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INTRODUCTION 
 

Over the last 200 years average life expectancy in 

developed countries has more than doubled and is now 

above 80 years [1]. In numerous studies this linear 

increase is suggested to rise to an average life span of 

100 years or more [2–4]. This dramatic increase in life 

expectancy was largely driven by changes in lifestyle, 

sanitation and a continuous improvement of health care 

[5]. As a result, the major causes of death have shifted 

from infectious disease to chronic age-related 

conditions [6, 7]. Today, cardiovascular disease (CVD), 

cancer and respiratory disease are the most common 

causes of death worldwide [8, 9]. Other lifestyle and 

age-related conditions such as musculoskeletal disease, 

diabetes and dementia are also increasing rapidly and 

thus impact the number of disability-adjusted life years 

(DALYs), calculated in a population as the sum of the 

Years of Life Lost (YLL) due to premature mortality 

and the Years Lost due to Disability (YLD) [10, 11]. 

Therefore, strategies to promote healthy aging have 

gained great interest in developed societies. 
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ABSTRACT 
 

Aging is a complex process that is not well understood but involves finite changes at the genetic and epigenetic 
level. Physical activity is a well-documented modulator of the physiological process of aging. It has been 
suggested that the beneficial health effects of regular exercise are at least partly mediated through its effects 
on telomeres and associated regulatory pathways. Telomeres, the region of repetitive nucleotide sequences 
functioning as a “cap” at the chromosomal ends, play an important role to protect genomic DNA from 
degradation. Telomeres of dividing cells progressively shorten with age. Leucocyte telomere length (TL) has 
been associated with age-related diseases. Epidemiologic evidence indicates a strong relationship between 
physical activity and TL. In addition, TL has also been shown to predict all-cause and cardiovascular mortality. 
Experimental studies support a functional link between aerobic exercise and telomere preservation through 
activation of telomerase, an enzyme that adds nucleotides to the telomeric ends. However, unresolved 
questions regarding exercise modalities, pathomechanistic aspects and analytical issues limit the 
interpretability of available data. This review provides an overview about the current knowledge in the area of 
telomere biology, aging and physical activity. Finally, the capabilities and limitations of available analytical 
methods are addressed. 
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The process of aging remains incompletely understood. 

A better understanding of the complex and interrelated 

biological mechanisms of aging would help to develop 

interventions that delay the aging process. 

Environmental and lifestyle factors, such as physical 

activity, nutrition, stress and smoking, are major 

determinants of the aging process [12]. In particular, 

regular exercise is a safe and cost-effective way to 

reduce morbidity and premature mortality [13]. 

However, the molecular mechanisms that mediate the 

beneficial effects of exercise are incompletely 

understood and remain an area of active research. In 

numerous observational and intervention studies the 

preservation of telomeres, the protective end-caps of all 

chromosomes, has been proposed as an appealing 

putative mechanism that contributes partially to the 

beneficial health effects of physical activity [14]. This 

review aims to provide an overview on the current 

knowledge in the area of telomere biology, aging and 

physical activity. In addition, the capabilities and 

limitations of available analytical methods will be 

addressed. 

 

Structure and function of telomeres 
 

The genetic information of eukaryotes is encoded in the 

deoxyribonucleic acid (DNA), which is packed in the 

chromosomes. With every division of mitotic cells a 

small fragment of DNA at the ends of every 

chromosome remains unreplicated due to a 

physiological phenomenon named the end-replication 

problem [15]. In order to prevent the loss of coding 

genetic information thousands of identical, non-coding 

oligonucleotides are attached to the ends of all 

chromosomes. These terminal non-coding DNA-regions 

are called telomeres. Human telomeres contain 

approximately 2,500 tandem copies of a simple 

hexanucleotide with the sequence 5'-TTAGGGn-3' [16]. 

For most of its length, telomeric DNA is double 

stranded. However, the last portion of 30–100 base pairs 

(bp) at the 3’-end of the G-rich strand is single-stranded. 

This G-rich overhang at the 3’-end is essential for 

telomere maintenance and capping [17, 18]. Telomeres 

give rise to a complex three-dimensional structure 

limiting the access of telomerase and DNA damage 

repair (DDR) enzymes to the free ends of each DNA-

strand. This three-dimensional structure is achieved 

through the binding of a highly abundant protein 

complex, named shelterin, to the telomeric 

hexanucleotide sequence 5’-TTAGGGn-3‘. The 

shelterin complex is composed of the following six-

subunits (see Table 1): telomeric repeat binding factor 1 

(TRF1), telomeric repeat binding factor 2 (TRF2), 

TRF1-interacting nuclear protein 2 (TIN2), telomeric 

overhang binding protein 1 (POT1), TIN2 and POT1 

interacting protein 1 (TPP1), and repressor-activator 

protein 1 (RAP1). TRF1 and TRF2 interact with the 

double-stranded telomeric DNA, whereas POT1 

associates with single-stranded telomeric DNA [19]. 

Through interactions with the shelterin proteins the 

terminal telomere section flips backwards resulting in 

the formation of a looped structure (t-loop). 

Furthermore, the shelterin proteins aid in displacing a 

short section of double-stranded telomeric DNA so that 

the single stranded G-rich overhang at the 3´end can be 

interposed. This structure is referred to as “D-loop” and 

protects the free end of the DNA strand from 

recognition as a strand break, which would induce 

inappropriate repair processes. 

