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BOUNDS FOR THE DEVIATION OF A FUNCTION FROM A

GENERALISED CHORD GENERATED BY ITS EXTREMITIES

WITH APPLICATIONS

SEVER S. DRAGOMIR

Abstract. Bounds for the deviation of a real-valued function f defined on a

compact interval [a, b] to the generalised chord

v (b)− v (t)

v (b)− v (a)
· f (a) +

v (t)− v (a)

v (b)− v (a)
· f (b) ,

where v : [a, b] → R and v (a) 6= v (b) , that connects its end points (a, f (a))
and (b, f (b)) are given. Applications for normalised positive linear functionals

are provided as well.

1. Introduction

Consider a function f : [a, b]→ R and assume that it is bounded on [a, b] . Denote
by Φf (t) the error in approximating the function f by its (straight line) chord df
which connects the points (a, f (a)) and (b, f (b)) , i.e.,

Φf (t) :=
b− t
b− a

· f (a) +
t− a
b− a

f (b)− f (t) , t ∈ [a, b] . (1.1)

In the recent paper [3], sharp error estimates for Φf (t) under various assumptions
on the function f have been derived. We recall here some of them.

If there exist the constants −∞ < m < M < ∞ such that m ≤ f (t) ≤ M for
each t ∈ [a, b] , then |Φf (t)| ≤ M − m. The multiplication constant 1 in front of
(M −m) cannot be replaced by a smaller quantity. If f : [a, b] → R is a convex
function on [a, b] , then

0 ≤ Φf (t) ≤ 1

b− a
(t− a) (b− t)

[
f ′− (b)− f ′+ (a)

]
(1.2)

≤ 1

4
(b− a)

[
f ′− (b)− f ′+ (a)

]
,

for any t ∈ [a, b] . In the case where the lateral derivatives f ′− (b) and f ′+ (a) are

finite, then the second inequality and the constant 1
4 are sharp.
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If f : [a, b]→ R is a function of bounded variation, then

|Φf (t)| ≤ b− t
b− a

·
t∨
a

(f) +
t− a
b− a

b∨
t

(f) (1.3)

≤



[
1
2 +

∣∣t− a+b
2

∣∣] b∨
a

(f) ;

[(
b−t
b−a

)p
+
(
t−a
b−a

)p] 1
p

[(
t∨
a

(f)

)q
+

(
b∨
t

(f)

)q] 1
q

if p > 1, 1
p + 1

q = 1;

1
2

b∨
a

(f) + 1
2

∣∣∣∣ t∨
a

(f)−
b∨
t

(f)

∣∣∣∣ .
The first inequality in (1.3) is sharp. The constant 1

2 is best possible in the first
and third branches.

In particular, if f is L−Lipschitzian on [a, b] , i.e., |f (t)− f (s)| ≤ L |t− s| for
any t, s ∈ [a, b] , then

|Φf (t)| ≤ 2 (b− t) (t− a)

b− a
L ≤ 1

2
(b− a)L, (1.4)

for any t ∈ [a, b] . The constants 2 and 1
2 are best possible.

For extensions to n- time differentiable functions see [4].
In this paper we consider a natural generalisation of the above problem by in-

troducing the error function for the approximation of f (t) with v(b)−v(t)
v(b)−v(a) · f (a) +

v(t)−v(a)
v(b)−v(a) · f (b) , where v : [a, b] → R is another function with the property that

v (a) 6= v (b) . Error bounds for different pairs of functions (f, v) are derived. Ap-
plications in obtaining error bounds in approximating the quantity A (f ◦ u) by the
generalised trapezoid formula

A (v ◦ u)− v (a)

v (b)− v (a)
· f (a) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (b) ,

where A is a normalised linear functional are also given.

2. Bounds for Φf,v when f, v are of Bounded Variation

For a function p : [a, b]→ R we define the kernel Qp : [a, b]
2 → R by

Qp (t, s) :=

 p (t)− p (b) if a ≤ s ≤ t ≤ b,

p (t)− p (a) if a ≤ t < s ≤ b.
(2.1)

With this notation we have the following representation of the function Φf,v, where

Φf,v (t) =
v (t)− v (a)

v (b)− v (a)
· f (b) +

v (b)− v (t)

v (b)− v (a)
· f (a)− f (t)

with t ∈ [a, b] .
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Lemma 2.1. If f, v : [a, b]→ R are bounded functions on [a, b] , then

Φf,v (t) =
1

v (b)− v (a)

∫ b

a

Qv (t, s) df (s) (2.2)

=
1

v (b)− v (a)

∫ b

a

Q−f (t, s) dv (s)

provided v (b) 6= v (a) , where the integrals are taken in the Riemann-Stieltjes sense.

