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1 Introduction
In 1952, Kato [1] proved the following generalization of the Schwarz inequality:

(T3> < ((T*T) 2, 2)((TT*) " y,9) (L1)

for any x,y € H, « € [0,1], and T is a bounded linear operator on H.
Utilizing the operator modulus notation, we can write (1.1) as follows:

(T | < (1T, a) | T, ). (12)

For results related to Kato’s inequality, see [1-17] and [18].

In the recent paper [19], by employing Kato’s inequality (1.2), Dragomir, Cho and Kim
established the following results for sequences of bounded linear operators on complex
Hilbert spaces.

Theorem1 Let(Ty,..., T,) € B(H) x - -- x B(H) := B"(H) be an n-tuple of bounded linear
operators on the Hilbert space (H; (-,-)) and (p1,...,pn) € RY" be an n-tuple of nonnegative
weights not all of them equal to zero, then

n n |r1—}|2a + |'1'}|2(1—a) 112
> pil(Tmy)| < pr(—z )x,x
j=1

j=1
1/2
n |Tfk|2a + |T* |2(1—a)
x <ZP/’<%)%J’ (1.3)
j=1
forany « € [0,1] and any x,y € H.
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Theorem 2 With the assumptions in Theorem 1, we have

> (T )
j=1

—_

< E (”T}x”Za ” 7—}*)/||2(1—0t) n ” Y}*yHZaHY}x”z(l—a))
L - e " lma sy o
55[( ”T"”Z) (ZPfHJ}"yHZ) +(Zp;||z;x||2) (zp,nT,*sz) }
j=1 =) =
l ) .
5 pi(1 Tl + | Ty (1.4)

forany x,y € H with ||x|| = ||ly|| =1 and « € [0,1].

For various related results, see the papers [20-22] and [23-27].

Motivated by the above results, we establish in this paper more inequalities for n-tuples
of bounded linear operators that can be obtained from Kato’s result (1.2) and apply them
to functions of normal operators defined by power series as well as to some norms and
numerical radii that can be associated with these n-tuples of bounded linear operators on
Hilbert spaces. The paper is a natural continuation of [19].

2 Some inequalities for n-tuples of operators
The following result holds.

Theorem 3 Let (T,...,T,) € B (H) be an n-tuple of bounded linear operators on the

Hilbert space (H; (-,-)) and (p1,...,p,) € RY" be an n-tuple of nonnegative weights not all
n

of them equal to zero, then
T;+ T
Yol 7o)

<ip}(T+T*) >
<i1’1[ (T, y) |+|( y)l]

n |2 *12(1-ar) 172
| T3 + | T}
= <ZP;’[—/ ) : }x,x

j=1

1/2
n |]}|20¢ + |Tfk|2(1—a)
x <Zp;[+]m 1)

j-1

for any a € [0,1] and, in particular, for o = 1

e

Z10]<T+T* . >‘

i [|<zj,y>| + |<T,*x,y>|]
pj
1

=

- 2
j=
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" « 1/2
< [|T|+|T q >
Z X, X
=1
" 1/2
" TIT+ 17
X bl —— P (2.2)
j=1

forany x,y € H.

Proof The first two inequalities are obvious by the properties of the modulus.
Utilizing Kato’s inequality, we have

(T | = (15202 (| T ) 23)
and, by replacing x with y, we have

|(T}y,x>| §<|T}|20¢y’ >1/2(|T*| 2(1-ar) ’x>1/2’

’(TJ*?C:J’H < (|]—;*|2(1 )1/2<|T|2a >1/2 (24)

foranyje{l,...,n}and x,y € H.
Adding inequalities (2.3) and (2.4) and utilizing the elementary inequality

ab +cd < (a* + c2)1/2(b2 + dz)m, a,b,c,d >0,
we get

+<‘T*|2(1 a) >1/2(|T|2a )1/2

<[|T|2a iT*|2(1 o ]x’x>l/2

< AUTP + | T ) (2.5)

(T3] + [(T7,9)]| < (1752 2) 2 T Py, )

foranyje{l,...,n}and x,y € H.

