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Abstract

Vegetation High-Impedance Faults (VHIFs) are relevant and under-addressed power dis-
tribution system disturbances. They are low-energy events, represented by the contact
between power lines and nearby vegetation, that are not detected by traditional protection
devices. Despite not harmful to power equipment, they can ignite fires in vegetation with
great potential to life and property damage. After devastating HIF-related fires in 2009, the
Victorian Government found the lack of technical solutions to prevent similar disasters and
funded a vegetation ignition testing program to foster further research. It staged hundreds
of VHIFs that generated the data pertained to this thesis.

In the related literature, High-Impedance Faults (HIFs) comprise an extensive research
field, but few works are solely dedicated to studying VHIFs. Although generally treated
as a single problem, different high-impedance conducting surfaces introduce significant
variance in faults’ characteristics and behaviours. For these reasons, the staged VHIFs
recordings represent a niche type of faults having specific behaviours with significant
potential for insights regarding phenomenon characterization.

The main contributions from this thesis result from using the staged VHIF data to
address the knowledge gaps related to its characterization and detection method. Initial
investigations presented the likely presence of discriminative features in the signals’ high-
frequency (HF) spectrum. The results gave confidence for the production of a machine
learning-based VHIF classifier, conceptualized and discussed as part of a potential detection
method. Subsequently, the existence of discriminative information and invariance in the
HF signals was proved with the application of renowned signal representation techniques
and machine learning algorithms. A study regarding the importance of using HF signals
was also performed to support the chosen approach when conceptualizing the classifier. It
led to the finding that although the accessibility of such signals might be not optimal, they
may be imperative for an effective VHIF detection method. To deflate some of the potential
implementation concerns, a low-cost, proof-of-concept prototype was produced, attesting
the capabilities of real-time classification. Lastly, an unsupervised learning technique
was used to capture some of the convoluted and complex fault signatures in the time
domain. The found patterns led to insights about VHIF behaviour and signatures signals
that resulted in more detailed phenomena characterization.
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Chapter 1

Introduction

Faults on power distribution systems are irregular operating conditions involving a power
system equipment failure. The fault events are traditionally classified into two categories:
short- and open-circuit faults. Short-circuit faults can result from degradation of insulation
or an overvoltage event where current flows through a non-desired, usually low-impedance,
alternative path. Open-circuit faults are characterised by the interruption of the load current
and lack of fault current. Conductors that break but remain insulated, creating service
interruption, are the best example of open-circuit faults.

Short-circuit faults usually receive more attention since they are much more likely to
damage equipment. If not addressed, their fault current can exceed the rating of power
equipment such as busbars, transformers, and cables, potentially inflicting extreme thermal
damage. Short-circuits are also more likely due to the sheer number of possible scenarios.
They may occur between conductor and earth, between phases, and between phases and
earth; the possible cause may be lighting strikes, accumulation of snow, strong winds,
floods, equipment failure as in transformers, machines, reactors, or human failure. On
overhead systems, in particular, 80-90% of short-circuit faults occur on the power lines
while the rest tend to take place on substation equipment and busbars [1]. This figure is
not much surprising since the conductors in most overhead lines are naked bare wires
supported by insulators. The lack of insulation makes conductors vulnerable to any current-
conducting surface that might come into contact with a conductor. Common scenarios
of overhead lines suffering from short-circuits include conductors breaking and falling to
low-resistance surfaces and pole insulation failure.

Between the short- and open-circuit fault categories exists a disturbance that blurs
the line between these classifications — High-Impedance Faults (HIFs). Short-circuit
faults are characterised by hazardous large fault currents generated by the alternative low
impedance path. They are easily detected due to their substantial effects on the currents of
the system by protection devices such as overcurrent or zero sequence relays. If such a
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conducting path has a high impedance, alternatively, the resulting fault current magnitude
may be relatively small in comparison to the system nominal current. Consequently, as
the current magnitude may remain under the maximal nominal values, HIFs diverge from
the perceived category of short-circuit faults because they do not pose the same thermal
hazardous stresses. However, as they might not interfere with the functionality of the
system, HIFs also do not fit the open-circuit fault category. In HIF occurrences where
there is no conductor breakage, the load current is not interrupted, and no trivial changes
can be perceived in the signals at the substation level. These seemly non-threatening
characteristics of HIFs was probably the reason why they were neglected until the 70s [2],
where evidence of their problems started to stack up.

High-impedance faults are the phenomena studied in this thesis, but specifically, the
ones created by the contact between powerlines and vegetation. As it will be apparent
in the next chapters, an attempt to address all possible HIF types at once is likely to be
a misguided task. A considerable amount of evidence is presented to make a case for
further dividing HIFs into more specific categories like the ones involving vegetation.
The summarised point for this specialisation approach is that addressing all types of
HIFs comprise a much more complex problem requiring large amounts of data. In fact,
addressing only vegetation HIFs (VHIFs) is already a complex enough problem that
demands sizeable data and possibly the use of machine learning algorithms. The following
chapters discuss how this complexity may actually be the reason why there is no strong
consensus in the literature on the optimum way to address HIFs.

Beyond problem definition, this chapter also describes vegetation HIFs in the Australian
local context, the significance of addressing these faults, and the goals this thesis set to
achieve to fulfil the potential contribution to knowledge.

1.1 High-impedance faults and vegetation

Despite not representing a threat to power equipment, HIFs are still dangerous disturbances
due to their elusive behaviour. They became critical disturbances in power distribution
systems when their potential to create safety risks and fire hazards was fully realised.
For example, a HIF given by an energised conductor that breaks and falls to the ground
can be sustained for an extended period as it goes undetected by protection devices. An
interesting work [3] attested this fact by describing interviews with power line crews.
They stated that around one-third of broken conductor faults were still energised when the
crews reached the fault location. Such an alarming figure, however, only considers broken
conductor occurrences that often leads to service discontinuity and consequent reports
from customers. For HIFs given by contact with vegetation, service discontinuity may
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never happen as they can form without conductor breakage, thus likely never being noticed.
Vegetation HIFs are indeed likely to develop into short-circuits with time [4]. Nevertheless,
the period when a VHIF develops into a low-impedance fault (before trivial detection) is
where the process of combustion and charring of the vegetation happens. This process
can result in the ignition of fires, posing a threat to human life and potentially resulting in
significant financial damages [5, 6]. Therefore, if VHIFs are not detected and addressed
before they develop into short-circuits, it is unlikely that their associated fire risk can be
mitigated.

Since the seminal works that established the field in the 80s [7–9], HIFs have been
loosely defined as faults with current magnitudes lower than the pickup threshold of
traditional overcurrent devices. Their investigation started with the study of broken
conductors under the field of ground/earth faults. As a fair share of HIFs will eventually
develop into short-circuits, ground overcurrent protection was the primary mechanism
responsible for addressing them. However, as most three-phase systems are not perfectly
balanced, ground overcurrent devices are adjusted to tolerate minor unbalancing; few
amperes of tolerance are already enough for HIFs to occur without being detected [10]. The
evidence that a considerable percentage of these faults would go undetected by protection
devices was only published in 1982 [7]. The following publications and growing interest
on the topic led to the realisation that simple measurements such as current amplitude
and system unbalancing would not suffice for HIF detection (especially for solidly or
low-impedance grounded systems). Hence, researchers started looking for sources of
reliable predictive information in the fault signals that could point to HIF occurrences.

Due to their hazardous nature, HIFs became widely researched power systems distur-
bances [2, 11, 12]. Aiming at understanding HIFs, the findings from the related investi-
gations led to more clarity on the nature of the disturbance but often disagreed with each
other. Although most proposed methods have particular characteristics due to the constant
need of claiming novelty, some HIF classic features are generally accepted:

• HIF currents have an impulsive nature that results in increases on signals high-
frequency components in large bandwidths [4, 7, 8].

• It is common to observe a higher density of impulses near voltage zero-crossings.
The voltage needs to meet a threshold value to break the surface dielectric barrier,
generating current discontinuities [4, 13, 14].

• The relatively small current magnitude can significantly vary in between power
frequency cycles, pointing them to have a certain level of randomness [7, 8, 15].

• Electric arcs are commonly formed between the conductor and high-impedance
surface due to air gaps that separate them [7, 9].
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• There is a period where the fault current grows to a maximum local value (build-up),
lasting for tens of cycles, which is followed by a few cycles where it ceases to grow
(shoulder) [16–18].

• The fault current and behaviour will heavily depend on the conducting surface
[14, 15, 19–26].

The most relevant observation for this thesis comes from the last noted point regarding
the relationship between fault behaviour and conducting surface. Between all the works
discussed in chapter 2, few try to discriminate between fault conducting surfaces such
as grass, tree branches, gravel, asphalt, and sand. Detection methods are often proposed
with the alleged ability to detect all HIFs, despite the conducting surface. Nevertheless,
since seminal works in this field, authors have already stated that it is unlikely that a
single method would be able to detect all types on HIFs [10]. After analysing numerous
publications from the field of HIF detection, one could argue that it is likely that the scarcity
of HIF type specificity is one of the reasons for the lack of consensus regarding a definitive
fault detection solution. If true, such assumption would mean that the aforementioned
traditional definition — HIF as faults with current below protective devices sensitivity
— is a condensed definition for a more intricate problem. Based on the consensus of
fault variability, therefore, it is reasonable to say that HIFs should also be investigated in
sub-classes given by parameters such as the type of the fault, contact surface, and network
type.

Researches have recently started to publish more on tree/vegetation faults as a specific
type of fault to be studied [20, 27–30]. They have gathered evidence of essential and
distinct HIFs characteristics that diverge from other investigated surfaces. One of these
is the current magnitude in the first moments of the fault occurrence; initial values are
often in the range of a few amperes [4, 19, 30]. This characteristic is conflictual to a large
part of the works in the literature since, as discussed in chapter 2, most methods do not
have their current sensitivity defined but are instead presented as a generic solution to
the traditional definition of HIFs. The second interesting characteristic relates to the first
in that, on those initial seconds of the fault, the current seems to have an almost linear
relationship with the voltage [4, 19, 31]. That behaviour also represents a conflict with part
of the methods in the literature since they heavily rely on the harmonic content of current
signals as the predictive information. This linearity assertion is part of the experiments
proposed in chapter 3 in this thesis. The relevance of these two particular characteristics —
low current amplitude and low harmonic content — further increases when aspects like
detection speed are considered. According to a work testing hundreds of vegetation species
[4], VHIFs have to be detected and addressed in the first five seconds of fault inception if a
considerable fire risk reduction is desired.
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As described by recent research [4, 32], the process of sustained vegetation ignition by
powerline faults have specific characteristics. One could interpret these works as describing
two possible causes of vegetation ignition: high-energy electric arcs, and falling embers
from charring vegetation. The first begins with an electric arc created in the air gaps
between the conductor and conducting surface (vegetation). The high temperature of the
arc ignites the vegetation, which acts as a reductant combustion fuel. If the heating is
sufficient, the vegetation organic material goes through pyrolysis, leading to the production
of gases that form flames. The flames meet nearby vegetation, which also enters pyrolysis,
forming a cycle of sustained ignition. Such a cycle is not always formed as many factors
can interrupt any of its steps; the fact that there are many chances for interruption is the
reason why not all vegetation faults result in fires. Electric arcs not having energy enough
to ignite a critical mass of vegetation, heating being insufficient to start pyrolysis, and
inadequate air movements that do not effectively disperse combustion gases are some of the
many interrupting factors of sustained ignition. The second scenario resulting in sustained
ignition can be exemplified by a tree branch that comes in contact with a conductor at
the pole level and begins to char. The charring process can release embers that ignite
vegetation at ground level with the same ignition cycle described in the electric arc scenario.
The vegetation touching conductor loses its moisture and starts charring due to the ohmic
increase in temperature from the fault current. Therefore, the cross-sectional area and
moisture content of the branch can play a significant role in the speed at which the branch
starts to release embers. The bigger the cross-sectional area, and the higher the moisture
content, the longer the conductor may take to start charring [4]. This latter scenario is
discussed and expanded in phases of ignition in further sections as it is the one represented
by most of the experiments used in this thesis.

The evidence of fault specificity makes VHIFs particularly relevant since they can start
fires with devastating damages [5, 6, 33]. Powerlines breaking and falling to vegetation at
ground level, vegetation brought by heavy winds bridging two phase conductors, or tall
trees reaching powerlines are examples of such scenarios. Countries such as Australia,
United States, Spain, and Brazil experienced HIF-related fires created by power distribution
lines [5, 18, 29, 33]. Australia, in particular, has long suffered from many large-scale
fires related to faults caused by distribution lines. The fires of February 1977 [34], ‘Ash
Wednesday’ in 1983 [35], and the ‘Black Saturday Fires’ in 2009 [36] are examples of
devastating consequences that non-detected faults can cause.

The state of Victoria in Australia is no stranger to bushfires associated with electric
distribution systems. The most extreme example was the fires of Black Saturday in
February 2009. It was a series of fifteen fires that collectively burnt over 270 000 ha,
caused more than 150 fatalities and $4 billion in damage, and destroyed more than 1800
houses [5]. The fires destroyed buildings and infrastructures that supported communities,
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causing severe, lasting environmental impact. A combination of extreme environmental
factors amplified their reach, making them greater than most fires: heatwaves, temperatures
above 40°C, dry weather, and strong winds. Regarding the fire-starting causes, failure of
electricity assets were associated with five of the fifteen fires, including the ones creating
the most damage.

The consequent damages of Black Saturday were so drastic that the ‘2009 Victorian
Bushfires Royal Commission’ was established to address and investigate its causes. The
outcome of their work was published in four different volumes approaching different as-
pects of the investigation [36]: (1) the description of the fires and the related deaths; (2) the
recommendations for preparation, response and recovery from fires; (3) the establishment
and operation of the commission; and (4) presentation of lay witnesses statements. Most of
the insights and conclusion were then presented in the final report [5], which also proposed
recommendations regarding safety policy, emergency management, fireground response,
and electrical system practices.

1.2 Powerline Bushfire Safety Program and the Vegeta-
tion Ignition Testing

The Royal Commission recommendations related to electrical system upgrades were so
onerous that a separate initiative named ‘Powerline Bushfire Safety Program (PBSP)’
was created to address them. The two primary recommendations, #27 and #32, were
mainly related to delivering improved electricity assets to the grid and directing practices
changes in their protection philosophy. The recommendation #27 was the most arduous
and expensive task to address: progressive replacement of single-wire earth return (SWER)
power lines and three-phase distribution feeders with aerial bundled cable or underground
cabling. The recommendation #32 was less demanding but still challenging; it basically
mandated changes in the companies’ automatic circuit recloser policy. Companies should
disable the reclose function in SWER lines on the weeks of highest fire risk and limit the
22-kV feeders to one reclose attempt before lockout. The PBSP initiative was announced
in 2011 as a $750 million project, with a duration of 10 years. The largest part of the
budget came from private electricity business (67%) while government contributions
complemented the rest. The $500 million invested by private business were directed to
investments on new protection asset and control equipment. The remaining $250 million
government contribution was unevenly allocated in other areas: $200 million was applied
in the replacement of power lines in the areas of high fire risk, $40 million was invested
in mitigating power reliability impacts on customers, and $10 million was directed to
research and development projects to take place over the following five years.
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Despite being the area receiving the smallest portion of investments, the PBSP research
and development outcomes are the most relevant to the work presented in this thesis.
The initial $10 million was distributed to three priority areas: (1) bushfire mapping and
modelling, (2) power line faults and fire ignition, and (3) power line protection technology.
Mapping and modelling tasks were performed by assessing the bushfire risk throughout the
whole distribution system. Its goal was to have enough information to support the efficient
distribution of resources to the areas with the highest fire risk or better risk benefits towards
particular classes of electrical assets. With the combination of risk analysis and modelling,
expert knowledge, and geospatial images, the project returned valuable decision-supporting
information: estimations of fire outcomes and their likelihood throughout the network,
cost-benefit analysis of classes of equipment to be deployed to particular locations, and
geographical areas with the highest fire risk.

The second R&D area, ‘power line protection technology,’ resulted in two other child
projects: ‘Covered Conductor’ and ‘Rapid Earth Fault Current Limiter (REFCL) Tech-
nology’. The former was a grant program set to accelerate the development of novel or
improved conductor coverage. It was inspired by the fact that Victorian distribution lines
have more than 80,000 km in extension, which are mainly overhead lines with bare-wire
conductors vulnerable to any touching conducting surfaces. The current alternatives for
naked conductors are aerial bundle cables or moving the overhead lines underground. None
of these is particularly economically efficient solutions compared to the less expensive,
already existent, bare-wire overhead lines. The grant, therefore, intended to incentivise
innovative solutions in cable technology that could be more cost-effective and help mit-
igate bushfires. The Rapid Earth Fault Current Limiter was the other power protection
technology investigated to detect and prevent fire ignition from HIFs. They have shown to
be effective at limiting even very small-current HIFs [37]. However, there are issues with
its implementation, which are going to be detailed discussed in the next section.

The last R&D project, and bedrock for the work in this thesis, is the ‘Vegetation
Conduction Ignition Testing’. This program was conceptualised around two main goals:
to identify which of the native species are most and least likely to start a fire, and to
deliver a reference database of fault recordings to foster the development of fault detection
technology. The program’s methodology comprised of sampling many local vegetation
species and testing them in staged VHIFs experiments. The tests were straightforward
in the sense that they were performed by merely subjecting the samples to the network
voltage. The staged faults recordings of the current and voltage signals were then compiled
in a reference database delivered as one of the program’s outcomes.

Around twenty plant species were tested in hundreds of experiments on a real three-wire
22-kV feeder. Since there are no standards experiments for such investigations or dedicated
labs to perform them, the project team had to conceptualise original methodologies and
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experimental set-ups. The positive aspect of having to develop the experiments from
scratch is that equipment and sampling devices can be tailored to the specific experiment;
the negative is that chances of making questionable and constraining decisions are much
higher. These are going to be extensively discussed in this thesis, especially in chapter
3, since they guided and demanded modifications in the developed methodology. The
experimental test rig was produced in two shipping containers that were located at a
substation at the Springvale suburb in Melbourne. As the substation allowed direct access
to the network voltage, a considerable part of the work was dedicated to producing a safe
ignition test space and recording set-up.

The experiments were performed as three categories of possible real fault scenarios:
Branch touching wires (phase to earth), Branch across wires (phase to phase), and Wire
into vegetation (phase to earth). The first fault type refers to a tree branch laid across two
conductors, one earthed and one with the nominal phase voltage (12.7 kV). The second
followed the same method but with both conductors energised (22 kV). The third was
conducted by dropping the HV conductor into vegetation, either grass or bush, also under
phase voltage. It is worth remembering that HIFs are traditionally approached as a scenario
represented by a conductor breaking and falling to the ground. These are phase to earth
tests that consequently involve the neutral current. ‘Branch between wires’ (phase-to-
phase), nevertheless, are tests only involving phase currents, which are harder to detect in
three-wire (resonant grounding or ungrounded) systems. The large number of experiments
performed in this under-discussed scenario represents yet another pioneering aspect of
this program. The data from these tests can not only support relevant insights regarding
phase-to-phase VHIFs behaviour but also lead to higher generalisation ability when used
to produce a fault classification method.

The tests resulted in an extensive data set of vegetation HIF fault recordings with
high-resolution sampling and wideband signals, having a high potential for insights. All
the work and methods described in this thesis were then guided and conceptualised as
experiments performed in this data set of much particular type of faults. The expectation
when adopting this data set was that it could inform a deeper understanding of VHIF
behaviours and support the development of novel detection methods never before explored
in the literature.

The specificity aspect of the data set is not only given by the conducting surface
(vegetation) but also due to particularities worth mentioning. One of those was that the
staged VHIFs had their currents limited by arbitrary thresholds set between 0.5 and 4 A
in most tests. The reason for doing so was mainly related to the program’s objective to
compare fire risk between different species. The experiments were terminated whenever
the thresholds were met. As different species took distinct times to reach a particular
current magnitude, and they were also in different conditions once the test was terminated,
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the adoption of a threshold allowed for an interesting comparison regarding their relative
fire risk. Although some tests only lasted for a brief moment (under 1 second), having
a set threshold did not necessarily limit most staged faults. A relevant part of the tests
took tens of seconds to reach a fault current of a few amperes, producing evidence of their
dangerous potential and challenging detection.

One may look at the particularity of adopting thresholds as a drawback but actually
introduces pertinent novelty to the work. When compared to fault current values discussed
in HIF models in the literature [16, 26, 38], these thresholds translate to much smaller
current values. Often neglected, such low fault currents are part of a critical scenario to
be considered as they can ignite fires despite having small amplitudes. Therefore, if fire
risk reduction is a goal of any given approach, attesting accuracy for even very small fault
currents becomes an important validation metric.

Other particularities involved one of the tests’ most distinct and relevant characteristics
— high-resolution sampling. In particular fashion, the project team decided that it was
important that the current and voltage signals were simultaneously sampled in two channels
to ensure wideband, low-noise sampling. The bandwidth recorded was non-linearly divided
into two channels with different band-pass characteristics. The low-frequency (LF) channel
was responsible for continuously sampling the electric signals at 100 kSa/s with suitable
anti-aliasing filters, resulting in a 0 to 50 kHz bandwidth. The high-frequency (HF)
channel sampled signals at 2 MSa/s with anti-aliasing and high-pass filters that limited
its bandwidth from 10 kHz to 1 MHz. The recorded bands represented a severe diversion
from sampling rates usually adopted in the literature (discussed in greater detail in Section
2). Consequently, such data not only can introduce novelty by the type of fault which they
represent but also by their characterising frequency bandwidth, which is much higher than
previous investigations. Lastly, as another worth-mentioning characteristic, the project
decided to perform the connection of the test rig to the network via high-voltage current-
limiting resistors. In this case, safety was the reason for adopting the use of resistors as the
non-occurrence of internal flashovers had to be ensured.

As most claims made here about fire risk mitigation are based on the findings by this
program, it is important to note how fire ignition risk was defined throughout the tests.
Unambiguous definitions are significant because tests generated a plenitude of responses,
from tiny sparks to sizeable embers of burned bark. The definition was based on the
assumption that most fire-ignition scenarios are given by embers formed at conductor level
with significant size and fuel to ignite adjacent dry grass at ground level. To evaluate the
thermal capacity of the embers, a thermal camera, capable of automatically identify the
embers and their temperature, recorded every test. Three constraints were then set to label
tests as resulting in fire: embers that fell to the floor and remained glowing for at least a
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second, small embers (leaves, for example) with temperatures exceeding 350 ◦C, or large
embers (burned twig) with temperatures exceeding 250 ◦C.

1.2.1 Findings from the Vegetation Conduction Ignition Testing

The ‘Vegetation Conduction Ignition Test’ Final Report [4] reported all the findings
resulted from the analysis of the staged fault, some of which were essential guides to
the methodology presented here. In respect to the adopted fault current limit versus fire
risk, ‘branch touching wire’ faults showed that current values greater than 0.5 A rapidly
increased the probability of fire. A 1 A threshold translated to 33%, and 2 A represented a
53% chance of fire risk. This finding is critically important given that traditional earth-fault
protection systems used in Victoria have a detection sensitivity in the range of 5-10 A [4].
As many tests resulted in flashovers that bridged the HV conductors, it was concluded that
traditional protection systems would eventually detect most faults. However, getting to
flashover state means that the vegetation sample went through the phases of expulsion of
moisture and progressive charring of the bark, which are the phases when fire ignition
takes place. Therefore, when conventional protection responds, most of the fire-creating
phases would already occur.

The characterization of distinct phases of vegetation conduction was one of the primary
findings from the project. It was confidently stated that, by analyzing the tests, four
consistent phases of vegetation conduction could be identified: (1) development of full
contact between conductor and vegetation; (2) expulsion of vegetation moisture; (3)
progressive charring of the bark; and (4) flashover bridging conductors [4]. After initial
contact with the conductor, the current magnitude will almost monotonically increase
up to a maximum local value where phase 1 ends. When entering phase 2, whistling
noises can be heard, and visual moisture is seen falling from the vegetation branches.
Phase 2 is characterized by a high-volatility current that alternates until reaching a new
maximum value, which indicates the beginning of phase 3. The branch charring of Phase 3
expands the carbonized area of the material, increasing its conductivity and fault current.
The increased current with high thermal capacity starts forming embers from one side
of the branch, which eventually bridges with the other side, generating a flashover and
starting phase 4. The flashover has high conductivity, and the current rapidly increases to
values large enough to sensitize conventional protection. The findings point to fire risk
primarily arising in phase 3 when the outer layer of the branch is burning and charring.
Moisture content, however, was one of the factors that most correlated with ignited samples.
Vegetation samples with moisture contents under 10% did not result in fire ignition.

When assessing the fire risk of different vegetation species, the most dangerous were
shown to be the ones that took the longest for fault current to fully develop. It was
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observed that if the fault current rapidly grew to the detection rate, ember formation was
less probable than cases of sustained conduction. In the same manner, faults with higher
initial current value such as ‘Branch between wires’ showed a reduced fire probability as
they develop faster than other configurations. Considerations regarding the speed of fault
development led to an important recommendation for time detection delays. In ‘branch
between wires’ faults, it was determined that detection times longer than 20 s would be
unlikely to reduce fire risk dramatically. However, a significant decrease in such risk could
be achieved by responding in 5 s or less. In the case of ‘branch touching wires’, event
detection in 2 s with 0.5 A sensitivity could reduce fire risk in tenfold.

1.3 Significance and motivation

It is worth clearly stating the arguments that motivated the work presented in this thesis.
Previous sections directly alluded to the problems resulted from VHIFs, but a hierarchical
justification can clarify directions and decisions taken when conceptualising the methodol-
ogy. The reasons and significance of this work occupy a range of relevancies; from just
adding pieces of evidence to the problem importance to possible substantial implications
in power line-related fire mitigation.

1.3.1 Fire mitigation and VHIF detection technology

There is plenty of unambiguous evidence of the need for improved VHIF detection tech-
nology. The Black Saturday fires are just one example of the possible consequences of
unaddressed HIFs, and they are likely to happen again. At present of writing (January
2019), Australia has been facing terrible fires, resulting in the death of 33 people and 500
million animals, 11 million hectares burned, and loss of more than two thousand houses
[39]. New South Wales and Victoria have been the states suffering the most significant
damages, with more than 50 fires are still burning. As stated in the final report from the
Royal commission [5], although electrical faults are not associated with a large proportion
of fire ignition causes, their risks dramatically increase on days of extreme fire danger. The
report points to the fact that Australia has an ageing electricity system with deteriorating as-
sets that contributed to three fires on Black Saturday. It concludes by stating that given the
current economic regime, any substantial reform would be difficult, and as assets continue
to age, there probably will be an increased number of fires caused by electrical failures. In
regards to the damage done by electrical system-related fires, evidence point that although
they are as less likely to occur, they have the propensity to become larger than fires caused
by other factors [6]. The dimensions of power line-related fires, in particular, appears to
average ten times larger than others [33]. There is no reason to expect that the frequency
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of fires is going to reduce in the near future. A study on the effect of climate change on
global fire activity pointed that dry regions in the world, such as the Australian continent,
are projected to experience a consistent and expressive increase in fire occurrences [40].

Strong evidence point to the insufficient ability of current protection devices to prevent
power line-related fires with timely detection. Results from a project testing many broken
conductor scenarios in Australia [41] to evaluate existing protection technologies are an
example. In the paper summarising the findings [42], the author reported the current
protection devices in Victoria’s rural systems produced 100% probability of sustained
ignition from broken conductor faults. Although not having the testing of protection
technologies as the primary goal, the discussed Vegetation Conduction Ignition Testing
also presented evidence of their insufficiency. A well-known commercial protection relay
developed for the North-American market with an embedded HIF detection function was
tested throughout all the tests in the project. As stated in its final report [4], the device did
not detect any of the 1038 faults. The fact that there are products in the market claiming
the ability to detect all broken conductors and HIFs are, at least, worrisome. It is arguable
that the ever occurrence of power line-ignited fires, and the existence of an active, focused
research field (explored in the next chapter), are also evidence of insufficient technology.
If there is any validity to such an argument, the burden of proof is on researchers and
power companies to sufficiently validate their solutions before making claims about its
capabilities.

There is current protection technology capable of mitigating the fire-risk created by
VHIFs, but its applicability is limited. The previously mentioned work set to evaluate
current protection capabilities in Victoria [41] was actually part of one of the PBSP R&D
projects — ‘Rapid Earth Fault Current Limiter Technology’. The REFCL technology
can be summarised as an active residual ground current compensation to be implemented
as part of a resonant grounded system. Explored in more details in the next chapter,
a compensated or resonant grounded system is basically an high-impedance grounding
scheme with adjustable reactance that compensates stray system capacitances. One of
the advantages of having the high-impedance connected between the neutral and ground
point of a three-phase system is the resulting smaller earth-fault current. The operation of
the system benefits from the fact that, since the loads have all to be connected between
phases, zero-sequence measurements are free to be used for earth fault detection. The
REFCL, labelled ‘Ground fault neutralizer’ [43] by its pioneering company, Swedish
neutral, presents itself as an enhanced suppression coil. Its main advantage lies on speed,
being able to compensate neutral residual currents in under three power cycles (150 ms).
Such capabilities make the REFCLs an effective solution for earth faults in terms of fire
safety. However, as most engineering solutions, there are trade-offs and limitations in their
application in Australian systems.
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The first REFCL applicability constraint is the fact that it can only be implemented in
resonant-grounded systems. As their functionality is primarily dependent on the residual
earth current, REFCLs are not suitable to systems that intentionally rely on the earth path
for their standard operation like most Australian networks. This incompatibility represents
a considerable constraint since, from the approximately 88,000 km of distribution overhead
power lines in Victoria, 28,000 km are SWER lines [44]. These lines are intentionally
configured to use the earth as the single path for current return and are thus unable to
be ungrounded. Even though they do not represent half of the extension of power lines,
SWER lines are arguably more important because they are extensively applied in rural and
remote areas, which are rich in vegetation. They are typically composed of one galvanised
bare steel wire extended through long distances, often more than 500 m, significantly
reducing its associated costs [45]. One SWER line is usually responsible for supplying
10-50 farms or houses that are up to 20 km apart [45]. It is worth noting that, besides
REFCLs, the only solutions considered by the government was either to underground the
lines or to insulate them as aerial bundle or single insulated unscreened conductors. These
insulation varieties can be more challenging to maintain because the insulation can hide
damages in the conductors. Moreover, fire ignition is still possible with aerial bundled
conductors, and it has happened before; it is possible that in fault occurrences, they even
release more energy than leaning trees on bare wires [45].

All the solutions formally considered by the government, including REFCLs, suffer
from cost constraints. The Nous group — a consulting company for the Victorian govern-
ment — estimated the costs associated with each solution scenario. The estimation for
insulating all SWER bare-wire lines and transforming all three-phase lines to aerial bundle
cable would cost around 11.8 billion AUD [45]. The scenario of moving all SWER and
three-phase lines underground could cost more than 20 billion AUD. After seeing this as a
preposterous amount, the government decided to move some of the lines in critical areas to
underground and mandate the installation of REFCLs in selected substations throughout
Victoria. The mandate became legislation with the ‘Electricity Safety (Bushfire Mitigation)
Amendment Regulations 2016’ [46], which made provision as requirements for power
companies to increase safety standards of their operation. As determined by the legislation,
the network modifications should be performed in a term given by the following seven
years. In this period, the companies need to regularly report their progress to the Australia
Energy Regulator (AER), which is the wholesale electricity regulator that enforces the
rules. To make sure that such mandates would be carried over, the Victorian government
also introduced the ‘Bushfire Mitigation Civil Penalties Scheme’ via an amendment to
the Electricity Safety Act 1998 [47]. It included incremental penalties of up to 2 million
AUD per substation that did not address the installation mandate. Such combination of
power line replacement and REFCLs as a plan of action did not come at a low cost. In one
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of its reports to the AER, a large power company stated that the installation of REFCLs
at six zone substations needed an adjusted investment of 95.4 million AUD [48]. It also
stated that the government probably underestimated the cost of installing the necessary
equipment. The government plan for REFCL installations aims to force its deployment to
45 zone substations throughout regional and rural Victoria areas identified as having a high
risk of bushfires.

