try to split the node, to better fit the distribution of N with a smaller k.

The overall algorithm of hierarchy is summarized in Algorithm 5.2.

1θ is configured depending on the scale of datasets and k.
2We set γ to 3 in all our experiments.
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Table 5.1: Summary of datasets and corresponding hierarchy parameters k.

Dataset #Sample Size (n) # of Feature (m) # of Users (l) # of Topics (K) k for hierarchy

CS5 403 19,455 66,537 5 2,3,5
CS10 1,451 29,903 149,121 10 2,3,5,7,10

TS5 724 20,218 66,019 5 2,3,5
TS10 1,554 33,771 133,227 10 2,3,5,7,10

MS5 1,189 46,231 25,717 5 2,3,5
MS7 2,459 54,488 40,217 7 2,3,5,7
MS8 2505 54693 40,684 8 2,3,5,7,8

TDT2 9394 36771 - 5,7,10,15,20 2,3,5,7,10,11,13,17,20

5.5.6 Complexity Analysis

As each leaf node in the hierarchy is tried for split, expect the last generated leaves,

and we ignore the constant times of outlier verfication, the complexity of building the

hierarchy is O(K − k), where K is the total number of clusters and k is the low rank

for CMF algorithm. Then considering the integrated CMF algorithm, we suppose the

optimisation stops after t iterations, therefore the cost of the CMF is O(tmnk + tnlk),

where n, m and l are numbers of documents, features and involved active users, re-

spectively. To enhance weak connections denoting by φ(V) and φ(G), an extra cost

of O(n2m + l2n) is needed. Above all, the overall complexity of RHE framework is

O((K− k) · (tmnk + tnlk + n2m + l2n)).

5.6 Experiments and Evaluations

Extensive experiments were conducted to evaluate our proposed hierarchical method

and analyse the effectiveness of `2,1-norm and F-norm based optimisation function of

NMF. We demonstrate our experimental settings and results in the rest of this section.

5.6.1 Datasets Description

To evaluate the proposed methods, we experiment with 8 textual datasets. Tab. 5.1 sum-

marises the description of these datasets. The first six are real datasets published in [81]3,

including real social context and Twitter users for evaluating CMF methods. Each of

3https://github.com/kjanani/LTECS
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them contains 14 days press articles from 80 international news sources. The special

thing is a list of tweets linking to each article posted in 12 hours after the press release

is included. The datasets were reorganised in three categories according to the type of

topics: 1) Textual Stable (TS) topics do not evolve too much in terms of text content, but

keep attracting different attentions along the incremental evolution during the period of

observation; 2) Community Stable (CS) topics spreads amongst some settled communi-

ties, but diverse vocabulary arises; 3) Mixed Stable (MS) topics show stability in both text

content and communities. Our experiments are conducted in the consecutive 14 days

and the average performance of the 14 days will be reported. Dataset 8 is a benchmark

dataset consisting of TDT series datasets (TDT2 in short) that are extracted from the NIST

Topic Detection and Tracking (TDT2) corpus4 removing documents labelled with more

than one topic. We test 50 random runs for each K = 5, 7, 10, 15, 20 using the generating

code in [10] and report the average performance will be reported.

5.6.2 Evaluation Metrics

To evaluate the algorithm performances on our two different tasks, topic detection and

documents clustering, we adopt two and three evaluation metrics accordingly.

Metrics measuring the performances of topic detection

To find the most similar topics between detected result and ground truth, a permutation

mapping will be conducted on columns of terms-topics matrix H.

Mean Average Precision (MAP) reflects the algorithms global performance by calcu-

lating the mean of the Average Precision (AP) for all discovered topics. APi = (∑R
j=1

j
rank j

)/p

assumes the binary relevance between relevant j terms and the topic i which means a ter-

m is either of relevant of not. Since we use the top ten ranking terms to denotes the

discovered topics, the number of relevant term p = 10. rank j is the rank position of the

relevant term j in the discovered terms list. j
rank j

= 0 means the relevant term j is not

discovered in the top ten terms list of the topic. For corpus with K topics, if k topics are

4http://www.itl.nist.gov/iad/mig/tests/tdt/1998/
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detected by the algorithm, MAP will be calculated as follow:

MAP = (∑k
i=1 APi)/ max(k, K)

The Ideal situation would be that the algorithm outputs k = K topics. Under our first

stop criterion, we always know that k ≤ K.

Normalized Discounted Cumulative Gain (NDCG) can show multiple levels of rel-

evance or the graded usefulness of a term regard to a topic using the cumulated gain

of the term. Ideally, the most relevant term lists at the front position, therefor the gain

is accumulated starting at the top of the ranking and be discounted at the lower ranks.

Typically, the discount is set to 1/log2rank j. In a corpus containing K topics, to com-

pute groundtruth DCG or Ideal DCG (IDCG) for a topic i, we assume that the word

j ∈ top ten representative words relevant to topics with the same relevancy relj. We have

IDCGi = 1+∑R
j=2

relj
log2rank j

. Then for detected words-topics matrix with k topics, the DCG

of a topic i is defined as DCGi = 1+ ∑R
j=2

relj
log2rank j

. It also indicates that if a relevent word

is not detected as the top ten words, the relevancy relj = 0. Then the NDCG of the corpus

can be defined as:

NDCG = (∑k
i=1

DCGi

IDCGi
)/max(k, K).

Metrics measuring the results of document clustering

To map each cluster label to the equivalent ground truth label, a permutation mapping

on columns of documents-topics matrix V is necessary before we compute the follow-

ing clustering evaluation metrics. The mapping was implemented with the Hungarian

algorithm. Let cli denote the cluster label of document i after mapping.

Accuracy (AC) measures the degree of correspondence between a predicted cluster

label of a data sample and its closest class labelling in the ground truth, defined as follow:

AC =
∑n

i=1 δ(cli, cl gndi)

n

where δ(cli, cl gndi) is the delta function that equals to 1 if cli = cl gndi and equals to 0

otherwise, and n is the total number of documents.
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Purity (PU) transparently evaluates the extent to which the data points from one

ground truth class are assigned to one predicted cluster. It is computed by counting the

number of correctly assigned documents and dividing by the total number of documents

n, given as follow formally:

Purity(C gnd, C) =
1
n ∑K

i=1,j=1 max
j

∣∣ci ∩ c′ j
∣∣

where, ci ∈ C gnd and c′j ∈ C are the sets of documents belong to predicted clusters and

ground truth classes correspondingly. Purity(C gnd,C) is bounded in the range of [0, 1]

and the large the better.

