Conceptualizing physical literacy within an ecological dynamics framework

This is the Accepted version of the following publication

O’Sullivan, Mark, Rudd, James, Woods, Carl, Rothwell, Martyn and Davids, Keith (2020) Conceptualizing physical literacy within an ecological dynamics framework. Quest. ISSN 0033-6297 (print) 1543-2750 (online)

The publisher’s official version can be found at https://www.tandfonline.com/doi/abs/10.1080/00336297.2020.1799828?journalCode=uqst20
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/40928/
Abstract
Currently, there are numerous definitions and interpretations of the concept of physical literacy within the literature, potentially leading to a lack of consensus as to how to employ it in practice. In this position paper, we argue that ecological dynamics is well-positioned to provide a theoretical framework that will bring clarity as well as support the operationalisation of physical literacy in practice. We argue that this theoretical conceptualisation provides an excellent framework for understanding physical literacy because of its emphasis on the person-environment relationship. More directly, we propose the establishment of an individual-environment fit across varied movement contexts over a lifespan as a central tenet of the physical literacy concept. We conclude by discussing how sports practitioners, national governing bodies, public health and education sectors could re-design sport, exercise and physical activity environments, in accordance with an ecological dynamics rationale to enhance physical literacy.

Key words: Individual-environment fit; non-linear pedagogy; functional skill adaptation; self-regulation; affordance landscapes; environment design

Introduction
Recently the concept of physical literacy has gained increased attention beyond physical education, sport discourse and into the public health arena (Young, O'Connor & Alfrey, 2019; Jurbala, 2015), entering policy and practice in many countries (Spengler & Cohen, 2015). Physical literacy is not a new term, having been referenced as early as the 1900s (Corbin, 2016). However, it was Whitehead’s conceptualisation emerging from the physical education literature in the United Kingdom (Whitehead, 2001) that initially stimulated interest and usage among practitioners and academics. Whitehead defined physical literacy as ‘the motivation, confidence, physical competence, knowledge and understanding to value and engage in physical activity for life’ (IPLA, 2017). This holistic approach to physical literacy rejected the Cartesian view of the mind and body being separate entities, instead promoting the idea of embodiment (Whitehead, 2007). Whitehead argued that sport and physical activity represents just one context in which
embodied capacities are both challenged and celebrated throughout an individual’s lifespan (Whitehead, 2001, 2007; Whitehead & Murdoch, 2006). This capacity to capitalise fully on our embodied dimension could be captured in the term ‘physical literacy’ (Whitehead, 2007).

The increased interest in physical literacy has mirrored that of physical activity epidemiologists from academic institutions, public health departments and the World Health Organization (WHO) who have highlighted that 1.4 billion adults do not meet the WHO recommended levels of physical activity (Guthold, Stevens, Riley, & Bull, 2018). This number will continue to rise in years to come, as it has been predicted that by 2030 in the United States of America: (i) 1 in 2 adults will be obese; (ii) the prevalence of obesity will be higher than 50% in 29 states and not below 35% in any state; and (iii), nearly 1 in 4 adults is projected to have severe obesity by 2030.

In response to the health consequences and financial economic burden, which is estimated to be over £50 billion per year, enhancing physical literacy has been seen as a key focus in policy to integrate public health, recreation, sport, and education agencies to engage youth into a life of physical activity (Dudley, Cairney, Wainwright, Kriellaars, & Mitchell, 2017).