The installation of REFCLs in Australia has exceptional added costs, making it more
expensive. These costs emerge from the intrinsic behaviour of ungrounded systems in
fault occurrences. As in all other configurations, if a conductor comes in contact with the
earth, they both assume the same electrical potential. However, phase-to-phase voltages
magnitudes will not change in ungrounded systems. Instead, a shifting of the neutral point
happens, changing its value to a point where all the voltages between phases remain the
same as before the fault. This intrinsic characteristic of ungrounded systems gives it the
ability to ride-through earth faults without any service disruptions (loads are all connected
between phases). However, if the fault happens in the phase C, for example, the voltages
of phase A and B to ground will increase to values higher than nominal, assuming previous
phase-to-phase values. This overvoltage event on the remaining phases is one of the sides
from the trade-off associated with the adoption of ungrounded systems; it adds more stress
to power equipment insulation. Therefore, power companies have to take precautions with
vulnerable equipment in the network before installing REFCLs. These actions come in the
form of replacing equipment in the network and having to install isolating transformers to
protect the high-voltage customers’ equipment [48].

Lastly, REFCLs are also ineffective at detecting VHIFs between phases. As they
are installed in the substations neutral-to-ground connection, a HIF between phases not
involving the ground would go completely undetected. Examples of these faults are tree
branches that fall over two conductors or are carried out by the wind. In fairness, such
faults are not as common, but they do happen and can lead to vegetation ignition [4].

In summary, there is no definitive solution for the VHIFs problem; the ones being
considered are extensively costly, and none reduces the fire-ignition risk to zero. While re-
ducing the fire risk to zero is probably impossible, producing novel cost-effective solutions
is certainly not. These novel solutions can also be much less invasive than having to change
the grounding configuration of large systems or changing their extensive conductors. In
a sense, most works in the literature attempts at creating such a solution; this thesis is
no different. However, there are reasons why the author believes this work, in particular,
is distinct from most and deserves attention from R&D managers. These reasons are
described in the following subsection.
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1.3.2 Contribution to knowledge

Differently from the high-level non-quantifiable goal of inspiring field technology, the
more realistic and quantitative goal of discrete contribution to knowledge is easier to
demonstrate. Most claims of original contribution are rooted in the data set of staged
VHIFs adopted here. It is worth remembering that the methodology and results presented
in the following chapters are all derived from the ‘Vegetation Conduction Ignition Testing’
program recordings [49]. The data from these experiments have many interesting char-
acteristics, such as high specificity, resolution, and particular bias, making it a potential
source of original insights. The original contribution to knowledge from this thesis, in this
sense, is primarily related to the conceptualisation of the methodology, which comprises
the signal analysis and VHIF detection methods.

The aspect that notably differentiates this work from others in the literature is fault type
specificity. The experiments are based on a data set with hundreds of vegetation faults from
local species, which seems to share behaviours and characteristics according to the resulting
evidence. Specificity is essential since vegetation faults are fundamentally different from
other types of HIFs. This point is a persistent argument throughout this thesis, evidenced
by works in the literature discussed in Chapter 2. Although there are plenty of works that
misguidedly generalize their results to all type of HIFs, there is a general consensus that
the fault surface will greatly influence the fault behaviour [14, 15, 19–26]. . Vegetation
HIFs are particularly relevant to the literature, in this sense. From the almost five decades
of research in this field, few works sparsely focus on this type of fault [20, 28–30], most
comes from the last two decades, and none have approached the topic in the same way as
in this thesis. It is arguable that the findings here would generalise for other vegetation
species given the high invariance found in their behaviour, but such claim could only be
made with more evidence and practical testing.

Having hundreds of tests recorded in a particularly high resolution is another significant
discriminative aspect of this work. The staged tests were recorded with sampling rates
up to 2 MSa/s, allowing investigations on bands seldom investigated in the literature.
When higher frequencies are mentioned in other works, they are mostly related to bands
smaller than 10 kHz (see section 2.5). The probable reasons for this limitation are higher
costs associated with high-resolution sampling and the desire to target existing hardware.
High-speed digitisers are most expensive if precision is equated, and they do require
more resources in terms of data management efforts, which also translate to higher costs.
Nevertheless, the fact that the proposed methodologies seem to actively target existing
hardware is probably the most influential factor. This understandable focus comes from
the desire to propose low-cost solutions by using the existing transducers and digitisers
on the field. Therefore, since digital relays commonly have sampling rates in the order
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of a few thousand samples per second, most works also tend to adopt similar values as
their digitisation rate. Example such as the General Electric feeder protection F60 relay
sampling signals at 64 samples per power cycle (3.2 kHz) [50] can be cited, or the ABB’s
Feeder protection and control REF620, which digitizes 32 samples per cycle at 1.6 kHz
[51]. Regarding VHIFs, in particular, the evidence presented in this thesis point to the high
probability that these sampling rates are too low to effectively represent this specific HIF
type discriminative behaviour in the fault signals. Regarding the sampling rates usually
used in the literature, section 2.5 presents an analysis of the frequency bands analysed in
the surveyed works.

Some aspects of the work in this thesis are not entirely divergent from the literature
but are particular enough to be labelled as part of the original contribution. Characteristics
such as the range of fault current amplitudes or configuration of the fault seem to be under-
discussed in the literature even though they are essential aspects of any fault detection
method. Some particular characteristics of this work should then be addressed to properly
bound the scope of this work.

Specifications of fault current magnitudes or sensitivity of the method are particularly
crucial aspects of fire ignition risk that should be discussed. Its importance is further
highlighted if some of the differences between types of grounding are considered. HIFs in
solidly grounded systems can result in relatively large earth-fault currents since they are
only limited by the fault and system impedance; in ungrounded systems, however, they
are limited by the system stray capacitances. This difference is crucial for the protection
system, which may have ground relays adjusted to hundreds of amperes in solidly grounded
systems depending on the load [52]. Without being detected by traditional protection,
HIFs can assume currents of tens of amperes in grounded systems, while resulting in much
smaller values in ungrounded systems. Therefore, works that do not discriminate between
current levels, or make their sensitivity precise, present ambiguous results when considering
the classical definition for HIFs: faults with currents below protection thresholds. The
issue is further aggravated when considering evidence showing consistent fire ignition
in vegetation with low-current faults such as one or two amperes [4]. As previously
mentioned, mainly all the fault currents represented in the data set used here were well
limited to values up to four amperes. A detection method addressing restricted faults like
these could be said to have a higher sensitivity with more precise boundaries regarding its
fire risk mitigation capabilities.

If the HIF detection field is considered as a whole and the arguments for fault specificity
presented here are accepted, any sound analysis of novel data from real faults can be seen
as an original contribution to knowledge. Staging HIFs in real networks can be onerous
and expensive, hence whoever does it have minimal incentive to share the resulting data.
To alleviate this barrier to entry, researchers started proposing HIF models, which soon
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became a HIF sub-field. The HIF models can be used in power systems simulations in
many fault scenarios and are tentatively employed to test detection methods. However,
the nuances of fault specificity can make all the difference in the simulations results. If
HIFs or VHIFs are as high-variance as they appear in the literature and here, any detection
method based on HIF models is going to be heavily biased towards the fault types staged
in the model creation. If carefully investigated, one can observe that the works proposing
models are heavily representative of a few types of faults or/and do not stage a vast number
of faults. This scenario is detailed explored in Chapter 2, but the important conclusion
is that being heavily biased towards one type of fault is not necessarily detrimental; it
becomes a problem when other works use such models to generalise conclusions about
all HIFs. Moreover, when used to attest the effectiveness of a newly proposed detection
method, the models are usually included in noiseless or non-representative simulations.
The neglect of network noise in these works has been shown to diminish detection security
in a work made to test this issue [53]. These issues are not necessarily signs of faulty
research but are only the result of researchers working with the data they had. The work
presented in this thesis overcomes some of these challenges by having an extensive data
set of fault recordings heavily biased towards vegetation faults, which were all staged in a
real network and never published on before. It is nowhere here claimed that the presented
results could be fully generalised to other types of HIF, although similarities are discussed.

In this sense, this work has the pioneering aspect of being the first to formally publish
results obtained while working with the mentioned data set. This thesis is not the first
discussing it as, in 2017, the Victorian Government set out a challenge in which research
groups would use the data set to create detection methodologies [54]. Four groups of
entrants were short-listed, and their solutions were made public. However, none of the
results presented was quantitatively objective to represent an effective detection method.
The method presented in this thesis was not submitted as one of the entrants as it was
not conceptualised at the time. In regards to formal scientific publications, to the best of
the author knowledge, there is no work proposing detection methods based on this data
or any detailed analysis on how it could be achieved at the time of writing this thesis.
Nevertheless, from this pioneering investigation and specificity emerges a complication
given by the impossibility of comparing it to other existing methods. All the particularities
and singular characteristics of the data set previously discussed makes the results unique
and biased towards VHIFs, which can be said to be an under-discussed type of fault in the
literature. This comparing issue was present in all publications resulting from this work
[31, 55–57] since comparisons with existing methods are standard practice. However, the
specificity and novelty argument were eventually accepted by all peer reviews as part of
this work originality.
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Lastly, experiments developed with the intent to attest the value of adopted approaches
in methodology are also claimed as original contribution. The author understands that,
as directions in methodology diverge from most in the related literature, they might be
received with scepticism by peers and technicians. The experiments developed in an
attempt to mitigate concerns are composed of known techniques, but the methodology in
which they are used was explicitly conceptualised for this thesis. The evidence of their
originality is their acceptance as publications in renowned peer-review journals (further
discussed) [56, 57]. The main goal of these experiments is to highlight that considering
higher frequency bands for VHIF detection can have real benefits in terms of sensitivity
and performance; the challenges of doing so, however, are also real. As it is as essential
to discuss the possible constraints and consequences from adopting such an approach,
Chapter 5 have comprehensive sections dedicated for this purpose.

In short, the main contribution to knowledge can be summarized by the following
points:

• Development of a methodology for detecting HIFs from data pre-processing to
classifier validation.

– Focus on a specific type of HIFs given by Australian local vegetation species.

– Based on a dataset of hundreds of staged faults, not previously published on.

– Faults currents limited to small currents from 0.5 to 4 A.

– Signals sampled with high resolution, up to 2 MSa/s.

– Presentation of original signal representation techniques (features) as fault
predictors.

• Conceptualization and execution of experiments to evidence the importance of the
methodology.

– Presentation of evidence of the importance of having high-resolution signals to
detect VHIFs.

– Presentation of evidence of fault signatures, attesting their existence, extraction
methodology, and use to identify the source of signal disturbances.

1.4 Thesis statement and goals

Having discussed the context and potential for contribution to knowledge in previous
sections, the remaining of this chapter briefs the reader on the work described in this thesis
and what it aims to achieve. Although most of this project is rooted on the data from the
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‘Vegetation Conduction Ignition Testing’, the author was not aware of its potential when
first encountering it, neither there was a clear intention to dedicate most of the candidature
effort to it. A familiarization and analysis of the potential conducive information in the
data set were required.

The initial investigations on the data set resulted in surprisingly remarkable findings
deserving of publication [31]. As the main intention was to improve HIF detection
technology, the investigation on the data set was directed to find useful information at
discriminating fault occurrences from nominal states. The first steps were based on the
comprehensive final project report [4], where the author alluded to changes in the signals
HF spectrum when a fault was occurring. With the use of signal processing tools, such
information was indeed identified, and it showed to be quite consistent. Section 3.2 is
dedicated to informing the reader on the signal processing techniques employed in the
analysis and how they were used. The initial findings resulting from these investigations
are described in section 4.1. It not only describes the consistent potential discriminative
information found in the HF spectrum but also presents insights about fault behaviour.
They represented the first evidence pointing to the importance of the concept of specificity.
The findings regarding VHIF behaviour contradicted expectations inspired by how the HIF
phenomenon is described in the literature while agreeing with a few works studying only
VHIFs.

The initial findings gave confidence to pursue the development of a VHIF detection
method based on the vegetation ignition data set. However, initial attempts at concep-
tualizing such a classifier showed the VHIF behaviour to be more complex than first
imagined. The task complexity inspired attempts to employ machine learning algorithms to
discriminate fault signals from non-fault ones. Such attempts were immediately challenged
with the problem of not having clear labelled data, but a sensible alternative was soon
found, followed by the successful application of classification algorithms. The problems
and challenges with the data and developed solutions are detailed described in section
3.1 of the Methodology chapter. The theory base and discussion on the machine learning
algorithms considered are presented in section 3.3, while the outcomes from learning a
fault classifier are presented in section 4.2 of the Results chapter. The expressive results
were also documented in a publication in the journal IEEE Transactions on Power Delivery
[55].

Although presenting promising results, the developed classifier was an offline algorithm
that could benefit from being implemented as an online fault classification prototype.
Having the fault classifier learned from HF signals recorded from the staged tests is an
important aspect of the relevance of this prototype. The use of HF signals is rarely adopted
in the literature and dealing with higher frequencies often result in higher costs, which
can lead to scepticism from experts in the field. Therefore, a prototype was developed
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with the intention to be a low-cost solution that would play the role of a fault classification
module from a broad detection device. If successful, the results could help substantiate
feasibility claims made when first proposing the method. The prototype development,
including hardware and software set-up, are detailed described in section 3.4, which also
describes its experimentation and testing.

Given the novelty associated with using HF signals and the potential hesitation it can
inspire, it was desired to acquire further supporting evidence to substantiate the adopted
approach. The experiments performed to obtain such evidence comprised in applying the
signal processing techniques to LF and HF signals and learning classifiers as in the same
manner as originally proposed. The resulting accuracy comparison from both domains
would then serve as evidence of the content of predicting information present in the LF
and HF signals. The results showing the substantial importance of sampling HF signals
for detecting the specific VHIFs are presented in section 4.3. They were also further
documented as a paper in the journal Electric Power Systems Research [56].

Lastly, an investigation to define how the fault signatures are expressed in the signals
time domain was performed. It intended to clearly show how the fault signatures are
manifested while attesting their existence. It was not an easy task since the recordings are
the result of the convolution of many signal sources such as electromagnetic interference
from radio and other broadcasting means, load, and system noises. Recent signal processing
techniques had to be used to code and deconvolute such patterns from different noises, and
a methodology was created to find which ones were highly correlated to fault occurrences.
The signal processing technique is described in section 3.2.3, where it is discussed how the
technique can work as an unsupervised learning method, finding recurring deconvoluted
patterns in a data set. The results from this fault signature representation methodology
are presented in section 4.4 from the Results chapter. They were also documented in a
publication in the journal IEEE Transactions on Instrumentation and Measurement [57].

All the mentioned investigations took place during the author’s candidature, resulting
in recurrent, insightful findings. As they came during different moments in the project,
they inspired constant changes and updates on the parameters and tools used in the initially
proposed detection method. To clarify the aspects of its final stage, the last section (4.6)
of the Results chapter is dedicated to describing all the characteristics of the last working
version of the detection method. It contemplates the best practices found so far, after many
trial and error attempts.

This thesis is composed of five chapters with specific aims that can be briefly pointed
out. The HIF Literature chapter (2) aims at familiarizing the reader with state of the
HIF detection technology, mainly focusing on how it had evolved throughout the last
decades of research and highlighting its cornerstone findings. It also serves to substantiate
the discussion of previous works and to support the claims of original contribution to
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knowledge from this thesis. The Methodology chapter (3) aims at informing the reader
on the use and practices adopted in data pre-processing, signal processing, machine
learning, and prototype development. The Results chapter (4) has the goal of objectively
presenting the outcomes of the performed experiments, tests, and trials, without judgement
or discussion on their relevance. Regarding their contextualization and implications to real
implementation, the Discussions chapter (5) is dedicated to contextualizing the findings
and results by discussing the method advantages and constraints. The goals of the work
described in this thesis are summarized as they were chronologically achieved:

• Perform an investigation on the Powerline Bushfire Safety Program data set of
staged vegetation fault recordings to find potential predicting information of fault
occurrences.

• Produce signal processing techniques to extract correlational fault features to be
used for fault detection.

• Conceptualize a fault detection method based on machine learning algorithms to
leverage the existence of extensive labelled data.

• Compare the amount of predicting information on the LF and HF signals, gathering
evidence of the importance of HF signals in VHIF detection.

• Develop a proof-of-concept prototype to support the potential feasibility of the
conceptualized detection method.

• Extract fault signatures from the HF recordings to attest their existence and generate
insights regarding VHIFs behaviour.



Chapter 2

High-impedance fault literature

Attempts to address High Impedance Faults (HIFs) in the literature goes back to at least the
mid-70s [58]. A comprehensive chronological literature review [2] actually points to early
related work dating back to 1960. Many approaches leading to important contributions
were proposed since then. The HIF research field has presently matured into a distinct
discipline, which continues to be active to this day. A simple IEEE Xplore database search
with ‘high-impedance fault’ as key-words on their scope reveals that most of the work has
been published in the last ten years. The search results certainly do not account for actual
contributions made to the field, but it certainly is a proxy of the field popularity. Some
works will not appear in the search result since they indirectly studied this problem or do
not use the same exact term [6, 59–61].

Despite being well-established as a field of research, it is hard to find consensus on
the best way to address HIFs in the literature. A root cause connecting most arguments
for this fact, and a predominant theme throughout this chapter, is that HIFs have high
intrinsic complexity. To clarify, consider the broader HIF definition as a fault with current
magnitude lower than overcurrent devices’ sensitivity (adopted by most the works cited
herein). This definition consequently means that an ideal HIF detector should be sensitized
by all possible scenarios fitting its description such as a conductor that breaks and falls to
the ground, trees/vegetation leaning in nearby conductors, and faulty isolation leading to
leaking currents. Many factors impact each of these fault types such as vegetation moisture
content, surface condition, voltage level, type and size of conductor, weather conditions,
and network grounding type. Particular fault characteristics like current amplitude, non-
linearity, disturbance, and intermittency in conduction, could then be generated. Therefore,
one should not expect that a HIF resulted from a conductor that falls to the ground in sandy
soil to have the same characteristics as another created from the contact between conductor
and grounded vegetation, for example [14, 15, 19–26].
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The findings and developments on HIF detection and their consequent implications to
this thesis are presented in the next sections. Only the works where an evident contribution
to knowledge was observed have been considered. Referenced works that were not
comprehensively discussed were only used to support statical inferences such as the state
of the literature or the popularity of a particular approach or technique. The ones chosen
to be discussed were organized in chronological order, narrative structure, as to better
portray the development of the field through time. Divided by relevant decades, the next
sections discuss the development of relevant HIF detection solutions and the evolution of
the technical conversation by many research groups around the world.

Before starting such a discussion, however, it is useful to define some of the qualitative
terms used when describing the surveyed approaches. The terms a priori or bottom-up
refers to approaches that utilize deducted knowledge about a phenomena when concep-
tualizing solutions. These are often described in a clear mathematical way representing
sub-systems which, when pieced together, form more complex emergent systems. Works
describing mechanical- or circuit theory-based solutions are an example of this classifica-
tion. Conversely, a posteriori or top-down approaches utilize knowledge learned from the
studied phenomena by observational data. Works with this quality are heavily present in the
recent literature with the ubiquitous use of machine learning, which learns from existing
observational data. The advantages of bottom-up approaches are their predictability and
reliability given by their often accompanied mathematical descriptions and unambiguous
behaviour with clear decision boundaries. Their main disadvantage — which conversely
is the advantage of top-down approaches — is its lack of adaptability to different envi-
ronmental conditions. Top-down approaches disadvantages are their lack of a theoretical
causal framework and the possibility of bad generalization if the task is learned from a
biased data set. Therefore, one can define these two approaches as complementary with
opposite advantages and constraints. Not surprisingly, elaborate and appealing methods
on the edge of the recent literature contemplate a mixture of a priori and a posteriori
approaches. A priori knowledge-based approaches are mostly deterministic (another term
used herein), meaning that their output always represents total certainty in regards to a
certain input. Probabilistic methods, however, output the probability of an input to be
drawn from a certain probability distribution of a particular class of data. An example of
a deterministic method is one where a HIF detection decision boundary is given by an
arbitrary threshold on a measured parameter. A probabilistic method example is one where
an Artificial Neural Network (ANN) does such a task by outputting the probability of input
data being from a fault occurrence or not.
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2.1 The 70s and 80s — Genesis of a research field

Pioneer researchers at Texas A&M University [7, 58] (TAMU), Pennsylvania Power &
Light Company [62, 63] and Amicus Engineering Company [9, 64] laid the path for follow-
ing researchers with innovative approaches to HIF detection. Their ideas still profoundly
inspire the works in the recent literature, such as the use of frequency components higher
than the fundamental [7], power frequency of harmonics and voltage sequences [9], and
the ratio between sequence currents [62, 63]. Another honourable mention as preliminary
research on this topic is the work presented by researchers at the National Chen Kung
University in Taiwan at concurrent time [65].

Before the seminal works, the HIF problem was a small subset of a research field
responsible for addressing earth faults in power distribution systems. When being es-
tablished as a field, the HIF problem was mainly described by the concerning scenario
where a broken conductor falls to the ground. By then, power engineers relied on ground
overcurrent protection to address these faults. Nevertheless, it was quickly realized that
the sensitivity of these relays, which had to tolerate some load unbalancing, was not high
enough to adequately address the problem. One early work [7], based on technical reports
by the Pennsylvania Power & Light Company, drew attention to the underestimation of
undetected broken conductor faults. This work, conducted in 1974-75, found that overcur-
rent devices failed to operate in 32% of the 390 staged faults. When faults were staged 2-3
miles from the substation, only one of the twenty cases was cleared. They also conducted
surveys with many utility personnel about the clearance of such faults. From the 83 surveys,
61% said they had experience with broken conductors problems.

It may be useful to note that there is a parallel field of research which addresses a
subset of HIFs named ground arcing faults [25, 66–68]. As the authors explained [7], the
return path of the current is often not fully established in a broken conductor that falls into
a solid surface such as asphalt. The air gap between surfaces usually results in arcs created
when the voltage reaches a breakdown value. Therefore, due to the sinusoidal nature of the
voltage waveform, a burst of current conduction can happen near zero-crossings where the
voltage crosses this reigniting-arc breakdown value. Some works also may use the terms
‘ground arcing faults’ and ‘high-impedance faults’ interchangeably.

The first attempt to detect real staged HIF with hardware prototypes in the accessible
literature were also made by the mentioned pioneers from TAMU [7]. It comprised of a
method utilizing the frequency components from 2-10 kHz, being the first to investigate
higher frequencies in HIF detection. The authors felt that frequency components higher
than ones close to the fundamental frequency represented an appropriate approach for
detecting ‘ground arcing faults’ from broken conductors. However, the authors raised
caution for networks containing grounded wye capacitor banks which could increase the
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attenuation of these frequency components. The method was implemented in a computer
capable of detecting some of the staged faults, attesting for the sophistication of the adopted
approach. They had conceptualized a top-down approach, that despite not having absolute
accuracy and security, already used observational data from staged faults to conceptualize
HIF detection methods. Researchers at the Pennsylvania Power & Light Company also did
ground-breaking work [62] by proposing a bottom-up modelling of a 12.47-kV, four-wire,
multi-grounded system followed by an electro-mechanical ground relay to detect HIF
occurrences. The method consisted of measuring the ratio between the phase positive-
sequence current and the three-phase zero-sequence current. Such a protection philosophy
was based on the premise that the ratio of these currents remains relatively constant for
a given feeder in the absence of a HIF. Further work [63], published in the same year,
presented a digital computer implementation to compare the proposed ground ratio relay
with the existing protection schemes. This approach was further validated and proven [65]
to be effective when detecting currents higher than 15 A in a well-balanced system.

By the late 80s, TAMU had more than a decade in broken conductor research. This
experience gave them the insight which is often missing in contemporary works: HIF is
too complex to depend on one single detection method. In their work [15, 25], the authors
discussed a detection approach where many different algorithms calculated distinct features
from the electric signals. They were later fed to a class of primal learning algorithms called
expert systems. It intended to leverage the existence of observational data to emulate the
decision-making of a human expert. It is not surprising that the authors opted for such an
approach since the use of expert systems exploded in popularity in the 80s [69]. Due to
its intention, i.e. replication of human intelligence to some extent, expert systems were
considered to be the first successful Artificial Intelligence agent expert systems.

2.1.1 Highlights

The 70s and 80s found many valuable findings and insights on HIF behaviour. The most
relevant insights can be summarized:

• Due to the impulsive nature of the fault current, HIFs can increase the energy of a
wide band of harmonic, and non-harmonic, frequency components [7, 8].

• HIF current magnitude can vary greatly in between cycles having an intrinsic random
nature [7, 8, 15].

• Arcing often happens in broken conductor faults due to the air gaps between the
conductor and high-impedance surface [7, 9].
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• The high-frequency bursts in the fault current often happens near zero-crossings of
the voltage due to arc reignition phenomenon called voltage breakdown effect [7, 8].

2.2 The 90s — Experts systems, commercial HIF detec-
tion, and modelling

Research at TAMU continued to dominate the HIF field in the 90s, despite the appearance
of new players from other universities and countries such as South Korea [70], Canada
[71], Singapore [13], and Brazil [72]. At the beginning of the decade, TAMU researchers
had fully embraced the idea that no single method could cover all HIFs. They started first
to publish their ideas on how to address this fact, discussing how environmental parameters
such as system unbalance, feeder configuration, load type, and surface conditions could
affect the fault behaviour [24]. Based on the assumption that each technique will have
strengths and weakness giving different conditions, they proposed a heuristic to select a
detection method based on environmental parameters.

2.2.1 HIF detection goes commercial

The heuristics path by TAMU would become more evident in a further revealing paper
[73] where a product, resulted from a collaboration with General Electric (GE) company,
was disclosed. The paper described the first substation equipment having HIF detection
as its primary goal, embodied in a case that fitted the panel cut-off for a GE overcurrent
relay. Following what was previously mentioned as a possibility, this work presented an
expert system approach consisting of many independent algorithms to detect HIFs. These
algorithms dealt with numerous signal’s features: energies on the frequency spectrum,
randomness, arcing (24 algorithms), load analysis and event, and burst patterns. The
expert system heuristic consisted of receiving the algorithm’s outputs which were then
weighted to arbitrary values and aggregated in a detection result. An undertaking so
sophisticated at the time that GE had initiated an advisory committee of experts to facilitate
the device acceptance in the market [73]. As yet another significant aspect of this work,
researchers validated their method using tests staged in a dedicated location called the
‘downed conductor test facility’, constructed and designed by TAMU just for the sake of
the experiments.

The announced product [73] was not a relay but a ‘Digital Feeder Monitor’ with
broken and arcing conductor detection function. The distinction between relay and monitor
represents an important point here. The authors firmly held the opinion that one should not
trip a whole feeder for all HIF positive detections. They were aware that the device was
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not capable of correctly detecting all HIFs occurrences without producing false-positives,
meaning that there was a trade-off between dependability and security to be considered. The
90s was the starting point for discussions around these two critical concepts. Dependability
refers to the frequency of true positives when testing a classifier; it expresses how good
the classifier is at detecting faults. In the HIF detection field, it is represented by the ratio
between the number of fault observations correctly labelled, to the total amount of fault
observations tested. Security, conversely, refers to the frequency of true negatives when
testing a classifier; it expresses how good the classifier is at not detecting faults when they
are not occurring. It can be calculated by the number of non-fault observations correctly
labelled as non-fault, divided by the total number of non-fault observations. With the
increasing proposal of different detection methods, the consequent question of addressing
imperfect security and what to do with the detection result had to be addressed. The
authors thus made use of the product disclosure to discuss possible liabilities assigned
to utilities which decide not to install such equipment in regards to damages created by
undetected HIFs [73]. Comments on how such a method could be used in different regions
were also made. The authors sensibly argued that tripping a relay in arid areas where a
downed conductor could ignite wildfires in vegetation would make more sense than in a
city environment.

Researches at TAMU continued to build on their work by proposing a detection method
based on current RMS fractal analysis [74] and publishing on practical experiences gained
from the use of their device in real feeders [68]. The authors focused on the security
discussion defending that service continuity of clients is far too valuable to be sacrificed
for a ‘trigger happy’ algorithm. The paper [68] analysed the equivalent of forty-seven
unit-months of device operation in five feeders where additional faults were also staged.
It showed an optimistic view of the device application by stating that faults that were not
cleared by overcurrent devices were mostly all detected by the feeder monitor (88% of
staged faults). Furthermore, two more similar papers were published discussing the device
implementation [52] and its practicality [75]. In the first, many issues arising from the use
of such technology were discussed. From legal to emotional issues, the paper included a
framework for testing and evaluating a HIF detection method, the result of surveys, and
expert opinions. However, none of those subjects was discussed in too broad detail but
rather in brief discussions. The second paper [75] disclosed details on the IP licensing of
the technology to GE, the balancing of dependability and security for service continuity,
and the functionality of the device.

The research undertaken throughout more than a decade at TAMU has evolved and
culminated on the present GE’s Multilin F60 Feeder Protection System [76] which, to
present day, still uses expert systems to detect HIFs. Given current knowledge about
learning systems, and how expert systems were made obsolete by machine learning
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techniques, there is an argument that such a device could be substantially improved. This
claim can be made based solely on the fact that the features’ weights used in the expert
system method when making a decision were actually based on a priori knowledge from
human experts.

In 1990, researchers had already realized possible issues with arbitrary decision bound-
aries when proposing the first application of neural networks to detect HIFs [77]. The
proposed method calculated large amounts of signal features such as the peak of transient
current, RMS value, the magnitude of positive sequence, and energy of harmonics, which
were used to learn a multi-layer perceptron feed-forward neural network. It was also one
of the first methods to use simulated HIFs in their validation, instead of real, staged fault
signals (a ubiquitous practice in the following decades). Despite being novel, there were
many outstanding issues with this approach. The neural network had a large number of in-
puts and nodes compared with the amount of generated data (overfitting further discussed).
There were no validated HIFs models at the time, making it an excessive unrealistic simu-
lation, and features were still hand-engineered. By hand-engineered features is meant that
the predictors are created from human knowledge, calculated from signal representation
techniques; the converse would be the feature extraction process done by deep learning
methods, which captures the predictors from the data latent space. Further work with
neural networks [71] addressed some of these problems. The methodology, instead of
using hand-engineered features as inputs, consisted of feeding a fundamental frequency
cycle of raw current samples to a feed-forward neural network. It was the first relevant full
top-down, supervised learning approach, used to learn patterns in the current time-domain
signals.

2.2.2 Modelling HIFs

Although powerful, top-down approaches still present the apparent constraint of requiring
data from real, staged faults. Such experiments can be onerous and expensive, only to
be performed by prominent universities and large companies. Consequently, due to the
commercial value of the resulting IP, organizations performing such experiments had many
incentives to keep the data private. This restriction led researchers to invest efforts in
creating HIF models to be used in simulations, circumventing the problem of requiring
experimental data. The complexity of the HIF phenomena and non-converging opinions in
the literature clearly make such an attempt ambitious and highly challenging.

Historically, the first relevant and influential HIF model was proposed in 1990 [38].
The authors represented a HIF as a fault impedance in series with an anti-parallel diode
and DC voltage sources branch, as illustrated in Fig. 2.1. The anti-parallel branch helped
to model the previously explained breakdown voltage where conduction only started after
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Figure 2.1. Emanuel’s et al. HIF Model (1990).
Adapted from [38]

it was high enough to break the dielectric nature of the high-impedance surface. Its main
parameters were the fault impedance, which dictated most of the fault current amplitude,
and the DC voltage sources values. The DC sources could assume different values to
account for the asymmetric nature of HIFs, which can have different breakdown values
for positive and negative half-cycles. Notwithstanding, one should mention that this work
attempted to model the HIF behaviour of a broken conductor falling to sandy soil. The
authors had the main goal of analysing to what extent frequencies from 120 to 180 Hz
could be used to detect such HIFs. Any strong claims present in works directly influenced
by this work which choose to ignore or dismiss these environmental conditions should be
prefaced as hypotheses, speculations, or are just fallacies.

2.2.3 Wavelets and Fourier

Advancements in HIF detection with top-down approaches, however, do not provide a
phenomena understanding or casual framework that bottom-up approaches do. The urge for
finding better HIF features, together with developments in the signal and image processing
fields [78], was responsible for the introduction of a technique that revolutionized signal
representation: wavelets. When used to decompose signals, the wavelet Transform (WT)
serves as an efficient time-frequency signal representation with fair time localization
[79]. Different from the dominant and prevalent Fourier Transform (FT), the WT’s
decomposition basis functions are dilated and translated versions of finite oscillations with
constant shape. This difference makes the transformation outputs to be well localized
in time, conversely to the stationary (infinite in time) sinusoid basis functions from the
FT. The oscillations used in the decomposition are allowed to have arbitrary shapes,
although one would prefer differentiable, compact, zero-mean, and square-integrable
functions for practical reasons. Examples of commonly used wavelets with a specific
shape, named ‘wavelet families’, are illustrated in Fig. 2.2. In general, wavelets are more
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Figure 2.2. Examples of commonly used wavelet families.
Adapted from [80]

efficient at representing signals’ discontinuities and transients since they have more sparse
representations in the wavelet domain with consequent localized energy (discussed in
further details in the 3.2.2). This effect becomes especially evident if the mother-wavelet
used in the decomposition resembles the shape of the represented discontinuity. An FT
of the same signal, contrarily, will result in a wideband representation in the frequency
domain with spreaded energy.