Normalized Mutual Information (NMI) determines the mutual dependence between

the set of predicted clusters and the set of ground truth classes, and bounds the value

range to [0, 1] for computation and comparison with following expression:

NMI(C gnd, C) =
MI(C gnd, C)

max(H(C gnd), H(C))

where H(C gnd) and H(C) are the entropies of C gnd and C, and MI(C gnd, C) is the

mutual information of the compared pair. MI(C gnd, C) =
K
∑

i=1

k
∑

j=1

|ci∩c′ j|
nd

log2
nd|ci∩c′ j|
|ci ||c′ j| ,

where ci ∈ C gnd and c′j ∈ C are the sets of documents, estimates the information shar-

ing between C gnd and C, that is the higher MI(C gnd, C), the more information they

share. However, it is not always less than 1 and hard to interpret among different pairs.

Therefore, we normalise it with the maximum entropy.

From above expressions, we observes that NMI considers the entire distribution of

the corpus in the computation while PU only involve the largest cluster with the most

correctly predicted documents and AC averages out the one-to-one corresponding rela-

tionship for each document.

5.6.3 Experimental Setup

We involved five baseline methods plus our proposed three methods in the experiments

as follows:

• RHE series methods (RHEs in short): It is the proposed hierarchical ensemble method

in our work, in which three optimization functions are used to form three algo-
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rithms: RHE ALM, RHE MUL21 and RHE MULF. To verify the outliers dur-

ing the hierarchy construction, we set θ = 0.1 and γ = 3. We tune µ in the

range of {0.1, · · · , 0.9}, λ1, λ2 in the range of {0, 100, · · · , 104} for RHE MUL21

and RHE MULF, while λ1, λ2 in the range of {0, 10−9, · · · , 10−5} for RHE ALM.

We set k corresponding to the datasets, presented in the right column in Tab. 5.1.

• NMF [94]: Standard NMF method implemented with multiplicative updating rules

and F-norm formulation.

• GNMF [24]: Geometric information is utilized as a p-nearest neighbour graph ex-

tracted from the original data set. We search 5 nearest neighbours of each data

sample to build the Laplacian graph by the author and tune the regularisation pa-

rameters λ in the grid {0, 0.1, 1, 10, 100, 1000, 10000} for the best and stable perfor-

mance.

• FASTR2 [90]: A rank-2 hierarchical NMF method was solved as alternating non-

negative least squares with an active set type algorithm. The outlier threshold and

trial allowance are set to 0.1 and 3 for outlier verification of hierarchy.

• LETCS [81]: A multi-view collected matrix factorization method models topic evo-

lution with a transition matrix, which is applied to linearly associate the current

topic matrix with the previous one. We tune its regularization parameters in the

range of 10[0,7] by the author.

• NMFCP [176]: A multi-relation collected matrix factorization method introduced

a constraint propagation mechanism to enhance inherent pairwise relations among

original data points. The regularization parameters are set as same as our RHEs

with multiplicative updating rules.

5.6.4 User Selection

Unlike the number of common words is easily controlled and organised within one cor-

pus, the number of involved users sometimes may become super large, displaying fluc-

tuations with regard to topic type, stage of topic evolution, event propagation and even

the influence of participating opinion leader. Subject to computing resource and the pur-

pose of removing noises and discover really relevant users, we generate a subset of the

whole user set forming U′ with two strategies. First, we only consider those users who
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Figure 5.2: The performance on different user scales. Performances of four methods
(RHE ALM, RHE MUL21, RHE MULF and NMFCP) are shown from top to down,
containing five metrics from left to right in each graph. And for each metrics, 7 bars cor-
respond to results on 7 datasets sequentially mentioned in Table 5.1. We illustrate three
user scales (500, 1000, 2000) for each dataset, corresponding to the three rows of bars from
the front to the back. Results of users selected from q = 1, 2 consecutive days are placed
on the left side and right side, respectively.
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are active in q consecutive time steps and secondly we keep user scale under a prede-

fined number, max user ≤ 2000 for example. After the random selection of max user

users, we calculate the pairwise weight on U′ which contains fewer but more represen-

tative users. This compromise is based on our observation that compared to a random

user who occasionally read or reposts an article about a topic, those users who pay sus-

tained attention to a topic in a period are more likely to be truly interested in this topic.

The time step can be set to a day, an hour or any other time interval as required. Under

the predefined corpus, the data of texture information and community information in a

time-step comprises the entire set of our input data of the time-step. In datasets 1-7, we

take each day as a time step. Fig. 5.2 revealed the performance of the number of users

and the quality of users for four methods where community information are involved

and number of users is adjustable, which are RHE ALM, RHE MUL21, RHE MULF

and NMFCP from up to down, on seven out of eight datasets we mentioned above. Each

bar from the left to the right of each bunch of bars in each subgraph corresponds to a

dataset of datasets 1-7, and from the front to the back, each bar corresponds to the user

scale 500, 1000 and 2000. A clear trend is that more users lead to better performances on

all of the metrics; meanwhile, those results with users of higher quality, selected by q = 2

in the right side subgraphs, tend to be better than those q = 1 in the left subgraphs. This

result shows that it is of great necessity to carefully select high-quality users for advanced

performance under limited computing resource.

Table 5.2: Statistics of involved users in consecutive q days.

q CS5 CS10 TS5 TS10 MS5 MS7 MS8

1 Avg. # of users 5,830 15,823 6,608 14,238 2,636 5,009 5,112
Max. # of users 11,189 22,050 13,732 26,653 5,672 7,744 7,762

2 Avg. # of users 798 2,938 1,090 2,739 478 1,288 1,336
Max. # of users 1,800 4,150 1,966 5,810 1,611 2,246 2,662

3 Avg. # of users 383 1,447 594 1,497 141 610 640
Max. # of users 466 2,077 851 2,062 188 808 862

We display the statistics of users of datasets 1 to 7 in Tab. 5.2. For reducing the loss of

less users in one single day, we set q = 3 and max user ≤ 2000 for following experiments.
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5.6.5 Result Analysis

We show the topic detection performance through the left two columns of the following

tables and the clustering results are discussed through the right three columns. Tab. 5.3

- Tab. 5.4 show the results on real CMF datasets. The best performance of each method

is shown with the corresponding parameters. The best results of baseline methods are

indicated with daggers and the best results among all methods are emphasised in bold.