Physical literacy and its definitional vagueness

A problem for those interested in promoting the construct has been the emergence of many different interpretations of physical literacy (see Edwards et al., 2016, Shearer et al., 2018; Young, O’Connor, & Alfrey, 2019). This has led to a lack of consensus as to how to define and employ it in practice (Foulkes, Foweather, Fairclough & Knowles, 2020; Hyndman & Pill, 2018; Jurbala, 2015), seemingly resulting in an oversimplification of the concept (Whitehead, 2010). For example, McKenzie and Lounsbury (2016) identified that many practitioners cannot discriminate between physical activity, physical fitness and physical education, and that adding another term such as physical literacy could increase confusion. Further, likening movement ‘literacy’ with language ‘literacy’ may be problematic (Jurbala, 2015). Designed to appeal to educators, managers and policy makers (Jurbala, 2015), the construct has been promoted in the media through the notion that children should be taught physical literacy in the same way that they learn numeracy or grammatical skill (Addley, 2019). Arguably, this positions the term as a testable or
measurable phenomenon, whereby generic assessments that reflect the traditional standardised
testing of reading, arithmetic and writing may suffice to understand its ‘acquisition’ (Tremblay &
Lloyd, 2010).

Indeed, physical literacy test objectives have been questioned for their inadequately simplistic
linear methods and designs, which reduce movement into measurable and de-contextualised
components (Edwards, Bryant, Keegan, Morgan, & Jones, 2016; Ng & Button, 2018). Physical
literacy, in this sense, provides a reductionist or ‘textbook’ application of a source of
representational knowledge which needs to be applied in a practical settings in checkbox fashion
(Roberts, Newcombe, & Davids, 2018). Jurbala (2015) challenged these approaches, arguing that
physical literacy can instead be viewed as a journey throughout a lifespan that extends beyond
formally-organised and competitive sports and physical education. Through such a lens, physical
literacy is not viewed as a series of ‘acquired’ movement competencies and skill components, but
a continuely evolving concept that could positively impact the mental and physical wellbeing
of individuals throughout childhood, adulthood, and into old age.

Physical literacy policy across the world

Despite its definitional vagueness, popularity of the concept of physical literacy among sport and
physical activity practitioners and policy makers continues to grow (Jurbala, 2015), with many
publications on the construct often produced by government funded organisations and
departments (Lynch, 2019). For example, in Canada it has been placed as ‘the cornerstone of both
participation and excellence in physical activity and sport’ (Way, Balyi, Trono, Harber, & Jurbala,
2014, p. 23). A comprehensive approach has been taken in Australia, reducing physical literacy
to 30 elements across four physical literacy domains (physical, psychological, social and
cognitive), accompanied by a five-step, staged approach for implementation (Sport Australian,
2019). In England, physical literacy has been reduced to a set of capabilities and achievements
that every child should achieve (Sport England, Strategy, 2016), while in Sweden, Lundvall and
Tidén (2013) have shown how physical literacy has been integrated into physical education as a
form of generic assessments. It is apparent that many government policy programmes of physical
literacy are underpinned by stage-based models of movement development, with a focus on measurement, that are seemingly grounded in health-based epidemiological models of physical activity promotion. For example, fundamental movement skills have been promoted within physical literacy under the assumption that they are associated with an initiation into competitive sport and health, while uncritically been accepted as central to physical education (Almond, 2014). Such an approach to physical literacy moves the primary focus away from the learning process, enhancing understanding of how to enrich self-regulation in movement contexts, towards evaluation of outcomes. Measurement choices are made based upon psychometric properties of assessment feasibility, reliability and validity (construct, predictive, convergence) (Cools, Martelaer, Samaey, & Andries, 2009; Webster & Ulrich, 2017). However, relevant forms of validity are not well-understood, such as face and content validity, that would question whether the assessment is valid under scrutiny of contemporary theories of motor learning and development.

To summarise so far, the concept of physical literacy, despite its definitional vagueness, is becoming an integral component of national health policy and a key focus of the physical education curricula across the globe. It is seemingly doing so through a health-based model of physical activity. This perspective moves away from enhancing understanding of the motor learning process, perhaps leading to a paucity of evidence to support how practitioners may integrate it in curricula and erecting barriers to its utility (Roberts, Newcombe, & Davids, 2018, Rudd et al., 2020).