The use of wavelets for HIF feature extraction that could represent fault occurrences
started at the end of the decade. The first influential work [13] used wavelets to detect
the transients generated by the faults, followed by a heuristic to differentiate them from
other disturbances. It was not only novel in its wavelet application but also built on the
previously mentioned model [38] to propose a more intricate HIF model based on arc
theory. Claiming that its predecessor did not represent the universal behaviour of HIFs,
the authors proposed a model that was supposedly better at representing the non-linearity
of a HIF impedance. A snapshot of the proposed model [13] is illustrated in Fig. 2.3.
Differently from the inspired work, the voltage sources in the anti-parallel branch are
time-varying, not restricted to DC values. Switch 3 is connected to a Transient Analysis
Control System (TACS) model, which is set to represent the arc reignition and extinction.
The TACS model inputs are the arc re-ignition voltage, peak value of the applied voltage,
and arc voltage. The variable resistance is mainly responsible for the value of the fault
current magnitude, which was in the order of tens of amps in the paper [13]. It was also
one of the first papers to present a full simulation-based methodology instead of relying
on experimental data. A second wavelet-based influential work [81] soon followed it by
proposing the use of a different wavelet family as its only main contribution. As yet a novel
idea, wavelet-based works became widely popular in the next decades, fiercely competing
with Fourier-based approaches.

Nevertheless, Fourier/Harmonic analysis was still the prevalent feature extraction
method in the majority of detection methodologies. Most methods were based on findings
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Figure 2.3. David and Xia’s HIF Model (1998).
Adapted from [13]

made in the 80s around the HIFs effects on the harmonic signature of phase and neutral
currents. One pioneering work [82] presented a Kalman filtering approach as an on-line
recursive estimator of harmonics that accounted for time-varying nature of the signals. The
advantage of this approach was that it did not need to assume the signal to be stationary
(like the conventional FT). The method was centred on calculating a randomness value from
estimated harmonics, in four to six fundamental cycles, and detecting a fault if it increased
higher than normally observed values. A following work [83] argued for the unique
harmonic characteristics of HIFs. It stated that such faults would have high third harmonic
components with characteristic phase shifts that could be used for detection. Similarly, a
creative approach using the ratio of odd and even harmonics to detect HIF occurrences
was proposed [70]. It was based on the hypotheses that HIFs have a particular harmonic
signature due to their half-cycle asymmetry, which could introduce even harmonics to the
system. The unbalanced current and energy of harmonics were also used to conceptualize
another method [84] that was validated with staged tests. Such an approach seemed to
work reasonably well for fault currents higher than 5 A.

These cited works have the advantage of being validated with data from real, staged
tests, usually in multi-grounded systems, mimicking a downed conductor scenario. Their
weakness, however, relates to the consensus that harmonic content alone is not a reliable
parameter to attest for a fault occurrences [14, 72, 85–88]. It is often stated that simi-
lar harmonic conditions could appear in normal operation states of the system, mostly
from switching events and the contemporary diversity of non-linear loads. Experiments
presented in this thesis also asserts that not all HIFs generate a significant amount of
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harmonics. A significant number of VHIFs do not produce harmonics in the first seconds
of conduction in the fault location, meaning that they would be even more attenuated for
measurements made away from the fault point. Nonetheless, it was not a widely shared
opinion at the time these methods were proposed but became a more prevalent opinion
with the ever-increasing penetration of non-linear loads and novel signal representation
tools.

Two other influential and valuable works from this decade are also worth commenting.
The first is the highly innovative method [72] presenting the first active method to detect
HIFs. It consisted of injecting periodical impulses to the network and measuring its
response, which would presumably change in the presence of a fault. The methodology
was tailored to Brazilian networks, which have many single- and two-phases branches, thus
being heavily unbalanced. Its most substantial constraints were the need for network data,
full knowledge of its topology, and high-speed data acquisition systems. After injection, the
electric signals were sampled, processed via FFT, and used as inputs in a fuzzy reasoning
system. The fuzzy rules, as in other approaches in this era, also used a priori knowledge
and rules of thumb from human experts. In the second work, a paper by a GE engineer
[89] reviewed and discussed some of the current technologies to detect HIF. This paper
was the first influential work in the literature to discuss mechanical methods to detect HIFs.
The author explains that such a device would be mounted, in a cross arm or pole, under
each phase wire and connected to the ground. In this manner, a conductor breakage would
realize contact between phase and device, creating a ground fault that could be easily
detected by existing overcurrent devices. Wester then quickly dismisses the usage of such
a method claiming that installation and maintenance costs would be too high to be feasible.
Nevertheless, he still recommended its installation close to critical areas such as churches,
schools, or hospitals. The rest of the paper could be seen as a call to utilities to install the
previously mentioned feeder monitor conceptualized by TAMU. Comments on the use
of the detection result and the need for HIF detection devices were made based on the
possible million-dollar liabilities companies could face for damages created by HIFs.

2.2.4 Highlights

One can see the 90s as the golden era of HIF detection engagement and innovation, where
the most influential ideas were proposed. The core of insights and innovations of the
decade can be summarized:

• First commercial protection device targeting HIFs [73].

• First full top-down application of neural networks in HIF detection [71].

• First HIF model to circumvent the need for experimental data [38].
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• First use of wavelets in HIF detection [13].

• First active detection method based on the network impulse response [72].

• Emphasis on HIF detection based on the harmonic content of current signals [70, 82–
84].

• Deeper discussions on the trade-off between dependability and security given by
possible actions to a HIF detection and utility liabilities [52, 68, 73, 75, 89].

• Despite exceptions, methods still heavily relied on a priori human expert knowledge.

2.3 The 00s — Wavelets, machine learning, and special-
izations

Although falling short in terms of innovation, the 00s were responsible for important
incremental contributions to previously proposed techniques and sub-field specializations.
Many feature extraction variations were proposed as novel contributions, forming a com-
petitive scenario in signal representation approaches such as wavelet and Fourier. Being
mostly hand-engineered and relying on a priori knowledge, the new proposed features can
be mainly classified as bottom-up approaches to HIF representation. Detection methods
using such features, however, started to increasingly have their decision boundaries defined
by machine learning techniques (a posteriori), instead of arbitrary thresholds. For the most
part, most valuable contributions from this era probably came from sub-field specializa-
tions such as in specific conduction surface, network grounding types, and sensor-based
sampling technologies.

2.3.1 Wavelets and Fourier

Wavelet-based methods surged in numbers and popularity with many feature extraction
variations proposed as novel contributions. One of the first works of this decade [90]
is an example of such an approach. It proposes a different WT decomposition where
the frequency bands are linearly spaced in the frequency domain, named wavelet Packet
Analysis (WPA). In addition to being the first to apply WPA to HIF detection, the authors
also took into consideration the wavelet components phase distribution w.r.t. the current
fundamental cycle. Such phase distribution becomes relevant when considering that the
voltage breakdown phenomena will generate discontinuities near zero crossings of the
fundamental voltage signals. Its downside, not surprisingly, is that not all HIFs present
evident breakdown phenomena (further explained). Another feature variation on the
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coefficients of the WT, now in its traditional Multi-Resolution Analysis (MRA), is also
presented in [91]. The work calculates the RMS conversion on the detail coefficients
extracted from current signals as features used to establish decision boundaries for fault
detection. The features are fed to the classical machine learning technique named Nearest
Neighbours Rule (NNR). In a similar way to its more known version, K-Nearest Neighbors
(KNN), this technique is a simple non-parametric classification method that established
decision boundaries based on votes from the nearest data points in the feature space. This
work’s [91] specialization factor, however, is the consideration of distributed generation
in the power system simulations. As in many other works further discussed, its solely
modelling approach is somewhat simplistic in regards to the complexity of the phenomena,
which makes it hard to defend it as a conclusive finding. Further papers [92, 93] proposed a
different heuristic for classification and an important specialization consideration: network
neutral earthing type. The feature extraction is performed by the application of the WT
on the neutral/residual voltage and current signals. The detection is done by a heuristic
on a measure of phase displacement between current and voltage coefficients [92] and
a perceptron-based classifier [93]. In its purely simulation-based analysis, the authors
conclude that the most challenging faults to be detected were the ones simulated in a
compensated network (resonant grounding type) due to the significantly reduced ground
fault current. Still in wavelets, the authors in [94, 95] proposed variations in two very
similar papers. Both use WT for feature extraction but different approaches in fault
detection: (1) Genetic algorithm for feature selection and a Naive Bayes classifier for
classification, and (2) Principal Component Analysis (PCA) for feature selection and
ANN for classification. The works are relevant due to their use of real, staged tests,
intricate machine learning algorithms, and optimization methods. However, the relatively
small number of HIF staged test opens the work for criticism when ANN is applied for
classification. The complexity of the method in relation to the number of used features
makes the approach prone to overfit the dataset, and possibly less generalizable to new
data. Adding this to the fact that non-fault examples came from simulations makes it hard
to evaluate the real effectiveness of the approach, even with the application of intricate,
powerful tools. Other worthwhile mentioning works presenting wavelet variations are
papers proposing adaptive neural fuzzy inference [96] and Support Vector Machines (SVM)
[97] as classifiers. In the first [96], the authors used six features: four derived from the
wavelet coefficients energies from current signals and two from third harmonic and signal
mean value. In the second [97], the energy of the details was extracted as features, having
their dimension reduced by PCA, and then fed to an SVM classifier.

Various Fourier-based approaches shared the theme of feature extraction variation
and specialization. Early in the decade, a paper [86] describing the use of harmonics
energies from residual currents and voltages was presented. Again, its strength was mainly
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correlated to its specialization approach. In this case, it was related to a hardware prototype
implementation of an ANN-based classifier, which was indeed novel for the time. A
following interesting approach [98] using harmonics and its phases to draw ‘Harmonic
Patterns/Phase Portraits’ was soon after introduced. By making use of the third and fifth
harmonic, phase portraits were drawn and used as patterns that could discriminate a fault
occurrence from nominal system operation. Although interesting, it was a convoluted
heuristic that did not get much attention after proposed. Later, a simple and effective
approach using FT [99] became very influential, including for the work undertaken in this
thesis. It consisted of merely doing the FT of the current signals and using the components
to learn a machine learning algorithm, named ‘Decision Trees’ (DT). As yet another purely
simulation-based work, the authors granted in their conclusions that wavelets could have
helped enhance the performance of the classification results (performed in this thesis). If
considered as Fourier-based approaches, proposed Kalman filtering techniques [100, 101]
for features extraction should also be mentioned. The authors of these two similar papers
studied the use of the estimated harmonics with an ANN [100] and an SVM classifier
[101].

After discussing some of the most influential wavelets- and Fourier-based works,
a couple of important remarks regarding their adoption and HIF modelling should be
made. The first concerns the increasing use of wavelets to represent fault signals. Since
the first impactful work in 1998, wavelet-based methods went from a fringe idea to a
prevalent approach in the surveyed works. One could argue that such an effect, and the
ever-present use of wavelets, is evidence of its superiority in representing HIF signals
over Fourier-based approaches. The second remark concerns the overwhelming number of
proposed methods based solely on HIF model simulations. All the Fourier-based methods
mentioned in this section exclusively rely on models rather than data from real experiments.
From wavelet-based methods, more than half rely on models when conceptualizing their
approach. On the one hand, this practice is not surprising given the fact that experiments
are so onerous and simulations are so accessible. On the other hand, it is also not surprising
that commercial methods do not use most of these variations, and they are not regarded
as robust and defensible evidence. This assertion is especially true if one accepts the
presupposition that HIF behaviours are not fully represented in current HIF models.

2.3.2 Model improvements

Despite the challenging nature of the problem, essential works regarding HIF modelling
were presented in this period. The authors of the first paper [16] argued that the models
previously presented did not represent important HIF behaviours such as Build-up and
Shoulder. Build-up is defined by the period where fault current grows to its maximum local



2.3 The 00s — Wavelets, machine learning, and specializations 36

value, which last approximately tens of cycles, according to the authors. The shoulder is
the period where the build-up temporarily cease for a few cycles until it starts growing
again towards its maximum global value. The authors intended to propose a simpler and
more realistic model incorporating such features that did not have as many components as
previous ones. It was conceptualized by just two series time-varying resistances controlled
by TACS in Electromagnetic Transients Program (EMTP). Illustrated in Fig. 2.4, this
model was inspired by thirty-two tests performed by a Korean power company, sampled
at 10 kHz. It attempted to account for the proposed features by modelling one of the
time-varying resistances with periodical changes (shoulder), while the other monotonically
decreases from its large initial value (build-up). Despite impactful, it is not hard to find
issues with this approach. Some examples are the number of tests used, the absence of
information around the fault surface, and more importantly, how it was validated. The
authors seemed satisfied with the fact that the current curves from simulated and real data
closely overlapped visually and had close harmonic content. A further work [102] also used
the same two-resistor scheme to propose a HIF model based on arc theory. The authors
attempted to propose, in a full bottom-up approach, a model that would mimic surveyed
HIF features described in the literature and their arc-like characteristics. Notwithstanding,
it is hard to defend such a methodology since there was no verification with real data.

2.3.3 Earthing specialisation

Another important contribution proposed in works from this decade was the specialization
on different types of neutral grounding. In ‘Multi-grounded’ or ‘Solidly grounded’ systems,
a ground-fault current is limited by the series line impedance. In an ‘Ungrounded’ system,
the limiting factor is the stray system capacitance. The difference in the circuit diagrams is

Figure 2.4. Nam et al. HIF Model (2001).
Adapted from [16]
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illustrated in Fig. 2.5. As these capacitances are the only current return paths in ground
faults, they are the sole responsible for the existence of fault currents in ungrounded
systems. This fact makes such a configuration to have major benefits: lower ground-fault
current, better personnel safety, and more reliable service [21]. The latter is achieved by the
fact that a ground fault will not alter voltage between phases. Two- and three-phase loads
can then simply ride through them. Its consequent downside, however, is the increased
voltage level in the other two phases created by the shift of the neutral point. The phasor
diagram of such a scenario, illustrating how phase voltage can increase to two-phase
voltage levels, is depicted in Fig. 2.6. The practical application of neutral grounding types
in real systems is, nevertheless, not so polarizing. A Neutral Earth Resistance (NER) can be
placed between the neutral and earth, making it a high-impedance neutral earthing system.
Even more sophisticated, alternatively, a variable high-impedance reactor connected to the
neutral point can be adjusted to compensate the stray system capacitance. Such a reactor,
illustrated in Fig. 2.7, is known as ‘Peterson Coil’, arc-suppression coil, or ground-fault
neutralizer. Three-phase networks with this type of grounding are often referred to as
resonant-grounded or compensated systems. Ground fault currents in this type of systems
can be reduced to about 3 to 10 per cent of that for an ungrounded system. They can be
found in Northern and Eastern Europe, especially in Nordic countries [61, 103], China
[104], and Israel [105]. The differences between these grounding-type systems are much
relevant to the Australian scenario since, as discussed in section 1.3.1 of the Introduction
chapter, legislation has been enforcing and mandating utilities to install resonant grounding
with Rapid Earth Fault Current Limiters (REFCLs). More information on ground fault
protection methods for different neutral grounding systems can be found in a detailed and
professional description by Schweitzer Engineering Laboratories (SEL) [105].

Discussions of HIF detection in non-effectively grounded systems in the literature
started in the middle of the decade with the aforementioned wavelet-based detection work
[92]. The authors propose a detection method on the phase displacement between the
zero-sequence voltage and current, arguing that it would be more challenging to detect

(a) MultiGroundedSystem (b) UngroundedSystem

Figure 2.5. Types of neutral earthing.
Adapted from [14]
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Figure 2.6. Voltage phasor diagrams for ungrounded systems.
a) Unfaulted system. b) Faulted System.

Adapted from [105]

Figure 2.7. Diagrom of a compensated system.
Adapted from [105]

HIFs in such systems due to their smaller fault current. However, a later analysis [21] by a
SEL engineer made the case that, in such systems, HIF could be more deterministic and
accurate by just having highly-sensitive measurements on the ground residual current (see
Fig. 2.5b for residual current representation). With detailed circuit theory, the authors
proposed faulted feeder and faulted phase identification with residual voltage and current
phasor analysis. Nevertheless, researches from Finland and Egypt were convinced that
current resonant systems’ technology to detect tree-related HIFs needed improvement. In
a series of three publications [103, 106, 107], the authors proposed the most relevant novel
specialization for this thesis: tree/vegetation HIFs. In their first paper [103], laboratory
experiments were set-up to conceptualize a leaning-tree HIF model. The outcomes included
an arc theory-based model and a wavelet-based HIF detection method. Features were
extracted from residual voltage and current signals, and HIF occurrence was detected by a
simple wavelet coefficients summation. The authors were satisfied with the resulted model,
which closely approximated the V-I characteristic curve of a small number of experiments.
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The method scheme, with validating simulations, was further presented in their second
paper [106]. One of their conclusion was that the fault behaviour was also dependent on
the network characteristics, making the transients used in the detection less sensible for
faults distant from the measuring point. Therefore, they also had to include and advocate
for wireless sensors that would be distributed throughout the network. Such wide-area
monitoring through sensors was one of the innovative ideas that got traction in the 00s; it
was also presented in their third paper [107], which used new data from a few tree HIF
tests staged on a real feeder to validate their previously proposed method. Despite different
from the methodology proposed in [21], both authors pointed to the consensus of using
residual current and voltages to detect HIFs in non-effectively grounded systems.

2.3.4 Sensor-based and commercial approaches

Regarding the use of wireless technologies, an increasing number of works started to
propose and discuss the idea of using distributed sensors to aid in HIF detection. In one
of the first influential works from this decade, researchers from Brazil [108] proposed
an innovative sensor-based approach. It described a sensor to be placed in power poles
that would be sensitized by the electric fields produced by the conductors on the primary
feeder. With strategic placement, this single sensor was able to detect three-phase voltages
unbalances that would indicate the occurrence of a broken conductor. In addition to the
presentation of the detecting device, the authors also suggested a methodology based on
powerline carrier communication for signal transmission. The cost could be pointed out as
a constraining aspect of the presented scheme. The authors explained that although the
rest of the device was relatively low-cost, the capacitor used in the transmitter coupling
costed around thirty-five thousand dollars. Moreover, a different sensor approach targeting
covered conductors in Finland’s systems was proposed [109]. The sensor based on the
‘Rogowski coil’ — an air-cored coil around the feeder conductor separated by polyethylene
isolation — was set to measure leaning-tree fault ‘Partial discharges’ (PD) pulses. The
authors argued that such coils have the advantage of possessing a high signal to noise ratio
in wideband frequency response. Hence, they would be effective at detecting short and high-
frequency PDs generated by leaning trees. Its strengths are the certain possibility of being
a less expensive coupling and non-invasive installation. Its possible main disadvantage,
however, is the consequent need for communication methods and data processing. Invested
on the approach, nonetheless, the authors continued to publish on the use the device in a
further review [110] and in an attempt of validated their method [59]. It is important to
note that, these publications mainly targeted the PD detection research field. The devices
were not described as a HIF but as a PD detector. However, as a leaning tree that touches a
faulty covered conductor in a non-effectively grounded system is most probably a HIF, this
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work represented a new literature intersection of the PD and HIF detection fields. A further
work proposing PD sensing in overhead distribution lines [60] using frequencies as high
as 25 MHz with Rogowski coils can also be cited as an example of such an intersection.
Ultimately, it is hard to deny the possible benefits and accessibility that such sensor-based
approaches could bring. They probably represent the most likely candidates for future HIF
sensing and detection. Recent works and patents granted with very similar ideas [111, 112]
can also be counted as evidence for the interest in sensor-based sampling technologies.

On the professional/commercial field, development and discussions of solutions from
key industry players continued to evolve. Competitor companies such as ABB and SEL
felt the need to propose their HIF solutions following the pioneering efforts of GE. In
2004, ABB published an announcement of its HIF detection philosophy to be included
in their feeder protection devices [113]. Sampling signals in 32 samples per cycle (1.6
kHz at 50 Hz fundamental) the method comprised of a combination of wavelet analysis
and ANN. High order statistics were applied to the wavelet coefficients while a two-layer
network was fed five cycles of raw current samples. Although mentioned in the document
as a ‘voting system’, the decision logic on the wavelet features and ANN outputs was
unclear. Such a methodology, however, attested for the interest of the company in using
trending and modern bottom-up and top-down approaches. The same could not be said for
the algorithms proposed by SEL [87]. In the paper, the author argued that a deterministic
methodology using traditional relay logic would be easier to understand and simpler to
implement. In a somewhat contradictory stance, favouring deterministic approaches and
dismissing ‘black-box methods’ such as neural networks to detect the faults, the author
proposed a method consisting of a heuristic applied to the current signals. It starts with
the extraction of its single main feature: a running average of a quantity named ‘Sum of
Difference Current’ (SDI). Defined as a one-cycle differentiator set to represent all the
cumulative effect of non-harmonic frequencies, the SDI can allegedly assert the occurrence
of arcing HIFs. The feature is compared to a trend, which could be adaptively tuned
for different environmental conditions, and sent to the decision logic algorithm. The
classification label is then given by a counter responsible for tracking how many times the
SDI exceeded the threshold within the previous seconds. Validated in apparently four tests
in the disclosing paper, this methodology would then evolve to the current commercial ‘Arc
Sense TM Technology’ present in many feeder protection devices by SEL [114]. The same
author also published a paper reviewing HIF detection in systems with different grounding
types and describing the performance of the algorithm in staged faults [14]. In this analysis,
strong arguments were presented for the specialization hypothesis by criticizing methods
that claim specific detection rates without specifying distinct conducting surfaces. From GE
and TAMU, however, only one paper describing the field experience with their previously
proposed HIF detection algorithms was published [3]. The discussion revolved around a
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power company’s experiences from installing relays with HIF detection in 280 feeders
over a period of two years. Being the first to do it on such a widespread basis, interesting
findings were presented. For example, interviews with line crews indicated that around
one-third of downed conductors were still energized when they got to the pointed location.
In the company’s log, forty-eight out of the seventy-one confirmed faults had data available.
Forty-six of them armed the relay (96%) but only twenty-eight were detected as downed
conductors (58%). The authors explain such difference was due to the bias towards security
purposely programmed in the algorithms to have the smallest number of false-positive as
possible. Overall, the commercial works from these key industry players asserted, with
their individual and competing solutions, the relevancy and importance of HIF detection
problem.

Lastly, brief comments on novel approaches regarding HIF location are worth making.
Its relevancy becomes apparent when considering tripping a long and branched faulted
feeder where finding such a HIF by visual inspection may take a considerable amount
of time. This decision will also depend on the importance of the supplied loads and
environmental conditions. Quickly locating HIFs would thus be always advantageous,
possibly increasing service continuity and chances of preventing damaging fires. Such an
important idea was discussed in a simple but influential work [115]. In a fully simulation-
based approach, the authors learned an ANN with sequence currents and their harmonics
to estimate the fault location. It is not hard to find many issues with this methodology,
despite its novel idea. It neglects the fact that the current amplitude, network topology
and harmonic content created by the load can significantly vary. It used an apparently
small amount of data when training the network and made stretching considerations when
validating its results.

2.3.5 Highlights

Overall, most noticeable developments and contributing ideas from the 00s can be summa-
rized:

• Wavelet transform as a signal representation technique surging in popularity, equating
to Fourier-based transforms [90–92, 94, 96, 97, 106].

• The ubiquitous use of HIF models, leading to an overwhelming amount of simulation-
based works [16, 86, 91, 92, 96, 97, 99, 100, 106, 116].

• Consideration of different types of neutral grounding as a HIF detection specializa-
tion [21, 92, 103, 103, 106, 107].
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• Discussion on the use of sensor-based approaches as a possible non-invasive, low-
cost, sampling technique [59, 60, 108–110].

• Presentation of commercial solutions from other key industry players [87, 113, 114].

2.4 Contemporary literature — More specializations, sen-
sors, and fault location

The research published after the 10s, considered herein as contemporary literature, repre-
sents the largest number of publications when compared with other decades. It is not clear
that the same could be said in terms of innovation in the field. Most contributions probably
came from more specializations in the HIFs surface types, continuing investigations on
sensor-based sampling approaches, and more in-depth discussions on HIF location. The
latter showed a slight change in field direction, suggesting some transcendence on the
problem of detection. It is possible that some researchers were satisfied or saturated with
the large number of approaches targeting fault detection and wanted to progress the field
to more significant challenges. Such possibility becomes more evident if one investigates
the number of replication works, i.e. works that do not present more contributions but
instead apply a slight variation of an already proposed technique, published in this period.
Notwithstanding, discussions and findings presented in specialization works assert the fact
that much still needs to be understood about the HIF phenomenon behaviour.

2.4.1 Modelling specialisation

Unsatisfied with the current state of HIF modelling, researchers continued to propose new
ideas for improving phenomena representation. A model proposed at the beginning of this
decade [117] aimed at building on the first described model [38] to increase the represented
frequency band to components up to 12 kHz. By using 40 tests staged on many types of
surfaces such as asphalt, cement, soil, and tree, the proposed model consists of six branches
of the previous model (see Fig. 2.1) in parallel. When fitting the model parameters, the
authors used FFT for extracting features from the current signals, PCA for dimension
reduction, and an iterative minimization on the Bonferroni interval as cost function. The
work tried to fit different types of HIFs in a single model, which would make it deficient if
high-variance between surface types, as defended here, is indeed present. A further work
[26] addressed this hypothesis and presented some evidence in its model proposition. The
authors, decided to build on another previously discussed work [16], proposed a model
with the same characteristics (see Fig. 2.4) but with parameters individually fitted for each
surface. On their results, one can see a significant variance in the impedance parameters
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and current waveforms for each of the studied surfaces. With approximately ten tests each,
a variety of surface types were considered: grass, cobblestones, gravel, asphalt, sand, and
local soil. The paper [16] probably presents one of the most consistent methodologies in
the current literature but yet not the most pertinent to this thesis.

A recent modelling approach [28] presents itself as the most relevant to this thesis by
proposing an important model specialization: tree-related HIFs. This type of faults are
especially crucial due to their implications in HIF-related fire ignition and that they can
have significant, particular characteristics. Two different behaviours described in the paper,
from the initial phases of conduction (that can last for several seconds), are extremely
relevant for this thesis: (1) the fault current is smaller than other surface types, in the range
of milliamperes; (2) its impedance behaves closely to a linear resistor, meaning that there
is no arcing and no significant levels of harmonic injection. Results from this thesis and
another HIF-features work [20] corroborate these robust findings, attesting for the recurrent
mA-range fault currents and smoother conduction near zero-crossings. The data used to
conceptualize the model [28], despite being collected from a small number of real, staged
tests, was collected with a novel approach by sampling signals at 1 MSa/s. Such sampling
rate is much higher than the vast majority of works discussed herein and allows for a
better representation of the fault HF components. Its parameters were calculated using
the Hammerstein-Wiener model to fit low-frequency components of the fault impedance,
while the high-frequencies were approximated by a sum of sinusoids determined via the
least-squares method. Moreover, in the same paper, the authors also proposed an approach
for detecting the faults based on the innovative idea of using the Magnetic Field (MF)
strength instead of voltage or current signals.

Recent tree/vegetation HIF specialization works highlight the relevance of particularly
addressing these faults. The authors of the model [28] published two more works on tree-
related HIFs features and detection [29, 118]. One used the empirical mode decomposition
to extract features and the linear regression slope on resulted components quantiles to
classify the faults [118]. The other [29] presented the same idea but discussing the use of
the magnetic field strength as the domain of the extracted features. The authors argued that
using MF sensors would be a more accessible way of sampling the signals and that the MF
strength signal is independent of the sensor location on the feeder. The latter, if true, would
mean that one sensor would be enough to monitor the whole feeder. However, the authors
did not present compelling evidence for this strong claim besides finite element model
simulations from part of the studied system. Further questions can then be raised given that
no modelling details on the system stray capacitance were detailed, which will attenuate
the small fault current (magneto-motive force) in considerable distances. Concerning
further tree/vegetation works, the papers published from the works described in this thesis
can be cited as part of this specialization [31, 55, 56].
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2.4.2 Novel domains and signal representations

Magnetic field sensing is one of the novel ideas discussed in contemporary literature.
An innovative work [119] discuss such an approach to replace the three current sensors
mounted under each phase with one MF strength sensor. In its feature extraction part,
the additional novel idea of mathematical morphology for signal representation is used.
A SVM classifier performs the classification with feature selection done by a genetic
algorithm. The results proposed, in a partly simulation-based approach, show considerable
detection accuracy with a fresh, attractive, solution. Similarly, a following recent work
[120] proposed another non-invasive MF strength sensor as a continuation of a previous
detection method [121]. With the goal of presenting a low-cost method, a coil-shaped
sensor to be mounted under (not around) the primary feeder conductors was proposed. The
classification of the faults was based on the inter-harmonic current level, as previous work
[121], estimated by an accessible Arduino microprocessor. Despite being undoubtedly
novel, it is hard to assess the real effectiveness of these methods in the field. They are
partially or fully simulation-based methods that still aimed at detecting all HIFs types with
a single approach. Nevertheless, they are indeed evidence for the direction of preference
in using non-invasive, sensor-based, approaches to sample signals able to indicate HIF
occurrences.

Wavelet-based feature extractors maintained their popularity, but other possible signal
representation candidates were also discussed. With the assertion of the field relevancy,
accessible HIF models, and popularity surge, the idea of using wavelets to extract features
was quickly explored in the past decade. This saturation led to an increasing number of
papers presenting replicated methodologies with very few novel aspects. A fraction of the
surveyed works herein was selected to be discussed in this section. From the chosen ones,
none presented the use of wavelet as its main contribution, with a few using it as support
for their primary specialization.

Mathematical Morphology (MM), used to analyse spatial structures in the field of image
processing, was one of the novel signal representation ideas introduced. It uses a structuring
element and two most important concepts, Dilation and Erosion, to encode information
regarding the form, shape, and size of structures. The application in HIF detection is
mainly made by using it to represent the particular irregular shapes of HIF-generated
waveforms [85, 119, 122]. Such application, however, was based on two assumptions with
thin evidence: (1) the arbitrarily chosen structuring element will be adequate to represent
the transients created by the fault, and (2) the consequent representation will exclusively
represent HIFs. In the first paper [85], the authors used a variation of MM to propose a
feature named multi-resolution morphological gradient. It was used in an ANN-based
classifier learned from a data set composed of a mixture of a small number of real, staged



2.4 Contemporary literature — More specializations, sensors, and fault location 45

tests and a large data set from simulations. In their results, the authors argued that the
experiments showed MM to be more effective than WT and Fourier-based transforms at
representing HIFs. The previously discussed MM-based work [119] is a translation of
this approach to the domain of MF strength signals. In the following years, another fully
simulation-based work [122] also made a case for using MM to represent HIF signals with
just a change in the structuring element and a threshold-based heuristic.

Other two relevant works using different signal representation are also worth discussing.
The first relates a work, quickly recognized in the literature, that used a time-frequency
analysis based on the Choi-Williams distribution [123] to represent signals. Intending
to propose a simple and effective method, staged tests with tree branches, grass, and
concrete were performed in a laboratory as part of the methodology. Its feature extraction,
going in a different direction as most works in the field, was performed by time-frequency
decomposition followed by a joint time-frequency moment calculation. After the appli-
cation of PCA for dimensionality reduction, the results from learning a SVM classifier
showed perfect dependability but deficient security. Its relevant influence on the field
was not only resultant from its consistent methodology but also due to its discussion on
establishing evaluation criteria for future proposed methods such as cost, objectivity, speed,
and completeness. These criteria, despite previously discussed in past methods, are not
always present in method-proposing works. They are usually discussed individually when
the proposed method wants to highlight a particular advantage in related criteria. In this
critical discussion, the authors also drew attention to the need for a systematic presentation
of future methods. These standards would include reporting concepts inspired by the
machine learning literature: confusion matrix, accuracy, dependability, security, safety,
and sensibility. The authors soon followed this work with an important analysis [53] where
a similar detection method performance was compared considering data sets with different
origins: simulations (using a HIF model) and real data. The expressive results were a
proxy of the effectiveness of simulation-based works at representing real-world scenarios.
The method’s security reduced from 100% in the simulations to 38.4% in the real data
scenario, while dependability went from 100% to 88.2%.