Multiplying inequalities (2.5) by p; > 0 and then summing over j from 1 to # and utilizing
the weighted Cauchy-Buniakowski-Schwarz inequality, we have

ZP; (T |+ [(T7%9)]]

n
< 2o p T+ |77 P o) AT+ |77 T,0)

j=1
n 172y 4 1/2
< <Zp;[|Tj|2a + yT,.*yz<1°‘>]x,x> <Zp;[|le2" | T, y> (2.6)
Jj=1 j=1

for x,y € H, which is equivalent to the third inequality in (2.1). d
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Remark1 The particular case y = x is of interest for providing numerical radii inequalities

and can be stated as follows:

n T}‘+ Tv]*
Zp’( 2 )”
j=1

for any « € [0,1] and, for « =

X, %
2

= ZP;’
j=1

<> pil(Txx)]
j=1

n | 2a *12(1-a)
| T51% + | T}
= <ZP}[—2 : ]xx
j=1
1
2)

n

<> p

]
X, X
j=1

2

<ip(—T1 i T]* )x x>
T\ 2 ’
j=1

<> pil(Txx)]
j=1

(Bl

(2.8)

for any x € H.
The case of unitary vectors provides more refinements as follows.

Remark 2 With the assumptions in Theorem 3, we have

i KT, )| + {T%, )]
Zpi[ 5 }

j=1

n 120 +12(1-) 120 4 12a +12(1-) 172
B [ahaslind Wt IR +177]
= Pj 5 » Pj 5 »y
j=1 J

j=1

n 120 w12(1-a) 7\ /2
|T51% + |17
(S e
j=1
<( nPITR | T PO )”2 >
X P/’I:—i| Yy
-1 2
( n |T'j|2a + |T}*|2(1—01) 1/2 2
[
= 2

[l
L )
[

j=1

n |T}|2a + |T}*|2(1—a) n |Tj|2a + |Tj*|2(1_a)
Y W
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for any « € [0,1] and, in particular,

X": [KZxp) + (T )]

P 2

j=1
n |r1'}|+|7—;*| 1724 4 |f1’}|+|7}*| 1/2
ZP/ N ZP; - PV
1 7

;
(Sl =)

A () o)
AP e

for any x,y € H with |lx|| = [ly]| = 1.

The proofs follow by utilizing the Holder-McCarthy inequalities (P"x,x) < (Px,x)" and
(Px,x)* < (P°x,x) that hold for the positive operator P, for r € (0,1), s € [1,00) and x € H
with ||| = 1. The details are omitted.

In order to employ the above result in obtaining some inequalities for functions of nor-
mal operators defined by power series, we need the following version of (2.1).

Remark 3 If we write inequality (2.1) for the normal operators N}, j € {1,...,n}, then we
n

get
<XH:P,(N +N*> > Zp, <N+N* . >‘
<XH:PJ[ B |+|< y>|]

j=1

1/2
n 20 2(1-a)
N2 + N
X<Zp;[—’ > ]y,y> (2.11)

Jj=1

for any « € [0,1] and, in particular, for « = 1

2
" N; + N} - [N, )| + [(N]x, p) |
(En(5 o) < Sop[ P O

<N +N* >
j=1

n 1724 4, 1/2
= <ZPJ|NJ|"”C> <ZP;IN;|y,y> (2.12)
j=1 j=1

n

ZPI

for any x,y € H.
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The following results involving quadratics also hold.

Theorem 4 Let (Ty,...,T,) € B"(H) be an n-tuple of bounded linear operators on the
Hilbert space (H; (-,-)) and (p1,...,pn) € RY" be an n-tuple of nonnegative weights not all
of them equal to zero, then

> ol + |(Trx) ]
j=1

n
= ij[Hzj”M “ Tj*y“z(l—a) n ”ij”2ot ” Tj*xHZ(l—a)]
j=1

n o n l-a n o n l-a
< (ij||nx||2) (ij H T;‘sz) + (ZPjIIijIF) (ZmH T;‘xHZ)
j=1 j=1 j=1 j=1
n o n l-a
= (Zp;[n Tyl + ||T,-y||2]) (pr[w 17y + | 7}*x||2]> (213)
j=1 j=1
forany x,y € H with ||x|| = ||y|| =1 and « € [0,1].