Towards a theoretical framework to enhance the conceptualization of physical literacy. We propose that these misconceived conceptualisations and the definitional vagueness, in part, may be due to a lack of a persuasive, comprehensive theoretical grounding. To assist in the conceptualization of physical literacy within an ecological dynamics framework, Table 1 shows the synergies between Whitehead’s (2001) original definition of physical literacy and an ecological dynamics rationale.
Ecological dynamics moves us beyond describing what physical literacy is, towards guiding practitioners by supporting how they can operationalize the concept. This is because the emphasis is on the person-environment relationship, and the value of adopting that as the scale of analysis. This scale contrasts with perspectives that examine physical literacy effects on the individual or environment considered separately and so is better aligned with the philosophical and embodied nature of physical literacy put forward by Whitehead (2007).

Advancing physical literacy is, therefore, a journey of individual enrichment through movement experiences in a variety of movement contexts. A wide variety of rich interactions with varied environments ranging from quality organised sports to recreational physical activity experiences will lead to *self-regulation* (i.e., an individual's ability to adapt and (self)organise functional behaviours without the external input of a coach, teacher, or parent) (Chow, Davids, Shuttleworth, & Araújo, 2020; Button, Seifert, Chow, & Araújo, 2020). The shared intentionality across sporting and physical activity landscapes should be about supporting self-regulation, thus supporting the individuals’ continued physical literacy across a lifespan. More directly, if we are to embrace the concept of physical literacy, then it should be viewed not as an outcome-oriented end-point, but presented as a process-oriented journey across the lifecourse, influenced by a unique set of interacting constraints encountered by each individual. As we elucidate next, negotiating the emergent, interacting constraints in a life trajectory is the challenge for each self-regulating individual seeking a more functional (i.e., fruitful, engaging and productive) relationship with varying performance environments over the lifecourse (Rudd, Pesce, Strafford & Davids, In Press).

An ecological approach to the concept of physical literacy

Through supporting functional interactions of the dynamic elements of behaviour (i.e., activities, relationships, and settings), the long-term outcomes of positive youth development (i.e., performance, participation, and personal development) are likely to be achieved (Allan,
Through development, a child’s varied movement contexts provide different opportunities for (inter)action that are fundamental to promoting motor competence (Flôres, Rodrigues, Copetti, Lopes, & Cordovil, 2019), with these contexts inviting, permitting or inhibiting interaction (Bronfenbrenner & Ceci, 1993). This process, of course, extends into adult life and is relevant throughout a lifespan, with the manifestations of the process and outcomes (each individual’s performance levels and aspirations will differ) needing to be tailored to the individual’s needs, capacities, desires and stage of development. So, if the concept of physical literacy is to be woven into health education, sport and recreation, in both policy and practice, then it needs to be conceived, like motor skill ‘adaption’, as a dynamic system that should be viewed as a lifelong, individualised process (Allan et al., 2017; Clarke, 1995).

An ecological perspective is ideally suited to frame this process since this ontology implies that physical literacy should be understood not as an entity, and should certainly not be merely implicated with physical movement outcomes. Rather, physical literacy should be reflected in the dynamic, emergent behaviours (i.e., physical, social, emotional, social, cognitive, perceptual) of each individual-environment system, continuously subjected to the influence of changing personal and environmental constraints. The focus is on interacting dimensions of movement and physical activity behaviours (i.e., perceptions, cognitions, emotions, social interactions and physical actions) which emerge to support an adaptive, functional, dynamical relationship between the individual and his/her environment (Araújo & Davids, 2011). In ecological dynamics, the term ‘functional’ refers to the adoption of supportive, adaptive, and relevant behaviours with respect to achieving intended task goals during performance (Davids, Araújo, Hristovsk, Passos, & Chow, 2012). This systems approach calls for a shift in perspectives, from ‘fundamental’ to ‘functional’, from the reductionist interpretation of physical literacy discussed previously, to one which facilitates the systemic emergence of greater functional relationships between the learner and the environment over a lifespan (Renshaw & Chow, 2018). As noted earlier, self-regulation is the means by which appropriate levels of functionality are achieved in different performance contexts (from recreational to elite) requiring an individual to use
perception, action and cognition to interact with a performance environment (including its social, emotional and physical dimensions) during goal-directed behaviour.