 

The interaction between the shelterin protein subunits is 

complex and has been investigated using mouse 

conditional knock-out cells for TRF1, TRF2, POT1, 

TPP1. It has been shown in several studies that 

shelterins prevent DNA damage response (DDR) 

activity at telomeres, chromosomal rearrangements and 

cell cycle arrest, thus demonstrating a role in 

maintaining telomere function and preserving genomic 

stability [17, 18, 29]. Through the binding of TRF1 and 

TRF2 to double-stranded telomeric TTAGGGn repeats 

RAP1, TIN2, TPP1 and POT1 can be recruited. TIN2 

can bridge TRF1 and TRF2/RAP1 complexes by 

binding to both proteins simultaneously. Furthermore, 

TIN2 associates with the TPP1/POT1 heterodimer, 

which is typically bound to single-stranded TTAGGG 

repeats [19, 24]. These intimate interactions result in the 

formation of a “capped” loop [20, 30, 31]. 

 

Telomere length (TL) varies greatly between species 

[32]. At birth, every human individual has a specific TL 

that ranges between 5 to 15 kb [33]. Throughout life 

telomeres shorten continuously with a rate between 20-

50 bp due to the end-replication phenomenon, oxidative 

stress and other modulating factors [15, 33]. However, 

telomere shortening rates and consequently also average 

TL vary amongst different tissue types, which is at least 

partly explained by tissue-specific proliferation rates 

[34, 35]. In dividing cells, the end replication problem is 

an important driver of telomere shortening that can be 

modified by other factors, such as oxidative stress or 

inflammation [33]. In postmitotic cells instead, 

oxidative stress can directly damage telomeric DNA 

and drive cells into senescence [36, 37]. The TL of 

peripheral blood leucocytes (LTL) has gained 

substantial interest as a potential marker of biological 

age [17]. Mean LTL in adults is approximately 11 kb 

and declines with an annual rate of 30-35 bp. Telomere 

attrition is most pronounced during the first two years 

of life, which are characterized by rapid somatic growth 

[34, 35, 38, 39]. The shortening of telomeres is not a 

unidirectional process since the reverse-transcriptase 

telomerase is capable of adding new hexanucleotides to 
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Table 1. Shelterin complex, subunits and functions. 

Shelterin subunits Function References 

Telomeric repeat binding factor 1  

(TRF1)- binds to the canonical TTAGGG 

double-stranded telomeric repeats 

Determines the structure of telomeric ends, it is 

implicated in the generation of t-loops, and it 

controls the synthesis of telomeric DNA by 

telomerase 

de Lange [20] 

Telomeric repeat binding factor 2  

(TRF2)- TRF1 paralog 

Implicated in telomere protection and telomere 

length homeostasis 

Takai et al. [21]; Artandi et 

al. [22]; Palm et al. [23] 

TRF1-interacting nuclear protein 2  

(TIN2)- can bridge TRF1 and TRF2/RAP1 

complex and can also recruit the TPP1/POT1 

heterodimer 

Responsible for the recruitment of other 

shelterins, therefore implicated in telomere 

protection 

Lei et al. [24] 

Telomeric overhang binding protein 1  

(POT1)- associates with the single-stranded 

TTAGGG repeats 

The telomere length maintenance is exerted 

through the interaction between POT1 and the 

reverse-transcriptase ribonucleoprotein 

telomerase 

Baumann et al. [25]; Loayza 

et al. [26] 

TIN2 and POT1 interacting protein 1  

(TPP1) 

Required for the recruitment of telomerase to 

the DNA 

van Steensel et al. [27] 

Repressor-activator protein 1  

(RAP1)- 1:1 complex with TRF2 

In addition to its telomeric function, also 

implicated in the upregulation of energy 

metabolism as a modulator of the NF-κB 

signalling pathway 

de Lange [20]; Teo et al. 

[28] 

 

telomeric ends [40, 41]. However, most somatic cells do 

not express telomerase. Detectable levels of telomerase 

activity can typically be found in germ line and 

embryonic stem cells, immune cells and in cancer cells 

[42, 43]. Human telomerase is made up of two main 

components: telomerase reverse transcriptase (TERT) 

and telomerase RNA component (TERC) endowed with 

a complementary sequence of telomeric DNA (3’-

AUCCC-5’), which serves as a template for telomere 

elongation [44]. It is important to note that telomerase 

expression does not necessarily parallel enzyme activity 

[44]. In the brain for example, TERT is expressed 

without detectable telomerase activity (TA) [45]. In 

contrast, PI3K/Akt and other factors can modulate TA 

independently from TERT expression [46]. In humans, 

the telomerase enzyme complex is completed by several 

associated proteins, including dyskeratosis congenita 1 

(DKC1) and NOP10 ribonucleoprotein (NOP10),  

which are essential for the maintenance of telomere 

integrity [47, 48]. 

 

In order to add new TTAGGG hexanucleotides the 

enzyme needs access to the telomere ends, which are 

hidden in the complex three-dimensional telomere 

structure [31]. Therefore, telomeres can change their 

conformational status between an ‘open’ state, where 

the enzyme has substrate access, and a “closed” state 

that prevents telomerase action [49]. Shelterin proteins 

play a key role in regulating the conformational state of 

telomeres and thus modulate TA [27, 50]. The low 

number of TRF1 and POT1 binding sites on short 

telomeres drives the formation of an open state. 