Proof We must prove the inequalities only in the case « € (0,1), since the case @ = 0 or
a =1 follows directly from the corresponding case of Kato’s inequality.
Utilizing Kato’s inequality, we have

(T [* < (TP )| 27 9.) (2.14)
and, by replacing x with y, we have

|<7}*x’y>|2 < (|1}*|2(l_a)x,x)(|T,-Izay,y) (2‘15)

foranyje{l,...,n}and x,y € H.
By the Holder-McCarthy inequality (P'x,x) < (Px,x)" for r € (0,1) and x € H with
ll2|l = 1, we also have

(132, T [ 9,9) < (173 (| T 99) (2.16)
and

|2(1—a)

(T a1 T 29, 9) < (1 T390 (| T | )~ (2.17)

foranyje{l,...,n}and x,y € H with |x|| = ||yl = 1.
We then obtain by summation

(T [* + [(T7,9)[*

<(1 TP, (| T} |2y,y)1_°‘ +{IT;1%y,9)| 7}*|2x,x)1_a (2.18)

foranyje{l,...,n}and x,y € H with x| = ||yl = 1.


http://www.journalofinequalitiesandapplications.com/content/2013/1/464

Dragomir et al. Journal of Inequalities and Applications 2013, 2013:464
http://www.journalofinequalitiesandapplications.com/content/2013/1/464

Now, if we multiply (2.18) with p; > 0, sum over j from 1 to 1, we get

ZP; (T )|+ [(T72,9)]]

< > plIT P (| T P yy) ™ +Zp, T3Py, y) (| T |, (2.19)
j=1

for any x,y € H with ||x|| = |ly]| =1 and « € (0,1).
Since (|TjIx,x) = I Txll*, (I T/ 1*y,9) = IT/91% (IT1*y,) = I Tyl* and (|T}*x,%) =
[I Tj*x||2 je{l,...,n}, then we get from (2.19) the first part of (2.13).

Now, on making use of the weighted Holder discrete inequality

" " p s 1/q 1 1
> _pjajb; < (ij“f) (ZP;@Q) , pq>lL—+-=1
1 -1 -1 P

where (a3,...,a,),(b1,...,b,) € R”, we also have

n l-a
ZP1||Tx||2a||T* (ZP;IITtz) (ZP1||Tj*y||2(l_a))
j-1 P
and

" n o n 1-a

DTl T < (ZP;IIT,-yIIZ) (ZMH Tj*xHZ)

j-1 ) =

Summing these two inequalities, we deduce the second inequality in (2.13).

Finally, on utilizing the Holder inequality

ab+cd < (@ + )P (b1 +d")", ab,cd>0,

1

where p > 1 and }7 +5= 1, we have

<ji1pj||zj||2>a (jilpjll T;‘y||2>1a ' <ji1p;||T,y||2>a (,ilpj I T;*x||2>l

n n a n n l-a
< <2p,uT,xu2 + ij||ny||2) (ZP;H Ty)* + Y pil E*xHZ)
j=1 j=1 j=1 j=1

and the proof is completed. d

Remark 4 Utilizing the elementary inequality for complex numbers

, zweC,

z+wl® |z + |w)?
=<
2 2

Page 7 of 20
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we have

Zl’/[

(5]

and by the weighted arithmetic mean-geometric mean inequality

n T ’ 2
] Z [ %, y)| +2I( y>|} (2.20)
j=1

aabl_afaﬂ"'(l_a)b’ g,bzo,ae[o,l],

we also have

(il’j[Hzjllz + ||T,-y||2])a (,Zl SIS+ ] Tj*xuz])l_a

-1

n n
<a Y p{ITEl* + 1TpI2] + A=) Y p[| T7y|* + | T2 ). (2.21)
j=1 j=1

If we choose o = % and use (2.4), (2.20) and (2.22), we derive

(5]

|: [{Tjx,y) +| Tx,y)l i|

Zl’l[

1 n
= 5 2 20T Ty + 1Tl | 77+ ]
j=1

[\3|P—‘

j=1

2, , 3 . 172
- ||T9€||2+||T;J’||2 Z 1Tyl + 11T
= ) < bj 5

“ |:||T}x”2 + I Tyll> + 1T 91> + IIT,*xIIZ}

4

n 2 * |2 n 2 * |2
I 751" + |17 |51 + 177
[ s D 22
j=1

j=1
for any x,y € H with |lx|| = [ly]| = 1.