Ecological dynamics

Appropriateness for framing physical literacy

Ecological dynamics is an integrated theoretical framework (Araújo, Davids, & Hristovski, 2006) of use for studying human behaviour in performance contexts such as work, education and sport, through the lenses of constraints on dynamical systems (Newell, 1986; Kelso, 1995), ecological psychology (Gibson, 1966, 1979), the complexity sciences (Edelman & Gally, 2001) and evolutionary science (for an overview, see Button et al., 2020). Fundamentally, an ecological dynamics rationale views perceptions, cognitions and actions as interacting and self-organising phenomena that emerge from the cyclically dynamic interaction between an individual’s action capabilities and the opportunities or invitations for action (referred to as affordances) offered by a specific performance environment (Araújo et al., 2006; Button et al., 2020; Chow et al., 2020; Ross, Gupta, & Sanders, 2018). Within this framework, the environment is perceived in behavioural terms, where objects, places, surfaces, events and other people, provide different opportunities or invitations for (inter)actions.

Affordances can be understood as properties of an individual-environment system, scaled to each individual’s action capabilities (e.g., speed, strength), body dimensions (Davids, Araujo, Vilar, Renshaw, & Pinder, 2013), and are perceived by the individual as they learn to establish an individual-environment fit. This idea of a fit between each individual and a performance environment highlights the idea that humans perceive the environment in relation to its functionality, and its meaningfulness detected in affordances, which provides insights in to what they learn and know and how they can decide to act (Araújo et al., 2006). Thus, an ecological dynamics framework enables the appreciation of how behaviours emerge at the ecological scale of analysis, the individual-environment relation (Araújo et al., 2006). This appreciation highlights the reciprocity of an individual and the environment coupled as a dynamical system (Warren, 2006), which was eloquently described in the seminal work of Gibson (1979, p. 223) when he...
stated “we must perceive in order to move, but we must also move in order to perceive”. As we will discuss next, it is the individual-environment fit that should form the crux of how we understand and integrate the concept of physical literacy in education and training programmes.

Constraints on the individual-environment fit

Viewing physical literacy as establishing and enhancing an individual-environment fit across varied movement contexts over a lifespan captures the construct not as an end point, but as a continued journey influenced by a unique set of interacting constraints imposed upon an individual. From this perspective, learning to skilfully navigate a task or performance setting can be understood as the gradual emergence of an adaptive, functional relationship between an individual and his/her environment (Renshaw & Chow, 2018), satisfying a confluence of interacting constraints over a lifespan (Davids, Araújo, Vilar, Renshaw, Pinder, 2013).

Constraints shape coordinative patterns within human movement by acting as boundaries or limits within which movement systems emerge (Clark, 1995; Kugler, 1986). Constraints were first categorised by Newell (1986) as Individual (e.g., height, weight, speed, motivation, emotions), Task (e.g., specific to the activity to be performed, goal of task) and Environmental (e.g., light, temperature, facilities, social values and societal/cultural expectations) in nature. These three classes do not operate in isolation, rather, they interact and evolve over varying timescales of learning and performance. Movement coordination from an ecological dynamics perspective results as an emergent property from interacting individual, task and environmental constraints (Seifert, Button & Davids, 2013). This connotation implies that constraints can be manipulated and exploited to provide opportunities (affordances) for actions to emerge.

Physical literacy as an individual-environment fit

From an ecological dynamics perspective, the concept of physical literacy may be best defined, not in terms of the person or the environment, but rather as their degree of “(mis)fit”. The level of analysis is the reciprocal interactions between characteristics of each individual and an environment. This perspective avoids problems with defining physical literacy as a characteristic
of an individual (referred to as an ‘organismic asymmetry’, see Dunwoody, 2006; Davids & Araújo, 2010), or as a characteristic of the environment.