Whereas longer telomeres, with more TRF1 and POT1 

binding sites, typically assume a closed configuration 

[26]. In this way, telomerase can be efficiently directed 

to the shortest telomeres within a cell, and sufficiently 

long telomeres will not undergo any inappropriate 

lengthening [51, 52]. 

 

The importance of TL and TA in the aging process has 

been described by Rudolph et al. demonstrating that age-

dependent telomere shortening, and genetic instability 

are associated with shortened life span and a reduced 

regenerative potential [53]. Several genetic disorders 

with mutations in loci encoding for shelterin and 

telomerase subunits have also been described, all of 

which have been characterized by an accelerated rate of 

telomere attrition [54–56]. Higher rates of leucocytes 

telomere attrition are also associated with elevated risk 

of coronary artery disease, myocardial infarction, heart 

failure and stroke [57]. Additionally, changes in LTL, 

shelterin expression and function have been linked to 

structural changes in the thoracic aorta vessel wall and 

the myocardium [58, 59]. Furthermore, shorter LTL is 

related to the increased severity of CVD [60–62]. Many 

factors contribute to the shortening of telomeres 

including the genetic background [56, 63–65], gender 

[66], socioeconomic status and consequent stress 

perceived [58, 67, 68], dietary behaviour (i.e. antioxidant 

intake, alcohol consumption etc.) [69–73], body mass 
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index (BMI) [66, 74], smoking [66, 75] and physical 

inactivity [76]. 

 

Telomere length and telomerase activity – key 

mediators of mortality and morbidity 
 

Based on the principles of telomere physiology 

explained earlier, it has been speculated that longer 

telomeres and high TA are beneficial for healthy aging 

[77]. In epidemiologic studies, adult men and women 

with shorter telomeres are characterized by higher 

mortality rate, which is nearly twice as high as in those 

with longer telomeres [78, 79]. It has been demonstrated 

that those with the shortest telomeres were characterized 

by a higher hazard ratio for all-cause mortality compared 

to those with the longest telomeres (1.66, 95%CI 1.09–

2.53, p=0.018) [80]. In addition, a reduced LTL seems to 

indicate an existing or an elevated risk for future age-

related disease such as CVD, type 2 diabetes mellitus 

(T2DM), neurodegenerative diseases, osteoporosis and 

premature aging syndromes [56, 57, 81–83]. Recent 

clinical association studies unveiled a correlation 

between leucocytes telomere attrition and clonal 

hematopoiesis of indeterminate potential (CHIP) [84]. 

During aging hematopoietic stem cells (hSC) start to 

accumulate somatic mutations. It can happen that 

through the accumulation of DNA damage one cell gains 

a competitive expansion advantage that gives rise to 

expanded clones of leucocytes with the same mutations. 

The prevalence of CHIP is very low in those aged <40 

years, but can be found in >10% of those aged 70 years 

and in approximately 20% of octogenarians [84–87]. 

Individuals who harbour these mutated clones are at 

higher risk of hematological malignancies, but also 

several adverse cardiovascular outcomes [88]. In a 

whole-genome sequencing study, the strongest 

association of CHIP was found to be an 8 bp deletion in 

intron 3 of the TERT gene. Accordingly, TLs were 

observed to be significantly shortened in CHIP carriers 

[89]. Experimental studies demonstrate a delay in aging 

and an extended median life span in mice who have been 

genetically modified with constitutively expressed 

TERT compared to the respective controls [42, 43]. 

Moreover, telomerase reactivation reverses tissue 

degeneration in telomerase deficient mice [90]. On the 

contrary, constant expression of telomerase has been 

associated with carcinogenesis and is shown to have 

detrimental effects [91, 92]. Indeed, 85 to 90% of all 

human cancers have detectable TA [91]. A pivotal role 

of telomerase in cancer biology is further highlighted by 

the fact that inhibition of TA, in telomerase-positive 

human cancer cells, induces cell death and reduces 

tumour growth [93–96]. While constant unregulated TA, 

activation of oncogenes and/or silencing of tumor 

suppressor genes appears to drive tumour incidence and 

growth [97], a physiologically regulated telomerase 

activation appears to have beneficial health effects in 

mice and humans [59, 98, 99]. Therefore, substantial 

effort has been invested in the search for lifestyle factors 

that can modulate TA including nutrition or 

psychological stress. Based on existing data, also 

physical activity appears to be an effective way to 

induce telomerase and to preserve TL [59, 98, 100]. In 

the following sections, we review existing data on the 

effects of exercise on aging and in particular on telomere 

physiology. 

 

Exercise, health and telomeres 
 

Regular exercise is a well-established approach to 

reduce the risk of morbidity and premature mortality 

[13, 101]. Prospective cohort studies demonstrate that 

men and women who regularly exercise, have a 30% 

lower all-cause mortality risk than sedentary individuals 

[13, 101]. In the older persons the beneficial effects of 

regular physical activity (above 200 minutes a day) are 

even more pronounced reaching up to >40% mortality 

risk reduction [101–103]. Some studies have calculated 

that the gain of life years ranges between 2 to 4 years 

depending on the individual level of activity [104–108]. 

Despite strong evidence that supports beneficial health 

effects through regular exercise, comparability between 

individual studies is limited because of differences in the 

composition of study cohorts, exercise protocols and the 

duration of follow-up [104–108]. However, the pooled 

analysis of six major cohort studies including 632,091 

participants with diverse ethnicity and an average age of 

61 years showed that the effect of regular exercise on 

mortality is dose-dependent and already mild physical 

activity is associated with a significant reduction of 

mortality risk and a 1.8-year gain in life expectancy [13]. 

