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BOUNDS FOR THE DEVIATION OF A FUNCTION FROM A
GENERALISED CHORD GENERATED BY ITS EXTREMITIES
WITH APPLICATIONS

SEVER S. DRAGOMIR

ABSTRACT. Bounds for the deviation of a real-valued function f defined on a
compact interval [a, b] to the generalised chord
v(b) —wv(t v(t)—v(a
(b)) —v() (t)—v(a) £,
v (b) — v (a) v (b) — v (a)
where v : [a,b] — R and v (a) # v (b), that connects its end points (a, f (a))

and (b, f (b)) are given. Applications for normalised positive linear functionals
are provided as well.

fla) +

1. INTRODUCTION

Consider a function f : [a,b] — R and assume that it is bounded on [a, b] . Denote
by @ (t) the error in approximating the function f by its (straight line) chord dy
which connects the points (a, f (a)) and (b, f (b)), i.e.,

g:i.f(aHZ:Zf(b)—f(t), tela,b). (1.1)

In the recent paper [3], sharp error estimates for ® ¢ (¢) under various assumptions
on the function f have been derived. We recall here some of them.

If there exist the constants —oo < m < M < oo such that m < f(t) < M for
each t € [a,b], then |® (¢)] < M — m. The multiplication constant 1 in front of
(M — m) cannot be replaced by a smaller quantity. If f : [a,b] — R is a convex
function on [a,b], then

CI)f (t) =

1

< (t-a) -0 [ 0) - 1L (@] (12)
(b—a) [ (0) = f ()],

for any t € [a,b]. In the case where the lateral derivatives f’ (b) and f! (a) are
finite, then the second inequality and the constant i are sharp.

<
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If f:[a,b] = R is a function of bounded variation, then

b
20 <3\ (D + 2V () (13)
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The first inequality in 1) is sharp. The constant % is best possible in the first
and third branches.

In particular, if f is L—Lipschitzian on [a,b], i.e., |f(t) — f(s)] < L|t — s| for
any t,s € [a,b], then

@y (1)) < 2= —a)

1
L<=-(b—a)L 14
— bfa —2(b a) ? ( )

for any ¢ € [a,b]. The constants 2 and 3 are best possible.
For extensions to n- time differentiable functions see [4].
In this paper we consider a natural generalisation of the above problem by in-

troducing the error function for the approximation of f (¢) with ;’((5)):5((2)) - f(a)+

% - f(b), where v : [a,b] — R is another function with the property that
v (a) # v (b). Error bounds for different pairs of functions (f,v) are derived. Ap-
plications in obtaining error bounds in approximating the quantity A (f o) by the
generalised trapezoid formula

A(vou)—wv(a) v(b) — A(vou)
v (b) — v (a) v (b) — v (a)

where A is a normalised linear functional are also given.

f(a) + -1 (0),

2. BOUNDS FOR @y, WHEN f,v ARE OF BOUNDED VARIATION

For a function p : [a,b] — R we define the kernel @, : [a, b* = R by

p(t)—p®) if a<s<t<b,
Qp (t, ) := (2.1)
p(t)—p(a) if a<t<s<b.
With this notation we have the following representation of the function ® ,, where

v(t) —v(a) v (b) — v (¢)

(I’f,v(t)zm'f@‘*‘m'f(@‘f(ﬂ

with ¢ € [a,b].



BOUNDS FOR THE DEVIATION OF A FUNCTION 69

Lemma 2.1. If f,v: [a,b] = R are bounded functions on [a,b], then
1 b
B () = o L QT (22)

b
= o o) iv(a)/ Q_y(t,s)dv(s)

provided v (b) # v (a) , where the integrals are taken in the Riemann-Stieltjes sense.

Proof. We have

‘I)f,v (t) =

b
:m/ Qu (t,s)df (s).

Also, by rearranging the terms in the first equality, we also have

b t
o= LA T OO IO T O L),

b
= (b)iv(a)/ Q—y (t,s)dv(s)

and the representation ([2.2) is proved. O

The following estimation result can be stated.

Theorem 2.2. Assume that f,v: [a,b] = R are bounded and v (a) # v ().