Proof. We have

Φf,v (t) =
[v (t)− v (b)] [f (t)− f (a)] + [v (t)− v (a)] [f (b)− f (t)]

v (b)− v (a)
(2.3)

=
[v (t)− v (b)]

∫ t
a
df (s) + [v (t)− v (a)]

∫ b
t
df (s)

v (b)− v (a)

=
1

v (b)− v (a)

∫ b

a

Qv (t, s) df (s) .

Also, by rearranging the terms in the first equality, we also have

Φf,v (t) =
[f (a)− f (t)]

∫ b
t
dv (s) + [f (b)− f (t)]

∫ t
a
dv (s)

v (b)− v (a)
(2.4)

=
1

v (b)− v (a)

∫ b

a

Q−f (t, s) dv (s)

and the representation (2.2) is proved. �

The following estimation result can be stated.

Theorem 2.2. Assume that f, v : [a, b]→ R are bounded and v (a) 6= v (b) .

(i) If f is of bounded variation on [a, b] , then

|Φf,v (t)| ≤
∣∣∣∣ v (b)− v (t)

v (b)− v (a)

∣∣∣∣ · t∨
a

(f) +

∣∣∣∣ v (t)− v (a)

v (b)− v (a)

∣∣∣∣ · b∨
t

(f) (2.5)

≤



max
{∣∣∣ v(b)−v(t)v(b)−v(a)

∣∣∣ , ∣∣∣ v(t)−v(a)v(b)−v(a)

∣∣∣} b∨
a

(f) ;

[∣∣∣ v(b)−v(t)v(b)−v(a)

∣∣∣p +
∣∣∣ v(t)−v(a)v(b)−v(a)

∣∣∣p] 1
p

{[
t∨
a

(f)

]q
+

[
b∨
t

(f)

]q} 1
q

,

if p > 1, 1
p + 1

q = 1;

|v(b)−v(t)|+|v(t)−v(a)|
|v(b)−v(a)|

{
1
2

b∨
a

(f) + 1
2

∣∣∣∣ t∨
a

(f)−
b∨
t

(f)

∣∣∣∣} .
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(ii) If v is of bounded variation on [a, b] , then

|Φf,v (t)| ≤
∣∣∣∣f (b)− f (t)

v (b)− v (a)

∣∣∣∣ · t∨
a

(v) +

∣∣∣∣f (t)− f (a)

v (b)− v (a)

∣∣∣∣ · b∨
t

(v) (2.6)

≤



max
{∣∣∣ f(b)−f(t)v(b)−v(a)

∣∣∣ , ∣∣∣ f(t)−f(a)v(b)−v(a)

∣∣∣} b∨
a

(v) ;

[∣∣∣ f(b)−f(t)v(b)−v(a)

∣∣∣p +
∣∣∣ f(t)−f(a)v(b)−v(a)

∣∣∣p] 1
p

{[
t∨
a

(f)

]q
+

[
b∨
t

(f)

]q} 1
q

,

if p > 1, 1
p + 1

q = 1;

|f(b)−f(t)|+|f(t)−f(a)|
|v(b)−v(a)|

{
1
2

b∨
a

(v) + 1
2

∣∣∣∣ t∨
a

(v)−
b∨
t

(v)

∣∣∣∣} .
Proof. Utilising the equality (2.3) and taking the modulus, we have successively:

|Φf,v (t)| ≤
∣∣∣∣ v (b)− v (t)

v (b)− v (a)

∣∣∣∣ · ∣∣∣∣∫ t

a

df (s)

∣∣∣∣+

∣∣∣∣ v (t)− v (a)

v (b)− v (a)

∣∣∣∣ ·
∣∣∣∣∣
∫ b

t

df (s)

∣∣∣∣∣
≤
∣∣∣∣ v (b)− v (t)

v (b)− v (a)

∣∣∣∣ · t∨
a

(f) +

∣∣∣∣ v (t)− v (a)

v (b)− v (a)

∣∣∣∣ · b∨
t

(f)

≤



max
{∣∣∣ v(b)−v(t)v(b)−v(a)

∣∣∣ , ∣∣∣ v(t)−v(a)v(b)−v(a)

∣∣∣} b∨
a

(f) ;

[∣∣∣ v(b)−v(t)v(b)−v(a)

∣∣∣p +
∣∣∣ v(t)−v(a)v(b)−v(a)

∣∣∣p] 1
p

{[
t∨
a

(f)

]q
+

[
b∨
t

(f)

]q} 1
q

,

if p > 1, 1
p + 1

q = 1;

|v(b)−v(t)|+|v(t)−v(a)|
|v(b)−v(a)|

{
1
2

b∨
a

(f) + 1
2

∣∣∣∣ t∨
a

(f)−
b∨
t

(f)

∣∣∣∣} ,
where for the last inequality we have used the Hölder inequality.