Metabolic equivalents (MET) are used to compare 

energy consumption between different activities dividing 

the actual energy expenditure of a given activity by the 

energy expenditure at rest [109]. Of note, even 

intermittent exercise sessions with a limited duration 

offer considerable health benefits, also in obese 

individuals and those with major risk factors [110]. The 

health effects of exercise are not only determined by the 

frequency and duration of training sessions, but also by 

the intensity. Vigorous exercise is more effective  

than mild or moderate exercise in improving 

cardiorespiratory fitness [111–113]. When adjusted to 

their specific needs and abilities, even in older 

individuals, regular physical activity attenuates the age-

dependent decline in cardiorespiratory fitness [114], 

improves mobility and physical functioning [115], and 

reduces the risk of falls [116]. 

 

Besides a substantial reduction of mortality, regular 

exercise also reduces the incidence and progression of 

coronary heart disease, hypertension, stroke, diabetes, 
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metabolic syndrome, colon cancer, breast cancer, and 

depression [101]. When compared to inactive 

individuals, physically active adults exhibit better 

cardiorespiratory fitness and muscular strength, a 

healthier body mass and composition, and a favorable 

metabolic profile [101]. Furthermore, they report better 

quality of sleep and health-related quality of life  

[101]. In a 1-year randomized controlled study regular 

aerobic exercise (moderate-intensity aerobic exercise 3 

days/week at 50–60% of the maximum heart rate reserve 

for week 1 to 7 and at 60–75% for the remainder of the 

program of 1 year) was shown to attenuate age-related 

brain atrophy and improve cognitive function in older 

individuals [117]. The authors reported that in 120 older 

persons aged 55–80 years, regular exercise improved 

memory function and age-related brain atrophy was 

reversed by approximately 1-2 years [117]. A key 

mechanism that mediates the neuronal effects of aerobic 

exercise is the secretion of neurotrophins, and in 

particular brain-derived neurotrophic factor (BDNF) 

[118–120]. 

 

Despite the existence of robust evidence for multiple 

health benefits of regular exercise, the underlying 

mechanisms are insufficiently understood. General key 

mechanisms that drive the process of aging include  

the accumulation of genetic damage, epigenetic 

modifications and shortening of telomeres [121]. It has 

been speculated that exercise can help preserve TL 

through the induction of telomerase [99, 122]. In the 

following section the scientific evidence addressing this 

concept is reviewed. 

 

Exercise and telomere biology: animal studies 

 

Although human studies suggest that regular exercise 

preserves telomeres, they are unable to unveil the 

underlying mechanisms. Animal models can help to 

close this gap as they allow to investigate on the 

mechanistic pathways. At present, only very few animal 

studies have been performed [59, 98, 123, 124]. It 

appears that telomeres of murine blood leucocytes and 

other cell types (e.g. myocardium, liver, aorta) also 

become shorter with advancing age [59, 98, 123]. 

However, this process is rather slow and may take 

between 12 to 18 months. For example, TL of blood 

leucocytes and cardiomyocytes was comparable in 3-

week-old and 6-month-old C57/Bl6 mice, but was 

significantly reduced after 18 months [59, 98]. 

Interestingly, the myocardium of these exercising mice 

also showed increased telomerase and shelterin 

expression and a reduction of apoptosis and cell-cycle 

arrest [59, 98, 100]. Regular running exercise has been 

shown to attenuate the age-related erosion of TL in 

hepatocytes and cardiomyocytes of CAST/Ei J mice, a 

wild-derived inbred strain of mice, over a period of 1 

year [123]. Moreover, in skeletal muscles and 

cardiomyocytes the age-related shortening of telomeres 

is accompanied by a decreased gene expression of the 

shelterin components TRF1 and TRF2 [123]. Chronic 

exercise can counteract the reduced expression of 

shelterins and thus aid to stabilize telomeres [123]. 

TRF1 and TRF2 protein content showed similar trends 

that failed to reach significance. In line with these 

results, Werner et al. reported a persistent up-regulation 

of cardiac telomere-stabilizing proteins TRF2 and TERT 

after 6 months of daily running exercise [98]. In parallel, 

the senescence-related proteins Chk2, p53, and p16 were 

down-regulated. Together, these effects lead to a 

substantial reduction of apoptotic cardiomyocytes in the 

heart of exercising mice. Regular running exercise also 

ameliorated the cardiotoxic effects of doxorubicin [98]. 

Overall, experimental studies suggest that the beneficial 

cardiac effects of regular exercise are primarily mediated 

by TERT, eNOS, and IGF-1. 

 

Exercise-mediated telomere preservation and other 

beneficial health outcomes are most likely the result of 

a cumulative effect over an extended period of time. 

However, even a single bout of exercise has been shown 

to increase the protein levels of TRF1 and TRF2 as well 

as Pot1a, but not Pot1b gene expression [124]. These 

changes are accompanied by a greater expression of 

DNA-repair and -response genes (Chk2 and Ku80) and 

greater protein content of phosphorylated p38 MAPK 

[124]. It has been speculated that the rapid increase in 

shelterin gene expression represents a direct adaptive 

reaction to the exercise stimulus, which depends on the 

duration, intensity and type of exercise [124]. In 

contrast, the fast increase in protein content is probably 

the result of improved proteostasis rather than increased 

mRNA translation. The rapid increase of shelterin 

expression in response to a single exercise session does 

not necessarily lead to a prompt increase in TA [124]. 