(i) If f is of bounded variation on [a,b], then

050 0] <[ 25—

b
() (2.5)

' v (t) —v(a)
'YW+L@—M®

v(®)—v(t) P
o(B)—v(a)

v(t)—v(a)
v(b)—v(a)

[

b t
b)— b)—
)=l +12(O (o) {é\a/(fH%

IN
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(i1) If v is of bounded variation on [a,b], then

) =1l ()= f(@)] |
[P0 (8)] < v(b) —v(a) '\a/(v)‘i‘ o (b) = v(a) ~\t/(v) (2.6)
b
s {| =85 | it} ¥ o
ss o os@ STl T ]
< {v(b)—v(a) + v(b)—v(a) :| {|:\a/ (f)] + |:\t/ (f):| ’
b z'fp>1l,);+§:1,
— a:z)'ty;;t; 1l f1y o)+ 3V e -y o |-
Proof. Utilising the equality (2.3)) and taking the modulus, we have successively:
v(b)—v(t)] K ‘ v(t)—v(a)| b
B, ()] < [T /adf(S) | [
v —v@)| v(t)—v(a)] |’
oo '\!(f”‘wb)—v(a) Vi
b
max { |SR3| [Ss [V ()
1 t q b q é
<{ ezl szl {vo] o] T
>

b
b)— —
o=l 120 (e) {; V)+
where for the last inequality we have used the Holder inequality.
The inequality (2.6) goes likewise by utilising the equality (2.4)). O

Remark. Sincev (a) # v (b), we can assume without loss the generality that v (a) <
v (b). Now, if we assume that

v(a) <wv(t)<wv(b) forany tE€ (a,b), (2.7
then from the first branch of we get the inequality
v(a)+v(b
’v(t)— ()2()‘ b

V), telab]. (2.8)

a

@50 (D < |5+

1
2 v (b) — v (a)

The constant % is sharp in .

To prove the sharpness of the constant we take in (2.8]) v (¢) = ¢ and then choose
t= ‘IT“’. This produces the result:

'f<a+b> f(a);f(b)‘<;\:/(f), (2.9)

atb| 't € [a,b] we obtain in both sides of (2.9)

which is sharp Slnce for f@)= |t
the same quantity 2%
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Remark. We also remark that, if v satisfies , then from the last inequality in

weget
b t b
@ @l< VN+3 VO -V et 20

for which the first constant s 15 also best possible.

Remark. If f satisfies the property that f (a) < f(t) < f(b) for any t € [a, ],
then from the first inequality in (@ we get

f (b) —f (CL) f (t) _ f(a)—2i-f(b)
2 |v(b) —v(a)l v (b) —v(a)

With the same assumptions for f we have from the second inequality in (@ that

FO)~f@ [100,0, LN '
1@, ()] < OB {2\a/(v) +3 \a/(v) -\ (v) } telab]. (2.12)
The first constant % mn is best possible.

t
Indeed, if we choose v (t) =t and then ¢ = %} in (2.12)), we have

b b
LOLI0 (40 < 3o - s @), (2.13)
Now, for f:[a,b] = R, f(t) =0ift € [a,b] and f (b) = k > 0, we obtain on both
sides the same quantity %

@0 ()] < [

b
] V),  telab]. (211)

a

3. BOUNDS FOR @, WHEN v (a) < v (t) <v(b) (f(a) < f(t) < f(b))
The following result may be stated as well.

Theorem 3.1. Assume that f,v : [a,b] = R are bounded and v (a) # v (b).
(i) Ifv(a) <v(t) <v(b) for any t € (a,b), then
2701 < 00 - v(a)] || LE=EE) RS
The constant i is best possible.
(i) If f(a) < f(t) < f(b) fort e (a,b), then
LFO) = @ [Jo@®) —v(a)|, |v0b) —o(
910 01 TG oy | 7| 17611
Proof. (i) From the first equality in , we have:

} . telab]. (3.1)

)
)

} Jtefab]. (3.2)

~

\[v<b>—v<t>nv<t>—v< W70 —f@| . [70)-F@)
s O < =100 o ()] [ CEIOIMEOEG H
) - @) o ()1[ 01|, f(b)—f(t)H
o) — v (a)] O v v v
Lo =@ [0 1@
Sl (”{vw)—v(a) * v(b)—v(tﬂ

since, for any ¢ € (a,b),

[v(b) —v®)][v(t) —v(a)] < i [v (b) = v (@)
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For the best constant, choose v (t) =t and then t = %2 in (3.1) to obtain
f«w+fw>f<a+bﬂ

2 2
<5 |f(57)-r@

If we consider the function f : [a,b] = R,

{ 0 if t€la,b)

+‘f(b)—f(a;b)u. (3.3)

t) =
7 k if t=0b, k>0,

then 1) becomes an equality with both terms g

(ii) The proof goes likewise and the details are omitted. O

Remark.