A good example of this is how we can frame ‘motivation’ within a particular individual-environment relation. In order to meet the psychological needs of the individual, an ecological dynamics rationale proposes the adoption of the principle of self-organization under constraints manipulation (Renshaw, Oldham, & Bawden, 2012). This has been shown to be effective in helping learners to acquire skills and maintain a high level of engagement and motivation in sport and physical education contexts (Moy, Renshaw, & Davids, 2014; Moy, Renshaw, Davids, & Brymer, 2015). Indeed, the concept of affordances moves the notion of motivation in a different direction away from the more traditional organismic view of being the result of an internal process towards something not necessarily intrinsic but shared with the environment (Gibson, 1997).

Gibson (1979) considered motivation more broadly as objects, surfaces, events or other people that have value and meaning (or not) for each individual and this can change with experience and a person’s needs. The affordance is not changed, but the value or meaning (and hence the motivation to use an affordance or not) changes for each person-environment relationship as needs change. So, a well-designed activity or environment, where individuals are invited to learn of affordances through choosing the level of difficulty, will encourage individuals to develop their ability to interact with their immediate environment and modify behaviors in response to changes in body, skills, environment or task (Adolph, 2019). So, physical literacy can be understood as the degree to which properties of each individual and environmental characteristics match in varying contexts over a lifespan. In this way, physical literacy, conceptualized as the functionality of the fit between an individual and the environment, is a work in progress; a nonlinear, dynamic relationship which can regress, stabilise or progress, depending on the experiences undertaken over the lifecourse.

Both distal and proximal influences impinge on the individual-environment fit. Distal determinants (e.g. national, institutional, political, socio-cultural and socio-economical) are more stable (Flay & Petraitis, 1994), and can play an indirect influence on proximal factors (e.g.
playgrounds, sports clubs, amenities, open spaces). The individual-environment fit, for better or for worse, will primarily be reflected in the proximal environment given its immediacy and emotional salience to human beings (Bradley & Corwyn, 2004). Throughout growth and development, the nature, type and complexity of these immediate settings change, as certain environmental affordances for movement become more inviting than others. New physical, social and cultural characteristics invite, permit or inhibit reciprocal interactions that establish the individual-environment fit (Bronfenbrenner & Ceci, 1993). Accordingly, while it can be understood that affordances vary with learning and development (Gibson & Pick, 2000), they are just as deeply sociocultural as they are related to an individual’s action abilities (Rietveld & Kiverstein 2014; van Dijk & Rietveld, 2017). For example, sociocultural constraints might limit the opportunities for (inter)actions invited of individuals to access contexts where they could practice a skill. The reductionist and linear idea that if we teach the fundamental movement skills (such as the overarm throw) it will develop perceived competence in individuals, which will lead to seeking out performance opportunities in specific throwing games, which will eventually lead to playing sports involving throwing, does not address sociocultural and/or environmental barriers. Thus, an understanding of the individual-environment (mis)fit across varied movement contexts over a lifespan should, therefore, be a central tenet of the concept of physical literacy.

Physical literacy as a constant evolving state

An ecological dynamics framework involves the appreciation of the whole body (embodied) in close relationship with opportunities for action offered by the environment (embedded) (Araújo, Davids & Renshaw, 2020). Thus, the current status of the body and the environment shapes biomechanical constraints on task performance. For example, Adolph and colleagues (2018) suggested that when infants are learning to walk, their behaviour is continually shaped by the immediate context (i.e., changes in their bodies and in their physical and social environments they are experiencing). These interacting constraints on motor behaviours extend through infancy, childhood and adolescence, and in to adulthood, as individuals’ action capabilities and the nature, type and complexity of the affordances within their environment are continually changing. This
process also highlights the sociocultural constraints that influence individuals, where experiences are shaped as much by the social milieu as they are by each individual’s physiology, anatomy or psychology (Uehara, Button, Falcous, & Davids, 2014). In line with these ideas, physical literacy can, therefore, be seen as an emergent property from interacting individual, task and environmental constraints (Seifert, Button, & Davids 2013). However, given the dynamics and non-linearity of interacting constraints, it is likely that a change in one category may lead to a change in emergent movement behaviours (Clarke, 1995), resulting in changes in the way an individual interacts with the environment. This characterisation allows us to conceptualise physical literacy as a construct that changes and evolves over a lifespan.