The second work addressing signal representation presented an innovative mathemat-
ical method for analysing the fault signals [124]. The authors proposed a whole novel
orthogonal decomposition where the basis functions were derived from the actual fault
signals sampled in staged tests. The main advantage of this approach is non-reliance on a
predefined set of basis functions like the ones present in the Fourier and wavelet transforms
(further discussed in the sparse coding application section). The authors argued that such
decomposition was highly effective due to its sensitivity to phase unbalances present in
a HIF occurrence (phase-to-ground fault). Moreover, they tried to make a case that the
resulted components highly correlate with the fault distance and thus could be used to
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guide fault location. The method was validated with the use of real data, and promising
results were presented for relatively moderate current amplitudes (<20 A).

It is hard to ultimately evaluate the discussed novel signal representation works as
better or more effective at representing a fault occurrence than previous approaches. The
validation performed in different data sets masks any possible objective comparative
measurement. Nevertheless, they are valuable and strong candidates which much inspired
this thesis’s methodology.

2.4.3 Focus on HIF location

Altogether, no subject presented more novel discussions than HIF location. Most fault
location methods categorized as exact approaches can be divided in travelling wave or
parameter estimation technologies. Other proposed techniques can be categorized as fault
location estimators, as they are used as support in search of the fault location, usually
reducing the fault search space.

From travelling wave-based methods, a work presented in a series of three papers [125–
127] targeting HIFs can be regarded as one of the most influential. It was conceptualized
to detect and locate a HIF using Power Line Communication (PLC) devices. The detection
was performed by a PLC device that continually monitors the feeder impedance and detects
the fault when an abrupt change in the HF impedance is asserted. After detection, one PLC
device (transmitter) starts to inject impulses into the network, which are to be received
by another PLC device (receiver). Based on the travelling wave phenomena, the received
impulse by the receiver, and the reflected impulse on the transmitter, the exact fault location
can be theoretically calculated. In this manner, the fault location always occurs between
two successive communication devices. The methodology, first conceptualized for rural
single-phase rural networks with earth return [125, 126], was further generalized to multi-
phase systems [127]. The results presented in their simulation analysis for fault location are
promising but also related to severe constraints. For example, it requires knowledge of the
topology, impedance, and resonant frequencies of the system for the best narrow frequency
range selection. Since the detection and location system merely indicates changes in the
system topology (HIF as a small topology change), it has to consider such a topology to
be stationary. The faults were simulated as constant impedance, as are the loads, far from
the complex behaviour comprehensively described herein. Moreover, as it considers the
end of the line as open-ended, band-stop filters may be required on the primary side of
low-voltage transformers.

One of the most relevant parameters estimation-based works [128] also suffered from
strict constraints. It proposed the calculation of the fault distance with a time differential
filter on the feeder current. In the methodology, the time-domain subtraction on the current
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signals is performed from subsequent cycles observed in the feeder so the fault parameters
can be estimated. If an abrupt change in the parameter calculation is asserted, a fault
detected. Then, the fault distance is given by a polynomial estimation of the parameters
with Newton’s gradient descent method. Another recently published work also uses a
similar differential current approach but with parameter estimation done via ANN [17].
The authors claimed that such ANN would not need prior training as it was conceptualized
to train on-line as it acquires data. The results were compared to the method previously
discussed [128], resulting in less estimated distance error. Many issues could be pointed
out with these works, but probably the most relevant is the fact that both built their methods
on the presupposition that the fault parameters and non-linearity are known. The models
used by the authors may reflect the non-linearity of certain HIF types but will, at best,
closely represent a single type of fault. These methods, moreover, are conceptualized with
currents much bigger than the ones studied herein, in the range of 60-100 A.

Other fault location search supports are also recently proposed. As the ones formerly
discussed, they require full knowledge of the system topology, loads, and system accurate
modelling. A work using wavelets in MRA [129] proposed HIF detection and location
by comparing the values of signals coefficients with a pre-developed data set. Such data
should come from system simulations for many faults in all the branches, so calculated
values can be compared and ranked in regards to distance. Another work [18] that proposed
HIF detection with the use of distributed measurements throughout the network described
fault location estimation by how intensely these were sensitized. Thus, with a reasonable
number of allocated monitors, the fault search space could be significantly reduced.

For the most part, fault location solutions are still in the early stages and have many
obstacles to deal with until attesting generalization. Some intrinsic characteristics of
power distribution systems pose critical constraints to the effectiveness of these theoretical
solutions: the conductors’ size change, making impedance calculations non-linear; possible
existence of multiple feeder taps and laterals; non-linear and non-effectively modelled HIF
behaviour; phase imbalances; and inaccurate load representation/aggregation. In fairness,
however, one should not expect that works from an emerging sub-field as HIF location
to have all obstacles solved. Future development in this field is probably going to use
different strategies to be more generalizable and have considerable potential to improve
with better HIF models and sensor-based technologies.

2.4.4 Highlights

With the largest number of works proposed, contemporary literature was responsible for
relevant contributions and many validations studies. The highlights from this research
period can be summarized:



2.5 Commentary and targeted knowledge gap 48

• Modelling and detection specialization of tree/vegetation HIFs [20, 28, 29, 118].

• Increasing number of sensor-based solutions, pointing to increasing interest and
consensus on their advantages [111, 112, 119, 120].

• Magnetic field strength sensors as the sampling domain for HIF detection [119, 120].

• Deeper discussions on HIF location asserting it as a legitimate HIF sub-field of
research [17, 18, 127–129].

2.5 Commentary and targeted knowledge gap

Although used throughout this chapter, the use of qualitative terms to describe the HIF de-
tection field and the distribution of proposed methods was tentatively avoided. When such
statements were done, however, they were based on a literature survey made throughout the
author’s candidature. To bring such a survey closer to a quantitative analysis, this section
illustrates and discusses some statistical figures calculated from the analysed works. Before
beginning such discussions, it is worth to note that there is a difference between works
analysed in detail and those considered just for the quantitative evaluation. The amount
of papers and technical documents analysed in detail are more limited: 117 total works,
including 88 HIF detection papers, 9 HIF modelling methodologies, 7 HIF location papers,
and 3 literature reviews. The remaining of the 117 papers include method validation works,
field test documentation, tutorials, related technology, and patents. Although being less
than the total amount of papers published in the topic, it is hoped that the set of works
analysed in detail will serve as a representative sample of the direction and distribution of
techniques used in the field.

The first quantitative figures are presented to support previously made statements about
the history and growth of the field. The number of papers published by decade and by year
in the IEEExplore repository is illustrated in Fig. 2.8. As seen in Fig. 2.8a, the number of
publications consistently increases throughout the decades. It more than doubled twice,
and more papers were published in the 10s than all previous decades added together. In
the 2010s, papers were consistently published every year with an overall positive trend
from the beginning to the end of the decade, as shown by Fig. 2.8b. The number of papers
published in 2018 was certainly a record and outlier; the reasons for this is not known. The
number of works analysed in detail, mentioned in the last paragraph, is a set of the works
presented in Fig. 2.8b as it includes all the papers listed in IEEExplore with the words
‘high-impedance fault’.

It is also useful to illustrate how the techniques to extract HIF features from fault
signals are distributed in the previously presented methods. As repeatedly discussed in
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(a) Papers published in IEEExplore by decade.

(b) Papers published in IEEExplore in the 2010s by year.

Figure 2.8. HIF field popularity and growth.

previous sections, signal representation and feature extraction techniques are often the
primary contribution to knowledge attempted by HIF detection works. The pie chart
shown in Fig. 2.9, produced from the papers evaluated in detail, shows the distribution of
techniques used to extract the discriminative information from fault signals. In the figure,
‘MM’ represents Mathematical Morphology and ‘HH/EMD’ signifies the Hilbert-Huang
transform or Empirical Mode Decomposition. ‘Wavelet’ and ‘Fourier’ represent methods
based on their respective transforms while ‘Sequence’ depicts the analysed methods based
on zero and negative sequence currents and voltages. The ‘Impedance’ works are a few
of the papers found where the detection is based on the apparent impedance measured
from sampled voltage and current signals. The ‘Others’ category include alternative
time-frequency analysis techniques, impulse response and travelling wave-base methods,
time series analysis, and mechanical methods. From all the mentioned techniques, it is
remarkable that wavelet-based methods clearly dominate the practice considering it was
only popularized in the 00s. It is easier to find wavelet-based methods than Fourier-based
ones, even though the latter were introduced in the beginning of the field. Likewise, it is
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Figure 2.9. Signal representation techniques in HIF detection works.

also remarkable that the ‘Other’ category is well represented, matching the same proportion
as Fourier-based methods. One can hypothesise that the reason for such a representation
is due to feature extraction and signal representation techniques being often part of the
proposed contribution to knowledge. As authors need to introduce novelty in their work,
many publish on experiments on the use of not-previously tested techniques so they can
have a claim of original work. These works are often not replicated, ending up in the ‘Other’
classification. Moreover, one last notable fact attested by Fig. 2.9 is that the majority of the
works still use hand-engineered features. As explained in the first section of this chapter,
hand-engineered features have the advantage of being closer to explaining causality but are
also dependent on the human knowledge that creates them. One can induct two reasons for
the dominance of these symbolic approaches: (1) researches are still not proficient with
the use of techniques such as deep learning and encoding techniques, or (2) researchers do
not believe that exploring such techniques are worth. The latter could be due to the lack of
causality or trust in the methods uncertainty, or they could be disincentivized by belief that
such approaches will not be well received by the community.

Demonstrating the distribution of choices in the classification techniques is as important
as illustrating feature extraction approaches. They are responsible for the crucial task
of classifying the signals as originating from a fault or not, which takes place after the
discriminative information has been extracted. The practice mainly consists of establishing
decision boundaries which will result in the classification of the observed data or feature.
The technique used to classify the signals can take many forms and assume different
levels of complexity; from a simple threshold value established on a calculated feature to
complex decision boundaries defined by neural networks trained on labelled data. From
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the works analysed in detail, Fig. 2.10 shows the distribution of classification techniques
labelled as ‘Deterministic’ and ‘Probabilistic’. The chart illustrates the interesting fact
that probabilistic decision boundary techniques relying on observations are almost as
represented as deterministic ones. The fact probabilistic techniques started to be adopted
later than thresholds and arbitrary decision boundaries ones is the main reason for their
representation being remarkable. This effect is present in the distribution of probabilistic
techniques as well, also shown in Fig. 2.10. Artificial Neural Network-based approaches
(ANN-based in the chart) surprisingly dominates the probabilistic techniques attesting
for the high interest from the research community. Other machine learning techniques
such as support vector machines, random forest, and k-nearest neighbours occupy 39% of
probabilistic techniques.

It is important to make a note on the sampling rates used by the HIF detection works
since statements were also previously made about their range. From the analysed detection
papers, only 49 made their data acquisition sampling rate clear. Close to half of them
(24) adopted sampling rates lower than 5 kSa/s while 22 adopted values between 5 and
50 kSa/s. Only 3 fitted the exception of sampling signals at rates higher than 50 kSa/s.
Nevertheless, one of them was a purely simulation-based work while another was as active
method based on travelling wave theory where a pulse gets injected into the line and its
response is measured. The third was the only having an approach similar to the one in
this thesis but still sampled signal at 64 kSa/s. The fact that higher sampling rates are not
often adopted is not necessarily detrimental to the field. Having accurate detection with
smaller sampling rates is desired since it is less demanding and closer to existing digitizers
allocated in the field. However, if one accepts that HIF detection is a lasting problem to be
still definitely solved, investigating the effects of faults at higher sampling rates becomes
more interesting and perhaps necessary.

Figure 2.10. Techniques used to define decision boundaries in HIF works.
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The proportion of works that were purely simulation-based or focused on vegetation as
the primary fault surface type are also two aspects worth commenting. The introduction
of HIF modelling in the 90s, as an attempt to circumvent the need of real data by the use
of simulations, was effective at becoming a common practice. From the 88 investigated
papers, 42 presented pure simulation-based works that made use of previously proposed
HIF models to make claims about accurate fault detection by their methods. Nevertheless,
given the variance between fault types presented in the literature and here, one could argue
that methods based purely on modelling are still to prove their capability of generalizing
to real faults. There is no consensus, as seen from the present survey, on the best way
to model HIFs or that can they can adequately represent all types of fault surfaces. In
regards to works that focus on vegetation as the particular fault surface, conversely, one
can confidently state that they are rare. From the analysed works, 8 include some type of
vegetation on their tests, but only 4 focuses solely on it as fault surface. From the research
that is continuing, two group of researchers presented original contribution regarding
vegetation HIFs; one of them produced the work basing this thesis and the other is located
in Iran [19, 28, 29, 118, 130].

2.5.1 Knowledge gap hierarchy

Since the main aspects of the field have now been presented and illustrated, it is possible
to localise the place this thesis occupies, with its potential knowledge gaps. However, it
might be useful to first state the similarities this work shares with previous ones. To that,
the most relevant aspect that should be mentioned are the choices in signal processing
techniques. Throughout all the experiments performed in the signals, established and
renowned signal processing techniques were chosen; the short-time Fourier transform,
wavelet transform, and sparse coding are prominent examples. Nevertheless, their use
should not be mistaken by how their results are used. Features or combinations of features
derived from the application of these techniques are counted as original work but not the
techniques themselves. The second pertinent aspect relates to the classification techniques.
Despite the much trial and error and parameter tuning attempts, the techniques used to
create decision boundaries for classification are known and acclaimed machine learning
algorithms.

The knowledge gap that this work helps to address exist in a hierarchy of domains.
Its root starts with the use of a data set with hundreds of staged faults with local vege-
tation species. No work surveyed or described in literature-review papers presents such
comprehensive testing of local vegetation species. Local in this context compose another
niche, making the findings and insights presented here more relevant to Australia than any
other country. Moreover, the experiments were conceptualised with particular limitations
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to the fault currents which are rarely cared for in the literature. When proposing detection
methods, most papers do not dedicate effort to stablish thresholds or standards for the fault
current. This fact is only consequential since it is not possible to know how sensitive are
the results if the current is not carefully limited. The limitations on the experiments of this
data set include the constraint the current values to 0.5 to 4 A, which are relatively small
values considering the distribution level voltage that produce them. Having positive results
in this niche current level also represents an unaddressed gap in this level of the hierarchy.

The data acquisition method adopted in the staged faults occupies the next level of the
gap hierarchy. As mentioned in previous paragraphs, the vast majority of works do not
cross the rates of 50 kSa/s when acquiring data from their experiments. Therefore, having
signals sampled in such a large bandwidth, representing frequencies from 10 kHz to 1
MHz, represents the complement of a significant gap. The large bandwidth also allowed
distinct experiments, for example, in which the predicting information content from two
different bands could be compared and analysed. As shown in the Results chapter (4),
having this sampling characteristic was crucial for the positive results further obtained.
It is unfortunate, nevertheless, that the data did not contemplate the load current as the
experiments were executed in a dedicated feeder. However, having to pivot the focus of
the investigation to the voltage signals and obtaining favourable results nevertheless, also
represents a contribution to a non-addressed domain. This contribution exists due to the
simple fact that previously proposed methods focus heavily on the current signals as it
is the domain that is most directly affected by the fault. Lastly, in this level, there is a
characteristic of the data acquisition that represents another unexplored territory: the sweep
sampling method. It was not discussed yet but soon to be comprehensively commented
in the next chapters. It merely is the sampling of small, regular snapshots of the signals,
instead of continuing sampling them. The noteworthy aspect, however, is that evidence
presented here points that the sweep samples are enough data to produce an accurate
detection method. This advantage is remarkable because being able to detect a fault with
less data means less computational effort and lower-cost solutions for real implementation.

The results from the experiments discussed in this thesis relate to the high-level and
more niche knowledge gaps in the next level of the hierarchy. The first aspect is the
main result presented here, which is evidence of the possible detection of VHIFs at
higher frequencies of voltage signals. The prototype results play a role of attesting that
it could be done in real-time, with the added advantage of possibly being embedded in
low-cost hardware. The results, moreover, not only present the possibility of accurate
detection but also the representations of the fault signatures in the higher frequencies. Such
unique representations, together with the experiments comparing the effectiveness between
low- and high-frequency signals, add evidence and fill the gap of VHIFs phenomena
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understanding at higher frequencies. To illustrate this discussed hierarchy, these aspects of
contribution have been summarised in Fig. 2.11.

Figure 2.11. Representation of the knowledge gap hierarchy.



Chapter 3

Processing, classification, and
experimentation methods

This chapter is dedicated to describe and discuss the techniques and methods that are central
to this thesis methodology. Some of these techniques are renowned and established methods
such as the Fourier and wavelet transforms, while others are proposed methods intended
as original contributions. This chapter aims to inform the reader on the assumptions and
choices made throughout the research period and to support the results described in Chapter
4. The latter aim inspired the decision of individually describing the used techniques in
their separate respective sections. The author believes that, as the reader might be interested
in a specific technique while reading the results chapter, such individual organization of
techniques might allow for a better reading experience.

It is important to note that due to the plenitude of techniques available and time required
for proficiency, there were considerable changes in the methodology direction throughout
the research period. Different techniques were applied in the production of evidence of the
relevance of the proposed solution. A choice was also made to describe the experiments
as they were conceptualized. The reader may benefit from understanding the reasons
that drove such changes and their possible impact on the results as their one of the many
approaches to the studied problem.

It is worth mentioning that all the steps, including data management, feature extraction,
classification algorithms, and validation were performed in the MATLAB environment
with the respective toolbooxes: Signal Processing ToolboxTM[131], Statistics and Machine
Learning ToolboxTM[132], and Wavelet ToolboxTM[133].

Examples of the main MATLAB codes used in the research can be found in Appendix
B. They were not written in the same organizational manner as this chapter, but contain
all the functions and scripts discussed. The code for the shift-invariant sparse coding
technique is not included but can be found in the author’s website [134].
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3.1 Data characteristcs and pre-processing

A core idea when proposing the present methodology was to leverage existing experimental
data to propose a VHIF detection methodology. Such specific data was chosen due to its
relevance to the problem and the fact that no formal work using it to create a fault detection
method had been published at the time of this research inception. As explained in Chapter
1, the data was made public by the Victorian Government [49]; the description and analysis
of the tests were given in the project’s final report [4]. The original data set contain logs,
video and signal recordings, graphs, and analysis of the tests. However, only the tests
recordings and metadata were used in the following proposed experiments. From this point
onwards, references to the data or data set adopted in the methodology are synonyms to
the set of fault recordings and metadata.

The voltage and current signals were made available in a proprietary format given
by the hardware used in their recordings. The data acquisition hardware was the HBM
Gen3i high-speed data recorder, fed by four HBM GN110-2 optoisolated digitisers. Such a
scheme meant that test recordings were sampled by four different channels. The proprietary
format of the test files had an extension named ‘.pnfr’ for Perception Native Recording File.
They were designed to be opened with proprietary visualisation software (Perception),
thus not directly accessible for manipulation. Each file was labelled with their respective
test number and contained all four-channels recordings. Data importing to MATLAB
environment was possible mainly by an API interface fortunately offered by HBM.

Two sampling channels were used for each current and voltage signals. Attempting at
recording high-fidelity signals with an increased signal-to-noise ratio (SNR), the project
team decided that would be beneficial to have a channel dedicated to higher frequencies,
without the influence of the main power frequency (50 Hz). All the four channels were
connected to an analogue 6-pole Bessel low-pass filter with 10 MHz corner frequency for
anti-aliasing. A second low-pass anti-aliasing filter (Bessel IIR digital) with proper data
decimation was added to the LF and HF channel; It had a cut-off frequency of 50 kHz
in LF channels and 1 MHz in HF channels. HF channels were also filtered by a 10 kHz
high-pass filter, characteristic from the capacitive voltage divider design. The resulting
effective band of LF channels was approximately 0 Hz to 50 kHz, while the HF channels
effectively comprised of frequencies from 10 kHz to 1 MHz. Please refer to Appendix A
for a more comprehensive description of the experiment and sampling set ups.

3.1.1 Sweep sampling

The high-speed recorder continuously sampled all channels at 100 kSa/s, plus the additional
measurements in the HF channels. Adding HF measurements were needed since the
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experiment was designed to characterize frequencies up to 1 MHz. Such characterisation
would allow the investigation of discriminative information in higher frequencies, i.e., fault
signatures. According to the Nyquist–Shannon sampling theorem, a minimum sampling
rate of 2 MSa/s is required to characterise frequencies up to 1 MHz. Nevertheless, adopting
higher sampling rates meant sampling more data and generating higher data storage
and management demands. These requirements inspired a decision to perform periodic
snapshots of HF signals recordings at 2 MSa/s. Perhaps inspired by the period of a power
frequency cycle, the duration of these small sampling periods called sweeps was set to
20 ms. The sweeps were triggered by a non-synchronous signal with 1 s period, meaning
that HF recordings were composed of one sweep per second. To put in perspective, such
sampling duration is enough to comprise 200 cycles at the lower band of the HF channel
(10 kHz) in a single sweep. It also implies that sweep recordings duration represented 2%
of the whole continuous time when compared to LF recordings.

In the recording files, each sweep resulted in a signal with 40k samples (2 MSa/s in 20
ms). The many sweeps per test were extracted and sequentially concatenated in a single
vector for further analysis. The plot in Fig. 4.1 illustrate the LF and HF channel recordings
of test #36. Despite presented in the same form as the LF channel, the HF signals appear
continuous only due to the sequential concatenation of sweeps.

Having snapshots (sweeps) of the signals rather than a continuously sampled HF
recordings can introduce challenges that require a coping strategy. For example, the lack
of synchronism in the trigger that asserts the sweep recording makes it challenging to
know the exact moment in time it refers to the parallel LF recordings. Knowing this
moment in time is crucial since when using the HF sweeps as observational data in a
learning approach, one needs to know which sweeps were recorded when a fault was
actually happening (fault current conduction). The voltage supply and current conduction
started almost immediately after recording began at some times. In other times, the fault
current appeared more than a minute after signals started being recorded. Although current
conduction usually started when the voltage supply was turned on, it was not true for all
tests; some vegetation branches were able to withstand the voltage applied for several
seconds before allowing current conduction. These exceptions allowed the existence of
tests with valuable pre-fault recordings that were further used to validate the proposed
methodology. Moreover, the staged faults extensively varied in duration, resulting in a
different number of sweeps per test. A high number of sweeps is usually detrimental
since only one sweep represents the subsequent second of fault inception that needs to be
detected.

The methodology adopted when dealing with the sweep sampling challenges was to
get access to the trigger signals and translate them into a time location in the LF recordings.
The triggers are given by square waves in the test files with a one-second period that
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asserted the recording of each sweep. The moment when the signal turned to a high state,
i. e. the rising edge, was assumed as a fair estimative of the starting time of a sweep
recording. Coding such a method creates corresponding time locations between sweeps
and LF current, allowing for a fair estimation of which sweeps were recorded during fault
current conduction (post-fault sweeps).

3.1.2 Data cleansing

After being able to import the data and identify the separate sampled channels, initial
investigations started to reveal possible issues in the recorded files. The first identified
class of issues was the straightforward problem of missing or corrupted files. A number
of 1038 tests was officially stated as staged in the test ignition report, but 44 tests were
not present or were corrupted in the released data. The second issue was revealed with
initial examinations showing that some tests appeared to have no current conduction at
all. This fact had to be addressed since the absence of fault current is equivalent to a
non-fault occurrence; mistakenly labelling a non-conducting sweep as a fault observation
would worsen and derate the process of learning the classifier. The process of filtering
these files comprised of coding a script that would scan the LF current signals for values
higher than a small threshold (<0.1 A). It resulted in a number of 19 tests that had no
current conduction and were then filtered. Most of these filtered recordings referred to the
polarising type of fault named ‘grass tests’. Grass vegetation samples were able to fully
isolate the conduction at some tests, not allowing for any current conduction, or simply
behaved as a short circuit in others. The third issue was only revealed by the end of initial
investigations when some tests that did not have a consistent number of samples in the LF
and HF channels were noticed. Since the LF channel was recorded at 100 kSa/s, and a HF
sweep of 40k samples was recorded at every second, the calculated duration in seconds of
LF recordings (floored) had to be equal to the number of sweeps given by the HF channel.
A code set to calculate the expected number of sweeps and flag inconsistent recordings
resulted in 64 tests being filtered. The fourth issue, conceptualized as a preventive measure,
relates to the intermittent nature of fault current conduction during some tests. Vegetation
samples sometimes behaved as an intermittent impedance where current cycled between
flowing for a few cycles and ceasing for a short period. A decision to filter out tests with
high intermittency was made due to the lack of confidence that an extracted sweep would
come from moments where current conduction was indeed present. A script coded to flag
these high-intermittency tests pointed to 19 recordings that were subsequently filtered.
Moreover, the final report also labelled 79 of the tests as invalid. These were also excluded
from further analysis, although the final report did not give any particular reason this
labelling.
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In addition to the filtering of problem tests, continuous analysis on the recordings
also revealed tests with odd values with particular small ranges. These were only noticed
towards the end of the research and were continuously filtered due to possible inference
in the performed experiments. After all filtering and cleaning procedures, 769 tests were
selected for analysis when an RMS current threshold of 0.1 A is used, and 566 tests
remained when considering a threshold of 0.5 A.

The classes of issues found in the recording files can be summarized:

• Files missing or corrupted.

• Tests that did not show current conduction.

• Tests that presented inconsistent sampling.

• Tests with high intermittency in current conduction.

• Tests marked as invalid by the program.

• Tests with odd ranges that did not fit recording standards.

3.1.3 Fault and Non-fault observations

With the decision of using supervised learning, comes the requirement for labelled data.
This decision was made based on the knowledge acquired from the literature and findings
resulted from initial investigations. The tools used in initial investigations, described in the
next sections, corroborated with the overall conclusions in the literature review that the
VHIF problem is too complex to be trivially solved. Therefore, it made sense to leverage
the statistical predictive capabilities of supervised learning models to conceptualise a
VHIF detection method. Doing so, nevertheless, requires the ensemble of a clear data
set composed of observations with respective labels of classes that will be learned by the
classifier.

Assembling the labelled data set of observations, however, was a much more significant
challenge than thought when conceptualising this methodology. The staged tests unfortu-
nately had the drawback of being done in a substation with a dedicated feeder, generating
many issues to be dealt with. Although part of a functioning distribution network, a
dedicated feeder meant that there were no consumer loads connected to it. This constraint
represented the first big issue when compared to the methodology proposed previous works
in the related literature. Most methods analyse the effect of the fault in the feeder load
current by studying the difference between its pre- and post-fault states. They analyse how
the current signal characteristics evolve from a normal steady-state to a faulted one, further
using these two classes to validate their method. However, despite having plenty of data of
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fault current, there were no observations of the opposite class (non-fault) to perform any
validation. This constraint made initial investigations to turn from the current to the voltage
signals but only to result in yet another issue. This second and severe constraint came from
the tests execution set-up. The branches were put in place between the conductors prior to
their energisation, i.e., conduction began immediately after the voltage source was turned
on. Such an experiment design resulted in almost no pre-fault voltage signals recorded,
except for a few test scenarios.

Non-fault observations

If the choice of using supervised learning was still to be pursued, a different strategy to
gain signals from non-fault observations had to be adopted. Despite not having voltage
recordings before fault inception took place (in the majority of the tests), there were
background voltage recordings made by the project team throughout different times in
the test days. These tests were performed by just recording the main system voltage with
no vegetation in between conductors in the test rig. The goal was to gather enough data
to help characterize the standard background noise of the studied feeder and aid possible
discoveries on fault signatures. Indeed, a useful idea that resulted in a large number of
sweeps from both channels which could be used as non-fault observations. These recorded
sweeps constitute all the non-fault observations in the following described experiments
when learning the classifier.

Recordings of background voltage were made throughout most of the test days, from
February 23 to March 27, 2015. They were long enough to generate plenty of sweeps. In
fact, they were more numerous than the number of tests that generated sweeps from the
‘fault’ class. However, during most experiments described in the next sections, a decision
to adopt an equal number of sweeps between the fault and non-fault classes was made.
This balancing was performed by randomly sampling non-fault sweeps to have the same
number of fault sweeps, effectively reducing the number of used sweeps when learning
the classifier. Another worth-mentioning characteristic of these recordings was that they
included moments when the main voltage supply was turned ON and OFF. Having both
types of signals labelled as the same class was being harmful to the classifier due to the
different characteristics of the signals. Most experiments were performed considering
voltage ON and OFF as the same class; only later they were separated in their respective
classes, making the number of classes to be three in total: Fault, Non-fault, and Voltage
OFF.
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Fault observations

The fault observation sweep extraction comprised a more clear but laborious procedure
compared to non-fault observations. The observations represented an arbitrary moment of
each test recording referred here as fault inception. This moment is defined by the time
when the root mean square value of the LF current signal was greater than a threshold.
In most experiments discussed in this thesis, this threshold was set based on a finding
from the project final report where it was stated that current values greater than 0.5 A
rapidly increase the probability of fire [4]. This threshold was adopted particularly when
proposing the conceptualized detection method, but 0.1 A was also explored as a threshold
for comparison sake. Having the time inception on the LF current recording, nevertheless,
only base the fault observation extraction since mainly all results presented here are based
on the HF sweeps, rather than LF signals. At this moment, the access to the trigger signals
that asserted HF sweep recordings was crucial. The separation of the analyzed fault sweep
was done by comparing sweep trigger times with the calculated fault inception time to
extract the immediate subsequent sweep recorded after the threshold was met.

It is important to remember that fault experiments had distinct duration times. Some
faults lasted for a few seconds and others more than a minute. Since sweeps were recorded
at every second, recordings usually had more than one fault sweep per test. However, a
choice was made to perform the classification relying only on one single sweep given by
the first recording after the fault inception. By doing so, it is guaranteed that the signal
considered when testing the classifier came from the first second of the fault occurrence.
Having an observation representative of the moment of fault inception is essential because
it is usually where the signatures are more subtle and more difficult to detect. As also
stated in the final report, a significant decrease in fire ignition can be achieved if the fault
is addressed in 5 s or less. As only one sweep is recorded at every second, the extracted
fault observation can come anywhere from approximately 0 to 1 s after fault inception.

3.2 Signal processing

Signal processing is in the core of all the experiments presented here as evidence to
potential detection of VHIFs. Due to its importance, a considerable amount of time
was expended evaluating and refining the choice for signal processing and representation
techniques. Although there was an effort to use contemporary edge techniques, the best
results usually came from well established/traditional ones.

This section intends to brief the reader in the most relevant signal processing concepts
used to derive the results described in Chapter 4. In regards to signal representation,
Fourier-based spectrum estimators and wavelet transform were central. One could argue



3.2 Signal processing 62

that it is not surprising that such techniques would perform well given their popularity in
this and other signal processing fields. As described in Chapter 2, Fourier- and wavelet
features were thoroughly explored in HIF detection. This use is not seeing as an issue in
regards to contribution to knowledge since proposing novel signal processing techniques is
beyond the scope of this research. Nevertheless, the extraction of VHIF signatures via the
application of Shift-Invariant Sparse Coding — a recent unsupervised coding technique
— is indeed seen as one signal processing-related original contribution in this thesis. The
same could be said for the post-processing subsection; although comprised of simple
techniques and calculations, it is an original approach conceptualized as part of a detection
method.

3.2.1 Spectrum analysis and Fourier-based features

Representing signals in frequency domain is an effective way of processing and analysing
their characteristics. Differently from the time domain, which represents how signals
evolve through time, a frequency domain representation describes how much a particular
signal correlates to certain frequencies of periodic signals. The transformation, usually
reversible, is given by a pair of mathematical operators that translate the signal between
domains. The Fourier transform is a classical method of decomposing a time-domain
signal into frequency domain components. Its continuous-time operators are given in (3.1)
and (3.2) where F and F−1 are the Fourier operator and its inverse, respectively.

F{ f (t)}= F(ω) =
∫

∞

−∞

f (t)e−iωtdt (3.1)

F−1{F(ω)}= f (t) =
∫

∞

−∞

f (ω)eiωtdω (3.2)

Representing the signal in the frequency domain can have many advantages. The most
wide-applicable one is the fact that linear differential equations are converted to algebraic
equations in the frequency domain. This advantage facilitates complex mathematical
analysis of many problems, especially ones in circuit-analysis theory where signals can be
represented as phasors.

In symbolic Machine Learning (ML), one of the main advantages of transforming
signals to frequency domain results from the sparsity in their representations. Consider,
for example, a continuous-time sinusoid with constant frequency and amplitude. To
represent this signal in the time domain, one would need an infinite number of coefficients
comprising all the continuous-time points. In the frequency domain, however, only two
coefficients may be needed: amplitude and phase information. A representation on the
frequency domain, therefore, becomes more sparse since all the other coefficients despite
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the amplitude and phase-related ones would be zero. Given that ML algorithms are highly
sensitive to the number of features or parameters in the model, sparsely representing a
signal represents a great advantage. If the exact frequencies of interest of a particular signal
are known, their components can be individually selected and used as features in a ML
model.