On datasets TDT2 (shown in Fig. 5.5 - Fig. 5.5) without multi-timesteps and multi-view,

LETCS reduces to the standard NMF; therefore, we do not test LETCS on TDT2. Since

Table 5.3: Performance over three MS datasets. The best result is indicated in bold.

Topic Detection Document Clustering

MS5 parameters NDCG MAP AC NMI PU

NMF 0.4489 0.3115 0.6618 0.3835 0.7012
GNMF λ = 104 0.5812 0.4942 0.7993 0.5566 0.8582
FASTR2 0.5214 0.4223 0.7218 0.5046 0.8082
LETCS µ = 0.3, λ = 1 0.6756† 0.6317† 0.8714† 0.6490† 0.9295†
NMFCP µ = 0.9, λ1 = 104, λ2 = 102 0.6159 0.5106 0.8125 0.5739 0.8710

RHE MULF k = 5, µ = 0.5, λ1 = 101, λ2 = 102 0.7025 0.6695 0.9129 0.6980 0.9522
RHE MUL21 k = 5, µ = 0.3, λ1 = 101, λ2 = 101 0.6627 0.6120 0.8822 0.6784 0.9464
RHE ALM k = 5, µ = 0.1, λ1 = 10−5, λ2 = 10−8 0.6589 0.6134 0.8044 0.5677 0.8641

MS7

NMF 0.4718 0.3812 0.6020 0.4382 0.7432
GNMF λ = 103 0.5037 0.4391 0.6380 0.5008 0.7725
FASTR2 0.4998 0.4232 0.5879 0.4708 0.7572
LETCS µ = 0.9, λ = 1 0.5993† 0.5465† 0.7970† 0.6505† 0.9336†
NMFCP µ = 0.9, λ1 = 103, λ2 = 101 0.5622 0.4808 0.6348 0.5115 0.7734

RHE MULF k = 3, µ = 0.9, λ1 = 1, λ2 = 102 0.6247 0.5706 0.8072 0.6531 0.8935
RHE MUL21 k = 2, µ = 0.5, λ1 = 101, λ2 = 101 0.5365 0.4572 0.6496 0.5506 0.8429
RHE ALM k = 7, µ = 0.7, λ1 = 10−7, λ2 = 10−6 0.5622 0.4808 0.6348 0.5115 0.7734

MS8

NMF 0.5085 0.4230 0.6348 0.3248 0.7170
GNMF λ = 103 0.5183 0.4473 0.6707 0.3990 0.7573
FASTR2 0.5081 0.4332 0.6306 0.3572 0.7433
LETCS µ = 0.3, λ = 1 0.5643 0.4840† 0.7545† 0.5497† 0.9032†
NMFCP µ = 0.9, λ1 = 104, λ2 = 102 0.5743† 0.4684 0.6556 0.4033 0.7633

RHE MULF k = 3, µ = 0.7, λ1 = 1, λ2 = 102 0.6470 0.5860 0.8535 0.5669 0.9127
RHE MUL21 k = 8, µ = 0.1, λ1 = 102, λ2 = 101 0.5218 0.4372 0.7328 0.4646 0.8301
RHE ALM k = 2, µ = 0.1, λ1 = 10−9, λ2 = 10−6 0.5738 0.4985 0.7802 0.4763 0.8388
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Table 5.4: Performance over two TS (up) and CS (down) datasets.

Topic Detection Document Clustering

TS5 parameters NDCG MAP AC NMI PU

NMF 0.5089 0.3212 0.4709 0.2503 0.5398
GNMF λ = 104 0.5917 0.4770 0.6527 0.4728 0.6978
FASTR2 0.5791 0.4782† 0.6856† 0.5675† 0.7747†
LETCS µ = 0.7, λ = 103 0.4127 0.2412 0.4919 0.2049 0.5324
NMFCP µ = 0.9, λ1 = 104, λ2 = 1 0.6375† 0.4350 0.6348 0.4270 0.6646

RHE MULF k = 2, µ = 0.9, λ1 = 102, λ2 = 104 0.6453 0.5809 0.6792 0.5057 0.7413
RHE MUL21 k = 2, µ = 0.7, λ1 = 102, λ2 = 101 0.6686 0.6067 0.6800 0.5640 0.7660
RHE ALM k = 3, µ = 0.9, λ1 = 10−9, λ2 = 10−8 0.5829 0.4248 0.4938 0.2432 0.5577

TS10

NMF 0.4704 0.2728 0.3999 0.2876 0.4511
GNMF λ = 103 0.4659 0.3437 0.5422 0.4711 0.6016
FASTR2 0.5150 0.4147† 0.5566† 0.4974† 0.6246†
LETCS µ = 0.9, λ ≥ 102 0.3169 0.1292 0.3072 0.1718 0.3535
NMFCP µ = 0.5, λ1 = 104, λ2 = 0 0.5645† 0.4027 0.5245 0.4450 0.5742

RHE MULF k = 2, µ = 0.9, λ1 = 101, λ2 = 104 0.5902 0.5087 0.5933 0.5176 0.6420
RHE MUL21 k = 2, µ = 0.7, λ1 = 101, λ2 = 104 0.6064 0.5316 0.6006 0.5475 0.6630
RHE ALM k = 2, µ = 0.9, λ1 = 10−5, λ2 = 10−8 0.5021 0.3619 0.3403 0.2550 0.4132

CS5

NMF 0.5851† 0.4196† 0.5947 0.1018 0.6415
GNMF λ = 104 0.5022 0.4133 0.5607 0.1163 0.6312
FASTR2 0.4641 0.3833 0.5589 0.1048 0.6340
LETCS µ = 0.9, λ = 101 0.4097 0.2366 0.6642 0.2110 0.7311
NMFCP µ = 0.1, λ1 = 1, λ2 = 103 0.4234 0.3085 0.7660† 0.3024† 0.8313†