However, after three weeks of regular training, a 

persistent upregulation of myocardial TERT expression 

has been shown by Werner et al. [59, 98]. This 

activation of TERT appears to be essential for the 

cardioprotective effects of physical activity. 

 

Although existing evidence is rather limited, available 

data suggest that exercise induces an immediate short-

lived regulatory response in shelterin mRNA 

expression, but only a continuous stimulation over an 

extended period of time results in a preservation of 

telomeres and delays cellular aging. Furthermore, 

regular exercise is directly involved in the establishment 

of an anti-apoptotic and anti-senescent cellular 

environment through up-regulation of genes implicated 

in the DNA damage response and repair, including 

Ku70/Ku80 and down-regulation of p16, p53 and Chk2 

[98, 123]. 
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Interestingly, the myocardium of exercising mice 

showed increased telomerase and shelterin expression 

and a reduction in apoptosis and cell-cycle arrest  

[59, 98, 100]. 

 

Exercise and telomere biology: human studies 

 

The first study to explore the relationship between 

exercise and TL in humans was conducted by Cherkas 

et al. In a cross-sectional survey of 2401 white men and 

women they showed that LTL was positively associated 

with higher physical activity levels [125]. Similar 

results were reported by Du et al. analyzing 7,813 adult 

women from the Nurses’ Health Study, where even 

moderate amounts of activity were associated with 

longer telomeres [126]. In 5823 adult men and women 

of the National Health and Nutrition Examination 

Survey (NHANES 1999-2002) Tucker et al. showed 

that average LTL decreases by 15.6 bp per year of 

chronological age [127]. Individuals with higher levels 

of physical activity had substantially longer telomeres 

in peripheral blood leucocytes, corresponding to a gain 

of biological age of approximately 9 years [127]. All 

these epidemiologic studies are limited by their cross-

sectional nature and the fact that physical activity is 

self-reported. However, several smaller studies support 

the concept of telomere preservation by regular exercise 

[128–130]. In a comparison of telomere biology in 

young and middle-aged endurance athletes with 

sedentary controls, Werner et al. demonstrated that 

regular endurance training is associated with a reduction 

in leucocyte telomere erosion [59]. In their study, LTL 

of middle-aged athletes was preserved at the level of 

young controls. In contrast, LTL of middle-aged 

controls was approximately 30-40% lower than in 

young controls and thus, demonstrating an age-related 

attenuation. The preservation of TL was confirmed by 

two independent methods, qPCR and flow-FISH. 

Furthermore, when compared with untrained 

individuals, athletes showed increased TA and 

expression of telomere-stabilizing shelterin proteins, 

such as TRF2. The effects on telomere biology were 

accompanied by a pronounced inhibition of the DNA 

damage checkpoint kinase (Chk2) and the regulators of 

cell-cycle progression and survival, termed p16 and p53 

[59]. In line with these results, Denham et al. analysed 

LTL and the expression of telomere-regulating genes in 

61 Australian endurance athletes and 61 healthy 

controls [51]. LTL in athletes was 7.1% (208-416 

nucleotides (nt)) higher than in sedentary controls. In 

addition, athletes showed a higher expression of TERT 

and TPP1 mRNA expression. Interestingly, resting 

heart rate emerged as an independent predictor of LTL, 

TERT and TPP1 mRNA expression in this study. 

Denham et al. also showed that training volume 

determines the effect of exercise on telomere biology 

with the greatest effects seen in the most active athletes. 

A much smaller study from Østhus et al. showed greater 

LTL in older endurance athletes than in individuals of 

the same age with a medium level of activity [131]. 

However, young individuals with high and low activity 

levels showed no difference in LTL. On the molecular 

level telomere-associated genes, including TERT, 

TERF2IP (which encodes RAP1), Sirtuin-6 (SIRT6) and 

TATA-box binding protein (TBP) and miRNAs that 

target these genes are upregulated after a single running 

session of 30 minutes at 80% of peak oxygen uptake 

(VO2Peak). The analysis of white blood cells from 22 

healthy male volunteers, immediately after and 60 min 

after exercise, showed that 56 miRNAs were 

differentially regulated post-exercise (FDR <0.05) and 

that 4 of these (miR-186, miR-181, miR-15a and miR-

96) potentially target telomere-associated mRNA 

species [132]. 

 

Although cross-sectional observation studies suggest 

that regular exercise preserves TL through an activation 

of telomerase, experimental and prospective studies are 

necessary to proof causality. A recent study in 124 

healthy previously inactive individuals explored the 

effects of regular endurance training, intensive interval 

training and resistance training over a period of 6 

months [99]. Participants trained 3 times per week for 

45 min. Compared to non-exercising controls, TA in 

blood mononuclear cells was up-regulated 2 to 3-fold in 

the endurance- and interval-training groups, but not in 

the resistance-training group. The activation of 

telomerase was accompanied by longer telomeres in 

lymphocytes, granulocytes, and leucocytes. In addition 

to this training study, Werner et al. also explored the 

effects of a single bout of exhaustive exercise using a 

stepwise ramp protocol on a treadmill. When compared 

to baseline, CD14+ and CD34+ leucocytes collected 

after exercise, exhibited increased TA, which was still 

measurable 24h-post exercise. IGF-1, a potential 

mediator of the exercise-induced activation of 

telomerase [59], showed a biphasic response. However, 

after the 6-month training program, IGF-1 was 

comparable to baseline levels. Furthermore, blood 

collection was performed from 48 hours to 7 days after 

the last exercise session. This suggests that whilst the 

exercise-induced effects on telomere biology are of 

short duration, any health benefit is the result of a 

cumulative effect achieved by regular training. The 

beneficial effects of long-term exercise on TL and TA 

have also been shown by Melk A et al. in 59 healthy 

middle-aged men with former sedentary lifestyles [133]. 