When processing real-life digital sequences that are sampled versions of continuous-
time signals, the Discrete Fourier Transform (DFT) needs to be employed. For a real
discrete sequence of length N, the DFT operator and its inverse are as given in (3.3) and
(3.4), respectively. The resulted DFT is a complex finite sequence with the same length as
the signal. The frequencies components in the resulted representation are equally-spaced in
frequency the same way time-domain samples are uniformly spaced due to the periodical
sampling period.

DFT{ f [n]}= F [k] =
N−1

∑
n=0

fne−i2πkn/N (3.3)

DFT−1{F [k]}= f [n] =
1
N

N−1

∑
k=0

Fkei2πkn/N (3.4)

Despite effectively used in many applications, applying the DFT for signal represen-
tation results in many constraints and issues. In general signal processing, most of the
resulting issues are related to the phenomenon of aliasing, spectral leakage, and choosing
the appropriate sampling rate. In simpler terms, the sampling rate needs to be appropriate
to represent the frequency bandwidth of interest and aliasing needs to be addressed to avoid
signals of higher frequencies to interfere with coefficient estimations of the investigated
band.

In the context of symbolic ML, the problem of spectral leakage is more complex and
challenging to address. As an example, consider a 1-second duration signal sampled with
at a high rate so frequencies from a wide band can be properly characterised. A DFT
of such signal will result in a long sequence of frequency components since it has the
same length of the recorded digital signal. If the exact frequencies of interest are known,
there needs to be an adjustment of the length of the signal, so the resulted equally-spaced
frequency indexes have the exact desired value. If the frequencies of interest are not known
(usually the case), and one wants to use the whole coefficients, the feature space will
comprise a long sequence with high dimension. As mentioned before, ML models are very
sensitive to the dimension of the feature space, meaning that a long sequence of frequency
components are highly undesired. This characteristic has a interesting name, often referred
as the curse of dimensionality [135].
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The fact that real-life signals are often noisy and suffer from the effects of interference
of other sources only further aggravates these issues. Intermittent and sampling noises
can be harmful for frequency estimation, introducing energy in frequency bands that
are not originated from the signal of interest. In an effort to mitigate these problems,
techniques are introduced to improve the signal spectrum estimation. The main idea
when implementing spectrum analysis methods is to leverage the existent data that is
larger than the amount required to attain the desired frequency resolution. The data is
usually partitioned so that multiple DFTs can be performed and averaged. This averaging
reduces the variances introduced by the noise sources, improving the precision of the
power estimation of frequency components. The power spectrum, referred to as Power
Spectrum Density (PSD) is basically the squared of the absolute values given by the DFT
of the signal, as shown in 3.5.

PSD = F{ f [t]∗ f [−t]}= F [ω] ·F∗[ω] = |F [ω]|2 (3.5)

The technique of averaging multiple DFT applications to get a power spectrum density
estimation is called periodogram. The Welch’s method, firstly presented in [136], is a
popular periodogram technique used in most spectrum estimation calculation in this thesis.
It starts by breaking the analysed time series into overlapping segments and windowing
them with an arbitrary function like the Hamming window. The DFT is then applied to
each windowed segment, the results have their magnitude squared for power calculation,
and an averaging of all the segments is calculated. The result is a modified nonparametric
periodogram with reduced variance with calculated as in (3.6). Where, K is the number of
segments in the time series, fn is the analysed power frequencies of segment n and Ik is the
PSD function applied to each segment as in (3.7).

P̂( fn) =
1
K

K

∑
k=1

Ik( fn) (3.6)

Ik( fn) = c

∣∣∣∣∣ 1
N

N−1

∑
t=0

fk[t]W [ j]e−i2πtn/N

∣∣∣∣∣
2

(3.7)

In Eq. (3.7), N is the length of the segment, fk is the k-segment analysed, t is the
sample number, W is the window function (Hamming window in this thesis), and c is a
constant dependent on the length of the segment and window used.

Since the segments have to be considerably smaller than the original sequence, the
number of frequency components can be significantly reduced. Such outcome avoids
the scenario of a feature set with high dimensionality and potential problem in terms of
overfitting the learning algorithm. The small number of coefficients from Welch’s method
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are then better estimators of the signal spectrum (reduced variance by averaging) and
represent a smaller feature dimension to the ML model. The user can choose to do feature
selection to further reduce the feature space or use all the components as class predictors.

The Welch’s method was extensively used in the initial analysis. The goal was first to
visually check if there were any changes from non-fault and fault observations. The experi-
ment was inspired in the spectrograms illustrated in the tests final report, which showed
increases of many high-frequency components in the voltage signals. The spectrogram is
a technique similar to periodogram where instead of averaging the PSD of segments of
the signal, they are sequentially concatenated to illustrate how the frequency components
evolve through time. Spectrograms are usually referred to as a time-frequency analysis
technique; Fig. 4.4 in the Results chapter is an example of one. Exception tests that had
pre-fault signals were crucial in these experiments. If applied to a sweep recorded at a
time with no current conduction (pre-fault), and later to an in-fault sweep, one can clearly
see the changes in the high-frequency components. The results of these experiments are
described in Section 4.1.

After having clear indications that there was predicting information on the signals, the
Welch method was also used to create features (predictors) in the first conceptualisation
of the fault classifier. As all hand-engineered features presented in this chapter, the PSD
features were a result of many trial and error attempts to properly represent the signals
in the frequency domain. The Welch’s parameters resulted from these many trials were
given by 50% overlapping segments, 450 frequency components with FFT windows of
10k samples. As 450 features represent a relatively high dimension to the size of the
used data set, these resulting components also went through a process of feature selection
explained in further sections. Doing so meant selecting the frequency bands with high
predicting power, consequently resulting in interesting insights about the fault signatures
behaviour in the frequency domain. The results of learning the classifier with PSD features
are described in Section 4.2.

The learned classifier gave strong evidence to the possibility of detecting VHIFs, but
more evidence on the justification of the adopted approach would be beneficial to increase
its relevance. With all the constraints that it brings, the adoption of high-frequency signals
can still be a source of potential concerns. Therefore, an experiment was set to compare
the predicting information content of the low- and high-frequency signals. It was done by
extracting features from these two domains and comparing their discriminative potential.
The quantitative comparison was made by the resulting accuracy value from learning a
classifier with features extracted from the LF and HF channels.

As PSD is such a cornerstone in signal processing techniques, the experiments set to
highlight the detection method relevance also used PSD-related calculations. A noticeable
aspect of the features in ML models is that they do not necessarily need to be the frequency
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components; they can be higher-level representations based on the PSD results. These
can be calculations of distribution moments such as standard deviation or variance; peak
analysis; entropy; or energy distribution. At a certain point, they were all tested in the
features trial and error phases, but one of the most promising was the signal PSD Spectral
Flatness (SF). It is also known by tonality coefficient, Wiener entropy or whiteness of a
given signal. As described in (3.8), where, F [n] is the power density spectrum with N
number of bins, such measure can characterise the noise-like property of a signal in a zero
to one range. It describes how the power spectrum coefficients are distributed in a given
bandwidth. For example, perfect sinusoids having no distortion would result in 1, while
white noise signals would approach zero. As explicitly depicted, the SF is basically the
geometric mean of the PSD values over a giving range (N), divided by its algebraic mean.
It is a simple, direct, scale-independent measurement chosen after observing that VHIFs
tend to create a wide-band noise over the voltages’ signals. An interesting note is that it
does not necessarily need to be applied only to the whole calculated spectrum, but it can be
used at arbitrarily different sub-bands too. In this experiment, the size of these sub-bands
was chosen to be a twentieth of the number of bins of the power spectral density, resulting
in 20 features. The results from using these features to attest to the classifier relevance are
described in Section 4.3.

SF =

N
√

∏
N
n=1 F [n]

1
N ∑

N
n=1 F [n]

(3.8)

Finally, PSD calculations were also used as a benchmark for the classifier. Since their
signal representation and analysis capabilities survived the test of time, every trial made
with different features was compared to the performance given by PSD features. When a
signal representation tool was taken as effective, it meant that it overperformed the PSD
features when used to learn a VHIF classifier.

3.2.2 Wavelet analysis and features

The previously discussed sinusoid example is very convenient to discuss the sparsity of
the signals in the frequency domain, but the same advantage will not hold for all signals.
The sinusoid representation is sparse due to the basis functions used to decompose the
signal in the Fourier transform, which are also sinusoidal. However, sinusoidal basis
functions may completely lose this advantage depending on the signal characteristics.
For example, an impulse signal, which is highly sparse in the time domain, will need
many frequency coefficients to be represented in the frequency domain. Conversely to
the sinusoid, transforming the impulse function to the frequency domain would have no
advantages in terms of information compression. It may be worth remembering that the
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most significant advantage of transforming the signals to the frequency domain, in a ML
approach, is that their sparse representation results in a reduced feature dimension.

The signals recorded in the tests comprise many transients and signal discontinuities
that are troublesome to represent in the frequency domain with sinusoidal bases. As shown
in section 4.1, a fault occurrence will increase the energy of many frequency components
distributed in particular frequency bands. These bands cannot be easily discriminated as
components have their energy increased in different ways at each fault occurrence.

The wavelet transform was notably proposed to overcome the drawbacks introduced
when representing signals with discontinuities in the frequency domain. The wavelet
functions ψ(t) have compact support in time with finite energy, different from the stationary
sinusoids in the Fourier transform. They are adaptable in the sense that one can use any
function that fit the defined criteria: being absolutely and square-integrable as in (3.9) and
(3.10), respectively; having zero mean as in (3.11), and square norm equals to one as in
(3.12). ∫

∞

−∞

|ψ(t)|dt < ∞ (3.9)

∫
∞

−∞

|ψ(t)|2 dt < ∞ (3.10)

∫
∞

−∞

ψ(t)dt = 0 (3.11)

∫
∞

−∞

|ψ(t)|2 dt = 1 (3.12)

Due to its compact support, a wavelet function is shifted through time, generating
time-frequency coefficients. As every function represents a band-pass filter with particular
characteristics, different bandwidths are considered by the modification of a scaling factor
as in (3.13). Where, a represents the scaling factor, and b represents the shifting factor. In
this sense, the wavelet transform operator in the time-frequency domain can be defined as
(3.14).

ψa,b(t) =
1√
a

ψ

(
t −b

a

)
(3.13)

WTψ{x}(a,b) = ⟨x,ψa,b⟩=
∫
R

x(t)ψa,b(t)dt (3.14)

As the analysed signals are real sequences of sampled values, one should adopt a
discrete version of this transform. The Discrete Wavelet Transform (DWT) employs
discrete values for the scaling factor a and shifts the wavelet function with b at every
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point of the original sequence. However, since decomposing the signal at every scaling
factor would be infeasible, a strategy to choose effective values for a needs to be adopted.
The strategy usually employed differs from the Fourier decomposition by not uniformly
dividing the frequency spectrum but rather doing it logarithmically. This approach, called
Multi-Resolution Analysis (MRA), assumes different exponential values for the scaling
factor at each level of the signal decomposition. The definition of a transformed signal x[t]
with length n at the m level, is given by (3.15).

DWT [x,m,n] =
1√
am ∑

l
x[k]ψ

[
n− lam

am

]
(3.15)

The DWT becomes more numerically efficient when the Mallat algorithm [137] is
used. In this process, the decomposition is given by the iterative application of a series of
low-pass and high-pass filters. The results are time-scaled versions of the original signal
which have most of its energy in a defined bandwidth. Each time a couple of filters is
applied, the signal is downsampled in a dyadic manner, resulting in fewer samples and
its numeric advantage. In the first iteration, the output is given by the convolution of the
original time-domain signal with the impulse response function of the low- and high-pass
filters. From that, two signals known as approximation (ya) and detail (yd) coefficients
will result. The iterative process is performed by using the last calculated approximation
coefficient as new inputs of the filtering process. The ith level can be generalized as in
(3.16) and (3.17) where, h[t] and g[t] are the low-pass and high-pass impulse response
function, respectively, and y0

d and y0
a are defined as x[k].

yi
d[n] =

∞

∑
k=−∞

yi−1
d [k]×h[2n− k] (3.16)

yi
a[n] =

∞

∑
k=−∞

yi−1
a [k]×g[2n− k] (3.17)

The detailed coefficients, however, are still time-scaled versions of the original signal
that cannot be used directly as features. Approaches in the literature usually calculate the
energy [138], entropy [139], or standard deviation [88] of these signals to use the values as
correlational features.

In this thesis, with the intention of increasing the methods’ reliability, several possibili-
ties of wavelet features details were tested: energy percentage (3.18), sum of the absolute
values (L1 norm) (3.19), mean top peaks (3.20), standard deviation (3.22), Shannon’s
entropy (3.23), and L2 norms. Where, Et is the sum of the energy of the approximation
and detail coefficients, and yi is the mean of the detail vector. The ‘peaks’ feature, given
by Speaks, defined in (3.21), to the best of the author’s knowledge, was never presented
before in this regard, characterizing an original feature of this thesis. In simpler words, the
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feature represents the mean of the top M (sorted) peaks found in the signal. The integer M
can be a fixed value or, as used in this thesis, a proportion of the length of the detail vector.

ei =

N

∑
n=1

∣∣yi[n]
∣∣2

Et
(3.18)

sumi =
N

∑
n=1

∣∣yi[n]
∣∣ (3.19)

pksi =
1
M

M

∑
n=1

(Speaks(n)) (3.20)

Speaks = sort({
∣∣yi[n]

∣∣> ∣∣yi[n−1]
∣∣∧ ∣∣yi[n]

∣∣≥ ∣∣yi[n+1]
∣∣}) (3.21)

stdi =

√
1

N −1

N

∑
n=1

∣∣∣yi[n]− yi
∣∣∣ (3.22)

enti =−
N

∑
n=1

yi[n]2log(yi[n]2) (3.23)

L2 =

√
N

∑
n=1

∣∣yi[n]
∣∣2 (3.24)

A note regarding the choice of the mother wavelet should also be made since the
low-pass and high-pass impulse response functions are dependent on it. Inspired by
claims in previous works that it would heavily influence the performance of a classifier,
a prior comparison was executed concerning possible choices of many mother wavelets.
The evaluation compared the performance of different wavelet families such as the Haar,
Daubechies, Symlets, Coiflets, BiorSplines, ReverseBior and DMeyer, in their different
scales.

The decision regarding the number of levels used in the decomposition was made
by analyzing the lowest (last) frequency band given by the DWT. By applying the MRA
algorithm, the upper bound of the bandwidth of a certain level approaches Fs

2n , and the lowest
Fs

2n+1 , where, Fs is the sampling frequency, and n is the decomposition level. Therefore,
for a 7-level decomposition considered in the HF signals, the last detail band results in
frequencies ranging from 7.8 to 15.6 kHz. This band was given as sufficient because this
channel had a high-pass filter with 10 kHz corner frequency, meaning that investigating
lower frequency would not be a useful pursuit.
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The wavelet transform and its extracted features were extensively used in most experi-
ments in this thesis. The only exception was the initial investigations where most insights
came from analysing the spectrum of the fault signals. Wavelets were used in the first
classifier design presented in section 4.2, as a powerful extractor, and when comparing the
predicting information of low- and high-frequency signals in section 4.3. When unsuper-
vised learning was applied to capture fault signatures, the wavelet was used as a benchmark,
resulting in insights deeper than initially expected. Due to its low time complexity, the
wavelet was also the only signal processing tool used in the prototype conceptualized as a
fault detection module presented in section 3.4.

Although they were used in the first classifier as an added feature extractor, the last
working version heavily relies on the wavelets and does not use any Fourier-based features.
The initial intention was to add the wavelet transform to complement the PSD features
as a tool to represent the transients in the fault signals. However, it was later realized
that the wavelet-based feature explained most of the predicting information in the signals
while being more computationally efficient. These features were at last joined by novel
measurements, presented in the next subsection, making the proposed fault detection
method more effective and fast. The last working version details, and the examples of its
performance, can be found in section 4.6.

3.2.3 Shift-Invarint Sparse Coding (SISC)

Regarding HIF detection, the characterization of fault signatures by high-level (hand-
engineered or not) features can be useful but also ambiguous fault descriptors. They lead to
classifiers resulting in high detection accuracy but can fall short at identifying the nature of
the causal behaviours responsible for the result. Methods relying on high-level features in
machine learning approaches are more prone to suffer from this constraint. All the results
presented here using signal processing techniques together with machine learning suffer
from this limitation.

Despite being able to classify specific HIFs accurately, such classification approaches
are unable (by the nature of the model) to point out the exact time-domain causal distur-
bances in the recorded signal’s time domain. In an effort to address such limitations, this
thesis presents the application of the Shift-Invariant Sparse Coding [140] technique as
the result of a quest to find an effective technique to describe the fault signatures. This
technique can capture patterns in the recorded signals, regardless of their position and con-
volution with other signals. The resulting patterns are uncoupled and deconvoluted from
each other, having their time and frequency domain characteristics individually analyzed.
These capabilities are especially useful for wideband signals (hundreds of kHz) such as
the ones recorded on the staged experiments.
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The VHIF signature extraction methodology is composed of two steps: dictionary
learning and basis function validation. The first is responsible for extracting the fault signal
patterns with the sparse coding technique, while the second validates some of them as fault
signatures. The need for the latter is given by the fact that the network background HF
signals are not negligible at the investigated bandwidth. In fact, the recorded signals are the
result of the convolution of influences from many sources: electromagnetic interference
(EMI) from AM radios, non-linear loads, network transients, and more. The signals from
these sources can have energies less or more intense than the fault signal transients. They
are represented in the resulting outcomes from sparse coding indiscriminately, despite
being fault-resulting behaviours or not. Hence, the task of correlating the found patterns
with fault occurrences needed to be addressed by a separate procedure. Such a need
certainly reflects some of the challenges of dealing with real sampled signals rather than
clean synthetic data from simulations.

The sparse coding methodology was developed as an image processing technique to
characterize the primary visual cortex in mammalian receptive cells [141]. The inspiration
came from the assumption that natural images have ‘sparse structure’, i.e., they could be
efficiently expressed as a small number of representations from a larger set of functions.
The representations, in the signal processing context, are the basis functions used to
describe a particular signal in a linear combination (as sinusoids in the Fourier Transform).
The larger set, on the other hand, is the whole dictionary of the possible functions used
to represent the signal. The relevance of this technique to this work comes mainly from
its ability to learn the most efficient dictionary of bases functions to represent signals in
a dataset, without any assumption about its prior distributions. In sparse coding, these
are often the most efficient basis functions resulted from different underlying convoluted
sources, which can be analyzed when uncoupled from one another. Hence, it is not
surprising that such a technique can be efficiently used to extract features in supervised
learning classification tasks [140].

The problem can be described as levering the access to a data set to learn efficient
low-entropy representations. Similar intentions can be found in the popular dimensionality
reduction method named Principal Component Analysis (PCA) [142]. Both techniques
were inspired by the hypothesis that the most efficient representations to describe a given
data set of signals would come from the data itself. Such insight was responsible for
the evolution of representation methods that relied on a predefined set of bases, such as
the Fourier or Wavelet transforms, to bases derived from realizations of the data [143].
However, differently from PCA, sparse coding does not assume that signals come from
a known probability distribution [141]. Not assuming a prior distribution for the signals
result in increasing adaptability when learning the basis functions but also comes with
the higher cost of being a much more complex problem to solve. As given by (3.25) and
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(3.26), sparse coding can be described as an optimization problem over two objectives:
the effectiveness of the bases at approximating the signals in a linear combination and the
sparsity of the representation.

min
a,s

m

∑
i=1

∥x(i)−
n

∑
j=1

a( j)s(i, j)∥2
2 +β

m

∑
i=1

n

∑
j=1

|s(i, j)| (3.25)

s.t. ∥a j∥2
2 ≤ c, 1 ≤ j ≤ n. (3.26)

The input signals x(i) ∈ Rp, i = 1, ...,m are assumed to be a linear combinations of
the dictionary of n basis functions a j ∈ Rp, j = 1, ...,n with coefficients s(i, j) ∈ R. β is a
positive constant that determines the trade-off between the fit of the bases and the sparsity
penalty L1 norm. The normalization constraint in (3.26) prevents irrelevant solutions that
have too small coefficients and very large bases. This problem is not a convex in s and a,
meaning that it can’t be directly solved in a trivial manner.

An efficient solution for the problem in (3.25) and (3.26) was proposed in [144].
The authors made use of the fact that, although not convex in s and a simultaneously,
the optimization problem becomes convex if any of these parameters are considered
individually. The two-step proposed algorithm first assumes the bases to be constant
vectors while it optimizes the coefficients. Then, oppositely, it freezes the coefficients
while optimizing the bases. Convergence is reached by the iterative optimization of these
two consecutive steps until the objective function value reaches its minimum.

Although efficient, this formulation suffers from a substantial constraint. Its effect
starts to become relevant for longer signals (higher values of p), where patterns can appear
in different locations (shifts). Examples of this are large images where a certain object
(pattern) may appear in different positions or audio recordings where a particular word
(pattern) may appear at any time. These unpredictable appearances have the consequence
of either limiting the analysis to piecewise parts of the signals or having different basis
functions with shifted versions of the same patterns. None of these represents efficient
scenarios.

The solution proposed in [140] for capturing the patterns in longer signals was to
conceptualize a shift-invariant version of sparse coding. In such a version, the basis vectors
can have a much smaller dimension than the input signal, which allows the capture of
smaller shifted repeating patterns. Nevertheless, as the first-mentioned formulation, it
also increases the complexity of the algorithm. The product of matrices a( j)s(i, j) becomes
a convolution, a( j) assumes a dimension smaller than p, let it be q, and the coefficients
become vectors s(i, j) ∈ Rp−q+1, as shown in (3.27) and (3.28). The challenging problem
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of optimizing the convolved bases was solved by modifying and extending the algorithms
proposed by [144]. It included mathematical manipulations, like the translation of the
variables to the frequency domain to solve a Lagrange Dual problem (convolution as
multiplication), and further efficient ways to solve for a large number of coefficients
resulting from the new problem framing.

min
a,s

m

∑
i=1

∥x(i)−
n

∑
j=1

a( j) ∗ s(i, j)∥2
2

+β

m

∑
i=1

n

∑
j=1

∥s(i, j)∥1

(3.27)

s.t. ∥a j∥2
2 ≤ c, 1 ≤ j ≤ n. (3.28)

When applying this technique, the user needs to set some hyperparameters: number of
basis functions in the dictionary, their length (number of samples), number of iterations,
batch sizes, and regularization parameter.

The number of bases, to be explored in detail in the results chapter, is probably the most
relevant to final results. A large number will lead to an extensive over-complete dictionary,
while a small one may not be enough to approximate the signals, resulting in large residuals.
Depending on the signal complexity, a large dictionary could lose its sparseness by having
too many redundant basis functions, while a small one could miss important patterns due
to its limited number. The length of the basis is also important in the sense that it would
be impossible to capture a pattern longer than a basis function. It basically represents
a time windowing effect, as the window size in a periodogram. The batch size is given
by the number of signals each iteration of the code optimizes on. A batch size smaller
than the total number of signal means that iterations will run on partitions of data. The
number of iterations should then be high enough to iterate over the same partition multiple
times. For example, a run comprising of a data set with 100 signals, a batch size of 20,
and 15 iterations would need 5 iterations to span the total number of signals and would
do it 3 times over each batch. Each iteration uses initial bases and coefficients resulted
from the last. Therefore, when a partition is re-learned, initials values for a( j) and s(i, j)

are incrementally evolved versions from the last time the same partition was learned. The
regularization parameter sets the threshold for error tolerance in the approximation of the
signals at each iteration. A small number is probably not beneficial since iterations would
take an unmanageable amount of time. The main intention is guaranteeing incremental
improvements over iterations. The initial tested values were inspired by the original work
[140, 144], then changed in many trial and error attempts. The hyperparameter search
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space was bounded by values which took anywhere from 12 to 48 hours to run. The
resulted learned basis functions are presented in section 4.4 from the results chapter.

The application of sparse coding captures all patterns (fault transients, EMI, and noises)
indiscriminately, creating the need for a procedure to measure the correlation between the
resulted bases or dictionary with fault occurrences. The proposed method here leverages
the existence of labelled data from fault and non-fault signals to calculate the correlation
between basis functions and fault signatures.

When testing dictionaries, the correlation measurement is given by the resulted accuracy
from a ML classification algorithm application. The features used are extracted using
the patterns described in the basis functions of the resulted dictionary. Inspired by the
theory of Convolution Neural Networks (CNNs), the extracted features are the result of
using the patterns as filters in a cross-correlation operation, measuring its similarity to the
input signal at all possible shifts. The convolved signal is then non-linearly summed, as
passed through a rectified linear unit (ReLU) activation layer and fed to the classifier as
a similarity feature. Each basis function is responsible for creating one feature in every
signal. Therefore, the number of features extracted from each signal is equal to the number
of basis functions in the testing dictionary.

To label an identified pattern as a fault signature, a correlation score for each basis on
a dictionary regarding fault occurrences must be calculated. The proposed method here,
in a similar approach to the dictionary evaluation, use the discriminative power from the
individual features as a measure of the variance between classes. At this step, each basis
is scored by the resulted maximum separability from a single linear split on its related
feature.

3.2.4 Post-processing

One of the original contributions presented in this thesis relates to a procedure adopted after
the sampled signal is processed before it is sent to the classification agent. The intention
of implementing such a procedure is to mitigate the effect of different conditions in the
network in the classifier performance, making it more adaptable and resilient.

The post-processing comprises comparing the calculated features from a newly sampled
sweep to a value calculated from a buffer of recent previously processed sweeps. The
implementation starts by filling a first-in-first-out buffer holding all the features calculated
in the last n seconds. A ninety-percentile equivalent is then calculated for each feature
of the buffer, resulting in a feedback vector with dimension size equal to the number of
features. When the newly sampled sweep is processed thereafter, its features are element-
wise divided by the feedback vector and fed to the classifier agent. What the classifier
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receives, therefore, is a ratio between the newly calculated features to the past state of the
network given by the feedback vector.

As getting the previous sweeps to a fault is infeasible in the analysed data set, an
equivalent approach had to be adopted. In the methodology used when sampling the staged
tests, recordings were only performed in the temporary period of the fault. However, there
was metadata informing the day that every test and background recording was produced.
This information was used to produce a feedback vector of features for each of the test
days, using the sweeps from background recordings. Hence, before feeding the features
of fault observations to the classifier, every test had its date information determined so its
features could be compared to the correspondent feedback vector.

3.3 Machine learning

As eluded before, the choice of employing machine learning to perform the present clas-
sification task was inspired by many reasons. The most decisive is simply given by the
task intrinsic complexity. The numerous proposed approaches and solutions discussed
in chapter 2 are clear evidence of how difficult detecting HIFs can be. Corroborating to
complexity described in the literature, no trivial solutions to discriminate between the fault
and non-fault observations in the analysed recordings were found. The data set advantage,
however, was that it represents a reliable and sizeable set of labelled data. The most promis-
ing tools for levering this labelled data are, undoubtedly, supervised machine learning
algorithms. The idea to use ML to solve this task is definitely not original, as proved by
its ubiquitous use even in the narrow field of HIF detection. This thesis methodology is
certainly inspired by the works in the literature proposing, with different approaches, the
application of some supervised learning technique. Due to their effectiveness in solving
general problems in many fields of science and engineering, machine learning techniques
are also accessible. It is not hard to find application programming interfaces (APIs) or
toolboxes for most popular programming languages in science such as Python, MATLAB,
R, or even C. MATLAB, for example, has the Statistics and Machine Learning ToolboxTM

[131], which comprises most of the presently popular machine learning algorithms. While
being the chosen programming environment for the work in this thesis, MATLAB also has
useful tools regarding data manipulation, signal processing, and more.

From the several task categories under the field of ML, most of the work performed
in this thesis relates to the supervised learning classification tasks. These techniques
are classified as supervised learning because it aims to build a statistical model from a
data set with observations labelled as distinct classes. As most of the work relates to the
tasks of discriminating between two classes, ‘Fault’ and ‘Non-fault’, the approaches could
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also be classified as binary classification techniques. The term classification is used to
express that the algorithm output can only assume discrete values, which represent the
classes of observations. If the algorithm was to output a probability estimation of an
observation belonging to a particular class, it would be classified as a regression algorithm.
Nevertheless, one can consider the application of sparse coding, as explained in section
3.2.3, as being an unsupervised ML approach. The application does not require labelled
data as basically cluster patterns of data as a way to sparsely represent the data set, which
are key aspects of an unsupervised learning algorithm. Other types of ML tasks not
explored in this thesis include active learning, reinforcement learning, meta learning, and
others.

The algorithms performing the classification task in this thesis are related to classical
or symbolic ML algorithms. Their complementary types are from a sub-field called deep
learning or connectionist ML algorithms. The choice for the former was not only due
to the author’s limited knowledge but also due to the concept of causality and data size.
Since symbolic techniques require symbols (referred to as features in this thesis), one
could argue that they are closer at explaining the causal relationship between input and
output. The features from the input, which are usually hand-engineered, are latent high-
level representations of the source of the discriminative information, i.e., the invariant
information between classes. In connectionist algorithms such as artificial neural networks,
it is troublesome to infer causation between input and classification output once the data
are not fed as high-level representations but mainly in raw form. The advantage of a
connectionist approach, such as deep learning, is that they usually perform better at most
general tasks like face, digit, and speech recognition. However, increases in performance
are usually seen for problems with extensively large data sets, resulting in black-box
models with reduced causality interpretability.

It is certainly the case that a bottom-up deterministic approach would be preferred
over a ML solution. If effective, such an approach would be able to demonstrate and
clarify all the aspects, factors, and characteristics involving VHIFs. Nevertheless, it is
somewhat safe to say, after many trials at having the insights necessary to employ a
bottom-up approach, that it is unlikely it would be found. It took a relatively short time,
conversely, to get promising results after the observations were properly organized to be
used in a ML approach. In fact, reliable results were achieve in a period short enough to
allow the investigation for more supportive evidence for the approach and phenomenon
understanding such as the comparison between the predicting information in the low- and
high-frequency signals, extraction of time-domain fault features, and the conceptualization
of a feasibility prototype.

Machine learning algorithms and concepts were applied in all the experiments presented
in the results sections, except for the initial investigations, section 4.1. Their most evident
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use was in the conceptualization of the detection method, presented in section 4.2 and 4.6,
which has a ML model in its core working as the fault classifier. From the first to the last
working versions, the features described in the previous sections of this chapter are used
in the ML model to propose a classifier capable of discriminating between three classes:
Voltage OFF, Non-Fault, and Fault. To acquire further evidence for the approach taken,
ML algorithms were also used to compare the predicting information content of the LF
and HF recordings in section 4.3. The experiment involved the extraction of the same
features from both domains to evaluate their discriminative potential using the ML concept
of information gain from decision trees. Further, in the same experiment, the features from
both domains were used to learn two classifiers based on the same algorithm, which are
then compared to infer insights about their predicting information content. After being
able to effectively classify the signals and generate evidence for this adopted approach,
experiments set to further explore the causality were performed in section 4.4. That entailed
using sparse coding as an unsupervised learning technique to extract fault signatures in
time-domain studied to infer causation. This original methodology, set to associate some
of the coded basis functions as fault signatures, also used machine learning concepts of
information gain and invariance to attest correlation. After the signals were correlated to
fault signatures, they were also used as novel features in the last working version of the
classifier.

If statistical learning techniques are going to be unapologetic used, however, one needs
to find a method to perform model selection. The sub-field of supervised ML classification
methods is still large enough to encompass numerous learning algorithms. Choosing
between them is not a trivial task because their methodologies are not necessarily linked to
the characteristics of the task to be solved. Therefore, a technique named cross-validation
was used to evaluate and compare all the tested ML models for a particular set of features.
In particular, most of the classification tests were performed using 10-fold cross-validation.
Doing so means randomly partitioning the dataset into ten equal-sized samples groups
and validating it ten times in an iterative process. At each iteration, nine of the ten parts
were used for training the classifier, and one was used for testing. The process ended in the
tenth iteration when all the partitions were used for testing. The main advantage of such
approach is that all the observations are used for both training and testing. Additionally,
as every observation is used for testing at least once, the overall accuracy translates to an
evaluation for the whole dataset. The use of every observation for testing does not take
place in different validation methods such as holdout.

The models were evaluated by comparing their performance with many classifiers with
standard MATLAB default parameters. Machine learning models such as discriminant
analysis, support vector machines, k-nearest neighbours, decision trees (and ensembles)
were considered. In respect to such comparison, the best results were given by methods
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based on ensembling decision trees; these include the methods of bagging or boosting a
set of decision trees. These methods, or even single decision trees, were so powerful at
performing this task that they were almost exclusively used in all performed experiments.
When they were not directly used as a classifier, variants or related concepts were used to
do feature selection/ranking.