RHE MULF k = 2, µ = 0.9, λ1 = 0, λ2 = 103 0.5876 0.5562 0.7588 0.3377 0.8763
RHE MUL21 k = 2, µ = 0.1, λ1 = 1, λ2 = 0 0.5636 0.5118 0.7638 0.3235 0.8740
RHE ALM k = 2, µ = 0.9, λ1 = 10−6, λ2 = 10−8 0.5501 0.4818 0.7502 0.3410 0.8809

CS10

NMF 0.4250† 0.2890† 0.3001 0.1383 0.3524
GNMF λ = 103 0.3880 0.2705 0.3200 0.1983 0.3967
FASTR2 0.3197 0.2034 0.2984 0.1515 0.3549
LETCS µ = 0.1, λ ≥ 102 0.3569 0.2338 0.4874 0.3645 0.5707
NMFCP µ = 0.5, λ1 = 0, λ2 = 103 0.3680 0.2531 0.5596† 0.4275† 0.6109†

RHE MULF k = 3, µ = 0.1, λ1 = 102, λ2 = 102 0.5267 0.4481 0.6211 0.5669 0.7459
RHE MUL21 k = 10, µ = 0.1, λ1 = 101, λ2 = 102 0.4564 0.3479 0.6736 0.5667 0.7519
RHE ALM k = 10, µ = 0.7, λ1 = 0, λ2 = 10−8 0.4958 0.4014 0.5985 0.5304 0.7003
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there is no information of user concerns, only λ1 is needed for NMFCP, RHE MULF

and RHE MUL21. To all experiments across TDT2, we simply set λ1 = 102 for all NMF

methods of Lagrangian Multiplier and λ1 = 10−7 for RHE ALM method of Augment-

ed Lagrangian. In each dataset, results in bold under a metric represent a significant

improvement in performance using the Student-t significant test and p < 0.05.

Comparing the results of two categories of metrics, we can see some slight incon-

gruities between them. For example, on TS5, FASTR2 has the best performance on clus-

tering but does not obtain a consistently good value on topic detection metrics, and on

CS, NMF performs best in topic detection but relatively poor in document clustering a-

mong baseline methods. However, in most cases, all the metrics are generally positively

correlated and accordant.

Overall, we observe that our RHEs achieve significantly better performances than

other compared methods when considering both tasks of topic detection and document

clustering, especially on datasets with a larger K, demonstrating the robustness of our

RHEs methods. For example, FASTR2 performs rather good in document clustering

on TS, however, does not obtain a consistently good value on other datasets; similar-

ly, LETCS outperforms other baselines on MS datasets but lags behind on other datasets,

especially bad on TS. Besides, in some particular cases, RHEs trail closely behind the best-

performed method for either topic detection or document clustering. For instance, NM-

FCP tends to perform well on TDT2 K = 5, 7, followed by RHE ALM and RHE MULF.

For the difference between `2,1-norm and F-norm based objective functions, our re-

sults of both topic detection and document clustering do not actively support the remark-

able robustness brought by `2,1-norm mentioned by [3], [18] that mainly worked on im-

age data. For example, on TDT2 datasets, RHE MULF performs as good as RHE ALM;

however, RHE MUL21 even performs worse than some of our baseline methods, NM-

FCP or standard NMF for instance. The improvement of F-norm based RHE MULF

method evidences the limitations of simply applying `2,1-norm to the objective function

due to the complexity of semantic circumstance for textual data to some extent, indicating

the necessity of more robust learning method and the advantage of our ensemble method

as well. In addition, it is also worth noticing that for `2,1-norm based objective function,

adopting different updating method seriously impact the experimental results, especially
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Table 5.5: Clustering results over TDT2 datasets. The best result is indicated in bold.

Topic Detection Document Clustering

Dataset k NDCG MAP AC NMI PU

K = 5

NMF 0.7761 0.6989 0.8033 0.6805 0.8933
GNMF 0.6559 0.5342 0.9096 0.7932 0.9346
FASTR2 0.7148 0.6294 0.7672 0.6669 0.8923
NMFCP 0.8957† 0.8614† 0.9367† 0.8394† 0.9605†

RHE MULF
2 0.7841 0.7173 0.7669 0.7117 0.9135
3 0.7852 0.7172 0.7686 0.6988 0.9101
5 0.9075 0.8724 0.8842 0.8131 0.9498

RHE MUL21
2 0.7723 0.6951 0.7131 0.6573 0.9113
3 0.6624 0.5529 0.6544 0.5981 0.8681
5 0.7510 0.6597 0.7542 0.6523 0.8852

RHE ALM
2 0.7381 0.6507 0.8276 0.7203 0.8852
3 0.8252 0.7687 0.8713 0.7525 0.9061
5 0.8965 0.8621 0.8778 0.8209 0.9603

K = 7

NMF 0.8105 0.7474 0.8227 0.7240 0.9084
GNMF 0.6210 0.4998 0.8755 0.7903 0.9361
FASTR2 0.6188 0.5181 0.6850 0.6205 0.8715
NMFCP 0.8815† 0.8454† 0.9101† 0.8386† 0.9531†

RHE MULF

2 0.7076 0.6207 0.6793 0.6646 0.8956
3 0.6916 0.6023 0.6874 0.6553 0.8813
5 0.7711 0.6991 0.7709 0.7398 0.9110
7 0.8777 0.8329 0.8466 0.7981 0.9439

RHE MUL21

c 2 0.6778 0.5772 0.6100 0.6214 0.8842
3 0.7120 0.6164 0.6649 0.6472 0.8796
5 0.6673 0.5536 0.6477 0.6037 0.8546
7 0.7247 0.6291 0.7334 0.6513 0.8758

RHE ALM

2 0.6639 0.5647 0.7984 0.6999 0.8608
3 0.6872 0.5932 0.8352 0.7341 0.8678
5 0.8106 0.7520 0.8722 0.8020 0.9201
7 0.8979 0.8638 0.8633 0.8157 0.9619

K = 10

NMF 0.7564 0.6837 0.7265 0.6919 0.8616
GNMF 0.5704 0.4441 0.7804 0.7439 0.9062
FASTR2 0.5824 0.4761 0.6291 0.6000 0.8324
NMFCP 0.8045† 0.7468† 0.8466† 0.7924† 0.9199†