The human body can move in many different ways, while at the same time, being constrained by its structural organisation, enhancing (due to growth in size) or limiting (due to aging, injury, disease) movement capabilities. From a dynamic systems perspective, it is acknowledged that different systems might act as rate limiters for different skills over different timescales (Thelen, 1998). For example, environmental features offer different affordances for individuals as they are assessed in relation to the individual, not according to an objective standard (Konczak, 1990). Our perception of affordances change as our capability for action change; in other words, affordances change as individuals change, and therefore the nature of our physical literacy changes. This idea implies that environmental features are framed in terms of body scaling and action capabilities over an individual’s lifespan. For instance, a child might not be able to climb a staircase structure of particular dimensions due to a mismatch between step riser heights with the dimensions of his/her arms and legs at a specific state of development (acting as a rate limiter). Until the child’s growth, maturation and development processes allow him/her to reach a critical ratio of leg length to step riser height, the affordance of “climbability” of the structure by stepping is not perceived (Warren, 1988). The nature, type and complexity of the settings change as certain environmental affordances for action become more inviting than others (Withagen, Harjo, Araujo, & Pepping, 2012). Simply, perception of affordances changes as capability for action changes.

Enhancing opportunities for individuals of all ages to interact with their environments
One of the key features of learning design in physical education and sport, from an ecological dynamics perspective, is to design ‘in’ affordances that can enhance the opportunity for learners to develop stable functional perception-action couplings to support performance (Chow et al., 2016). An important aspect of this, however, is the need to ‘match’ the utility and meaning of the affordances designed into a learning environment to the current action capabilities (known as effectivities in ecological psychology) of the individual perceiving them (Woods et al., 2020). It is this design feature that is likely to assist individuals to improve their perception-action coupling as they are guided toward actualizing the most soliciting or inviting affordances within their performance environment (Withagen et al., 2012). Importantly, these design principles can extend beyond organised sports and physical education. In urban planning and recreation, the designing in of rich and inviting opportunities for action can support diverse and meaningful movement-based experiences for individuals at varied stages of life. For instance, playgrounds have traditionally been synonymous with young children, albeit having a little too much symmetry and risk aversion (Gill, 2007). However, Sales and colleagues (2017) argued for the benefits of designing playgrounds for the elderly, where activity programmes, equipment and landscape are deliberately designed (scaled) for action opportunities in seniors.

Recently, the UN World Population Prospects report (2019) revealed that the global population of older adults is increasing at an unprecedented rate. Evidence points to a positive association between older adults’ physical activity and well-being (Nimrod 2011). Accordingly, aspects of urban designs could be re-configured (manipulation of environmental constraints) to promote physical activity within older populations to maintain their quality of life. Moreover, in a Guardian interview (2016), Stefano Recalcati, a project leader behind the report ‘Shaping Ageing Cities’ explained that cities must adjust if older people are to maintain quality of life, stating:

“it’s important to be conscious of the ageing trend. It is a huge challenge for world cities – they will need to change, to make sure older people continue to play an active role in the community and don’t become isolated. Isolation has a negative impact on health so tackling that is really important.”
From an ecological dynamics perspective, this issue needs to address accessibility. Exploiting the ‘invitational’ nature of environmental affordances through deliberate design, has the potential to offer different opportunities for action to increase (or maintain) healthy behavior over a lifespan (Withagen & Caljouw, 2016). For instance, the infamous and ubiquitous “No Ball Playing” signs in modern urban settings give a clear signal to the population (especially children), actually inviting sedentary and compliant lifestyles. Integrated policy making between politicians is needed in modern town/city planning projects. For example, Anna Lind (2019), the Swedish Minister for Sports, almost demanded an integrative policy making approach when querying town planning policy from a child’s rights perspective in the Swedish national newspaper Dagens Nyheter (Johansson, 2020). She raised a question, when new homes are built, that we all need to consider in other spheres of life: How often is the child’s opportunity to interact with the immediate environment (e.g. recreation areas) considered and designed ‘in’ to the planning? To promote physical literacy through an ecological dynamics framework, practitioners need to constantly consider and enhance opportunities for individuals at all ages to interact with their environments. By doing so, we may allow individuals the freedom to evolve their ‘own’ physical literacy, by enhancing personal engagement through establishing an individual-environment fit. Physical literacy involves self-regulation tendencies which can be guided and supported by education and health-care professionals, but it is not the sole remit of these experts.