3.3.1 Decision trees and ensemble techniques

Decision trees are hierarchical decision support tools where the incoming data go through
sequential binary evaluations until the output is provided. As they have a tree-like model,
the number of binary evaluations that an observation can go through it is referred to as
the depth of the tree. The tree starts from a root node, being the first evaluation point on
a single feature. The root points to other subsequent evaluation points, called as nodes
of the tree, which will be chosen depending on the value of the evaluated feature. The
binary evaluations continue until one of the ends of a tree is reached; they are called
leaves. Decision trees were historically done manually and used in operations research and
management due to their advantages. With the popularity uptake of machine learning in
the last century, they were quickly adapted to be used in data mining. The standard CART
(Classification And Regression Trees) algorithm was first presented in [145] and was soon
followed by many variations.

The most notable advantage of decision trees is their interpretability. Once a tree is con-
structed, it is fairly simple to apply it to any process. They are graphically human-friendly,
making it easy to understand how the decisions are being made in sequential evaluations,
even for non-experts. Decision trees handle big datasets, work with quantitative and
qualitative predictors, and easily ignore redundant variables.

Their most notable disadvantage is that they are greedy, meaning that they are heuristics
quickly converging to a local optimal solution. It might be the case for many problems that
a local optimal will approximate the global optimal solution, but it becomes more unlikely
for problems with higher complexity. The trees lack robustness in the sense that a relatively
small change in the training data can lead to a more significant change in the resulted tree
and final predictions. Therefore, decisions trees are usually called weak learners, having
high variance and may not generalize well.

The problems with decision trees can be exacerbated or mitigated depending on how
they are learned. The process of learning or constructing a decision tree includes problems
such as defining the depth of the tree, the size of the leaves, how the trees are pruned,
what are the evaluation criteria on the nodes, and more. If these factors are not taken
into consideration, the resulted tree can suffer from overfitting or underfitting the data set.
Overfitting is a concept that it is extremely relevant for any machine learning model; it
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can be thought as a scenario where the model starts to memorize the data set, instead of
using it to learn optimal decision boundaries. As it is not actually learning of underlying
pattern but only fitting the model to the data set, an overfitted classifier will not generalize
well, showing decreasing performance when classifying out-of-sample data. Underfitting
also results in decreased performance, but it is more related to a model that is not complex
enough to capture potential underlying patterns in the data. There are rules of thumb and
general guidelines to help avoid these problems; however, the primary tool to assess the
performance of any classifier is cross-validation. As previously stated, cross-validation
folds allow all the dataset to be used for training and testing. Therefore, when trying to
find the suitable parameters for the proposed model in this thesis — a process referred to
as hyperparameter tunning — the performance assessment tool was always the result of a
10-fold cross-validation.

A crucial part of learning decision trees is deciding the binary evaluation test to be
performed at each node of the tree. In the classic CART (Classification And Regression
Tree) algorithm, a measure called Gini Impurity (GI) is used to decide the binary test
performed on a single feature in the data set [145]; it represents a linear decision boundary
for one feature. The GI is the result of a calculation set to describe the chance of incorrectly
labelling an item in case they were randomly assigned. It can be calculated by following
Eq. (3.29), where J is the number of classes, i ∈ {1,2,3, ...,J}, pi is the probability of an
observation being corrected labelled in i, and pk is the probability of mistakenly labelling
an observation as in i. One can configure the CART algorithm to consider every data point
of a particular feature as a potential split. When doing so, the GI is used to evaluate the
potential splits to find the one that has the highest information gain. The procedure is
simple and can be summarized:

1. Select a data point of a particular feature.

2. Calculate the GI of data pre-split (parent node).

3. Calculate the weighted sum of the GI of both sides of the selected potential split.

4. Calculate the GI difference between the pre-split and post-split scenario.

5. Repeat for all the data points in the data set and select the one with the highest GI
difference as the binary test split.

GI =
J

∑
i=1

pi ∑
k ̸=i

pk = 1−
J

∑
i=1

p2
i (3.29)

The data point that has the highest GI difference is called the split with the highest
information gain and thus used as the evaluation criteria. In practice, this will result in a
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decision boundary that can best distinguish the classification classes when the data points
bound the possibilities of splits. It is an effective procedure but also part of what make
the decision trees to be greedy. When applying this algorithm, for example, the first (root)
node splits the data set in its highest information-gain point, and all the subsequent binary
tests (nodes) will only consider the data points associated with that decision. The decision
at the root node may just split a large part of the data set, biasing all the subsequent tests.

To overcome some of the decision trees shortcomings, ML researches proposed ensem-
ble methodologies where the predicting capabilities of many trees are combined in one
classifier. The main goal of this approach is to increase the accuracy of individual trees by
usually randomizing (random forests) or/and averaging (bootstrap aggregation) the results
of many learned trees. Commonly known strategies are random forests [146], tree bagging
[147], and tree boosting [148]. These methodologies performed well for all the tasks that
they were used, usually over-performing any other technique tested in cross-validation
results.

Bagging is based on the statistical concept of bootstrap sampling, where many replicas
of the data set are generated by random sampling. The replicas have a smaller number of
observations than the original data set and are generated by randomly sampling it with
replacement. Each one of the replicas is used to learn a decision tree, which are further
averaged in a single classifier. The averaging in classification tasks can be easily performed
by following a vote majority scheme. What separates the random forest methodology from
simple bagging is that not only the observations are randomly sampled when replicating
data sets, but their features are also bootstrapped. If all the features are included in the
replicated data sets, the trees are still going to be biased towards the feature that presents
the first highest information gain. The effect of bagging, therefore, is basically reducing
the variance of the model without increasing its bias. Having a lower variance gives more
robustness to the model, making it less vulnerable to noise due to the averaging of many
biased decisions.

In addition to result in a classifier with increased performance, the methodology for
bagging can also be used to generate many interesting insights. When the random sampling
is made, there is a sizeable part of the data set that is omitted in each of the replicas. These
observations, referred to as ‘out-of-bag’, can be used to investigate important concepts
in ML such as feature importance/selection and validation. The out-of-bag observations
can be used in a similar way to a holdout validation method where part of the data is
used for training and another for testing. It is more insightful in a sense that, due to the
bootstrapping performed on the features, one can have an estimate of the predictive power
of particular features. The estimate can be performed by averaging predictions of trees
in the ensemble for which the observations are out of the bag. If a random permutation
is applied to the features while testing on the out-of-bag data, one can then get a feature
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importance estimator. Most of the qualitative statements regarding the effectiveness of
a particular group of features made in chapter 4 are based on the insights given by these
evaluation capabilities of bagging.

Boosting was another ensemble technique used, especially in the first published version
of the classifier [55], which produced some of the highest results in cross valuation. It
consists of an averaging and weighting technique in which many learned trees are used to
reduced bias and variance. The main difference between boosting and bagging is that the
former weights the votes of the many weak learners instead of only averaging them. As
the weights are iteratively updated, observations that were misclassified from trees of past
iterations receive a higher weight than rightly classified ones. Such a technique has the
effect of making the trees to focus more on observations that are, in a sense, more difficult
to classify. Between the boosting strategies tested in the present methodology, the one
associated with best results is known as AdaBoost [148]. It trains learners sequentially,
and for every learner with index t, it computes a weighted classification error as in (3.30).
Where, xn is the feature vector from the observations, yn is the classification label response
vector, ht is the prediction of the learner with index t, I is the indicator function, and
d(t)

n is the weight of observation n at step t. Training such classifier can be thought as
the stagewise minimization of the exponential loss E given by (3.31), where wn are the
observation weights normalized to add up to 1, and f (xn) is the predicted classification
score.

εt =
N

∑
n=−1

d(t)
n I(yn ̸= ht(xn)) (3.30)

E =
N

∑
n=−1

wne−yn f (xn) (3.31)

A last note on the use of a concept related to decision trees in feature raking should
be noted. In the experiments performed to compare the predicting information content
of low- and high-frequency signals, features from the two domains were not only used
to learn classifiers but were only individually ranked. The concept of decision trees used
to rank the features individually was the previously discussed Gini Impurity. As they
are used in CART to define the binary evaluations of the tree nodes, they can be used to
find the feature with the higher discrimination power between classes in the measurement
set. The resulted values for each feature can then be ranked and compared between the
two types of signals from the LF and HF channels. The ranking of the best splits was
performed by using their post-split GI (weighted sum), referred to as Impurity Index (I.I.).
The smaller this index is, the more pure is the classification zones given by the decision
boundary, representing better discrimination of the data points. Further, in order to add
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to this comparison, the three best splits in the whole feature set are then used to train a
simple decision tree validated by cross-validation. It is noteworthy that the procedure of
learning the classifier only has a validation purpose. In this case, it is a way to demonstrate
the potential of these features at classifying the signals since the dataset is going to be split
into test and training sets, representing the generalization on out-of-sample data.

3.4 Prototype and hardware experiments

Part of the experiments and methodology conceptualized to gather evidence of the potential
of the adopted detection approach was producing a proof-of-concept prototype the results
from such undertaken serve as the basis for further claims made regarding the feasibility
of a prototype. The following sections describe the methods adopted for the hardware and
software pieces, as well as the experiments proposed to evaluate the prototype performance.

3.4.1 Hardware set-up

The experiment set-up was composed of three distinct parts: an ordinary desktop computer,
an external USB sound card, and a single-board computer (Beaglebone). The desktop
computer’s main role was to load the original signals, generate, and stream audio signals
which represented the network’s HF voltage sweeps from both classes of observations.
The USB sound card is an ADC that sampled the audio signals sent by the desktop via a
standard TRS cable, representing a data acquisition hardware. With signals digitized and
recorded, the board embodied the calculation and decision making module, running the
proposed signal processing and machine learning algorithms.

When the set-up is running, the desktop computer basically plays the audio signal
through the onboard audio codec, Realtek’s ALC221, which constitute a 24-bit DAC
(Digital to Analog Converter). The analog signal is transmitted to the sound card, Sound
Blaster Play! 3, which is a simple commercial 24-bit ADC connected to the board’s USB
port. Regarding their frequency rates, streaming and sampling are set at 48 kHz. At this
rate, one second of sampling relates to the 40k values of a voltage sweep, plus a small
space of zeros (remaining 8k), in between sweeps. This approach is convenient since the
sweeps were also sampled at every second; the small space helps to differentiate each
recording and to compensate for any small sample delays that the set-up might introduce.
The board is just a small computer that has an ARM 720 MHz processor, 256 MB of RAM,
and runs a Linux distribution (Debian) for embedded/IoT devices. The set-up is illustrated
in Fig. 3.1, and its respective diagram in Fig. 3.2, with the three distinct hardware parts
outlined by different colours. All hardware used in this scheme are commercial, low-cost
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Figure 3.1. Experimental set-up. Blue lines indicate analog and digital signal paths, while the
orange line represent a power/communication path.

Figure 3.2. Experimental set-up diagram. Desktop computer in blue, external USB sound card in
gray, and board in orange.

products that represent a crude and restricted implementation scenario to attest to the
method’s feasibility.

It is fair to expect, given such a simple hardware arrangement, that sampled signals
would result in low Signal to Noise Ratio (SNR) values. This assumption is further
confirmed and often not desirable, but the constructed low SNR environment was critical
in demonstrating the resilience and feasibility of the developed prototype against noise. In
this manner, the high noise environment was valuable to the presented results herein but
definitely something to be mitigated when constructing a full prototype subsequent to this
proof of concept.

3.4.2 Software set-up

Building software interfaces for different codes and hardware manipulations was certainly
the most challenging part. Sampling meant accessing the external Pulse-Code Modulation
(PCM) to record streamed values. Processing and classifying implied exporting the codes,
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conceptualized in MATLAB environment first, to another language. Moreover, deploying
the codes having all the functions in a common language in a cross-compilation from a
Windows machine to a Linux ARM architecture executable.

When writing the ensemble of all functions and interfaces, the C programming language
was used. In the main code, a buffer of 48k float values is set to store the sampled signals
while calculations take place. In this manner, one second of sampling is needed, in the
established sampling rate, to fill all the buffer spaces. This buffering results in the first
detection delay, also of one second. It is in this buffering delay period when all the
calculations of the previous sweep take place. While the next sweeps buffers, the present
one is being processed and labelled with the classifier result.

Fortunately, from MATLAB toolboxes to open source APIs, there was a lot of online
support for such tasks that avoided the need for coding these pieces from scratch. Ac-
cessing PCM samples was possible due to a software framework, Advanced Linux Sound
Architecture (ALSA), that provides APIs for sound card devices in Linux. For exporting
native codes to C language, a toolbox called the MATLAB Coder [149] was used. It can
export functions to C language by generating source files directly from MATLAB codes.
The ensemble and compiling of all the source files were made in the Microsoft Visual
Studio Community environment, which enabled cross compilation to the ARM architecture.
Despite other minor tools, these were essential software that not only facilitated hardware
manipulation but also made it possible to deploy full machine learning models to the board
embedded system.

3.4.3 Experiments

Four experiments were conceptualized to evaluate the noise introduced by the quantiza-
tions, validate the used classifier, and test the board’s performance in extracting features,
processing, and classifying signals. In the first, noise quantification was performed by
streaming, recording and calculating SNR and error measurements of an arbitrary number
of signals. The classifier, based on the new proposed feature extraction approach, was
validated in the second experiment by a 10-fold cross-validation approach. The third and
fourth were set to test the classification performance of the prototype with both in sample
and out of sample data using all the tests from the described dataset.

Noise Quantification

When streaming and sampling signals, two pieces of hardware were major sources of quan-
tification noise: the DAC in the desktop computer and the ADC on the board. Noise evalu-
ation of the whole set-up is, nevertheless, more difficult to estimate, and thus performed
by an empirical approach. Rather than relying on estimations by hardware specifications,
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the adopted approach consisted of performing four measurements on an arbitrarily high
number of samples. The following results were derived from calculations made on 25
random observations of 40k samples each, resulting in one million streamed and sampled
values.

Noise quantification was thus performed by comparing four standard signal measure-
ments calculated from original and sampled signals. These were SNR, L1, L2, and Lin f

errors norms. Eqs. (3.32)-(3.35) respectively describe how the measurements were calcu-
lated, where, x1

i is the original signal sequence, x2
i is the discrete signal recorded by the

board, and σ2 is the variance.

SNRdB = 10log10
∑

n
i=1 |x1

i |
2

∑
n
i=1 |x1

i − x2
i |

2 = 10log10
σ2

signal

σ2
noise

(3.32)

L1err =
∥x1
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i ∥1

∥x1
i ∥1

×100 =
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i − x2
i |

∑
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i |
×100 (3.33)

L2err =
∥x1

i − x2
i ∥2

∥x1
i ∥2

×100 =

√
∑

n
i=1 |x1

i − x2
i |

2√
∑

n
i=1 |x1

i |
2

×100 (3.34)

Lin f =

(
1−

∥x2
i ∥∞

∥x1
i ∥∞

)
×100 =

(
1− supi |x2

i |
supi |x1

i |

)
×100 (3.35)

Classifier validation

As feature extraction modifications were made in the data process step previous to the
supervised learning part, validation of the classifier had to be again performed. The
validation was needed to test the classifier’s ability to generalize out of sample data and
the existence of overfitting in the learning process. Standard practice was adopted, and
the 10-fold cross-validation method was performed. Doing so meant partitioning the data
set in ten equal parts. All parts except one were used for training and the remaining one
for testing. This is repeated iteratively with all parts until all samples are used for testing
exactly once.

Classifying sampled data

Testing the classifier on the same data used in training has no value regarding generalization
or classification performance assessment. Nonetheless, it is a meaningful experiment to
investigate the noise effects introduced by the experimental set-up. With this goal in
mind, the third experiment consisted of training the classification algorithm with the whole
data set and deploying it to the board. The desktop then streamed all the original signals,
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sampled, and classified by the board. It was expected that the classification result given by
the desktop would differ from the board, giving a quantitative measure of the noise effects
in the decision boundaries created by the classifier.

Split set

The fourth and last experiment had the same goal as the third, but doing so in the classical
dataset split approach. Here, the data were partitioned into two equal parts. One was used
to train the algorithm, and the other to test it. The trained algorithm was deployed to the
board and tested with the same out of sample data as the desktop. The comparison of
classification accuracies was then presented as a quantitative measurement of the feasibility
prototype’s performance.

3.5 Methods summary

The previous sections discussed the fundamental parts of the methodology adopted in
this thesis. It could also be organized and classified in sequential segments of work:
initial analysis, pre-processing, processing, post-processing, classification, and validation
experiments. Apart from the first and last segments, the other parts reflect the work related
to the main goal of the thesis — the production of a VHIF classifier and detection method.

The initial analysis was composed of brief investigations on individual signals, in
a search for discriminative information of fault occurrences. Such investigations were
performed mainly visually, with the help of spectral analysis tools such as periodograms
and spectrograms. Although simple, valuable insights related to harmonic behaviour and
high-frequency information content were captured.

The favourable initial results gave confidence to the investment of time and effort
to conceptualize the other main segments. The pre-processing comprised the cleansing
of problematic tests, the creation of a database of labelled sweeps (‘Fault’ and ‘Non-
fault’), and the filtering of signals as a pre-processing measure. The processing part was
an ever-changing segment due to the continuous learning and testing of effective signal
representation tools. The main goal of it was to extract the features, or discriminative
information, in a consistent and representative way before classification. The first feature
extractors were periodograms and resulting frequency components, which later was merged
with the wavelet transform and features calculated its coefficients. Fourier-based features
were further dropped out, with the last version of the classifier using a combination of
wavelet- and fault signature-based features. The latter is extracted from filter-like basis
functions learned from the application of the unsupervised learning technique called shift-
invariant sparse coding. Before sending to classification, however, a method developed
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as a post-processing tool is applied. Its main goal is to help the classifier to cope with
different environmental conditions and regular changes that the system might experience
throughout the day. In a real application, it compares the just-calculated features from a
newly acquired signal to a trend of average recent, past calculated features. These new
values are then sent to the classifier, which is a machine learning algorithm trained from
the database of sweeps. The algorithm is an ensemble of decision trees method known
as bagging or random forest, which over-performed all the classical machine learning
algorithms previously tested.

Validation of the classification algorithm was always performed by 10-fold cross-
validation, but more experiments to support the adopted approach were also produced. The
first experiment was conceptualized to support the decision of using high-frequency signals,
comparing the discriminative information content between low- and high-frequency signals.
Doing so meant extracting Fourier and wavelet-based features from both domains and
using them to learn individual classifiers that had their performance compared. The
comparison was also performed on a feature-by-feature basis by ranking the best linear
discriminator of each respective feature. To support the claims of robustness to noise and
real-time capabilities, a low-cost prototype composed of a card-size microcontroller and
simple ADCs was also produced. Finally, to prove and illustrate the fault signatures in
time-domain, the sparse coding technique was used to learn efficient signal representation
basis in the data set. By using cross-correlation and linear discriminators, the correlation
of the basis functions to fault signals was calculated, with the highest ones labelled as
faults signatures. Discrete, small experiments were also produced throughout the research
period, leading to modest insights that will be commented in the next Chapter — Results.



Chapter 4

Results

Chapter 4 presents the outcome of the experiments described in Chapter 3 with minimal
commentary regards their implications. For a detailed description of their relevance,
practical implications, and constraints, please refer to Chapter 5: Discussions.

Brief noteworthy points need to be mentioned to make this presentation clearer. It
mainly refers to the required substantial adjustments made to the methodology during the
research period. Although the aims and general goals of this thesis suffered no significant
changes, the methods applied, signal representation techniques, and data considered did go
through many modifications. The results presented in the following sections were obtained
between time intervals where iterations of adjustments were performed and validated. The
results were also published in between these periods. The following presentation describes
the outcome of the experiments closely resembling the form and order they were obtained.
Adopting this presentation approach does not only inform the reader about the experiments
results but also to reveal insights had throughout the research period. It is hoped that
such findings will create supporting evidence for particular methods, possibly saving time
of individuals undertaking similar tasks. To bring to the reader up to date, nevertheless,
the final section of this chapter is dedicated to describing the final version of the results,
working method, and examples of performance.

4.1 Data investigation and initial findings

Comprehensive data from the Vegetation Conduction Ignition Test project was made public
by the Victorian Government [49]. Accessibility to the fault recordings, however, was
particularly demanding due to the released data file format. Staged tests were recorded as
individual files with a format defined by the data acquisition hardware company (HBM).
Fortunately, the company supplies a software package that facilitates importing the data
to the MATLAB environment. After familiarisation with fault recording files and coding
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a file-reading interface, efficient data manipulation and visualisation was achieved. As
an example, Fig. 4.1 illustrates the LF and HF recordings of the test #36. The current
conduction started around 3.82 s into the test with an initial fault current of 0.05 A, reaching
its final value at 0.9 A, before ending in flashover. Such a final state can be attested by the
quick rise in the fault current at the end when the amplitude gets close to 10 A.

0 20 40 60 80 100 120
Time (s)

-2

-1

0

1

2

V
o
lt
a
g
e
 (

V
)

104 Voltage - LF Channel

0 20 40 60 80 100 120

Time (s)

-10

-6

-2

2

6

10

C
u
rr

e
n
t 
(A

)

Current - LF Channel

(a) Low-frequency channel recordings.

-15

-10

-5

0

5

10

V
o
lt
a
g
e
 (

V
)

Voltage - HF Channel

-0.02

0

0.02

C
u
rr

e
n
t 
(A

)

Current - HF Channel

(b) High-frequency channel recordings.

Figure 4.1. LF and HF recordings from test #36.

Initial investigations were enough to produce relevant insights about the background
noise, network, and vegetation fault behaviour. The background noise was mainly com-
posed by narrowband signals around 10 kHz and radio signal carriers at frequencies higher
than 300 kHz. The PBSP team pointed out the sources of the multiple narrowband signals
around 10 kHz sources to be large industrial loads operating in the system. The higher
frequency carriers are most probably related to military and maritime radio navigation
from 300 to 450 kHz [150] and AM radio broadcasting from 623 kHz to 1 MHz. Examples
are the ABC National radio (623 kHz), 3AW (693 kHz), ABC Gippsland (721 kHz), 771
ABC Melbourne (774 kHz), Sport 927 (927 kHz). The blue trace of Fig. 4.2 illustrates the
voltage power spectrum density of a staged fault HF recording, moments before power
was supplied to the test rig (background noise). The orange trace represents power spec-
trum density moments after the energisation of the test rig. The signal around 10 kHz
was immensely amplified, pointing out its source to be inherent from the grid. Intense
narrowband signals from 100 to 200 kHz also appeared. In the report, they were associated
with interference created by large grid loads.

Significant observations regarding the influence of the staged faults in the voltage HF
signals can be made by superimposing power spectrum densities plots. The two curves
in Fig. 4.3 represents the HF components of signals extracted from test #36, illustrated
in Fig. 4.1, moments before and after fault conduction started, i. e., pre- and post-fault.
The test was performed around 3 PM with a branch place in between an energized and an
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Figure 4.2. Power spectrum density of the background noise and grid voltage.

earthed conductor. Although it did finish in a flashover, the power density representation is
from moments after the fault current reached 0.5 A The superimposed plots are effective
at illustrating the influence of the fault in the HF signals. The most noticeable difference
is the added wideband signals from ∼ 50 to 600 kHz. Such a significant comparison,
however, could not be performed for every test on the data set. As previously mentioned,
only a few tests had the voltage source switched ON before the vegetation contact, test
#36 being one of these. In most tests, the current conduction started immediately after
energisation since vegetation contact was made before its recording.
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Figure 4.3. Comparison of the pre- and post-fault power spectral density of voltage signals.
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As another form of visualisation, Fig. 4.4 shows the spectrogram of the same test. One
can observe that the frequency components higher than 500 kHz, and the ones around 10
to 15 kHz, remain approximately constant throughout the test. The same cannot be said
for the frequency component in the range of 50 to 400 kHz, especially in the area close
to 130 kHz. It is important to note that test #36, as illustrated in Fig. 4.1, start seconds
before the recording. All the sudden change happening at the beginning of the timeline in
Fig 4.4 is the effect of the minimal fault current of less than 0.1 A. One can also observe
the pivot in the frequencies, and the vanishing of the strong 130-kHz centred components
at the end of the timeline in the graph. The time ticks in Fig. 4.4 is not the same as Fig.
4.1 because the spectrogram is calculated from HF data, which is a concatenation of many
20-ms sweeps. The beginning of the fault in this image is before the timeline reaches 0.1 s,
and the end is around 2.4 s.

One of the most significant initial findings came from observing the harmonic content
of some of the tests. The observation was performed by comparing the harmonic content
of the fault main current (50 Hz) in two different moments: 5 and 100 seconds after fault
inception. Fig. 4.5 shows five cycles of the power frequency from the fault current in
time and frequency domain at these two different moments. In the early stage, the current
waveform presents close to linear behaviour, with low harmonic content, whereas the
latter stage shows a relevant harmonic distortion. Although it might seem trivial, this
phenomenon should be widely relevant to the HIF detection field, especially regarding
the niche related to vegetation faults. The relevance, to be further discussed in the next
chapter, is given by the contextualization of two facts. The first is that many HIF detection
methods proposed in the literature rely on the fault contribution to low-order harmonics

Figure 4.4. Spectrogram of the voltage sampled by the high-frequency channel.
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Figure 4.5. Comparison between fault current in time and frequency domain of 5 and 100 seconds
into the fault.

[86, 99, 101]. The second is given by one of the PBSP program findings, which states that
fire ignition risk will not be severely reduced if these faults are not detected in five seconds
or less [4]. If the insight represented in Fig. 4.5 in fact generalizes, it could prevent low
harmonic-based methods from reducing fire risk, even if they are effective. Further results
comparing the LF and HF information content presents evidence that such an effect is
probably generalized in the tested vegetation species.

One of the sources of the fault signals observed in the HF voltage spectrum was partially
revealed in the initial investigations. The increases in frequency components shown in Fig.
4.3 was observed to be likely related to fast step discontinuities in the fault current created
by the high non-linearity of the vegetation fault impedance. The observation was inspired
by insights presented in the project’s final report [4] where fault current discontinuities in
the HF signals were followed and analysed. As an example, Fig. 4.6 shows a spike in the
fault current and the voltage response in time and frequency domain from the HF channel.
The frequency domain shows that the responses in the voltage oscillate with a frequency
centred at approximately 130 kHz. Such response matches the frequency components
increase around 130 kHz, as shown in Fig. 4.3, pointing it to be one of the sources of the
added transients.

To illustrate the phenomenon consistency, Fig. 4.7 and 4.8 display the plots of power
density spectrum of two more tests that had pre- and post-fault recordings. Those are tests
#14 and #916, respectively.
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Figure 4.6. Fast discontinuities in the current and voltage waveform and voltage frequency response.
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#14.
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Figure 4.8. Comparison of the pre- and post-fault power spectral density of voltage signals of test
#916.

4.2 Classifier design

Initial investigations results were significant enough to endorse the hypothesis that the
HF signals might carry sufficient discriminatory information to support a VHIF detection
method. Nevertheless, many steps related to data pre-processing were still needed to be
taken before conceptualising a classifier. Most were related to generalising data processing,
cleansing, and labelling.

4.2.1 Data preprocessing

After being able to access all tests recording data, anomalies that could negatively influence
results were identified and filtered. Some tests recordings were missing or had corrupted
data, making their use impractical. Current conduction was not present in every test,
especially ones using grass as the conducting surface. Grass tests usually have polarising
results by either having very low impedance and intense conduction or not conducting at
all. In some tests, current conduction was highly intermittent with short conduction times.

Inspired by the staged faults report, a portion of the tests was chosen to be arbitrarily
filtered. The report labelled some recordings as invalid, although the reason was not fully
disclosed. It also stated in one of its findings that fire ignition risk significantly increased
for currents higher than 0.5 amperes. This finding inspired the decision of excluding faults
that did not meet such a threshold and to adopt it as the initial time in further data analysis.

From the 1038 tests allegedly performed by the program, 994 had accessible recordings,
and 568 remained after the described labelling and filtering process. 351 were ‘phase-to-
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earth tests’, 193 were ‘phase-to-phase tests’, 23 were ‘bush tests’, and 1 was a ‘grass test’.
In respect to the effective current threshold value of these tests, 5.11% of the experiments
were limited to 0.5 A, 50% to 1 A, 39.96% to 2 A, 4.58% to 4 A, and 0.35% were not
classified.

An equal number of observations (HIF and non-HIF) was considered to avoid bias in the
classification. The analyzed non-HIF observations originated from 11 voltage background
recordings made between February 24th to 27th of 2015. Each run was performed in three
different periods of each day, resulting in 719 non-fault observations. 548 sweeps were
randomly picked from these observations for balancing and added to 20 sweeps of white
Gaussian noise. The latter was used to help teach the classifier not to mislabel a situation
where there is no connection to the voltage source (supply off) as a fault occurrence.

4.2.2 Feature extraction

As stated in the methodology, many trial and error attempts to find suitable signal features
with high predictor potential were made. By the time the classifier methodology was pub-
lished [55], the best performing method comprised a combination of the wavelet detailed
coefficients peaks, energy, entropy, and Power Spectral Density (PSD) measurements.
Although wavelet features alone resulted in high accuracy (+90%) in the classification, fur-
ther analysis showed that the feature group could still be enhanced with frequency-domain
measurements (PSD).

When utilising the wavelet multi-resolution analysis (MRA), the output decomposition
relates each level to a specific frequency range of the sampled signal. The upper limit of
the frequency pass-band in Hertz of each detail coefficient is approximately given by (4.1),
and the lower limit by (4.2), where Fs is the sampling frequency and n is the detail level.
Each detail coefficients of a signal sampled at 2 MSa/s in the MRA decomposition results
in frequency ranges given in Table 4.1.

Fbup =
Fs
2n (4.1)

Fbdown =
Fs

2n +1
(4.2)

Finding the optimal level of decomposition is not a trivial task. One needs to understand
how much information the next level of decomposition might give and the implications for
the problem at hand. In this case, however, the signal representation problem is bounded by
the fact that signals were passed through a high-pass filter with a 10 kHz corner frequency
before recording. The implication is that detailed coefficients greater than the 7th level
(7.81 to 15.62 kHz) are not going to provide any meaningful information. Therefore, a
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Table 4.1. Frequency range of each detail coefficient

Detail number Frequency range

1 500 kHz∼1 MHz

2 250 kHz∼500 kHz

3 125 kHz∼250 kHz

4 62.5 kHz∼125 kHz

5 31.25 kHz∼62.5 kHz

6 15.62 kHz∼31.25 kHz

7 7.81 kHz∼15.62 kHz

choice to do an exhaustive search from level 1 to 7 was made. By associating the detailed
decomposition levels with the accuracy given by the classifier, it was found that no accuracy
was gained for levels of decomposition greater than four levels.

There is a repeated argument that the efficiency of the DWT at representing transients
may be heavily influenced by the choice of the mother wavelet [11, 118]. Aiming at
investigating such a claim, a prior comparison was executed concerning possible choices
of many mother wavelets. The evaluation compared the performance of different wavelet
families such as the Haar, Daubechies, Symlets, Coiflets, BiorSplines, ReverseBior, and
DMeyer, in their different scales. The performance indeed changed regarding different
choices, with the sym4 (Symlets) giving the best overall accuracy. A reasonable explanation
for that is given by the similarity between the mother wavelet waveform and the transients
created in the HF voltages signals, which have origins on the fast step discontinuities in the
HF current. However, the maximum difference in overall accuracy was about 1% between
different wavelet families. It did not corroborate with the critiques made by researchers in
this particular studied case.

Feature selection from wavelets was performed with support from the previously
cited class, ‘Tree Bagger’, from the Statistics and Machine Learning Toolbox. More
precisely, its built-in function for measuring features importance. The process is given by
the permutation of the feature order across the observations in the dataset and the resulted
effect on the classifier accuracy. Based on it, the features were selected and can be listed:
sum of absolute coefficients for 1st, 3rd and 4th level; 1% of the top peaks from 3rd level;
and energy percentile of 3rd level.

As the whole HF spectrum components showed relative increases in the presence of a
fault, an investigation on reliable and simple PSD features was also considered. The feature
selection from the many frequency components was performed with the same method
mentioned above. The estimation was performed by the Welch’s periodogram technique
with 450 frequency bins (0 to 1 MHz), a window size of 10k samples, and 50% of window
overlap. Peaks in three different ranges showed a strong correlation with fault occurrences:
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approximately 350-370 kHz, 770-775 kHz, and 890-901 kHz. These density power values
were used together with the wavelet features, adding to the total of eight features. Please
refer to the Methods subsection 3.2.1 for a comprehensive explanation on how the wavelet
and PSD features were calculated.