The inequality (2.6) goes likewise by utilising the equality (2.4). �

Remark. Since v (a) 6= v (b) , we can assume without loss the generality that v (a) <
v (b) . Now, if we assume that

v (a) ≤ v (t) ≤ v (b) for any t ∈ (a, b) , (2.7)

then from the first branch of (2.5) we get the inequality

|Φf,v (t)| ≤

1

2
+

∣∣∣v (t)− v(a)+v(b)
2

∣∣∣
v (b)− v (a)

 b∨
a

(f) , t ∈ [a, b] . (2.8)

The constant 1
2 is sharp in (2.8).

To prove the sharpness of the constant we take in (2.8) v (t) = t and then choose
t = a+b

2 . This produces the result:∣∣∣∣f (a+ b

2

)
− f (a) + f (b)

2

∣∣∣∣ ≤ 1

2

b∨
a

(f) , (2.9)

which is sharp since for f (t) =
∣∣t− a+b

2

∣∣ , t ∈ [a, b] we obtain in both sides of (2.9)

the same quantity b−a
2 .
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Remark. We also remark that, if v satisfies (2.7), then from the last inequality in
(2.5) we get

|Φf,v (t)| ≤ 1

2

b∨
a

(f) +
1

2

∣∣∣∣∣
t∨
a

(f)−
b∨
t

(f)

∣∣∣∣∣ , t ∈ [a, b] (2.10)

for which the first constant 1
2 is also best possible.

Remark. If f satisfies the property that f (a) ≤ f (t) ≤ f (b) for any t ∈ [a, b] ,
then from the first inequality in (2.6) we get

|Φf,v (t)| ≤

[
1

2
· f (b)− f (a)

|v (b)− v (a)|
+

∣∣∣∣∣f (t)− f(a)+f(b)
2

v (b)− v (a)

∣∣∣∣∣
]

b∨
a

(f) , t ∈ [a, b] . (2.11)

With the same assumptions for f we have from the second inequality in (2.6) that

|Φf,v (t)| ≤ f (b)− f (a)

|v (b)− v (a)|

{
1

2

b∨
a

(v) +
1

2

∣∣∣∣∣
t∨
a

(v)−
b∨
t

(v)

∣∣∣∣∣
}
, t ∈ [a, b] . (2.12)

The first constant 1
2 in (2.12) is best possible.

Indeed, if we choose v (t) = t and then t = a+b
2 in (2.12), we have∣∣∣∣f (a) + f (b)

2
− f

(
a+ b

2

)∣∣∣∣ ≤ 1

2
[f (b)− f (a)] . (2.13)

Now, for f : [a, b] → R, f (t) = 0 if t ∈ [a, b] and f (b) = k > 0, we obtain on both
sides the same quantity k

2 .

3. Bounds for Φf,v when v (a) < v (t) < v (b) (f (a) < f (t) < f (b))

The following result may be stated as well.

Theorem 3.1. Assume that f, v : [a, b]→ R are bounded and v (a) 6= v (b) .

(i) If v (a) < v (t) < v (b) for any t ∈ (a, b) , then

|Φf,v (t)| ≤ 1

4
[v (b)− v (a)]

[∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣+

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣] , t ∈ [a, b] . (3.1)

The constant 1
4 is best possible.