RHE MULF

2 0.6831 0.5879 0.6533 0.6808 0.8744
3 0.6899 0.5946 0.6808 0.6940 0.8727
5 0.6845 0.5870 0.7024 0.7015 0.8592
7 0.7301 0.6452 0.7608 0.7473 0.8877

10 0.8581 0.8090 0.8332 0.7881 0.9272

RHE MUL21

2 0.6578 0.5534 0.5864 0.6316 0.8585
3 0.7095 0.6135 0.6200 0.6582 0.8799
5 0.6183 0.4983 0.6119 0.6329 0.8253
7 0.6560 0.5372 0.6368 0.6376 0.8274

10 0.7119 0.6129 0.7526 0.6898 0.8548

RHE ALM

2 0.6313 0.5259 0.7481 0.6831 0.8355
3 0.6462 0.5475 0.7648 0.6869 0.8325
5 0.6834 0.5920 0.7972 0.7287 0.8592
7 0.7504 0.6796 0.8502 0.7955 0.8986

10 0.8528 0.8050 0.7963 0.7734 0.9376
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Table 5.6: Clustering results over TDT2 datasets. The best result is indicated in bold.

Topic Detection Document Clustering

Dataset k NDCG MAP AC NMI PU

K = 15

NMF 0.7538 0.6811 0.6565 0.6719 0.8391
GNMF 0.5290 0.4004 0.6798 0.7025 0.8748†
FASTR2 0.5378 0.4248 0.5459 0.5737 0.7981
NMFCP 0.7585† 0.6955† 0.7403† 0.7141† 0.8678

RHE MULF

2 0.6637 0.5692 0.6002 0.6685 0.8622
3 0.6146 0.5108 0.6028 0.6511 0.8373
5 0.6452 0.5431 0.6364 0.6816 0.8509
7 0.6501 0.5479 0.6625 0.6965 0.8510

11 0.7349 0.6564 0.7713 0.7708 0.8893
13 0.7962 0.7347 0.7838 0.7853 0.9073
15 0.8398 0.7877 0.7767 0.7798 0.9208

RHE MUL21

2 0.6323 0.5171 0.5288 0.6280 0.8481
3 0.6414 0.5265 0.5546 0.6396 0.8459
5 0.6229 0.5088 0.6100 0.6458 0.8221
7 0.5533 0.4191 0.5937 0.6277 0.7806

11 0.5818 0.4505 0.5651 0.5841 0.7814
13 0.6468 0.5287 0.6061 0.5950 0.7913
15 0.6583 0.5387 0.6742 0.6210 0.7932

RHE ALM

2 0.5820 0.4675 0.6434 0.6688 0.8103
3 0.5608 0.4392 0.7141 0.6587 0.8032
5 0.6211 0.5161 0.7822 0.7187 0.8366
7 0.6387 0.5380 0.7843 0.7292 0.8442

11 0.7142 0.6339 0.8001 0.7778 0.8794
13 0.8243 0.7689 0.7842 0.7662 0.9054
15 0.8386 0.7863 0.7321 0.7369 0.9106

K = 20

NMF 0.7629† 0.6934† 0.6221 0.6715 0.8182
GNMF 0.5073 0.3876 0.6501 0.7013† 0.8569†
FASTR2 0.5194 0.4007 0.5133 0.5845 0.7820
NMFCP 0.7303 0.6631 0.6995† 0.7088† 0.8416

RHE MULF

2 0.6297 0.5250 0.5758 0.6743 0.8414
3 0.6160 0.5110 0.5984 0.6831 0.8362
5 0.5810 0.4693 0.6119 0.6789 0.8202
7 0.6328 0.5307 0.6590 0.7151 0.8412

11 0.6319 0.5291 0.7406 0.7628 0.8563
13 0.6751 0.5853 0.7678 0.7859 0.8714
17 0.7824 0.7203 0.7913 0.8044 0.9020
20 0.8458 0.7966 0.7729 0.7912 0.9148

RHE MUL21

2 0.6163 0.5004 0.5233 0.6484 0.8388
3 0.6616 0.5562 0.5685 0.6650 0.8497
5 0.6832 0.5808 0.6482 0.6887 0.8433
7 0.5823 0.4604 0.6569 0.6915 0.7921

11 0.5085 0.3637 0.6152 0.6411 0.7460
13 0.5481 0.4101 0.5978 0.6226 0.7590
17 0.6319 0.5116 0.6214 0.6217 0.7736
20 0.6616 0.5464 0.6736 0.6304 0.7760

RHE ALM

2 0.5976 0.4856 0.6506 0.6857 0.8063
3 0.5448 0.4228 0.6707 0.6440 0.7714
5 0.5756 0.4615 0.7608 0.6924 0.8017
7 0.5611 0.4451 0.7699 0.7169 0.8128

11 0.5898 0.4819 0.7797 0.7602 0.8327
13 0.6351 0.5365 0.7742 0.7756 0.8453
17 0.7950 0.7320 0.7570 0.7552 0.8793
20 0.8110 0.7495 0.7003 0.7232 0.8892
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on TDT2 datasets. We interpret this result as a possibility of the non-applicability of Mul-

tiplicative updating rule at simple textual context, which results in the unexpected bad

result of RHE MUL21 on TDT2. However, on real datasets integrating community in-

formation, minor difference indicates an improvement in the non-applicability situation

of RHE MUL21.

Besides, we can find that though RHE ALM performs well on TDT2, it is not always

suitable for real datasets with community information; on the contrary, RHE MUL21

obtained rather good results on TS5 and TS10.

5.6.6 Parameter Analysis

In the following, we present the discussion of parameter analysis for essential parameters

of RHEs methods. Representatives of Three types of parameters are included below.

Regularisation parameters λ1 and λ2 control the degree of the effect caused by soft

constraint terms. A larger value represents more weight on this term and vice versa.

Fig. 5.3, Fig. 5.4 and Fig. 5.5 show how the performances of our RHEs varied with λ1

Figure 5.3: Parameters λ1 and λ2 on CS10.
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Figure 5.4: Parameters λ1 and λ2 on TS10.