4.2.3 Classification algorithm

The choice of the type of classifier was made by comparing the performance of various
classifiers with standard MATLAB default parameters. Machine learning techniques such
as discriminant analysis, support vector machines, k-nearest neighbours, decision trees
(and ensembles) were considered. In respect to such comparison, the best result was
given by the boosting the decision trees technique. Decision trees split the data points
strategically in binary decision nodes with indicator functions that evaluate each feature
to classify an observation. They can handle big datasets, work with quantitative and
qualitative predictors, easily ignore redundant variables, and have relatively high levels of
interpretability.

The task of choosing the classifier, however, took place before the feature selection
procedure where all the calculated features were given as predictors and overall accuracy
was adopted as the technique performance evaluation. The tested classifiers, using 491
predictors, can be listed in ascending performance order: Quadratic discriminant (68.2%),
Linear discriminant (77.2%), Weighted KNN (K-Nearest Neighbour) (86.7%), Fine Gaus-
sian SVM (87.1%), Fine KNN (87.7%), Linear SVM (88.7%), Quadratic SVM (91%),
Complex decision tree (94.9%), and Boosted Trees (98.06%). Given the relatively large
dataset, all performance results were given by an average of the 10-fold cross-validation
procedure.

It is probably worth remembering that the cross-validation technique is just a way to
test a statistical classifier efficiently. In 10-fold cross-validation, for example, the data set
is partitioned in ten equal parts. In each fold, one part is separated for testing while the
others as used to learn the classifier. By the end of the ten folds, all parts have been used in
testing at least once; hence all the data points are used to learn and test the model. When
dependability is discussed, it refers only to the percentage of positive (fault) observations
that were classified as such. The security only represents the percentage of negative
(non-fault) observations that were classified as negative. The overall accuracy includes all
the observations, representing the percentage of classified observations that matched their
real label.

After the classifier selection, adjustments of parameters, and feature curation, the
resulting performance can be expressed by the confusion matrix shown in Fig. 4.9. This
matrix is commonly used in the machine learning field to describe important features
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Figure 4.9. Classifier confusion matrix.

from a proposed method. In HIF detection research, these numbers can infer important
parameters such as dependability, security, and overall accuracy. The diagonal terms of the
matrix, given by the green blocks, represent accurate classification, while the remaining
terms show the occurrence of mislabelling. In this case, the first term (1,1) is related to
Non-HIF observations being labelled as such, i. e., it translates the security of the classifier
(99.47%). The second diagonal term also represents accurate classification but now for
HIF observations, i. e., the dependability of the classifier (96.65%). 19 HIF observations
were misclassified as Non-HIF and 3 Non-HIF as HIF observations. If aggregated as the
total overall accuracy, a result of 98.06% is achieved.

The method’s security is undoubtedly the most relevant result from learning this
classifier. It is fair to assume that, for a HIF detection method, security should come as a
priority over dependability. As previously discussed, and further explored in the Discussion
chapter, a false positive may lead to severe undesirable consequences considering load
shedding priorities.

4.2.4 Classifier validation

A common practice to validate HIF detection methods is to test the proposed algorithm
against data from simulated network switching transients. However, this practice is more
relevant for proposed HIF detection algorithms that are current, low-frequency methods
(as most in the related literature), which may be greatly affected by such transients. The
solution presented here is a voltage and high-frequency based method, slightly diverging
from the main goal of such validations. Although less informative, these simulations
can still be useful to demonstrate the classifier’s security towards simplistic transients
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models. To that end, simulations of the given disturbances in SimulinkTM environment
were performed.

The 4-bus IEEE test node feeder was used to simulate the transients. All its details
and characteristics can be found comprehensively described in [151]. The most relevant
reasons for this choice were its similarity to a dedicated feeder, like the one where the real
tests took place (a short feeder), and the fact that the 4-bus feeder was a system made public
to test different transformer connections. The latter is relevant because the original feeder
was part of a three-wire distribution system where the transients and faults characteristics
can severely change when considering the existence or absence of solid grounding.

The simulation used a step-up transformer (12.47/24.9 kV) set-up, connected in a Delta-
Delta configuration. The connected load is linear, with 6 MVA, and 0.8 lagging power
factor. The simulated transients were the normal switching events that usually concern
HIF algorithm’s security: transformer energisation (24.9/415 kV, no load), capacitor
energisation (1 and 2/3 of the system’s Q), load switching (1.5 MVA, overloading the
transformer in 25%), and non-linear load switching (also 1.5 MVA). The time step in the
discrete simulation was the same as the sampling frequency in the tests, i.e., 5.10−7 s or 2
MHz, with data also fed through a 10 kHz corner frequency filter. Moreover, in regards to
noise consideration, white Gaussian noise was added based on the average power of noise
in the background noise recordings from the real tests (same noise power). The switching
times were simulated considering eight equidistant angles, from 0 to 315◦, and the most
severe transients are illustrated in Fig. 4.10.

After simulated, filtered, and added noise, the signals were sliced in sweep length sizes
and fed into the classifier for testing. None of the 40 different experiments was labelled as
faults.
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Figure 4.10. Illustration of the simulated transients. (a) Transformer energization (b) Capacitor
energization. (c) Load switching. (d) Non-linear load switching.
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4.3 High-frequency signals importance

Having an effective classifier learned addressed a significant part of the goals of this
thesis but not necessarily justified the adopted HF-based methodology. Working with
HF signals can be more demanding and costly since it requires high-speed sampling
devices and powerful processing capabilities. Such pressing requirements can be seen
as strong constraints or may appear as reasonable criticism from researchers or industry
when evaluating the solution. For this reason, aiming at highlighting the relevance adopted
approach, the author decided to pursue a comparison of the predictor information content
between the LF and HF signals. Such results can reveal the importance of having the
onerous but powerful predictor information present in the high-resolution signals.

Since the team undertaking the project had the intention to analyse frequencies up
to 1 MHz, the tests also needed to be sampled at a rate of 2 MSa/s. Due to the amount
of data that is generated when sampling signals at such a high rate, they decided to use
a sweep sampling method in the HF recording channel. When the trigger to turn on the
high sampling recording was asserted, both channels (high and low-pass filter) had their
signals sampled. This means that despite already being sampled continuously with a 100
kSa/s sampling rate, the LF signals also had sweeps sampled at 2 MSa/s. That gave the
HF sweeps a LF counterpart sampled at the same time, with the same amount of samples.
Fig. 4.11 shows an example of two signals (faulty and not), from sweeps (40 k samples
per power cycle) of both channels.
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Figure 4.11. Two example of sampled sweeps. LF recordings from a) Non-fault sweep and b)
Faulty sweep. HF recordings from c) Non-fault sweep and d) Faulty sweep.
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One clear observation from the figure mentioned above is that the fault and non-fault
signals are basically indistinguishable. Such illustration is a clear example of the point
that such HIFs, with fault currents of single-digit amperes, are much challenging to detect.
The main difference between the shown tests is the maximum amplitude of the faulty
voltage signal from the HF channel. HF fault signals indeed tend to have higher energy
and amplitudes than non-fault ones, but although true, such measure did not show to be
consistent enough to be used as a strong predictor. It is mainly because the signal’s energy
was considerably erratic, not only throughout the test days but also between periods of the
day when they were staged.

Although not clearly visible, consistent differences between the two sample stages
were identified in the performed experiments. It begins by down-sampling the LF channel
sweeps to 100 kSa/s (20 fold), so it could be more computationally efficient. It is worth
remembering that the characteristic bandwidth of the channel connected to the low-pass
filter was approximately 5 to 50 kHz. This means that, according to the Nyquist-Shannon
sampling theorem, the LF channel sweeps at 2 MSa/s was basically oversampling the
signals at the task to characterise its related bandwidth. It is also worth remembering that
in this experiment, the current threshold for selecting the sweeps was more harsh and
limiting. The intention to clearly display the existence of discriminative information, even
for every small fault currents, led to a choice of a 0.1 A threshold.

Signal representation techniques were used to create the quantitative measurements
used in the comparison. Explained in section 3.2, these were coefficients of popular
and renowned signal processing techniques: Fourier-based transform (PSD) and wavelet
transform. Table 4.2 briefly illustrates the dimensionality of the working features. The
described scheme resulted in a set of six measurements, two from Fourier domain, and four
from the DWT. It might seem a small number of measurements, but each one represents
a set of multidimensional features. The PSD of the LF signal, for example, results in a
feature set of 1001 dimensions. There is an argument for averaging these energy bins
to reduce the number of dimensions, but doing so would result in a loss in frequency
resolution. In this configuration, they are separated by values of 50 Hz that are all multiples
of the fundamental in the LF channel.

The ranking of the features was performed using an index based on the Gini Impurity
measurement from the classic Classification and Regression Tree algorithm. Also explored
in the Method chapter, the Impurity Index (II) was calculated to represent the best potential
decision boundary on a particular feature. A small index means a more pure classification
zones given by a decision boundary, representing better discrimination of the data points.

The single best split (highest information gain) of each set of features is depicted in
Table 4.3 for the LF channel, and in Table 4.4 for the HF channel. The splits are referred not
by their number but by their frequency range or centre frequency (PSD) in their respective
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Table 4.2. Set of measurements’ dimensions

LF HF

Fourier PSD 1001 20001
SF 20 20

Wavelet EP 8 8
IQR 8 8
L1 8 8
L2 8 8

Table 4.3. Split ranking from the LF channel

Split I.I. Sep.

PSD PSD{11.55 kHz}> 3.61 ·10−6 0.47 0.58
SF SF{15 ∼ 17.5 kHz}> 0.43 0.45 0.59
EP EP{25 ∼ 50 kHz}< 3.24 ·10−7 0.48 0.59

IQR IQR{12.25 ∼ 25 kHz}> 2.26 0.43 0.64
L1 L1{12.5 ∼ 25 kHz}> 985.85 0.44 0.63
L2 L2{25 ∼ 50 kHz}> 22.98 0.45 0.62

braces. In the tables, "Sep." represent the separability potential of the split as a decision
boundary. In other words, the separability indicates the percentage of observations that the
decision boundary can correctly separate. Such calculation is given by the ratio of correct
classifications by the total amount of observations. It is similar to the accuracy in case
of using such split to classify the whole dataset between the two classes (faulty or not)
of sweeps. It may be worth noting that the tables do not discriminate between faulty or
non-faulty observations. The I.I. and Sep. values need to be calculated considering the
whole data set to make sense.

The impurity index shows that the HF measurements overperform the LF features at
every comparison, although close in some splits. In the same manner, the separability
showed that such measurements in the LF channel, when used as predictors to classify
such faults, is not much more reliable than a coin toss at labelling the observations.

Two features extracted at the HF channel indicated reasonable decision boundaries
for fault occurrences separability, namely one IQR and one L1 measure. The IQR from
the HF channel showed the lowest impurity and higher significance. With an impurity
index of 0.15 and separability of 0.91, it represented a promising feature from the studied
type of faults. Having separability of 0.91 means that if used as a stand-alone predictor,
such feature would correctly separate 91% of the dataset samples. The DWT showed to
be superior to the Fourier measurements for both channels. Although a consensus in the
literature [88, 152, 153], it confirmed the Wavelet transform ability to better represent fast
transients in the fault signals.
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Table 4.4. Split ranking from the HF channel

Split I.I. Sep.

PSD PSD{34.5 kHz}> 5.12 ·10−6 0.4 0.68
SF SF{1 ∼ 50 kHz}> 0.02 0.42 0.66
EP EP{31.25 ∼ 62.5 kHz}> 1.21 0.39 0.69

IQR IQR{62.5 ∼ 125 kHz}> 0.05 0.15 0.91
L1 L1{62.5 ∼ 125 kHz}> 250.02 0.22 0.87
L2 L2{15.62 ∼ 31.25 kHz}> 16.67 0.32 0.77

Nevertheless, a high separability is not evidence of generalisation in the sense of
correctly predicting new data (out of sample observations). To attest for generalisation,
a further comparative experiment was done. The three best splits over the whole set of
features of each channel were selected to fit a simple decision tree, validated in 2-fold
cross-validation. This means dividing the dataset in two, using half 1 to learn the tree, and
half 2 to test it. Also, doing it the other way around (fitting with 2 and testing with 1) and
reporting the average out of sample error. In this experiment, the current threshold of 0.5
A was used.

The confusion matrix, attesting for the features generalisation power and resulted from
learning classifiers from both channels, is given in Fig. 4.12. When considered by overall
accuracy, the simple tree fitted with three HF features correctly classified 94.2% of the
observations, while the tree with LF features only labelled 65.5% of observations correctly.
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Figure 4.12. Confusion matrixes from the best three splits in both LF and HF channels.
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4.4 Fault signatures

The results presented so far are significant at asserting the discriminative information
present in the fault recordings. Nevertheless, acquiring more insightful evidence regarding
VHIFs behaviour would certainly help to highlight the relevance of this argument. Dif-
ferently from presenting observational examples such as the one discussed in Fig. 4.6,
producing quantitative evidence about the transients created by VHIFs is much more
challenging. This is mainly due to the complex nature of the responses in the voltage
signals, and the presence of background noise. Fortunately, signal processing techniques
can help reveal patterns from specific types of fault given the availability of the data set of
sampled data from real faults.

This section describes the use of the Shift-Invariant Sparse Coding (SISC) technique
on the data set of fault recordings to help reveal VHIF signatures. Explained in detail in
section 3.2.3, the SISC is an unsupervised learning technique that results in a set of coded
basis functions to represent a data set of signals. The basis functions are not necessarily the
fault signatures itself, but with the methodology proposed here, some of them are shown to
be highly correlated with fault recordings only. These are then labelled as fault signatures.

To exemplify the outcome of the sparse coding algorithm, Fig. 4.13 presents the
returned learned dictionary when the number of bases is set to 32, performed over 100
iterations. This length represents a duration of 125 µs, which is a bit more than the
period of the lowest considered frequency (10 kHz), limited by the high-pass filter of the
sampling channel. In particular, the narrow frequency band close to 10 kHz was intensely
present in the HF signals. Bases such as the one shown in the fourth column and fifth row
(highlighted) of Fig. 4.13 are an example of this.

Figure 4.13. Example of a learned 32-basis dictionary.
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As seen in Fig. 4.13, when the number of 32 functions is chosen as a hyperparameter,
the resulting dictionary includes a considerable number of redundant bases trying to
describe a similar pattern. This redundancy suggests that the number of possible underlying
sources creating these patterns may not be so numerous, which is somewhat expected from
a 50 Hz power system at higher frequencies. Such a redundant number of bases, however,
is not advantageous when trying to approximate fault signatures with sparse and effective
representations. The underlying hypothesis is that the information to discriminate between
fault and non-fault signals will be diluted in the redundant high-level representations
(features), unnecessarily increasing the complexity of the statistical model. If such a
hypothesis is right, the number of basis functions becomes an important hyperparameter to
consider.

Changing the number of bases in the dictionary was actually the only hyperparameter
that significantly changed the results. It addressed the problem of redundancy, forming a
more insightful dictionary. The results in Table 4.5 illustrate the performance change in
dictionaries of different size. The accuracy is the dictionary score, resulted from learning
and validating a classifier with features extracted using the basis functions.

The features are given by convolution and sum operators, and the accuracy is the
immediate result from the 10-fold cross-validation. True positives represent the algorithm
dependability, i. e., the percentage of signals from class ‘fault’ that were correctly classified.
True negatives represent the algorithm security, which expresses the percentage of signals
from class ‘non-fault’ that were correctly classified.

The higher separability suggests that there are bases in the dictionary that have a high
correlation only with fault signals (fault signatures). It also suggests that, in regards to
separability, a fewer number of basis functions works best. The returned 8-basis dictionary,
which resulted in higher separability and now used for the remaining discussions in this
paper, is illustrated in Fig. 4.14. For comparison’s sake, Table 4.5 also presents the
accuracy results for dictionaries made of Symlet wavelets, used to extract features in
the same manner as the learned bases. It not only attests the effectiveness of wavelets
in signal representation but also demonstrates that sparseness is a critical concept from
other signal decomposition techniques. As shown in Table 4.5, the 8-basis dictionary can
correctly discriminate between fault and non-fault classes with more than 94% accuracy.
This is especially relevant since the features used are given by simple cross-correlation
calculations between the bases and signals.

Associating a particular basis function as a fault signature, however, requires a more
detailed description of the effectiveness of each pattern. This association was done by
creating a simple linear decision boundary in the feature resulting from each basis. Instead
of using all the basis-resulting features to learn an ensemble of decision trees, this approach
used only the one-dimensional data related to each feature to create a one-split linear
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Table 4.5. Discriminative potential vs. number of basis functions

Dict. size Acc. (%) Dep. (%) Sec. (%) Wavelet acc. (%)

8 94.52 92.4 96.64 94.43
16 94.08 91.52 96.64 93.28
32 93.37 89.93 96.82 93.02
64 90.11 85.51 94.70 92.05

128 88.69 82.69 94.70 92.31

Figure 4.14. Learned 8-basis dictionary.

separator. The result, listed in descending order from the most to less effective basis, is
shown in Table 4.6.

The results presented in Table 4.6 can be read as a score correlating individual basis to
fault occurrences. It shows that function #5 is invariant to fault signals and can predict them
with 90% accuracy. Other basis functions have a reasonable correlation with fault signals
and could be argued as fault signatures. Note also that the patterns shown in Fig. 4.14 can
be separated in functions that tried to fit the stationary sinusoidal components such as #2,
#4, and #6, and others resulted from fitting transients with finite, short existence. This,
together with the results shown in Table 4.6, suggests that an added transient component
gives most of the effect of a vegetation HIF in the HF signals.

Table 4.6. Individual discriminative potential of each basis listed in descending order.

Functions number Separability (%)

5 90.46
8 88.78
7 86.48
3 77.74
2 63.52
6 63.16
4 62.90
1 59.72
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Another hyperparameter considered was the basis function length in the learned dictio-
nary or, more simply, their number of samples. All the given results here considered 250
samples (or 125 us duration) as the length of the bases. The reason for this choice was that
no relevant differences in results were found when varying the length anywhere from 25 to
500 samples. The length of the illustrated fault signatures was then chosen by the ones
with more convenient visualisation aspects.

As the fault signatures found in the voltage signal are responses to transients in the
current signals created in a fault occurrence, a dictionary was also learned using the HF
current signals. Fig. 4.15 illustrates an 8-basis dictionary learned from the HF current
signals with the same hyperparameters used to create previous dictionaries. To clarify, the
basis functions shown in this figure are the ones learned from patterns in the fault current;
they do not have a direct relationship to the ones showed in Fig. 4.14.

Examples of the correlation between the current and voltage basis functions can
nevertheless be found by applying a cross-correlation operator in the fault recordings. For
example, if one cross-correlate basis no. 5 of Fig. 4.14 with a fault sweep, it is possible to
find places where it appears by following the peak of the resulting signal. The zoomed
part of Fig. 4.16 was located by such method. In the voltage zoom-in plot, one can
see the appearance of basis no. 5, superimposed in the background noise. If the same
moment in time is zoomed-in in the current, one can see the impulse-like transient that
created the voltage disturbance. It is noticeable that the current discontinuity has such a
relatively high amplitude, but it is understandable since the voltage transient that it creates
is also so apparent in the signal. Less noticeable, but also interesting, is the fact that the
discontinuity in the fault current is also similar to the upper-middle basis shown in Fig.
4.15. Nevertheless, although identified in the signals, such examples are not common or
easily located. There are a few reasons for this: (1) the transients are usually convoluted
with other signals, (2) the peaks created in the voltage HF signals are usually smaller than

Figure 4.15. 8-basis dictionary learned from the current signals.
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background noise (as in the image), and (3) their appearance in time seems stochastic
(shifted and non-deterministic). HF current bursts are often given by isolated or shifted
convoluted discontinuities buried in noise, such as the ones shown in Fig. 4.16 around the
12kth sample on the bottom left plot.

Figure 4.16. Example of a in-fault first voltage and current sweeps zoomed in at strong HF current
transient.

4.5 Proof-of-concept prototype

With quantitative evidence supporting the existence of predictive information located
mainly in the HF signals, it is desirable to demonstrate the feasibility of adopting the
proposed solution. That would mean addressing possible concerns of working with the
demanding HF signals and asserting a reasonable implementation cost. The main concerns
associated with HF signals could be summarised in two main points: computational
complexity due to high-dimensional data calculations (HF) and noise resilience issues. As
it is fair to argue that only empirical evidence can adequately address the existent concerns,
a proof-of-concept prototype dealing with real signals was produced. It is the result of
deploying the proposed machine learning classifier to an embedded system and evaluating
its performance. Since computational complexity concerns automatically raise the issue of
computational cost, a low-cost embedded set-up was adopted.

The prototype was used to sample, process, and classify HF voltage signals. However,
there are some constraining points regarding the adjustments made while using the board
that needs to be cleared. As the signals were streamed and sampled by commercial sound
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cards, the reproducing/sampling rate was limited to 96 kSa/s. That is much smaller than
the originally used sampling rate when recording the HF fault signals (2 MSa/s). An
adjustment based on the used sweep sampling mode was then proposed to match these
frequencies. It used the effect introduced by the sweep sampling mode that results in
plenty of unused periods (98% of each second) in between sweeps. Its implementation
consisted of stretching the 20 ms-sweep to last close to a full second, basically reducing the
effective sampling frequency to 40 kHz. As explained in the 3.4, this stretching consists
of the transmission of the 40k samples of a sweep, in a lower updating rate. A sweep
has a duration of 20 ms, leaving 98% of the second in idle time; if stretched, the same
signal can be transmitted with much less idle time, in a lower updating rate. Despite this
drastic procedure, the board still receives the same amount of information as would the
decision-making module of a fault detection apparatus relying on the sweep sampling
(one sweep per second). This constraint can be solved by simply adding a high-speed
analog-to-digital converter to sample the signals and should not interfere at attesting the
method feasibility.

Another noteworthy point relates to the feature and sweep extraction procedures as
they are modifications from the ones previously presented. In order to guarantee low
computational complexity, a simplification of the feature extraction procedure was adopted
while maintaining most of the predictive power. It comprises mainly in using only the
wavelet transform as a feature extractor, in conjunction with a linear and a non-linear sum
operator. In regards to the sweep considered, this experiment implements a methodology
shift by not taking the immediate sweep after the fault current reaches 0.5 A but by
considering the following three sweeps after the threshold is met. Such an idea was
inspired by current intermittency observations and translates to significant differences
in classification results. These procedures and their important implications are further
discussed in the following section and chapter 5.

In regards to noise quantification measurements, Table 4.7 is set to illustrate the
experiment’s results. Despite having outliers, the observed signal measurements compose
a skewed (towards minimum value), and narrow, probability distribution. The table’s ‘max’
values were given by an outlier signal that had short and rapid spikes in the HF sweeps.
The authors’ best hypotheses for that, inspired by empirical testing, is that fast transitions
and saturated values were more difficult to accurately reproduce in the streaming part and
to sample in the data acquisition part by the hardware.

The 10-fold cross-validation results for the model using the simplified features in this
experiment are shown in Fig. 4.17. As clearly visible, the confusion matrix is much
different from the ones shown thus far. By this point, the author realized the importance
of having more data in the learning phase, even though it made the number of classes
unbalanced. Moreover, the number of classes was updated to three. The new class
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Table 4.7. Noise quantification results

SNRdB L1err(%) L2err(%) Lin f (%)

Mean 17.56 17.92 14.73 16.65
Min 9.97 5.03 5.83 6.01
Max 24.68 53.43 31.72 41.89
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Figure 4.17. Classifier’s confusion matrix.

‘Voltage OFF’ was set to include moments where the voltage source was OFF (test rig not
energized), which are observations with distinct characteristics. Such changes had severe
implications regarding the model presented in section 4.2, and they will be discussed in the
next chapter. Although this model has smaller dependability than the previous, it makes up
for having more data for non-fault observations, increasing security (the most important
measurement). It is remarkable that this model presents practically the same accuracy as
before, now 98.75%, but requiring way less computational effort (only DWT).

The comparison between the prototype versus the off-line MATLAB classification
accuracy was made as described in the third and fourth experiments from the methods
section 3.4. Their results, showed in Table 4.8, demonstrate that the algorithm presented
high resilience to environmental noise with a slight change in classification accuracy. From
this point onward, the word desktop is used to describe the results obtained in MATLAB
environment on the desktop computer, and board to depict any results from the experiments
made in the Beaglebone.
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Table 4.8. Board vs. Desktop classification results.

Desk. acc. Board acc.

Whole data* 100% 96.47%
Split data 97.53% 95.23%
*No generalization value

The board was set to not only process and classify the sweeps online but also to plot
the classified signals in an LCD cape while doing it. Fig. 4.18 shows the LCD, sold
as a board add-on, plotting the classified sweeps. The plot is updated at every second
after the sampling buffer gets flushed, and the values of the present sampled sweep are
classified. After classification, the signals were down-sampled to 512 values (reduced only
for illustration processing purposes) and displayed in red, if a fault is detected, or in green,
if it is labelled as a non-fault sweep. The images, products of the free graph utility Gnuplot,
were exemplified in Fig. 4.18b and 4.18c as sweeps classified in both classes, Non-fault
and Fault, respectively.

By testing the prototype’s accuracy in a noisy and simple sampling procedure, the
presented results helped to address environmental noise concerns. Nonetheless, in order

(a) BeagleBone board with a LCD cape plotting sampled signals.

(b) Plot of a signal classified as a Non-Fault sweep. (c) Plot of a signal classified as a Fault sweep.

Figure 4.18. Implementation of a LCD cape to plot the classified signals.
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to further solidify this claim, a noise versus accuracy experiment was set to illustrate the
overall algorithm’s robustness to noise. The results are illustrated in Fig. 4.19, showing the
accuracy (by cross-validation) versus different noise levels (in dB) given by the desktop
when artificial white noise was added to the recorded HF signals. A noteworthy feature of
this figure is pointed out by the marker at 18 dB. By adding the same noise level as the
one measured in the prototype environment (18 is the closest integer to 17.56), the desktop
accuracy was close (96.64%) to the one presented by the board classification in the split
test scenario (95.23%). It shows that the white noise added in the MATLAB environment
has similar effects as the noise obtained in the real hardware set-up. It is noticeable that
the slight difference may be due to the use of cross-validation in this test. The same effect
was presented when comparing the cross-validation and split test scenario accuracy given
by the desktop (98.5% to 97.53%).
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Figure 4.19. Accuracy versus signal-to-noise ratio plot.
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4.6 Last working version and performance examples

Choosing the parameters for the last working version of the algorithm is not a trivial task.
One needs to decide conditions such as non-fault and fault observations to include, the
current threshold for sweep extraction, signal pre-processing techniques, features, and
classifier. The decision concerning each of these subjects was made based on classification
results from cross-validation:

• Fault observations: the previously mentioned 566 tests, which do not have any
problems with data, LF intermittency, compatible sampling and sweeps, and have
current conduction.

• Non-fault observations: all available background recording tests, including phase-to-
earth and phase-to-phase tests.

• Current threshold: 0.5 A based on fire ignition mitigation recommendations in the
staged faults report [4].

• Fault samples: Extraction of the sweeps immediately after the current threshold was
met.

• Signal classes: Voltage OFF, Non-fault, and Fault.

• Signal pre-processing: third-order Butterworth filter with a corner frequency of 500
kHz.

• Features: linear and non-linear sum operators on wavelet coefficients (8 features)
and cross-correlation with SISC basis functions (8 features).

– 4-level wavelet multi-resolution decomposition with the Symlet4 as mother
wavelet.

– Sparsely coded dictionary (SISC) with a size of 8 basis functions.

• Post-processing: feedback methodology based on an averaging buffer of features.

• Classifier: 350 Bagged decision trees with a minimum of 20 samples on the tree
leaves, validated with 10-fold cross-validation.

Although performing reasonably well, the classifier presented in section 4.2 suffered
from being biased. The non-fault observations were extracted from background recordings
from three consecutive days, while the tests were performed along multiple days. Not
including these tests meant not included phase-to-phase background recordings as they
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were recorded in the last test days. These recordings are not only significant for increasing
the generalization ability of the classifier but primarily because there were also tests
recorded through phase-to-phase measurements. As the noise levels from phase-to-earth
measurements are different from phase-to-phase, not having background noise from
the same type negatively influenced the classifier. This version, therefore, includes all
background recordings available from all test days.

Some updates in the final version include the addition of a signal class, more efficient
feature extraction, and enhancement in pre- and post-processing. Having the phase-to-
phase signals made the classification of signals more challenging but also promoted
improvement ideas. For example, the classifier was under-performing due to the lack of
discrimination from non-fault signals had grid-voltage connected or not. A new class
of signal named ‘Voltage OFF’ was added to address this problem. Efficiency was also
gained by using only signal processing methods that have O(n) complexity for feature
extraction such as cross-correlation with basis functions. A further efficiency boost was
also obtained by decimating the signals after a low-pass filter application as signal pre-
processing. Results did not change and slightly improved in some experiments by using
half of the bandwidth of the signals (10 to 500 kHz). Decimating the signals with a factor of
two consequently reduced feature extraction computational complexity by the same factor
(O(n)). Nevertheless, the probably most substantial contribution from these methodology
enhancements was the adoption of a feedback approach in signal post-processing. To
be detailed discussed in the next chapter, it mainly consisted of buffering a n number of
features from previous sweeps and comparing it to the one to be classified. The feedback
practice allows the practical implementation of the method in networks with different
levels of background noise and enhanced classifier security.

Results from learning the classifier with the described parameters are illustrated in the
confusion matrix in Fig. 4.20. It resulted in an average accuracy of 98.8%, dependability
of 97%, and security of 99.09%.

Validating examples from the classifier performance at discriminating the three men-
tioned signal classes are shown in Figs. 4.21, 4.22, 4.23, and 4.24. These were fortunate
exception tests that had voltage supply connected before current conduction started, al-
lowing the testing of the three signal classes in the same recording. It should be noted
that the first two plots of voltage and current in the graphs are LF waveforms to better
illustrate the fault development. The data fed to the classifier, however, were 20 ms HF
sweeps sampled at every second interval. The third plot can be read as a 3-level logical
graph where the lowest level means the voltage supply was not ON, the second means
voltage connected but signals are healthy, and the third level represents the detection of the
fault. As the detection is made based on one HF sweep, sampled once every second, the
classifier output also has a one-second step for every classification result.
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Figure 4.20. Confusion matrix of the last working classifier version.

Current conduction in test #335, shown in Fig. 4.21, started much higher than the
current threshold and was immediately picked up by the classifier once the fault sweep
was sampled. Test #504, shown in Fig. 4.22, had current conduction started at a minimal
level, smaller than 0.1 A. The two parallel black lines in the third plot mark the sweep in
which the current threshold was met, namely the 14th in test #504. The noteworthy point
of this test is that the classifier correctly detects the fault much earlier, in the 9th sweep,
attesting for its high sensibility and accuracy. A similar case happened with test #517,
with only the last conducting sweep having RMS current higher than the threshold. Fault
detection was asserted since the 9th sweep, following the fault until the end. Test #552 is
particularly interesting at illustrating the classifier capabilities. The voltage was turned ON
for more than 30 seconds without current conduction. It was turned OFF for a bit longer
than 10 seconds and then turned ON again, starting the current conduction. The current
started with a small value and did not introduce much detectible fault signatures until more
than 15 seconds after its inception. One can see two attempts of fault detection from the
classifier between the 60th and 70th second before the detection was asserted. Nevertheless,
although taking almost 20 seconds to assert the detection, it was still made it much before
the hazardous threshold of 0.5 A was met and for all sweeps after.
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Figure 4.21. Performance example on test #335. a) LF voltage recording. b) LF current recording.
c) Classifier output.
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Figure 4.22. Performance example on test #504. a) LF voltage recording. b) LF current recording.
c) Classifier output.
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Figure 4.23. Performance example on test #517. a) LF voltage recording. b) LF current recording.
c) Classifier output.
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Figure 4.24. Performance example on test #552. a) LF voltage recording. b) LF current recording.
c) Classifier output.

4.7 Results summary

The results presented in the previous sections are the outcome of applying the concepts
discussed in Chapter 3. Each section builds on the previous, taking steps closed to a better
classifier and understanding of the VHIF phenomenon.
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Initial investigations started by analysing the background noise and ended with evidence
of discriminative information in some recordings. Frequency components with the highest
energy were noticed in a narrow band centred at 10 kHz and in a more wider band with
discrete carriers in between 250 to 700 kHz. The former was believed to be due to large grid
loads [4] and the latter was linked to radio navigation and AM radio broadcasts. With the
help of some exception tests that had pre-fault recordings, the initial investigation confirmed
that a fault occurrence could introduce substantial frequency components, especially in
the range from 100 to 450 kHz. It also confirmed that low-frequency harmonics might not
be noticeable in the first seconds of a fault, which are crucial for detection targeting fire
mitigation. An example of fault current discontinuity creating an oscillatory transient in
the voltage signal at the same band affected by the fault was also illustrated.