Besides the secretion of IGF-1, another putative 

hypothesis to explain the exercise-induced activation of 

telomerase with subsequent telomere elongation is the 

release of nitric oxide (NO) as a result of increased 

vascular shear stress [99]. Endothelial NO synthase and 
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TA appear to be linked in a signalling pathway that 

mediates vascular protection [59]. 

 

Despite robust evidence from cross-sectional and 

prospective intervention studies, not all previously 

published analyses support a relationship between 

exercise and telomere biology [134–139]. For example, 

a comparison of 17 marathon runners and 19 healthy 

sedentary controls reported no difference in LTL [136]. 

Similar findings were reported by Song et al. in 84 

healthy volunteers [135]. Finally, in a cross-sectional 

and longitudinal analyses of 582 older adults, Soares-

Miranda et al. found no consistent relationship between 

physical activity and LTL [137]. Only some general 

functional measures, such as walking distance and “chair 

test performance”, were cross-sectionally related to LTL. 

In addition, changes in leisure-time activity and in “chair 

test performance” altered the change in LTL over time. 

Results from the “Berlin Aging Study” suggest that, in 

adult men aged over 61 years, long periods of physical 

activity are necessary for the prevention of telomere 

shortening (at least 10 years), with intensive sports 

activities having the greatest effect [140]. This concept is 

confirmed by a study from Lane et al. where former elite 

athletes were found to have comparable LTL to age-

matched, sedentary individuals [141]. 

 

Some researchers suggest that the relationship between 

LTL and exercise is U-shaped [51, 142, 143]. For 

example, Savela et al. analysed physical activity levels, 

LTL and the proportion of short telomeres in 204 

randomly selected survivors of the “Helsinki 

Businessman Study”. Moderate physical activity was 

associated with the longest mean LTL. A cross-

sectional comparison of endurance athletes and healthy 

controls provides additional support that moderate 

amounts of exercise training protects against biological 

aging, while higher amounts may not elicit additional 

benefits [51]. 

 

In summary, the evidence implies that the protective 

effects of exercise require a rather long-time span and 

continuity in order to become evident. 

 

Differential effects of exercise modalities on telomere 

biology 

 

As reported above, it is not clear whether exercise can 

preserve or increase TL. The controversial results may 

be explained, in part, by the fact that “exercise” is a 

general term that includes many different types of 

physical activities, such as running, swimming, dancing, 

weightlifting, ball sports and others. Therefore, the 

question arises whether different exercise modalities 

exert differential effects on telomeres? Most existing 

studies have investigated the effects of endurance 

exercise [59, 128, 144], in particular running and 

cycling, or mixed exercise regimens [126, 129]. 

However, in most epidemiologic studies, physical 

activity was self-reported [125, 145, 146]. To date, only 

one study directly compared the effects of different 

exercise modalities on telomere biology [99]. This 

randomized controlled trial showed that only endurance 

and high-intensive interval training, but not resistance 

training, increased TA and LTL in middle-aged healthy 

individuals. All intervention groups performed 3 

exercise sessions per week with a duration of 45 min for 

6 months. In an analysis of the NHANES (1999-2001), 

different types of self-reported leisure time activities 

were assessed, and only moderate/vigorous physical 

activity was significantly associated with LTL [147]. A 

lack of resistance training to preserve TL has also been 

observed in a small cross-sectional study that compared 

power lifters with healthy, active individuals with no 

history of strength training [148]. In summary, there is 

insufficient data to judge if different training modalities 

exert differential effects on telomeres, telomerase and 

shelterin expression. However, existing studies suggest 

that aerobic endurance exercise, but not resistance 

training, is helpful to preserve TL, at least in leucocytes. 

 

Mechanistic considerations 
 

Besides the preservation of telomeres, several other 

mechanisms have been proposed to contribute to the 

anti-aging effects of physical activity (Figure 1). Regular 

endurance exercise over 5 months improved 

mitochondrial biogenesis and morphology in skeletal 

muscles and other organs including lungs and heart in 

mtDNA mutator mice (animals with accelerated rates of 

mitochondrial DNA mutation). As a result, exercise 

delayed the age-related degeneration process of multiple 

organs, increased mobility, and attenuated telomere 

shortening [149, 150]. As noted, exercise contributes to 

an increased shelterin expression via upregulation of p38 

MAPK and a subsequent regulation of several 

transcription factors [123], including the upstream 

transcription factors of the PGC-1α gene. PGC-1α is a 

pleiotropic protein involved in cellular energy 

metabolism [151, 152] that has also been linked to aging 

[153]. During endurance exercise and caloric restriction, 

PGC-1α is activated by adenosine monophosphate-

activated protein kinase (AMPK), accumulates in the 

nucleus through sirtuin 1-dependent deacetylation and 

acts as a co-activator for other transcription factors [153, 

154] including nuclear respiratory factor 1 (NRF-1),  

a regulator of mitochondrial biogenesis [155, 156].  