Remark 5 The case of normal operators N;, j € {1,...,n}, is of interest for functions of

operators and may be stated as follows:

e[ ) 2]

"N P+ LN )
[

Page 8 of 20
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1
= 5 2PN INy P07+ [Ny NG 0]
j=1
1 n - 1 n 4 n 1-a
< 5( |Nx||2) (Zp,nN,yn ) ¥ 5(Zp,||1\1,y||2> (Zp,||1\1,x||2)
j=1 j=1 j=1
1 - 2 2
<3 pilIINxI + INiylI?] (2.23)
j=1

for any x,y € H with ||x|| = |ly|l =1 and « € [0,1].

3 Inequalities for functions of normal operators

Now, by the help of power series f(z) = Y .- a,z", we can naturally construct another
power series which will have as coefficients the absolute values of the coefficient of the
original series, namely f4(z) := Y .- |a,|z". It is obvious that this new power series will
have the same radius of convergence as the original series. We also notice that if all coef-
ficients a,, > 0, then f; =f.

As some natural examples that are useful for applications, we can point out that if

flz) = Z (_l)nz” =In L, z € D(0,1);

~ n 1+z
0 (_qy
glz) = ; ((271))! 72" =cosz, zeC;
(3.1)
h(z) = i D" 22" =sinz, zeC
N s 2n+1)! ’ ’

then the corresponding functions constructed by the use of absolute values of the coeffi-
cients are

o 1 1
fr@) =) —2"=In—, zeD(O,1)

S|
21(2) = Z 72" =coshz, zeC;
(3.2)

1 2n+1 :
ha(z) = ;:0: on s 1)!z =sinhz, zeC;

la(z) = Zz = % z € D(0,1).

The following result is a functional inequality for normal operators that can be obtained
from (2.1).

Theorem 5 Letf(z) = Y .-, anz" be a function defined by power series with complex coef-
ficients and convergent on the open disk D(0,R) C C, R > 0. If N is a normal operator on
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the Hilbert space H and for a € [0,1], we have that |N||**, |N|>-%) < R, then we have the

inequalities
N )
2 2
) <<fA(|N|2a) +;<|N|2<l-°”>) . y>”2 (33)
forany x,y € H.

Proof If N is a normal operator, then for any j € N, we have that
IN'” = (N*N) = INJ?.

Utilizing inequality (2.11), we have

<Z(#)>
Sl

= |a|j[|<N’x,y>| + 2|<(N*Yx,y>|]

Jj=0

» i i)y 172
< <Z Ialj[(w| 4 +2(|N| y]x,x>
j=0
n N 20)j N 2(1-a)yj 12
x <1Zl:|a|0|:(| | )]+2(| | y]y»y> (3.4)

for any a € [0,1], n € N and any x,y € H. Since [|[N||>%, N[>~ < R, then it follows that
the series 3, |laj|(IN|>*) and > |a;|(IN|21-)Y are absolute convergent in B(H), and
by taking the limit over n — oo in (3.4), we deduce the desired result (3.3). O

Remark 6 With the assumptions in Theorem 5, if we take the supremum over y € H,

Ilyll =1, then we get the vector inequality

of = SI0AONP) (NP0
« L ONP) (NP 33)

H (f(N) +2f(N*))

for any x € H, which in its turn produces the norm inequality

1

Hf(N) SO < ) e (3:6)

for any « € [0,1].
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Moreover, if we take y = x in (3.3), then we have

5 x>‘ < %(UA(WF“) +f(INE) ], x) (3.7)

for any x € H, which, by taking the supremum over x € H, ||x|| = 1, generates the numerical

radius inequality

< %w[fA(wﬁ“) +F(INPE)] (3.8)

(L0100

for any « € [0,1].