Figure 5.5: Parameters λ1 and λ2 on MS8.
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(a) RHE ALM
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(b) RHE MUL21
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(c) RHE MULF

Figure 5.6: Performances of RHEs vs. the parameters µ on MS8: Solid lines depict the
topic detection performances while dash-dot lines specify metrics of the clustering result
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(b) RHE MUL21

0 0.5 1
0.2

0.4

0.6

λ
1
=1, λ

2
=100

0 0.5 1
0.2

0.4

0.6

λ
1
=1, λ

2
=1000

0 0.5 1
0.2

0.4

0.6

λ
1
=1, λ

2
=10000

0 0.5 1
0.2

0.4

0.6

λ
1
=10, λ

2
=100

0 0.5 1
0.2

0.4

0.6

λ
1
=10, λ

2
=1000

0 0.5 1
0.2

0.4

0.6

λ
1
=10, λ

2
=10000

0 0.5 1
0.2

0.4

0.6

λ
1
=100, λ

2
=100

0 0.5 1
0.2

0.4

0.6

λ
1
=100, λ

2
=1000

0 0.5 1
0.2

0.4

0.6

λ
1
=100, λ

2
=10000

 

 

NDCG MAP AC NMI Pu

(c) RHE MULF

Figure 5.7: Performances of RHEs vs. the parameters µ on TS10
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(b) RHE MUL21
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(c) RHE MULF

Figure 5.8: Performances of RHEs vs. the parameters µ on CS10
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(a) TS10 NDCG (b) MS8 NDCG

Figure 5.9: Performance of NDCG on TS10 (left) and MS8 (right) vs. the parameter k

(a) TS10 MAP (b) MS8 MAP

Figure 5.10: Performance of MAP on TS10 (left) and MS8 (right) vs. the parameter k

(a) TS10 AC (b) MS8 AC

Figure 5.11: Performance of AC on TS10 (left) and MS8 (right) vs. the parameter k

and λ2 on CS10, TS10 and MS8, respectively. We can find that our HER series methods

are sensitive to λ1 and λ2, demonstrating that choosing proper values for them is very

crucial to the performance, which has also attracted much attention in previous work-
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(a) TS10 NMI (b) MS8 NMI

Figure 5.12: Performance of NMI on TS10 (left) and MS8 (right) vs. the parameter k

(a) TS10 PU (b) MS8 PU

Figure 5.13: Performance of PU on TS10 (left) and MS8 (right) vs. the parameter k

s [10], [37]. Compared to topic detection performance, the clustering results vary more

regularly with the changes of λ1 and λ2, especially in multiplicative updating methods

RHE MUL21 and RHE MULF. In particular, on TS10, larger values of λ1 and λ2 boost

the topic detection and document clustering results simultaneously. As in Fig. 5.4, al-

l metrics increase when λ1 and λ2 varying from 0 to bigger values. While on CS10,

Fig. 5.3, this trend can only be observed in the performances of RHE ALM, and the per-

formances of RHE MUL21 and RHE MULF asymptotically improve with λ1 and λ2

increasing until they reach peak followed by reductions afterwards. After all, the two

types of updating rules are different.

Trade-off parameter µ regularises the relevant portion between two relation matri-

ces during the approximation. Fig. 5-7 show the performances of RHEs related with µ

over MS8, TS10 and CS10, under three different settings of λ1, λ2 and k corresponding
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to those values of best performance on each dataset. In fig.6 and 7, we can observe two

opposite trends that the performances in fig. 7 (CS10) decline consistently as µ increases

which correspond to the reduction of involved community information from U, while the

performances in fig. 6 (TS10) raise along with µ. Though there are not clear monotonous

trends shown in fig. 5, we still can observe enhancements brought by a certain proportion

of community information when µ increases. However, too much community informa-

tion will either not help, or it may even reduce momentum.

Hierarchy parameter k affects the structure of hierarchy. We select results on TS10

and MS8 to display below. Fig. 8-9 show the performances of topic detection followed by

fig. 10-11 that show the results of document clustering. We can see that in most cases, the

two types of metrics vary consistently with each other; that is to say, good result of doc-

ument clustering corresponds to the good performance of topic detection. For example,

on TS10, all methods obtain the best performances when k = 2, and RHE MUL21 get

the lowest value of all metrics when k = 5 , while RHE MULF reaches the worst perfor-

mance when k = 10. Intuitively, k depends on the data distribution of the original data

space. However, some of our results show less coordinated with datasets which might be

influenced by the selection of other parameters. For example, on MS8, only RHE ALM

always obtains best results when k = 2, while RHE MUL21 performs best in NDCG

and MAP when k = 3, but does not maintain the edge in document clustering results.

5.7 Conclusions

In this Chapter, we propose a robust hierarchical ensemble NMF framework for topic

detection through hierarchical document clustering and collective NMF in seeking a re-

duction of the effect caused by outliers and semantic diversity. To better adapt to the

data distribution in the latest coming corpus, our method uses a dynamic cluster number

to build an adjustable k-ary tree for hierarchy. Further pruning and outlier verification

strategies are introduced. To enhance the robustness of NMF, we propose our objective

function with both `2,1-norm and F-norm, adopting two different optimization manners,

augmented Lagrangian multiplier and Multiplicative updating rules, and deriving RHE

series methods, RHE ALM, RHE MUL21 and RHE MULF. Experiments on both syn-
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thetic and real datasets including different application scenarios validate the robustness

and effectiveness of our RHE series methods.

For future work, we intend to embed our ensemble framework to document and cor-

responding online comments streams to explore the changing trend of data distribution

in continuous text data.





Chapter 6

Conclusions and Future Directions

This chapter summarises the contributions of the thesis towards enhancing robust detecting tech-

niques for text content in the online social network context. Possible research extensions and directions

are also discussed base on the conclusion of research findings and working experiences.

6.1 Summary and Conclusions

Text mining techniques are oriented around unstructured data that is widely distributed

in peoples’ daily life, revealing meaningful knowledge and associations from the mass

of human natural language materials which is complicated and less regular. The advent

of social network services facilitating interactions among people even poses more signifi-

cant challenges to existing text mining models as the content and public sentiment of the

information are more widespread and evolve quickly. More types of additional informa-

tion will be generated and accessed through the social network which help broaden the

scope of data and promote the development of methodologies applied to it. On the other

hand, robustness gradually becomes the major concern of text mining influenced by the

continuously changing social context.