(a) Under the assumptions of (i) of Theorem and if there exist L, > 0,
Ly, >0, a, 8 > 0 such that

f () = fla)

v(t) —v(a)

then we have the inequality:
1 a
B (] < TR O —v @) [Lalt - +Lo-0"],  te@D). (35)

(aa) Under the assumptions of (ii) of Theorem[3.1 and if there exist the constants
H,, Hy, >0 and v, > 0 such that

v(t) —v(a)

f(t) = f(a)

then we have the inequality:

1 [f) = f(a)?

@50 ()] < 7 - [|v((b)) — U((a))}

The following corollary provides some uniform bounds in the case where the
functions are differentiable.

SLa(tfa)a7

‘ S Lb (b - t)ﬁ ’ te (a7b) ) (34)

<H,(t—a),

v (b) —v () s
f(b)—f(t)‘SHb(b‘”v te(a,b), (3.6)

[Ha (t—a)" + Hy (b— t)‘s] . te(ab). (3.7)

Corollary 3.2. Assume that f,v : [a,b] = R are continuous on [a,b] and differen-
tiable on (a,b) with v (a) # v (b).
(i) Ifv(a) <v(t) <v(b) and V' (t) # 0 fort € (a,b), then

‘(vav(t)'S%'[U(b)—v(a)] sup f'(s)

s€(a,b)

te (ab). (3.8)

v (s)|’
(ii) If f(a) < f(t) < f(b) and f'(t) # 0 fort € (a,b), then
]

LU®-f@r )
[@r0 O <5 0 ®B) — v (@] setan | F(5)

Proof. (i) Applying Cauchy’s mean value theorem, we deduce that for any ¢ € (a, b)
there exists an s between ¢ and a such that

FO)—F@) _ ()
o(t) —via) V(s

, t € (a,b). (3.9)
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Therefore,
t _ i
FOZI@] 1O
v(t) =v(a)| 7 seap) |V (5)
and in a similar manner,
b)— f(t !
LOI0] <y [LO] e o,
v(b) = v ()| 7 seqap |V (s)
Utilising the inequality (2.13) we deduce (3.8).
The proof of (ii) goes likewise and we omit the details. O

4. BOUNDS FOR @y, WHEN f,v ARE LIPSCHITZIAN
We can state the following result.

Theorem 4.1. Assume that f,v : [a,b] — R are bounded functions on [a,b] and
v(a) #v(b).
(i) If there exist constants My, My > 0 and «, 8 > 0 such that |f (t) — f (a)] <
M, (t—a)®, |f ()= f{#)] <M, (b—t)ﬁ foranyt € [a,b] and v : [a,b] = R
is Riemann integrable on [a,b], then
v (b) — v (t)
ORNI0
for any t € [a,b].
(ii) If there exist constants Ng, Ny > 0, v, > 0 such that |v(t) — v (a)| <
Ny (t—a)", [v(b) —v(t)] < Ny(b—1t)° for any t € [a,b], then
f(@) = f(a) f )= f(t)
o Hmle-o e

v(t) —v(a)

Y\y) T U9 _\B
Fo—f@ 70 @D

[@f0 (B)] < M (t—a)® + M,

@5, ()] < N, (b—1)°+ N,

t
v(t) —v(a)
for any t € [a,b].
Proof. Utilising the representation (2.3)) we have:
£ () = f(a)]|v(®) —v(®)] +|v () —v(a)||f(b) - f ()
[v(b) — v (a)]
for any t € [a, b] , which clearly produces the desired inequalities (4.1)) and (4.2)). O

@ s (B)] <

We notice that, if more information is provided for f and v, then more specific
bounds can be obtained. For instance, if f is as in (i) of Theorem [4.1l and v (a) <
v (t) < v (b) for each t € (a,b), then we get from (4.1]) the following inequality:

1 v (t) . v(a)—;v(b)

@50 B < |35 o) —v(a)

+

[Ma (t—a)* + M, (b— t)ﬂ (4.3)
for any ¢ € [a,b].