Making use of the examples in (3.1) and (3.2), we can state the vector inequalities

’<|:1n(1H +N) T+ In(ly +N*)‘11| >‘
2 wy

([In(1 = INP*) ™+ In (1 — INT0) ) (3.9)

=

N -

x ([In(Ly = INP) ™ 4 In(1 = INPO) Ty, )2

and

Iy +N)1'+ 1y + N*)!
([ )

< ([ = INP) ™ (L = INP2O) T )

)

x ([In(Ly = INT*) ™+ In(1y — [NTPA) ]y, ) (3.10)

for any x,y € H and ||N|| <1.
We also have the inequalities

‘<|:sin(N) + sin(N*)] >‘
—— b

< %([Sinh(|N|2°‘) + sinh(|N|2(1“"))]x,x)l/2
x ([sinh(IN1?®) + sinh(IN]24-2)) ]y, )" (3.11)
and
‘<|:COS(N) + cos(N*)i| >‘
ST sy
2
< %([cosh(Ile") + cosh(INT?0-9)) Jx, )2
x ([cosh(IN1*) + cosh(|N|2(1*a))]y’y>1/2 (3.12)

for any x,y € H and N, a normal operator.

Page 11 of 20
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If we utilize the following function as power series representations with nonnegative

coeflicients:
1, (L+z = .
-, e D(0,1);
2 ( ) Z o1t » ZeboD
n=1
3 *1( ) Z * %) 2n+1 D(0,1)
sin (z) = —Z , %€ »1);
s ST (2n+1)n!
. (3.13)
1
tanh™}(z) = Z 2" zeD(0,1);
o 2n+1

~ Tm+a)C(m+ B (y) ,
zFl(“’ﬁ’V’Z)‘; WC@T (BT +y)

a,B,y >0,z D(0,1);

where I’ is the gamma function, then we can state the following vector inequalities:
'<|:exp(N)+exp(N*)] >’
f x’y

< =([exp(IN*) +exp(IN|**"*)]x, x)m

N|>—‘

x ([exp(INP) + exp(INP) ]y, )" (3.14)

for any x,y € H and N, a normal operator.
If ||[N]| <1, then we also have the inequalities

In(JE0) + In(2E55)
2 oY

1 1H + N> 1H + N2 2
S — ln X, X
2 |N|20¢ |N|21 a)
1y + N> 1H + N2 1
- <[In( —pe ) g s ) P 1
‘ <[tanh1(N ) + tanh™! :| >‘
2

< =([tanh™ (IN**) + tanh™* (IN**~) ],

)1/2

I\Jl’—‘

1/2

x ([tanh™ (IN1**) + tanh™ (IN20=*)) ], 5) (3.16)

and

‘<|:2F1(0€,/3:%N) +2F1(a,;6,)/,N*):| >‘
2 oy

1
< S (B (0 By, INP) 22, By, INPI) )

x ([2F1 (e, B, ¥, INT**) +2Fi (0, B, 7, INP1) ]y, ) (3.17)

for any x,y € H.
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From a different perspective, we also have the following.

Theorem 6 With the assumption of Theorem 5 and if N is a normal operator on the Hilbert
space H and z € C such that |N||?, |z|* < R, then we have the inequalities

(zN) +f(zN*)
(7))
< A1) U ONP Yo NP NP YN 5
< a1z [ (NP )+ (1 (NP 619

2

forany x,y € H with ||x|| = ||ly|| =1 and « € [0,1].

In particular, for o = %, we have

()

2

< fa(1Z2) [ (NP, ) P (IN) g9

Fa(121) [{£a (IN1)2, 2) + {(£4 (IN12)9,9)] (3.19)

| =

=

N

for any x,y € H with ||x| = ||ly|| =

Proof 1f we use the third and fourth inequalities in (2.23), we have

25 ]

n o n l-a
1 . .
= §<Z|ﬂ;IIIN’xII2> (§ :Iﬂ;IIIN’yII2)

J=0 Jj=0

1( o\ [ ma
: ;(ZlaflrerywrZ) (i)
j=0 Jj=0

1
= L[]+ [N (3:20)
j=0

for any x,y € H with ||x|| = |ly]l =1 and « € [0,1].
Since N is a normal operator on the Hilbert space H, then

[N = (I ) = (P,

for any;j € {0,...,n} and for any x € H with ||x| = 1.
Then from (3.20) we get
]

Sf{(*7))
-

=

N
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n o n 1-a
+ % (<Z |a;||N|2fy,y>> (<Z |“i||N|2jx»x>>
j=0 j=0
RZ |u,||N|2’x,x> + < |a,-||N|2’y,y>} (321)
j=0 j=0

for any x,y € H with ||x|| = [ly]l =1 and « € [0,1].