In this thesis, we first introduced the background of this project in terms of text min-

ing and social network analysis in Chapter 1, followed by the identification of specific

challenges that have arisen in this developmental stage of text mining surrounded by

online social network context. The challenges are broken into three major aspects, in-

cluding challenges in the vast dynamic data universe, challenges in combining textual

content with the social network context and challenges in achieving robust performance,

plus additional thoughts about other challenges. The research problems and key contri-

butions are then listed and explained accordingly. The outline is also illustrated at the end

165
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of Chapter 1 to give an overall structure of the thesis. Chapter 2 presented a literature

review for the existing works of topic models and document clustering and classifica-

tion, which are the two core tasks of text mining this thesis focuses on, as well as relevant

techniques of social network analysis and stream processing. Chapter 3 to Chapter 5 pre-

sented the specific contributions with theoretical analysis and experimental verifications

in details, which target the research problems from the following components:

• To identify the changing distribution in an imbalanced data stream and maintain an

up-to-date classifier for it, we proposed a Multi-Window based Ensemble Learning

(MWEL) framework in Chapter 3 for imbalanced streaming data which compre-

hensively improves the classification performance. The principal part is a multi-

window monitoring mechanism that maintains four windows for the current batch

of instances, latest positive instances, sub-classifiers of the ensemble classifier and

instances employed to train existing sub-classifiers, respectively. The sensitivity of

the MWEL is guaranteed by an effective updating strategy for weights correspond-

ing to existing sub-classifiers and an efficient updating strategy for sub-classifiers

which keep the ensemble classifier being adaptive to the evolving data distribution

and up-to-date when a change of data concept is detected and renewal is necessary.

The imbalanced issue is tackled by an impartial re-sampling mechanism for both

positive and negative instances which generate a new training set with an ideal im-

balance ratio for updating sub-classifiers. Experiments conducted on real dataset-

s covering five different application scenarios and synthetic datasets created fol-

lowing three distributions demonstrate that the proposed multi-windows method

can efficiently and effectively classify imbalanced streaming data with outstand-

ing performances across comprehensive evaluation criteria compared to baseline

approaches.

• In Chapter 4, we proposed a semi-supervised collective learning method for topic

detection combining the text content of the input corpus with the corresponding so-

cial context to combine existing text content representation with the social context

in network individual level and to extract the inherent geometric structure from

the data distribution and maximise the effect. Specifically, a collective non-negative

matrix factorization based topic model is introduced to connect the corpus, the tex-
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tual content and its social context. The network individuals are organised by a user

preference representation according to their reactions to a collected document in an

observation period. A constraint propagation scheme was designed to adequately

exploit and enhance the hidden geometrical structure of original data space. Since

the hidden geometrical structure is naturally very sparse and weak, it always can-

not be thoroughly discovered and used without enhancement. The scheme propa-

gates pairwise constraint between data points in both vertical and horizontal direc-

tions through the whole data space and generates weights for data point pair; then

the weights will be used to minimise distances between two data points in the fol-

lowing approximation procedure of the NMF. Experiments conducted on real and

semi-synthetic data sets demonstrate that the proposed method outperforms base-

lines and state-of-the-art approaches in most cases of topic detection and feature

selection for further documents clustering with k-NN algorithm. At that time, we

have noticed that some outliers may easily dominated the F-norm based objective

function during the optimisation process; therefore, we extended the NMFCP with

a locally weighted scheme to seek better approximation of certain parts of the data

matrix in each iteration.

• In Chapter 5, to adaptively detect robust correct topics in circumstance with sev-

er outliers and noise issue and obtain topics with more specific information, we

proposed a Robust Hierarchical Ensemble (RHE) framework for topic detection

via document hierarchy in text corpus and the corresponding social context. A ro-

bust multiplicative updating rule based NMF algorithm with an orthonormal con-

straint added on the output cluster indicator matrix is developed for document

clustering so that detected topics can be generated at the same time. To enhance ro-

bustness, on the one hand, we conducted a comparative analysis in objective func-

tion level for the severe outliers and noise issue in complicated social context and

high-dimensional text data. On the other hand, we designed a top-down hierar-

chical algorithm, including the candidature selection policy, the pruning strategy,

the verification of outliers and two practical stopping criteria, which also facilitate

the robustness of the ensemble framework. The proposed method that constructs

document hierarchy structure also can flexibly cluster documents to adapt to the
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changing distribution of the input corpus, achieving a logical and specific interpre-

tation for clusters of the output. We also discussed how to extract the most valuable

social context with experiments by selecting a subset of relevant network individu-

als for the purpose of removing some noises from the surroundings and efficiency.

Through extensive experiments, RHE framework exhibits the robust and remark-

able performance for both topic detection and document clustering.

6.2 Possible Future Directions

This section gives some insights into promising research directions and problems, which

are core tasks of text mining but not restricted to the range of topic detection and doc-

ument clustering and classification. As the scope of text mining has been broadened by

social network services, although much attention has been devoted to tasks of text min-

ing influenced by the ever-changing social context, there are still several gaps that are

possible for extending the work presented in this thesis.

6.2.1 Hierarchy Evolving Tracking in Sequential Time Steps

The current hierarchy structure is constructed on the whole set of the corpus at a time step

containing all input documents. This corpus is actually a segmentation of the continuous

data stream according to time with the batch method of stream processing. However, the

segmentation may break the consistency lying in the stream, troubling the model of topic

evolving and fading process within consecutive time steps, worse yet, hindering the evo-

lutionary information been taken advantage of. Besides, the hierarchy reflects the clus-

tering process of documents, where each of the nodes indicates a collection of documents

that share similar topics. And therefore, only nodes in the bottom level can be treated as

the final classes of documents, revealing topics accordingly which are completely depend

on the orthonormal relation between cluster indicators. However, although it is not dif-

ficult to track the changes of document concepts, it is hard to arrange the evolving with

the existing hierarchy when a new corpus arrives in the next time step. In other words,

the evolution of the corpus hierarchy has not been considered, while the information that

may describe the connection or the trend of topics between two consecutive time steps
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has not been involved in our current framework. Since the robustness enhanced by the

hierarchy structure has been validated, we will keep working on this hierarchical mod-

el, considering formulating relation between two consecutive hierarchies with a concise

evolution term that expresses the changing of concepts within the corpus. The items of

this evolution term should be capable of interpreting the trace of the evolution as well

as deducing the corresponding changes from the social context. Of course, it will com-

plicate the model, increasing time and space consumption. The efficiency issue will be

discussed in the next subsection.