Age-dependent telomere shortening contributes to 

mitochondrial and genomic DNA damage via activation 

of p53 and down-regulation of PGC-1α/β [157]. 

Recently, de Carvalho Cunha et al. have demonstrated 

that exercise regulates p53 and Chk2 in an intensity-
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dependent fashion, with high intensity endurance 

exercise being more effective in downregulating p53 

than low intensity exercise [158]. Moreover, high 

intensity training appears to be more effective in 

enhancing antioxidant defense, AMPK and PGC-1α 

expression [159]. 

 

Today, only very few animal studies have explored the 

mechanisms behind the exercise-mediated preservation 

of telomeres [59, 98, 123, 124]. Although these studies 

seem to confirm the results obtained in human studies, 

many mechanistic aspects remain to be clarified. 

Therefore, future research is needed to improve our 

understanding on the effects of exercise on telomere 

biology and genomic aging. 

Analytical aspects 
 

Despite robust evidence linking leucocyte telomere 

shortening with aging and age-related diseases, the 

measurement of LTL is not yet used clinically. Several 

unresolved pre-analytical, analytical and post-analytical 

aspects have hampered the transition of this promising 

marker from research laboratories into routine 

diagnostics. From a pre-analytical point of view the 

pronounced inter-individual variability of LTL [78, 160] 

and leucocyte telomere shortening [161] complicate a 

meaningful interpretation of individual results. Aviv et 

al. have shown that amongst young adults LTL changes 

between -240 and +12 bp per year. As previously 

discussed, telomere shortening throughout life is not a 

 

 
 

Figure 1. The beneficial effects of regular physical activity. Regular physical activity exerts its beneficial effects through activation of 

telomerase, preservation of telomere length and improved mitochondrial biogenesis and function. On the cellular level these effects lead to 
the reduction of apoptosis, cellular senescence and oxidative stress, lowering the subsequent multi-system chronic inflammation. In 
summary, regular physical activity is a means to preserve genomic integrity and tissue function and reduce the onset of age-related chronic 
diseases. 
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linear process instead it is most pronounced during the 

period of rapid somatic growth in the first two years of 

life [34, 35, 38, 39]. In addition, young individuals with 

either longer or shorter than the average TL tend to 

maintain that classification throughout the rest of  

their life [162, 163]. Together, these unresolved pre-

analytical issues have prevented a consensus amongst 

researchers and clinicians as to when measurement of 

TL is meaningful and might provide a benefit for the 

individual. 

 

Another major concern is the appropriate sample matrix. 

Variable proliferation rates lead to vastly different TLs 

amongst several tissue types [35]. In different organs, 

from the same individual, TL can differ by factor 6 and 

more [35]. It also appears that TL within the same organ 

varies substantially, and consequently results depend on 

the site of sample collection. Only few studies have 

investigated the distribution of TL in different organs 

from the same donor. Perhaps normalizing LTL for TL 

of a post-mitotic tissue like fat or skeletal muscles might 

provide a better understanding of leucocyte telomere 

dynamics during aging [164]. Dlouha et al. measured 

telomere length in twelve human tissues (peripheral 

blood leukocytes, liver, kidney, heart, intercostal skeletal 

muscle, subcutaneous and abdominal fat) from dead 

human donors with a wide age range (29 weeks to 88 

years). They found an inverse relationship between 

relative telomere length (rTL) and donor age, with the 

longest rTL detected in the youngest [35]. TL was 

significantly higher in blood compared to the majority of 

tissues but not different compared to adipose and renal 

tissue. The largest interindividual variability was 

observed in leucocytes and kidney [35]. Nonetheless, 

these results were confounded by the small number of 

donors and their variable health status. Up until now, 

little is known about the effect of injury and physical 

activity on telomere dynamics in human skeletal muscle. 

A recent study assessed whether aerobic capacity was 

associated with TL in skeletal muscles and leucocytes 

and whether TL is associated in these two tissues, across 

a wide age range (18–87 years). The findings support a 

correlation between LTL and mean skeletal muscles 

telomere length indicating that individuals with short (or 

long) telomeres in one tissue also display short (or long) 

telomeres in another tissue. However, skeletal muscle 

TL was not associated with age, and aerobic capacity 

was not associated with longer telomeres in either 

leukocytes or skeletal muscles [139]. Therefore, more 

studies are needed to consolidate our knowledge about 

tissue specific differences in telomere dynamics. 

 

To avoid invasive sample collection and regional 

variability of TL in solid organ tissues, blood leucocytes 

have been proposed as an alternative matrix for telomere 

analysis. Blood can easily be collected multiple times and 

LTL, at least theoretically, mirrors telomere dynamics in 

hematopoietic stem cells (hSC) and is an index of hSC 

reserve [165, 166]. However, blood leucocytes represent 

a heterogeneous cell population including monocytes, 

granulocytes and lymphocytes. The composition of this 

population is highly variable depending on stressors i.e. 

exercise, nutrition, smoking, psychological stress and 

others. These stressors can trigger a redistribution of 

leucocytes from immune reservoirs to the circulation and 

peripheral tissues [167]. As a result, the percentage of 

neutrophil granulocytes can range from 40 to 70% of the 

entire leucocyte count. Compared to many other cell 

types, neutrophils have a very short lifespan of 1-3 days. 