=

N =

By the weighted Cauchy-Buniakowski-Schwarz inequality, we also have

(oot
St Bl (4

for any x,y € H with |[x]| = ||ly|l =
Now, since the series Y, ajZ N/, >0 aiZ (N*Y, pIpn laj| |27, >0 |aj|IN|¥ are con-
vergent, then by (3.21) and (3.22) on letting n — 0o, we deduce the desired result (3.18).
O

2
} (3.22)

Similar inequalities for some particular functions of interest can be stated. However, the

details are left to the interested reader.

4 Applications to the Euclidian norm

In [28], the author introduced the following norm on the Cartesian product B"(H) :=
B(H) x - - - x B(H), where B(H) denotes the Banach algebra of all bounded linear operators
defined on the complex Hilbert space H:

(T, T, = sup  [MTi+--+ ATl (4.1)
A

where (T4,...,T,) € B?(H) and B, := {(A1,...,A,) € C| Z;’zl |Aj|* <1} is the Euclidean
closed ball in C".
It is clear that || - ||, is a norm on B"(H) and for any (T1,..., T,) € B (H), we have

[T Tl = (T T

where T7 is the adjoint operator of T}, j € {1,...,n}. We call this the Euclidian norm of an
n-tuple of operators (T4, ..., T,) € B"(H).

It has been shown in [28] that the following basic inequality for the Euclidian norm holds
true:

2

< |(T,.... T, <

1

7 215

j-1

i!T;‘V

j-1

(4.2)

for any n-tuple (T1,..., T,) € B”(H) and the constants f and 1 are best possible.
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In the same paper [28], the author introduced the Euclidean operator radius of an n-
tuple of operators (T,..., T,) by

llll=1

We(T4, ..., Ty) = sup <Z| T, x) ) (4.3)

and proved that w,(-) is a norm on B"(H) and satisfies the double inequality
1
5||(T1,...,Tn)||e <We(Tty..s Tu) < [(Tn,.., T |, (4.4)

for each n-tuple (T1,..., T,) € B (H).
As pointed out in [28], the Euclidean numerical radius also satisfies the double inequality

1
2

= We(Tlr'H;Tn) = (4'5)

1 n ) n ) 2
S [ 21T 2177
j=1 J=1

for any (T3, ..., T,) € B"(H) and the constants f and 1 are best possible.
In [29], by utilizing the concept of hypo-Euclidean norm on H”, we obtained the follow-
ing representation for the Euclidian norm.

Proposition 1 For any (T,..., T,) € B (H), we have

Ti,..., T, ) . 4.6
”( ' )H llyll= 1\|x\l 1(Z| T ) (4.6)

Theorem 7 Forany (T,...,T,) € B (H), we have

H<T1+T* T+T)

l-a

Z|T|

n
Z|T;‘I2
j=1

<« +(1-w) (4.7)

n
DoITP
j=1

n
piEnk
j=1

and

<o (S (Sm) |

LT PSS T P,
TNl LT+ A - o) XL TP
<a

+(1-a) (4.8)

n
DoITP
j=1

n
ek
j=1

forany o € [0,1].
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Proof Making use of inequalities (2.13) and (2.20), we have

S5 )]

j=1
1 n , o n " l-a
<A 21T Pxa) {3177y
j=1

Jj=1

n o n l-a
1 *
) (e

j=1

for any x,y € H with ||x|| = |ly]l =1 and « € [0,1].
Taking the supremum over ||x|| = ||yl =1 in (4.9), we get

Ty+TF  T,+T5\|*
2 T2

e

<= sup<Z|T| X% > sup<Z|T*| 9,y >

2 Jxl=1 lyl=1

-

+ = sup<Z|T| 5,y > sup<Z}T*\ X% >1 )

2 =1 llll

l-a

and inequality (4.7) is proved.
Now, if we take y = x in (4.9), we get

S )]
<<; T2 > <Z|T*| ox >l_a

5<[“Z'TJ"Z+<1—a>Z|Tf|2}"x>
j=1 j=1

for any x € H with ||x|| =1 and « € [0,1].