(ii) If f (a) < f (t) < f (b) for t ∈ (a, b) , then

|Φf,v (t)| ≤ 1

4

[f (b)− f (a)]
2

|v (b)− v (a)|

[∣∣∣∣ v (t)− v (a)

f (t)− f (a)

∣∣∣∣+

∣∣∣∣ v (b)− v (t)

f (b)− f (t)

∣∣∣∣] , t ∈ [a, b] . (3.2)

Proof. (i) From the first equality in (2.3), we have:

|Φf,v (t)| ≤ |[v (b)− v (t)] [v (t)− v (a)]|
|v (b)− v (a)|

[∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣+

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣]
=

[v (b)− v (t)] [v (t)− v (a)]

|v (b)− v (a)|

[∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣+

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣]
≤ 1

4
[v (b)− v (a)]

[∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣+

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣]
since, for any t ∈ (a, b) ,

[v (b)− v (t)] [v (t)− v (a)] ≤ 1

4
[v (b)− v (a)]

2
.
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For the best constant, choose v (t) = t and then t = a+b
2 in (3.1) to obtain∣∣∣∣f (a) + f (b)

2
− f

(
a+ b

2

)∣∣∣∣
≤ 1

2

[∣∣∣∣f (a+ b

2

)
− f (a)

∣∣∣∣+

∣∣∣∣f (b)− f
(
a+ b

2

)∣∣∣∣] . (3.3)

If we consider the function f : [a, b]→ R,

f (t) =

{
0 if t ∈ [a, b)

k if t = b, k > 0,

then (3.3) becomes an equality with both terms k
2 .

(ii) The proof goes likewise and the details are omitted. �

Remark.

(a) Under the assumptions of (i) of Theorem 3.1 and if there exist La > 0,
Lb > 0, α, β ≥ 0 such that∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣ ≤ La (t− a)
α
,

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣ ≤ Lb (b− t)β , t ∈ (a, b) , (3.4)

then we have the inequality:

|Φf,v (t)| ≤ 1

4
[v (b)− v (a)]

[
La (t− a)

α
+ Lb (b− t)β

]
, t ∈ (a, b) . (3.5)

(aa) Under the assumptions of (ii) of Theorem 3.1 and if there exist the constants
Ha, Hb > 0 and γ, δ ≥ 0 such that∣∣∣∣ v (t)− v (a)

f (t)− f (a)

∣∣∣∣ ≤ Ha (t− a)
γ
,

∣∣∣∣ v (b)− v (t)

f (b)− f (t)

∣∣∣∣ ≤ Hb (b− t)δ , t ∈ (a, b) , (3.6)

then we have the inequality:

|Φf,v (t)| ≤ 1

4
· [f (b)− f (a)]

2

|v (b)− v (a)|

[
Ha (t− a)

γ
+Hb (b− t)δ

]
, t ∈ (a, b) . (3.7)

The following corollary provides some uniform bounds in the case where the
functions are differentiable.

Corollary 3.2. Assume that f, v : [a, b]→ R are continuous on [a, b] and differen-
tiable on (a, b) with v (a) 6= v (b) .

(i) If v (a) < v (t) < v (b) and v′ (t) 6= 0 for t ∈ (a, b) , then

|Φf,v (t)| ≤ 1

2
· [v (b)− v (a)] sup

s∈(a,b)

∣∣∣∣f ′ (s)v′ (s)

∣∣∣∣ , t ∈ (a, b) . (3.8)

(ii) If f (a) < f (t) < f (b) and f ′ (t) 6= 0 for t ∈ (a, b) , then

|Φf,v (t)| ≤ 1

2
· [f (b)− f (a)]

2

|v (b)− v (a)|
sup

s∈(a,b)

∣∣∣∣ v′ (s)f ′ (s)

∣∣∣∣ , t ∈ (a, b) . (3.9)

Proof. (i) Applying Cauchy’s mean value theorem, we deduce that for any t ∈ (a, b)
there exists an s between t and a such that

f (t)− f (a)

v (t)− v (a)
=
f ′ (s)

v′ (s)
.
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Therefore, ∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣ ≤ sup
s∈(a,b)

∣∣∣∣f ′ (s)v′ (s)

∣∣∣∣ , t ∈ (a, b)

and in a similar manner,∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣ ≤ sup
s∈(a,b)

∣∣∣∣f ′ (s)v′ (s)

∣∣∣∣ , t ∈ (a, b) .

Utilising the inequality (2.13) we deduce (3.8).
The proof of (ii) goes likewise and we omit the details. �

4. Bounds for Φf,v when f, v are Lipschitzian

We can state the following result.

Theorem 4.1. Assume that f, v : [a, b] → R are bounded functions on [a, b] and
v (a) 6= v (b) .