Similarly, if v satisfies condition (ii) of Theorem {.1land f (a) < f (t) < f (b) for
each t € (a,b), then
f@)+f(
) - ( )2 (b)
v(b) —v(a)

x [Nb b—t)° +No(t—a)|  (4.4)

for any ¢ € [a,b].
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If f is M —Lipschitzian, then from (4.1)) we get

25 01 < M || 3= 0 -0)+ | 2= - 1) (@5)
1 a+b v(b) — v (t) (t) — v (a)
<afzo-a+]- 7 L(b) ol =l
for any ¢ € [a,b].
Also, if v is N—Lipschitzian, then from we get
f@) = f(a)], ( ) —FWO], .
o0 < 8[| L0 00+ | ZH=T0 - o) (4.6
1 atbl] [|fO=fla)]|  |f) = (D)
<vlze-o+ -2 | FG=H o=@l

for any ¢ € [a,b].
Moreover, if f is M —Lipschitzian and v (a) < v (t) < v (b) for any ¢ € [a,b], then
from (4.5)) we get the simpler inequality:

050 0] < 0 [ 0— )+ o -

a—I—bH

; (4.7)

for any t € [a,b].
If v is N—Lipschitzian and f(a) < f(t) < f(b), v(a) < v (b), then from

we also have:

|<I>f,v(t)|§N~f(b)Z(a)B(b—a)+‘t—a;rbu, (4.8)

for each t € [a, ] .

5. APPLICATIONS FOR POSITIVE LINEAR FUNCTIONALS

Let L be a linear class of real-valued functions ¢ : £ — R having the properties
(L1) f,g € L imply (af + Bg) € L for all o, 8 € R;
(L2) 1 € L, ie,if fo(t)=1,¢t € E, then fy € L.
An isotonic linear functional A : L — R is a functional satisfying
(Al) A(af+Bg) =aA(f)+BA(g) forall f,ge L and o, 8 € R;
(A2) If fe Land f >0, then A(f) > 0;
(A3) The mapping A is normalised if A (1) = 1.
For a function u : E — [a,b], we consider the function
vou—uv(a) v(b)—vou
Dy, =" _—
o) = S )+ S f (a)
and assume throughout this section that ®¢, (u) € L.
It is obvious that for a normalised linear functional A : . — R we have
A(wou)—v(a) v(b) — A(vou)
A@;, () = 2o —vla) gy vO) —AWou) )y 4
and the inequalities in the previous section can be utilised to provide various upper
bounds for the quantity

—fou

[A (@70 (w))]-
For the sake of brevity we give here only some bounds that are simple and perhaps
more useful for applications.
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Proposition 5.1. Let f : [a,b] — R be of bounded variation on [a,b] and v (a) <
v(b), v(a) <wv(t) < wv(b) for each t € [a,b]. If u € L so that Oy, (u) € L and
A: L — R is a normalised positive linear functional on L, then:
v(b) — A(vou)
v (b) — v (a)
b
v(a)+v(b)
vou— ————-1 V. 61

a

‘A@om—vm>

0@ —v(@ 0T

“f(a) = A(fou)

<[5+ s

Proof. Utilising the inequality (2.8]) and the properties of the functional A, we have
|A (@0 ()] < A(|Qr0 (u)])

<;+ )\i/(f)}
Vin[s+ e (kv 25|

and the inequality (5.1]) is proved. |

vou — Uatu)

=4 ORI

Proposition 5.2. Let f,v : [a,b] = R be bounded and v (a) # v (b). Also, assume
that v € L such that @y, (u) € L and A: L — R is a normalised positive linear
functional on L.

(i) Ifv(a) <v(t) <wv(b) for each t € |a,b], then

AS@?U&@'““+“meﬁ;m*”@‘A“°W
1 f=f(a)-1 f@)-1—f
<ibo o (=) 4 (Tea=))] e
provided ﬁ:g((g));, iggg:i:g eL;
(i) If f(0) < f(t) < f(b) fort e (a,b), then
Awou)—wv(a) v(b)—A(vou) 2 — o
v —v@ O @ S@ AW
1)~ f(a) v—v(a)-1 v(b)-1-v
<3 Har—eer (77 4 (rma=s)] e
provided ;:;Ezgi, }’EZ%;:; € L.

Utilising Corollary we can state the following result that can be utilised for
applications.

Proposition 5.3. Let f,v : [a,b] = R be continuous on [a,b] and differentiable
n (a,b). Also, assume that w € L such that ®;,(u) € L and A: L - R is a
normalised positive functional on L.
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(i) If v is strictly monotonic on [a,b], then

)
‘A(vou)—v(a) v(b) — A(vou)

B v Ot S H @ @AY
E v (b) —v(a)| su f(s)
<50 -v@l s (T G
(ii) If f is strictly monotonic on [a,b], then
A(ou)—wv(a) v(b) —A(wou) ) — ou
e 0 g @A
1 [f ()= f(a) A C)
=3 RO @l 20 e *Y

provided v (a) # v (D).

For other inequalities for isotonic linear functionals, see the papers [1], [2], [0]

and the books [5] and [1].
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