6.2.2 Efficiency Issue of the Hierarchical model

The complexity of building the current hierarchy is O(K− k). Then considering the inte-

grated collective NMF algorithm and the constraint propagation for geometric structure,

the overall complexity of the RHE framework is O((K− k) · (tmnk + tnlk + n2m + l2n)),

where n, m and l are numbers of documents, features and involved active users, respec-

tively. There are two components of the RHE framework which may cause the efficiency

issue. The first one is the constraint propagation across all data points, the result of which

is presented by a sparse matrix, however, the computing process cannot avoid generating

matrices of intermediate processes which are space consuming. This problem can be tack-

led with a more refined social content selection strategy to some extent. The strategy was

discussed in Chapter 5 with an initial method proposed in Section 5.6.4, through which

the most valuable social context can be filtered and this procedure can be implemented

with parallel computing since it is independent of the hierarchy construction and NMF

algorithm. The second step that may cause more time consumption is the construction

of hierarchy, where multiple trials clustering are required for candidature selection and

verification for outliers may be needed that will invoke the function of constraint prop-

agation. However, as we realised that outliers and noises are top problems that threaten

the robustness of text mining model in the continuously changing context, we plan to

solve this problem in the future by finding a more efficient implementation method to

construct hierarchy and update hierarchy for topic evolving. There is also some effort

can be made to optimise the quick approximation of robust manifold NMF algorithm.
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6.2.3 Content Evolving-base Dynamic Community Detection

Recently, more research works discuss the topic detection and tracking in the social net-

work analysis field with a fine-grained term, event detection or even extraction. From

the literature, we can hardly differentiate the two terms “topic” and “event” and find

many works taking them as the same thing and named a task as “Topic Events Detec-

tion” [83, 97, 125]. We regard the event as a fine-grained level of topic. Normally, it is

used more often for the short text mining in social network analysis, telling stories from

different aspect with the same subjects, location and objects; while the content of a topic

evolves quickly that may jump to other events with the same concerns. For example the

tragic event of “Indonesia lion air crash on 29 October 2018” can evolve to “the devel-

opment and operation of budget airlines”, “the competition of aircraft companies”, “the

design of aircraft types” and even the “the search and rescue efforts”; while the evolu-

tion of the event will around the event itself, for example, “the black box”, “the injuries

and deaths”. Therefore, we can say that both topic detection and event detection care

about the content of a story and its evolution but serve different needs. Once we make

the difference clear, we can detect and analyse the community structure of networks for

different purposes, and even can help us to extract the needed social context better. On-

line communities consist of a variety of network individuals under the scope of social

network analysis providing insights into how social influence spread within or beyond

a certain range of the network and how does the network function. As the group of in-

dividual preferences used to present social context in our work helps in detecting topics,

the evolution law of communities will also benefit from tracking the topic evolving on

the topic or event level. To discover different types of online community, we can focus

on topic level or event level, and the corresponding communities will offer more precise

and valuable social context in turn.

6.2.4 Content Evolving-base Sentiment Prediction

Sentiment analysis delivers the latent attitudes in the text which may varying quickly

in the social network. Traditional sentiment analysis in long text towards a document

is statistic data-oriented, which is short on catching the changes among multiple kinds
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of sentiment quickly and revealing what causes these changes and always roughly clas-

sify the sentiment to three statuses, positive, negative and neutral. Recently, sentiment

analysis in the social network has been emphasised with the group intelligence, which

claims that network individuals would be influenced by the information they received,

often unconsciously, at the time they present their own opinions, especially when using

the online social network services. The latent sentiment information spreads along with

the social network structure. Mike Thelwall analysed over two million public comments

associated with 2,990 pairs of U.K. and U.S. in ‘MySpace Friends’, then found statistically

significant evidence for a weak correlation between the strength of positive emotion ex-

changed between Friends, which verified that sentiment is contagious and people tend

to be a friend of others with similar levels of feeling [162]. Chenhao Tao et al. proposed

a model based on their empirically confirmed assumption that connected users are more

likely to have similar opinions which utilised the relationship between users of Twitter,

including the follower-followee and homophily, to complement their utterances. The

group intelligence also inspires us to connect the evolution of topic, event and online

community with the prediction of sentiment spreading across the social network, mak-

ing the relation between status of topics and events comprehensible and having things

under control, what needs more works on monitoring and detecting the emerging, evolv-

ing and transforming of the sentiment. The detection, analysis and prediction of latent

sentiment are also closely related work to social context extraction for the specific corpus.

Therefore, it is regarded as part of our future directions.

6.2.5 Word Embedding and Topic Detection

As we mentioned in Chapter 2, almost all widely employed topic models are BoW-based

methods that ignore the ordering of words and semantic information among the word

sequence. It has been a serious bottleneck in improving the performance of topic models.

Recently, some works have come rather to the front that integrates word embeddings to

topic models by replacing discrete topic distribution in traditional LSA and LDA mod-

els with a multivariate Gaussian distribution on the embedding space [39, 98, 189]. Shi

et al. claims that distributed Representation models and Latent topic models are com-

plementary in how they represent the meaning of word occurrences, but some previous
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works either using word embeddings to improve the quality of latent topics or using the

latent topic model to improving word embeddings cannot take advantage of the mutual

interaction between them [146]. They proposed a unified framework to learn word em-

beddings and latent topics simultaneously which inspired us to consider a model for the

mutual benefit.

6.3 Final Remarks

Text mining reveals concepts, topics, and other meaningful knowledge in large collec-

tions of human natural language resources, helping people identify latent facts and rela-

tionships from the mass of big textual data. This research investigates challenges posed

by the complicated online social network context in recent years, presenting novel algo-

rithms for robust text mining model towards continuous changing context. The research

outcome of this thesis is instrumental in promoting research and innovation of extensive

text mining techniques influenced by the development of online social network continu-

ing apace.
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