(i) If there exist constants Ma,Mb > 0 and α, β > 0 such that |f (t)− f (a)| ≤
Ma (t− a)

α
, |f (b)− f (t)| ≤Mb (b− t)β for any t ∈ [a, b] and v : [a, b]→ R

is Riemann integrable on [a, b] , then

|Φf,v (t)| ≤Ma

∣∣∣∣ v (b)− v (t)

f (b)− f (t)

∣∣∣∣ (t− a)
α

+Mb

∣∣∣∣ v (t)− v (a)

f (t)− f (a)

∣∣∣∣ (b− t)β (4.1)

for any t ∈ [a, b] .
(ii) If there exist constants Na, Nb > 0, γ, δ > 0 such that |v (t)− v (a)| ≤

Na (t− a)
γ
, |v (b)− v (t)| ≤ Nb (b− t)δ for any t ∈ [a, b] , then

|Φf,v (t)| ≤ Nb
∣∣∣∣f (t)− f (a)

v (t)− v (a)

∣∣∣∣ (b− t)δ +Na

∣∣∣∣f (b)− f (t)

v (b)− v (t)

∣∣∣∣ (t− a)
γ

(4.2)

for any t ∈ [a, b] .

Proof. Utilising the representation (2.3) we have:

|Φf,v (t)| ≤ |f (t)− f (a)| |v (b)− v (t)|+ |v (t)− v (a)| |f (b)− f (t)|
|v (b)− v (a)|

for any t ∈ [a, b] , which clearly produces the desired inequalities (4.1) and (4.2). �

We notice that, if more information is provided for f and v, then more specific
bounds can be obtained. For instance, if f is as in (i) of Theorem 4.1 and v (a) <
v (t) < v (b) for each t ∈ (a, b) , then we get from (4.1) the following inequality:

|Φf,v (t)| ≤

[
1

2
+

∣∣∣∣∣v (t)− v(a)+v(b)
2

v (b)− v (a)

∣∣∣∣∣
] [
Ma (t− a)

α
+Mb (b− t)β

]
(4.3)

for any t ∈ [a, b] .
Similarly, if v satisfies condition (ii) of Theorem 4.1 and f (a) < f (t) < f (b) for

each t ∈ (a, b) , then

|Φf,v (t)| ≤

[
1

2
· f (b)− f (a)

|v (b)− v (a)|
+

∣∣∣∣∣f (t)− f(a)+f(b)
2

v (b)− v (a)

∣∣∣∣∣
]

×
[
Nb (b− t)δ +Na (t− a)

γ
]

(4.4)

for any t ∈ [a, b] .
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If f is M−Lipschitzian, then from (4.1) we get

|Φf,v (t)| ≤M
[∣∣∣∣ v (b)− v (t)

v (b)− v (a)

∣∣∣∣ (t− a) +

∣∣∣∣ v (t)− v (a)

v (b)− v (a)

∣∣∣∣ (b− t)] (4.5)

≤M
[

1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣] [∣∣∣∣ v (b)− v (t)

v (b)− v (a)

∣∣∣∣+

∣∣∣∣ v (t)− v (a)

v (b)− v (a)

∣∣∣∣] ,
for any t ∈ [a, b] .

Also, if v is N−Lipschitzian, then from (4.1) we get

|Φf,v (t)| ≤ N
[∣∣∣∣f (t)− f (a)

v (b)− v (a)

∣∣∣∣ (b− t) +

∣∣∣∣f (b)− f (t)

v (b)− v (a)

∣∣∣∣ (t− a)

]
(4.6)

≤ N
[

1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣] [∣∣∣∣f (t)− f (a)

v (b)− v (a)

∣∣∣∣+

∣∣∣∣f (b)− f (t)

v (b)− v (a)

∣∣∣∣]
for any t ∈ [a, b] .

Moreover, if f is M−Lipschitzian and v (a) < v (t) < v (b) for any t ∈ [a, b] , then
from (4.5) we get the simpler inequality:

|Φf,v (t)| ≤M
[

1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣] (4.7)

for any t ∈ [a, b] .
If v is N−Lipschitzian and f (a) < f (t) < f (b) , v (a) < v (b) , then from (4.6)

we also have:

|Φf,v (t)| ≤ N · f (b)− f (a)

v (b)− v (a)

[
1

2
(b− a) +

∣∣∣∣t− a+ b

2

∣∣∣∣] , (4.8)

for each t ∈ [a, b] .

5. Applications for Positive Linear Functionals

Let L be a linear class of real-valued functions g : E → R having the properties

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R;
(L2) 1 ∈ L, i.e., if f0 (t) = 1, t ∈ E, then f0 ∈ L.
An isotonic linear functional A : L→ R is a functional satisfying

(A1) A (αf + βg) = αA (f) + βA (g) for all f, g ∈ L and α, β ∈ R;
(A2) If f ∈ L and f ≥ 0, then A (f) ≥ 0;
(A3) The mapping A is normalised if A (1) = 1.