Therefore, it is not surprising that LTL exhibits by far the 

highest intra- and inter-individual variability amongst all 

sample types [35]. Conditions, such as CHIP, which arise 

from leucocyte precursor cells, may also influence the 

distribution of LTL and thus hamper the interpretation of 

LTL results. None withstanding the potential association 

between LTL and CHIP, which is primarily based on 

observational data, variable telomere attrition rates 

between individuals and amongst different solid tissues 

remain a major issue when interpreting the results of TL 

measurements. Therefore, more experimental data are 

needed to consolidate our knowledge about the 

relationship between TL in leucocytes and different solid 

tissues in the context of CHIP and other TL modifying 

conditions [168]. In summary, our present knowledge is 

insufficient to judge the validity of LTL as marker of 

biological age and as prognostic tool for poor outcomes 

and shorter DALYs in clinical settings. Furthermore,  

it is not clear how telomere dynamics of peripheral  

blood leucocytes reflect pathophysiological changes in 

individual organs. 

 

Besides the aforementioned pre-analytical issues, there 

are also analytical aspects that hamper a wider use of TL 

analysis. Existing methods are quantitative PCR (qPCR), 

Terminal Restriction Fragment (TRF) analysis by 

Southern blot, fluorescence in situ hybridization coupled 

with flow cytometry (flow-FISH), Single Telomere 

Length assay (STELA), Universal STELA, and Telomere 

Shortest Length Assay (TeSLA). Although all these 

methods analyse TL, the information they provide is 

substantially different and the results are not directly 

comparable [169]. Briefly, the qPCR assay is most 

frequently used in epidemiologic studies because it is 

easy to perform, requires small amounts of DNA and 

allows high throughput. The method provides a relative 

TL (T) compared to a single copy gene (S) and results are 

expressed as a T/S ratio. Information about the 

distribution of short and long telomeres, as well as 

differences between individual chromosomes and cells 

cannot be obtained. TRF is considered the “gold 

standard” for TL analysis that measures the intensity of 

telomere smears to determine an average TL. However, 
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applicability of this method is limited by the requirement 

of large amounts of DNA (approx. 3 µg) and a relatively 

laborious and time-consuming assay procedure, 

additionally with this technique very short telomeres 

(approx. 2 kb or less) are difficult to detect. Although 

reproducibility within the same laboratory can be rather 

good, results cannot easily be compared between 

laboratories. However, commercial TRF kits are now 

available and may help to improve inter-laboratory 

comparability. TL of peripheral blood leucocytes can also 

be measured by fluorescence in-situ hybridization (FISH) 

based methods. FISH based methods produce very 

reliable results, but are laborious and require expensive 

instrumentation [169]. Q-FISH expresses TL as relative 

fluorescence units. With the help of TRF measured 

standards absolute TLs can be derived. With this 

technique it has been shown that the shortest telomeres 

determine cell viability and chromosome stability [170–

172]. Reliable measurement of the shortest telomeres 

might open new possibilities for the assessment of 

biological age, the determination of individual risk for 

age-related degenerative disease and patient 

management. Finally, TeSLA assay, requires only small 

amounts (<1µg) of DNA and allows the unbiased 

measurement of TL distribution [173]. A wider use of 

TeSLA is hampered by its low throughput. Furthermore, 

very long telomeres, such as in inbred strains of mice, are 

not captured by this method. For a more comprehensive 

overview on the various techniques we refer to a recent 

review from Lai et al. [169]. Yet, for the measurement of 

TA the commonly used assay remains the Telomere-

Repeat Amplification Protocol (TRAP), a two-step 

procedure composed of telomerase mediated primer 

extension and PCR-based detection of extended products. 

This method has been further adapted to combine TRAP 

and droplet digital PCR (ddTRAP), thus increasing the 

sensitivity, repeatability and throughput of the assay. The 

specifics of the latter are reviewed by Ludlow at et al. 

[174, 175]. More laborious and not clinically used 

methods to detect TA include PCR-free assays such as 

electrochemical assays, optical assays, and signal-

transduction assays. However, all of them must be 

optimized to improve throughput and sensitivity and need 

special instrumentation to be performed [176]. 

 

In summary, telomere length and TA are almost 

exclusively measured in research laboratories. Sample 

matrix and analytical procedure should be carefully 

chosen for the intended use, and analyses should be 

performed by sufficiently trained staff. 

 

CONCLUSIONS 
 

Telomere research has gained much attention in the 

previous decade for its potential use and promise as a 

future therapeutic target, disease management and 

measurement of genomic aging. Interventions, such as 

physical activity that target the deleterious processes of 

aging have concomitantly created interest in the area of 

lifestyle and aging related research. Largely, the available 

physical activity data do not exclude that an association 

between regular exercise and TL exists. However, to 

date, the observed results from human studies are skewed 

largely by associations and observational or cross-

sectional data. In light of the limited data, available 

evidence suggests altogether, that regular, and consistent 

physical activity over an extended period of time may 

assist with preservation of telomeres and cellular aging. 

Nevertheless, conflicting and a lack of consistent findings 

from the existing evidence, and particularly from the few 

available mechanistic studies means there is much more 

to explore and understand, prior to measurements such as 

TL will be adopted clinically. 

 

Considering the above, future research should be 

focused on 1) developing more experimental data to 

further elucidate and confirm the relationship and 

mechanistic pathways between physical activity, aging 

and telomere biology, 2) investigating the effects of the 

use of different exercise modalities and intensities on 

telomeres and 3) further determining if these effects are 

tissue-specific or systemic. 
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