Taking the supremum over |x|| =1 in (4.10), we get the desired result.

Remark 7 In the particular case o =

To+ T T,+TH\|*
Sy

e

1
3, we get

1/2 1/2

n
ek

j=1

n
2
| 7j]
j=1

312

n
Pk

Jj=1

Z|T|

NIF—‘

|

(4.9)

(4.10)

(4.11)
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and

12 , 172
< sup [<Z|T|2x, > <ZyT,*|2x,x> } (4.12)
j=1
{II S TP T2,

|T|2+\T*|2

[DRAEC |

1
< _
-3

5 Applications for s-1-norm and s-1-numerical radius
Following [30], we consider the s-p-norm of the n-tuple of operators (T1,..., T;,) € B" (H)

n

oI

-1

n
ek

-1

}. (4.13)

given by

||(T1,...,Tn)||s‘p:= sup |:<Z|(ij,x>|1’> :| (5.1)

lyll=1,llxll=1
For p =2 we get
|Tiveee Tl = [T T,

We are interested in this section in the case p = 1, namely on the s-1-norm defined by

Ty, T, = sup Z! Tiy, )

Iyl=Lllll=1"

Since for any x,y € H we have 27:1 Ty, x)| > | (Z;':1 T;y,x)|, then by the properties of the
supremum, we get the basic inequality

< (T, T, < DT (52)
=1

Similarly, we can also consider the s-p-numerical radius of the n-tuple of operators
(Ty,..., T,) € B”(H) defined by [30]

Wyp(Th,..., Ty) := sup |:(Z| (Tjx, x) ) i|, (5.3)

llxll=1

which for p = 2 reduces to the Euclidean operator radius introduced previously. We ob-
serve that the s-p-numerical radius is also a norm on B"(H) for p > 1, and for p =1 it

satisfies the basic inequality

W(Z T,) <woi(T1,..., Ty) < 3 w(T). (5.4)

Jj=1 Jj=1
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Theorem 8 For any (T,...,T,) € B" (H), we have

T+ T7 T,+T;
SRR

2 2(1-
|T}|a+|7‘l*|( Ot)i|
5,1

>[5

j=1

1
2

T+ T T,+T*
Wsl( 12 ! > ")SWs,l(le.,Tn)

- 2(1-ct)
2T

j-1

Z|T|2a

} (5.5)

ooy

12 2(1-a)
X": |1 + [T 17
2

Jj=1

1 o ‘ x20-a)
5[ 21T+ [ 1T } (56)
j=1
forany a € [0,1].
Proof Utilizing inequality (2.1), we have
2
j=1
1/2 172
n |T/‘|2a + |7~;<|2(1—(1) n |T}|2a + |77k|2(1—a)
< —_ % _ |y 5.7
_<;[ 5 }xx x ]21:[ 5 }J’J’ (57)

for any x,y € H and « € [0,1].
Taking the supremum in (5.7) over ||x|| = ||y|| = 1, we get the first inequality in (5.5).
The second part follows by the triangle inequality.
By inequality (2.7) we have

T T* n T, 2a T 2(1-a)

j=1
foranyx e H.

>

j=1

Taking the supremum over ||x|| = 1, we deduce the desired result (5.6). a

Remark 8 The case o = % produces the following chains of inequalities:

Z<T+T* H H T+ Ty T+T*>

J=1 2
(T <1
: 2 =2

Jj=1

s,1

n

> 1Tl

Jj=1

n

YT

Jj=1

j| (5.8)
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and

" (Ti+ T T, + T} T,+ T
J < 1 1 n n
w Z( 2 ) —WS,1< P Yooy 9 )
Ws,l(leu; T,)

S

Jj=1

IA

n

21T+ 1T (5.9)
j=1

Jj=1

IA
N =
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