For a function u : E → [a, b] , we consider the function

Φf,v (u) :=
v ◦ u− v (a)

v (b)− v (a)
· f (b) +

v (b)− v ◦ u
v (b)− v (a)

· f (a)− f ◦ u

and assume throughout this section that Φf,v (u) ∈ L.
It is obvious that for a normalised linear functional A : L→ R we have

A (Φf,v (u)) =
A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

and the inequalities in the previous section can be utilised to provide various upper
bounds for the quantity

|A (Φf,v (u))| .
For the sake of brevity we give here only some bounds that are simple and perhaps
more useful for applications.
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Proposition 5.1. Let f : [a, b] → R be of bounded variation on [a, b] and v (a) <
v (b) , v (a) ≤ v (t) ≤ v (b) for each t ∈ [a, b] . If u ∈ L so that Φf,v (u) ∈ L and
A : L→ R is a normalised positive linear functional on L, then:∣∣∣∣A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

∣∣∣∣
≤
[

1

2
+

1

v (b)− v (a)
A

(∣∣∣∣v ◦ u− v (a) + v (b)

2
· 1
∣∣∣∣)] b∨

a

(f) . (5.1)

Proof. Utilising the inequality (2.8) and the properties of the functional A, we have

|A (Φf,v (u))| ≤ A (|Φf,v (u)|)

≤ A

[(
1

2
+

∣∣∣∣∣v ◦ u−
v(a)+v(b)

2

v (b)− v (a)

∣∣∣∣∣
)

b∨
a

(f)

]

=

b∨
a

(f)

[
1

2
+

1

v (b)− v (a)
A

(∣∣∣∣v ◦ u− v (a) + v (b)

2
· 1
∣∣∣∣)]

and the inequality (5.1) is proved. �

Proposition 5.2. Let f, v : [a, b]→ R be bounded and v (a) 6= v (b) . Also, assume
that u ∈ L such that Φf,v (u) ∈ L and A : L → R is a normalised positive linear
functional on L.

(i) If v (a) < v (t) < v (b) for each t ∈ [a, b] , then∣∣∣∣A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

∣∣∣∣
≤ 1

4
[v (b)− v (a)]

[
A

(∣∣∣∣f − f (a) · 1
v − v (a) · 1

∣∣∣∣)+A

(∣∣∣∣f (b) · 1− f
v (b) · 1− v

∣∣∣∣)] , (5.2)

provided f−f(a)·1
v−v(a)·1 ,

f(b)·1−f
v(b)·1−v ∈ L;

(ii) If f (0) < f (t) < f (b) for t ∈ (a, b) , then∣∣∣∣A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

∣∣∣∣
≤ 1

4
· [f (b)− f (a)]

2

|v (b)− v (a)|

[
A

(∣∣∣∣ v − v (a) · 1
f − f (a) · 1

∣∣∣∣)+A

(∣∣∣∣ v (b) · 1− v
f (b) · 1− f

∣∣∣∣)] , (5.3)

provided v−v(a)·1
f−f(a)·1 ,

v(b)·1−v
f(b)·1−f ∈ L.

Utilising Corollary 3.2 we can state the following result that can be utilised for
applications.

Proposition 5.3. Let f, v : [a, b] → R be continuous on [a, b] and differentiable
on (a, b) . Also, assume that u ∈ L such that Φf,v (u) ∈ L and A : L → R is a
normalised positive functional on L.
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(i) If v is strictly monotonic on [a, b] , then∣∣∣∣A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

∣∣∣∣
≤ 1

2
|v (b)− v (a)| sup

s∈(a,b)

∣∣∣∣f ′ (s)v′ (s)

∣∣∣∣ . (5.4)

(ii) If f is strictly monotonic on [a, b] , then∣∣∣∣A (v ◦ u)− v (a)

v (b)− v (a)
· f (b) +

v (b)−A (v ◦ u)

v (b)− v (a)
· f (a)−A (f ◦ u)

∣∣∣∣
≤ 1

2
· [f (b)− f (a)]

2

|v (b)− v (a)|
sup

s∈(a,b)

∣∣∣∣ v′ (s)f ′ (s)

∣∣∣∣ , (5.5)

provided v (a) 6= v (b) .

For other inequalities for isotonic linear functionals, see the papers [1], [2], [6]
and the books [5] and [7].
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