Concluding Remarks

The vagueness associated with the construct of physical literacy, as revealed in the literature, elucidates a clear need for a comprehensive theoretical rationale to underpin how to apply its concepts. We have argued, from an ecological dynamics perspective, the concept of physical literacy can be enriched and extended in, and beyond, organised sports and physical education, through the re-conceptualisation of an individual’s relationship with the environmental settings they interact with over a lifespan. This ongoing and continuously developing relationship can be understood through the assessment of available affordances for movement opportunities (expressed through cognitions, perception and (inter)actions) in those specific settings (Flôres et
al., 2019), underpinned by how these contexts invite, permit or inhibit an individual-environment fit (Bronfenbrenner, Ceci, 1993). Physical literacy can, therefore, be understood at the level of the individual-environment system, where the dynamic and reciprocal relationships between an individual and their environment can be developed and analysed over time (Seifert, Orth, Button, Brymer, & Davids, 2017).
References

Table 1. Synergies between Whitehead’s (2001) original definition of physical literacy and an ecological dynamics rationale

<table>
<thead>
<tr>
<th>Whitehead 2001 Physical Literacy Definition</th>
<th>Ecological Dynamics Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1: A physically literate individual moves with poise, economy and confidence in a wide variety of physically challenging situations.</td>
<td>To move with poise, economy and confidence is predicated on an individual’s functional and structural capacities, such as their prior movement experiences, their motivational and emotional states (Headrick et al., 2015) and their cognitive self-regulation skills (Rudd et al., 2019). These interact with the physics and structural features of the environment as well as the individual’s specific intentions during an activity or task (Davids et al., 2013). A physically literate child playing a game in a playground or formal sport setting has ‘skilled intentionality’ if he/she is able to adapt to a range of challenging situations that emerge from the interacting performance constraints in order to functionally achieve a successful outcome during the activity (Chow et al., 2016).</td>
</tr>
<tr>
<td>Line 2: the individual is perceptive in ‘reading’ all aspects of the physical environment, anticipating movement needs or possibilities and responding appropriately to these, with intelligence and imagination.</td>
<td>A physically literate child is able to read an environment through exposure to a range of varied task constraints, and he/she progressively becomes attuned to the relevant affordances (invitations for action) within his/her environment. This attunement process is predicated on the perception of information to regulate actions, which helps children adapt movements to exploit key constraints to functionally achieve a task goal (Araujo & Davids, 2009). …Responding appropriately to these emergent task constraints, with intelligence and imagination is similar to the idea of ‘dexterity’ put forward by Bernstein (1967). He argued that dexterity is the ability to find a movement solution for any external situation, to adequately solve any emerging movement problem arising from the changing nature of environmental and tasks constraints.</td>
</tr>
<tr>
<td>Line 3: Physical literacy requires a holistic engagement that encompasses physical capacities embedded in perception, experience, memory, anticipation and decision making’</td>
<td>Ecological dynamics is a theoretical framework that seeks to understand human behaviours such as performance and learning at the individual-environment scale of analysis, as they interact to form the individual-environment system. From an Ecological Dynamics perspective, learners are regarded as complex adaptive systems, seeking opportunities for action (affordances) from their environment. The concept of affordances highlights the continuous and holistic interactions between the environmental features and embedded functional capabilities of the individual.</td>
</tr>
</tbody>
</table>