These results gave the confidence to continue the classifier conceptualisation but were
not evidence that such insights could be generalised. As such evidence would require
a large sample size, the first step was cleansing the data from potential problematic
recordings; tests that were missing, corrupted or had no conduction were excluded. A
data set of labelled observation was assembled by using the first sweep sampled after the
fault current reached 0.5 A (fault), and from background noise recordings (non-fault). A
combination of Fourier-based (PSD) and wavelet-based features shown to be effective
at classifying the faults. However, the wavelet features such as sum, peaks, and energy
percentile of the coefficients were much superior in explaining the invariance between
classes. Many machine learning algorithms such as linear or quadratic discriminants, SVM,
and KNN were tested, but the ensemble of decision trees constantly over-performed them.

The classifier learning showed evidence that the existence of discriminative information
is generic, but it still was not evidencing that using the HF signals was a necessary approach.
An experiment was then conceptualised to compare the discriminative information content
between the LF and HF signals. When analysed under the same methodology, it showed
that the LF signals do not present enough information to be a consistent predictor of faults
as HF signals. Such results were also evidence that the non-appearance of low-harmonic
content in the initial moments of fault is indeed also generic.

Although initial investigations showed an example of oscillatory voltage transients
created by the fault current, it still did not present evidence of their recurrence and
generality. An experiment composed of applying the sparse coding technique to find
explanatory bases gave evidence of their causal relationship and illustrated the transients
in time-domain. They also helped to enhance the classifier by serving as pattern-matching
filters that allow better discrimination of fault occurrences.

Since all the mentioned experiments were offline, this research could benefit from
evidence that such classification could be done in real-time, in a deterministic manner. The
production of a prototype helped to corroborate this possibility while presenting itself as a
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low-cost solution. It also showed to be a reasonably accurate classifier in the presence of
considerable environmental noise, showing possible robustness for real applications.

The last version of the classifier implemented the lessons learned by all the experiments
while assuming three different classes, as opposed to the first binary versions. It also
comprises the basis-based features and the comparative post-processing method, which is
expected to enhance the adaptability of the method further. The constraints, advantages,
and further discussions of the results and approach adopted in this thesis are presented in
the next Chapter — Discussions.



Chapter 5

Discussions

5.1 Results relevance

As any discrete scientific research, the relevance of the results described in Chapter 4 is
bounded by layers of uncertainty. For an explicit discussion on the relevance of the results,
it is useful to start from the most unequivocal findings presented by the results and then
expand into potential applications.

5.1.1 Certainty, variance, and bias

The clear difference between the classes of signals that were analysed is probably the fact
with the highest certainty. It is essential to make this distinction clear. The classes of signals
represent recordings sharing particular characteristics. The ‘Non-fault’ class represents
voltage recordings from the substation, sampled in the same days and throughout the
staged vegetation tests. The ‘Voltage-off’ class are simply recordings from electromagnetic
interference captured by the test rig apparatus. These two classes and the one from
the voltage recordings made when staging the faults — ‘Fault’ — individually present
invariance. As far as certainty goes, the countless cross-validations performed in this
data set show that signals from these classes are different in some way. This affirmation
may sound obvious, but as seen in the comparative visual examples from ‘Fault’ and
‘Non-fault’ signals in Fig. 4.11, their difference is not much evident. Their similarity is
the reason why discriminating signals from VHIF occurrences is not trivial. The classifier
may have reasonably high accuracy, but it does not completely separate the observations;
the exact cause for this lack of total separability (100% accuracy) is not entirely known. It
is possible to hypothesize that the few miss-labelled observations were sweeps recorded in
intermittent moments of the fault. An experiment made by selecting the sweep with the
highest energy, between the first three sweeps after fault inception, points to this hypothesis
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to be relevant due to a resulting increased accuracy. However, validating such a hypothesis
would be impractical for it would require a drastic amount of data. Regarding the layers of
uncertainty, the next level beyond class invariances includes aspects such as bias, variance,
and generalization.

Discussing the classifier’s ability to generalize is hard, it is easy to overstate it, and
there are incentives to do it. A discussion on the significance of its resulted accuracy can
clarify it. The classification results from learning and testing a classification algorithm
on a data set it is probably not exactly how it is going to behave when tested in real
life. It would only be the case if the data had no bias and a low enough variance that its
sample size would be able to represent effectively. This chapter presents some arguments
and methodology aspects designed to deal with possible issues resulted from bias and
variance, but some aspects of which are unavoidable. It is easy to argue, for example,
that the variance of the VHIF problem is enormous. There are many types of network
configuration, equipment, and environmental conditions that may affect the fault behaviour,
and consequently, the performance of the classifier. Therefore, it would be necessary to
get data from all these conditions to represent all possibilities that the classifier may face.
To most conditions outside the ones represented in the data set, all statements regarding
real accuracy, dependability, or security, are only well-guided speculations. Nevertheless,
despite not often discussed, any other top-down HIF detection method proposed in the
literature relying on a posteriori knowledge suffers from these issues. It appears that this
lack of transparency and standard data sets (discussed in further sections) cuts deep through
the difficulty of establishing a consensus regarding HIFs; the fact that it is a challenging
and high-variance problem only exacerbates it.

The bias of the data set is mainly related to its specificity, which has positive and
negative aspects. There are several characteristics that make the tests specific: fault
surface (vegetation), limited fault currents, network grounding type, distance from the
fault point, electromagnetic interference, network load, and intrinsic noise sources. Some
of these are arguably more important or beneficial than others. For example, having a
limitation on the fault current results in a more precise estimation of the method’s fire
mitigation potential while resulting in almost no adverse effects for its generalization. Such
a general positive effect is mainly given by the fact that faults with higher currents will
primarily result in more intense effects on the network and will consequently be more
easily detected. This effect is somewhat expected, but it was also attested when learning
classifiers with data filtered to include signals with different current thresholds. The results
showed lower accuracy for a 0.1 A threshold in comparison to faults with a 0.5 A detection
threshold. Conversely, differently from the current limitation, some biases will generally
result in adverse effects to overall generalization; the load noise, weather conditions, and
electromagnetic interference are good examples. It is also understandable that these issues
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might generate concerns from technicians, engineers, and research peers. Nevertheless,
given that there is a limitation on resources, data, and investigation time, having to deal
with a level of uncertainty is unavoidable.

There are some practices that help to deal with the effects of variance and bias in the
potential generalization of the method. The commonly discussed ones are normalization
and standardization, which can be applied before the learning stage. The need for those
practices is evident in any application of this method since testing signals of different scale
would completely alter the performance of the classifier. Adding to standard practices,
moreover, original methods were also developed to help mitigate variance and bias effects.
The main one was called the ‘feedback method’ as it functions by introducing information
about the current network state to the data before it is fed to the classifier. It consists of
storing feature vectors from the previously sampled sweeps in a first-in-first-out buffer
and calculating the 90th percentile of each set of feature. Then, they are directly compared
to the newly sampled sweep features before used for classification. The comparison is
made by calculating the ratio (element-wise) between the newly calculated features to the
percentile value of the stored features in the feedback vector. Such an approach means that
the classifier does not receive the information of the actual feature value, but the ratio of
that feature to a previous state estimator of the network. It is hoped that such a method will
make the classifier more flexible towards different conditions. For example, if a network is
particularly noisy at a specific bandwidth that is relevant for detection, it could derate the
security of the classifier by making it produce false positives. With the feedback method,
nevertheless, the classifier is learned to discriminate changes in states, rather than specific
values.

5.1.2 Classification results

It is important to be honest to what the accuracy value really means: a crude estimator
of the method real performance. Arguably, accuracy is not as important to this work as
it appears to be in many machine learning-based publications. To many of these works,
the novelty or contribution comes from conceptualizing a method that over-performs
previous approaches. In the same manner, comparisons are also expected from peers when
proposing a HIF detection methodology. Comparing accuracies with previous methods
makes sense when both are working with the same data or model. However, standards data
sets for tasks such as facial or handwriting recognition are easily found online while the
same can not be said for HIFs. Yet, it is possible to find papers comparing results with
works that use entirely different data or models. In this thesis, in particular, the novelty
comes from building a method on top of a novel data set never formally investigated
for this purpose. Even though the accuracy presented here is indeed higher than other
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methods, making such a comparison would be futile and misleading. A recent literature
review publication cites the performance of existing methods [11], in case the reader is
interested in such estimates. Regarding useful performance comparisons, it is desirable
and welcoming that other authors also create methods using this data set to possibly find
better alternatives to the contributions made in this thesis.

The key novel aspects of this work go beyond just attesting high accuracy. It is related
to its specificity regarding fault type (vegetation HIFs), its sensitivity (0.5 A), and the
fact that it uses the feeder’s high-frequency voltage signals. The fact that results were
consistent for either phase-earth and phase-phase faults is also relevant since HIF is mainly
discussed by a conductor breakage scenario (phase to ground). The accuracy, in this sense,
is useful to attest the positive results from this investigation and its potential application to
detect VHIFs and possibly fire mitigation. To make a more certain claim: the presented
results mainly support the merit of continuing to investigate the real applicability of the
adopted approach.

5.1.3 High-frequency signals and patterns

For such positive results achieved, having access to HF signals was paramount. It is unlikely
that the staged faults could be detected without information of higher resolution since the
HF components are low in magnitude. The indicating evidence for that was presented
in section 4.3 where the predicting information content of the LF and HF channels was
compared. The experiment opens the question of how high the resolution must be, or rather,
what is the lowest sampling rate that will result in adequately representation of meaningful,
discriminative information. These kind of questions are part of the worth-discussing,
complex problems that are touched in this thesis but that also will remain open until more
focused research is done. Some progress can be achieved by starting with the signals
sampling bandwidth responsible for such positive results: 10 kHz to 1 MHz. Experiments
performed with the data can inform some of these frequency bands importance for accurate
detection. The first comprised the adoption of a third-order Butterworth filter with a
corner frequency of 500 kHz as a pre-processing stage of the signals. It effectively cuts
the bandwidth in half, filtering most of the high-frequency components. Its effect on the
classification results was from negligible to a slight improvement on the accuracy, pointing
the discriminative information to be concentrated in frequency bands lower than 500
kHz. Moreover, experiments with wavelets and sparse coding showed a large part of the
discriminative information to be located between 125 and 250 kHz. When their respective
feature is tested individually, it showed that they were responsible for representing a
substantial part of the invariance between classes. Nevertheless, having other frequency
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bands represented in complementary features is necessary to reach the classifier highest
accuracy values.

The experiments with the sparse coding technique pointed that the damped oscillating
transients in the voltage are a substantial part of the VHIF behaviour. The simplest
explanation for the transient events is related to the second-order circuit response to
impulses or steps in the HF current signals. If these transients are indeed second-order
responses, they would considerably change given different line RLC parameters, which may
represent a strong utility constraint. Notwithstanding, as seen in the 32-basis dictionary
in Fig. 4.13, when the same test rig, network, and fault distance are considered, the
transient response can still drastically vary due to the different characteristic resistance and
reactance of the contact surface (vegetation sample). Therefore, even when experiencing
high variance in transient responses, the features extracted from the resulted basis functions,
as well from the wavelet transform, were still able to effectively predict and represent
the invariance between classes (fault and non-fault). The wavelet transform, in specific,
is a powerful tool for the task of fault detection since the filters’ frequency response is
smooth and can capture tuned bandwidths of resonant transients created in the HF signals.
Hence, even if the RLC parameters change considerably, the coefficients would probably
be significantly activated and useful for detection support.

It is important to note that the patterns presented by the application of the sparse coding
were still somewhat present in the other classes of signals. Otherwise, the observations
would be completely separable. The critical information is that some were highly correlated
with fault occurrences while others not; highly-correlated patterns had feature values tens
of times higher in the ‘Fault’ class than others. Such a difference means that although
present in both, the patterns were much more recurrent in fault occurrences. It also
means that unsupervised learning techniques like sparse coding could have considerable
potential to improve HIF and other disturbances detection, profiting from the existence of
representative data. Learning from available data could aid the further understanding of
disturbances behaviour in the network and increase the method’s accuracy. The resulting
patterns could be added as additional discriminative information. HIFs are often discussed
as random events with characteristics hard to quantify such as build-up, non-linearity,
and high intermittency [2, 11, 16]. These appearances may however have fewer random
characteristics than initially thought, especially when considering specific conducting
surfaces.

5.1.4 Applicability considerations

Although achieved in a narrow scenario, the results point to the possibility that the proposed
method could have positive effects on fire mitigation. As per the final report from the staged
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vegetation tests [4], a detection sensitivity of 0.5 A in less than 2 seconds could reduce
fire ignition risk in tenfold. The results from learning the classifier and proof-of-concept
prototype certainly attest these constraints. One aspect that could generate concerns about
detection speed relates to the adoption of the sweep sampling method, which introduces
some delay in detection and other possible disadvantages (further discussed). Nonetheless,
even sampling one diagnostic sweep per second still results in time enough to meet the
time constraints. In a worst-case scenario, a VHIF may begin right after the recording of
the last sample of a given sweep, leading to a longer detection delay. This event means that
sampling could possibly take one second, though not likely, and that detection should be
asserted in the next second. Despite comprising high-resolution signals with longer arrays,
such detection time was achieved even with low-cost microcontrollers. It is therefore
arguable that higher computational capabilities would further alleviate such overhead and
much more could be achieved. Computation complexity issues are also further discussed
in the following sections.

If sensible, discussions on the fire risk mitigation by any method will include more
nuanced arguments than plain accuracy. The layers of complexity include aspects from
dependability and security to how the detection signal is going to be eventually used.
Regarding the more quantifiable issues of dependability and security, discussions started
to appear in the early 90s [73], when authors started moving to real implementation. The
relationship between these two parameters needed to be considered because they represent
distinct sides of a trade-off. For example, if the goal of the detection method is never
missing an event occurrence, one should care to improve the dependability of the classifier.
Making it more sensible to all occurrences, however, could make the classifier more prone
to detect false positives: classifying nominal operating events as fault occurrences, as in
this thesis case. Caring for dependability over security is a legitimate option for problems
such as cancer diagnosis where a false-positive result in minimal damage while a false
negative could be fatal. For fault detection, nevertheless, it is arguable that the case is the
opposite, and false negatives are somewhat preferred. The reality is that this dichotomy
represents a complex optimization problem involving many factors such as the economics
of service discontinuity, load importance/priority, weather conditions, and area under the
feeder. A realization of these factors would result in values to be assigned as the weight
of the observations in the learning process. The methodology presented here is unable to
cope with all these factors, but ideas were conceptualized to help enhance the method’s
security and simplify its trade-off with dependability.

It is certainly not desirable to interrupt service to customers or to disconnect priority
loads due to a false positive fault detection. Fortunately, for most of the experiments
performed in this research, including the last working version of the classifier, results were
always better for security than dependability. As shown in the results section 4.6, security
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results reached more than 99% in the last version of the classifier. Although being a crude
estimator, as previously discussed, implementation methods can still further improve the
classifier’s real security. The idea proposed here is, instead of acting on the first positive
detection result, to only assert detection after two or three consecutive positive results.
In the best-case scenario, where the observations are considered as independent events,
the error will exponentially reduce by every consecutive sweep needed for the assertion.
The downside of adopting such an approach is that every consecutive sweep added to
the assertion requirement will add one second in the fault detection delay. Nevertheless,
two points should be made regarding such fault delay. The first concerns the findings in
the vegetation ignition test final report [4], which stated that fault detection under five
seconds might still achieve substation fire risk reduction. In a scenario where an one-
sweep-per-second approach is implemented, three consecutive sweeps would still be under
the five-second threshold. Moreover, sampling one sweep per second is not fundamental
to the application and could be increased given more computational power. Sampling
two sweeps per second, for example, would result in a fault delay potentially under the
two-second threshold. The second point regards the sensitivity on the method. The remarks
and suggestion for fault detection delay in the tests report were based on a 0.5 A sensitivity.
However, as shown in examples in section 4.6, the method will start detecting a fault
before the current reaches 0.5 A and it did present a reasonably high accuracy when a
0.1 A threshold was adopted, as shown in section 4.3. If the method can indeed present
such sensitivity, its detection delay constraints could potentially be more relaxed. Another
idea for the usage of this method regarding service continuity includes using it as an extra
function in automatic circuit recloser devices. The potential benefits would be a short
period of service interruption, allowing for self-extinguishing faults to be removed, and
higher overall security, as it only locks out after repeated fault detections. All these ideas
could be further improved with adjustments to different weather conditions where dry and
wind days have a more restrictive setting than other conditions, for example.

5.2 Implementation

An implementation of the proposed approach could be discussed in three individual parts:
Signal acquisition, Processing, and Communication. The scope of the discussions in this
chapter only involves the first two aspects due to their large intrinsic complexity. This
section will start with the part that is more closely related to the primary thesis goal, the
processing stage. Further discussions on signal acquisition are relevant since different
sampling techniques result in more relaxed or stricter constraints.
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5.2.1 Processing and classification

An essential aspect of the signal acquisition is the mode it uses to sample signals. The
one adopted in the ignition tests, sweep sampling, is just one of the many ways it could
be done; they could assume larger or smaller durations, or even different periods. Sweep
sampling definitely offers some advantages in comparison to continuous sampling. The
reduced hardware overhead is probably the most convenient one. In the case of the adopted
approach, for example, the 20-ms sweep represents 2% of the sampling period (one
second), allowing the remaining 98% to be available for signal processing, diagnostics,
and communication.

One might think that adopting a sweep sampling approach to be detrimental for having
less information, but all the results presented in the previous chapter attest for their sufficient
discriminative information content. The confirmation of the hardware overhead benefits
was observed first offline in MATLAB environment, and then in the proof-of-concept
prototype (time complexity is also briefly discussed). An example of the former appeared
when testing a fault recording of 21 s duration (21 sweeps), which ran a script that loaded
the signal, calculated the features, and labelled the sweeps; it took less than 9 s to perform
these actions, attesting for its real-time implementation potential. This slack in overhead is
especially notable due to some MATLAB characteristics: it is scripted (not compiled), its
code is not vectorized, and it represents a higher level language compared to others like
C and C++. More direct observations of the potential for real-time implementation came
when developing the fault detection module prototype. Despite not sampling the signals at
the same rate as in the tests, it still had the same amount of time to make every decision
(one second). In its final form, the microcontroller had to request continuous sampling
from the audio card, while calculating the wavelet-based features, making the classification,
and plotting a representation of the just-sampled signal in an LCD extension cape. One of
the motivating reasons to build the proof-of-concept prototype was indeed to see if it could
handle sampling and classifying the signals in real-time, backing up claims of potential
feasibility. Even with the demands of processing, a slack on the microcontroller processor
was observed, which is a sign of being deterministic. Therefore, the sweep sampling mode
is one of the main drivers of reducing the possible cost of a full-size prototype since, by
only taking snapshots of the signal, even a card-size computer like the Beaglebone can
handle its computational requirements.

Time complexity theoretical constraints are probably worth discussing since they are
one of the main aspects to be considered before implementation. Although the processes of
feature extraction and classification might generate some concerns, there are arguments to
label them as somewhat reasonable when compared to other signal processing techniques.
The features adopted here are extracted by a convolution between the signal and basis
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functions (in the sparse coding application) and wavelet filter, followed by the application
of a sum operator. There could be a problem if the signals being convoluted were of
the same dimensions since the convolution of signals with size n and m would yield
approximately nm multiplications, resulting in an approximate O(N2) time complexity.
However, this estimation would not apply to the feature extraction by basis functions due
to their limited and fixed dimension size, which are much smaller than the signals (approx.
160 times). The proposed procedure is more similar to the basic filtering process of the
wavelet transform, which has approximately the same number of multiplications as the
input signal. This procedure would then result in a time complexity approximating O(N)

for the convolution and wavelet transform, compared to the O(NlogN) for the Fast Fourier
Transform (FFT). Moreover, even if the FFT could effectively represent the features of
VHIFs — and evidence points that it cannot (see section 4.3) — it is unlikely that it
would be directly used to extract features in a 40k-sample signal. It is more likely that
an estimator of the power spectral density such as the Welch method would be used to
reduce variance and dimension of the feature space. An average estimator like Welch
would result in many runs of the FFT algorithm at each observation, further increasing the
computational complexity.

A comparison between the Welch’s estimator, wavelet, and proposed signatures for
feature extraction was performed to exemplify the time complexity points. The test
considers the run time from the input signal to the complete matrix of features. As fewer
features would result in more calculation in the Welch-based feature extraction method,
the number of 100 was chosen as the size of feature space (FFT size of 200); no overlap
between windows was considered. The wavelet dictionary was composed of 8-levels of
Symlet4 wavelets, with features also extracted by convolution and sum operators. The run
time was given by the MATLAB profiler tool, which can output the time needed to run
each function. The average time for ten runs for each feature extraction is shown in Table
5.1. These results, moreover, present itself as a counter-argument to other works that may
quickly dismiss the use of the wavelet transform for this task when proposing a novel and
more complex technique.

Table 5.1. Run time comparison of different feature extraction methods.

Welch (s) Wavelet (s) Signatures (s)

0.1356 0.0477 0.0103

Although the method proposed here needs high-speed sampling, there is an argument to
be made regarding the relative simplicity of the classification and its advantages. There are
trends and incentives in the related literature to use increasingly complex methods to detect
HIFs, as discussed in Chapter 2. That weighed heavily in the period of conceptualization
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of this method, as the author searched for proper ways to address the classification task.
However, it is arguable that the classifier should be as simple and interpretable as possible,
without extra complexities that do not add to its performance. This argument is based on
the concept of VC (Vapnik-Chervonenkis) dimension [154], which is one of the bases
of statistical learning theory. To put it simply, the VC dimension is a measure of the
complexity of the space of functions in a classification algorithm. As a comparison
example, a linear discriminator or perceptron has a much smaller VC dimension than a
neural network composed of many layers. The perceptron can only create linear decision
boundaries, being much more restricted in ways to fit a dataset; a neural network composed
of many layers, however, could fit complex patterns that could go beyond of the capacity
of polynomials of high order. Therefore, when tackling complex multi-dimensional
classification problems, one needs algorithms that have the capacity equivalent to the
problem complexity and desired VC dimension. However, the higher the VC dimension of
a classifier, the more prone it is to overfit the data set. Algorithms with high capacity can
easily memorize data sets and compromise generalization ability if the data set is not large
enough. This effect is known as the variance-bias trade off [155]. In general, a model with
high bias will pay less attention to the training data and possibly result in oversimplified
decision boundaries A high variance model, conversely, will fit many aspects of the data
and possibly not generalize well to out-of-sample observations. Therefore, given the
problems of variance in the data discussed at the beginning of this chapter, one needs to
be careful not to overfit the particular conditions of the test and deliver a classifier with
a poor chance of generalizing. Notwithstanding, if the model is too simplistic, it might
just have poor performance regardless. Regarding the VHIF detection problem, amount of
data, and the approach taken here, it is arguable that the methodology presents a relatively
well-balanced complexity: a relatively small number of features, eight wavelet and eight
basis-functions, and a classifier given by an ensemble of shallow trees.

The perfect scenario would be to have a low-bias low-variance deterministic classifier
with parameters that completely addressed the physical phenomena of HIFs. As previously
stated, however, complexity is an intrinsic characteristic of this problem, and one has only
so much data and time to conceptualize a reasonable way to detect these faults. It is possible
that a decision of going towards more complex models such as deep neural networks could
(1) not result in optimal performance due to the size of data or (2) completely lose any
interpretability by delivering a black-box classifier. With the reduced number of features,
the work done with the linear boundaries in section 4.3, and the sparse coding results
in section 4.4, it is arguable that interpretability was still present in some level, which
resulted in some VHIFs behaviour insights. It is also arguable that a classifier with clearly
understood inputs and additional work developed to attest its potential would be received
with more confidence by decision-makers and field engineers.
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5.3 Signal acquisition

The signal acquisition part needs to be addressed because it is a crucial part and one
of the most constraining aspects of a real implementation. The challenge of acquiring
the signals it is not primarily related to data sampling; analog-to-digital converters are
reasonably accessible at the required sampling rates. The complication is instead linked
to the requirement for high-voltage transducers, which will transform the primary feeder
voltage (12.7 kV) to a data acquisition-friendly voltage level. There are different ways
to achieve such a task; each has particular associated costs, reliability, and popularity. In
regards to the latter, novel signal acquisition technologies might just acutely increase the
economic viability of the hardware implementation. Moreover, as the methodology relies
on high-frequency sampling, considerations on the signal attenuation, cost, and potential
use of technology become relevant. If the decision of installing such hardware is indeed
taken, the potential uses of it, in particular, are much vast than only HIF detection.

Although already present in the field, traditional signal transducers may not be suitable
for the application of the method presented here. One of the reasons for this incompatibil-
ity is their inductive nature. Voltage transformers used for relaying in power distribution
substations are similar to power transformers in the sense that they use inductive coils
of different ratios to scale down the primary voltage. The resultant inductance has an
attenuating effect on the high-frequency signals, which are essential information for the
detection. An alternative such transformers would be capacitive coupled voltage trans-
formers (CCVTs), which are used in transmission systems in power line communication
systems. However, having expensive high-voltage CCVTs installed in power distribution
substations for detection vegetation HIFs is not ideal either.

The ingenious configuration for signal acquisition used in the vegetation tests could
be a fair compromising solution between cost and dependability. The equipment used
a capacitive voltage divider in a similar configuration as a CCVT but much less costly.
They used a high-voltage coupling capacitor for dropping the voltage, in series with a
smaller capacitor that had lower, sampling-friendly voltage levels. The clever part of it
was using the high-voltage coupling capacitor as a voltage dropper when it was originally
commercialized as assessing equipment for partial discharge tests. It was an Omicron MCC
124 coupling capacitor, with a nominal capacitance of 1.1 nF and a maximum voltage of
24 kV. When combined with a 100 nF bottom-end capacitor and a 220 Ω shunt resistor, the
transformation ratio was about 100:1. As the high-frequency channel also contemplated
high-pass filters, selecting out the high-energy, low-frequency components, the voltage
signals resulted in RMS values at about 1.4 V. More information about the data acquisition
methodology can be found in tests report [4] or in a brief description of the tests rig set-up
and configuration in Appendix A.
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The capacitive voltage divider is certainly a more accessible solution than high-voltage
CCVTs, but non-traditional sampling technologies might reduce the cost even further.
These innovative technologies are mainly sensor/antennae sampling methods that could
be used to access the HF voltage signals with the added advantage of not being invasive.
Recent patents publications [111, 112] show the increasing interest in the application of
such solutions and its possibly more affordable commercialization. The document [111]
disclosures a solid-state electric-field sensor that can sample signals for a target located at
a distance (powerlines) by the change in the electric field in a voltage-controlled capacitor.
In the same manner, the other patent [112] discloses an early fault detection system that
samples signals with antenna sensors, also without the need for physical connection (at
a distance). Early fault detection systems based on the patent [112] have actually being
installed in Australian systems and are presenting initial positive results [156]. This
increasing interest in sensor-based sampling technologies was a supporting argument when
considering using the voltage signals in this thesis, which is not a common approach in the
literature.

This reduction in cost is probably essential to the implementation of this and other
diagnostic technologies mainly because they might have to be installed in more than one
location in the monitoring feeder. Another potential relevant concern from the presented
approach is the stray attenuation effect of HF signals in overhead powerlines. In the same
manner that inductive coils can attenuate these signals with their nature reactance, the
stray capacitance of powerlines acts as a smooth low-pass filter. This effect might just
signify that the sensing hardware will need to be installed in multiple locations throughout
the feeder. However, although this put in question the practicability of the methodology,
there is evidence that the number of hardware may not be prohibitively high for economic
feasibility. The formerly mentioned fact that there are commercially viable technologies
that use similar principles as the one presented here [156] is the first evidence. As reported
in the tests [4], the company hardware has sampling rates around tens of MHz, making
use of much higher frequencies. The other evidence is a Masters thesis [60], produced in
the Australian college (RMIT), studying the propagation of partial discharges. It pointed
through simulations that frequencies up to 25 MHz may still be sensible up to tens of
kilometres in overhead-line systems. It may be the case that these points are not decisive
evidence and that there are questions to be answered regarding the requirement of sensing
hardware to guarantee the complete monitoring of a feeder (discussed in suggestions for
further research). Nevertheless, there is also the undeniable fact that there are players in
the market, making similar technologies commercially viable in the present day.

It should be lastly mentioned the potential benefits that would come for having such
hardware in the field. Although the primary goal discussed here is to detect VHIFs, having
access to such signals could bring substantial benefits to the field of grid diagnostics.
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These benefits include not only the chance to implement the signals as part of a protection
system but also to acquire data to reveal a more comprehensive state of the network and
disturbances patterns. Current tools and trends, such as the use of unsupervised learning to
reveal patterns and their consequence classification with supervised learning, could reveal
massive insights and produce precise protection performances. Still, further reasonable
points could also be cited to highlight the interest for the similar technologies. One is the
fact that it is in the direction of a future, highly probable, smart grid scenario with more
distributed and sophisticated sampling methods. Likewise, there is the possibility to aid
other problems and disturbances diagnostics such as the lasting problem of accurate fault
location and power quality estimation, which increases in complexity with the growing
penetration of distributed generation.

5.4 Related discussions

This brief section is dedicated to discussing hypotheses formalized on the aspects of the
meta-discussion in the HIF field. A suitable start is the somewhat surprising existence
of the lack of consensus on how to address HIFs. It is remarkable, especially due to the
relative mature awareness of the problem, which dates for decades. Part of this effect is
clearly due to the problem complexity, which is arguably more complex than researchers
initially thought. However, one can also argue that because it is not an immediate and
asset-damaging problem, there are also not enough incentives to animate more elaborate
solutions. There is a challenging aspect in creating such incentives since producing
and staging the necessary experiments is an onerous and expensive activity. It is also
the reasons why the Victorian Government should be praised for funding the massive
vegetation conduction experiment that resulted in the data set used here. Nevertheless,
the incentives that motivated such funding were a long history of dealing with bushfires,
plus the devastating effects of Black Saturday. Not surprisingly, the Australian company
developing early fault detection technology it is also starting to find markets in California
[157], a place also marked by recurring devastating wildfires [158].

When other organizations end up doing real experiments, the fact that they are so
burdensome results in negative incentives to sharing the experimental data. If the HIF
phenomenon is indeed as high variant as concluded in Chapter 2, one should expect that
conclusive solutions for all types of conduction surfaces to only come from large data
sets with a massive number of experiments. The lack of standard data sets results in
convoluted literature where many solutions are presented for different sub-problems inside
the HIF detection field. This confusion leads to the incapability of comparing different
methods performances and leave much of the proposed knowledge without any specific
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use or application. Therefore, the author would like to propose a call to action for future
researchers to include the vegetation ignition data set in their method validation. Another
goes to the companies to make their data publicly available so researchers can have proper
assessments of their methods and so others can build an open-source data sets of HIFs.
The author believes that this will be the fastest way to solve the HIF detection problem
and probably save the community from the massive amount of damages resulting from
powerline-ignited fires.



Chapter 6

Further research and Conclusions

Unfortunately, a part of the ideas for experiments, analysis, and work on the data set was
not performed due to time constraints. As the author believes that they could generate
potential insights for the HIF phenomenon understanding and an even more elaborate
classifier, the main ideas for continuing the research presented here will be put forth. Ideas
based on the constraints of the work are also going to be discussed as they can serve as
further validation of the proposed approach. The main implications and conclusions can
be find in the end of the chapter in section 6.2.

6.1 Ideas for further research

6.1.1 Modelling

One of the most promising potential research developments from the adopted data set
is using it to create realistic VHIF models. As previously explained, modelling works
are important because they can be used in simulations to generate synthetic data and
to consequently base and validate detection methods. Similar work has been presented
in a recent paper [19] but it was not conceptualized with the same data set or intended
methodology.

One potentially promising methodology suggested here comprise the use of recently
proposed machine learning-based generative models for HIF modelling. Although classic
machine learning algorithms were extensively explored in HIF detection as supervised
learning tasks, deep learning and generative models are still relatively recent in the field.
Generative Adversarial Network (GAN), for example, is a class of machine learning able
to generate data with similar characteristics as the ones present in a data set. The model
is composed of two neural networks, which have competing objective functions while
playing distinct roles: one generates data candidates, the other evaluates them as real or
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synthetic. The objective function of the network that generates new data is to increase
the error rate of the discriminative network. An optimization process is applied to both
networks with the goal of making the generative network to produce better images to fool
the discriminator, while it gets better at discriminating real from synthetic data. GANs
have proved to be drastically flexible, being applied to many different fields: from art [159]
to simulations in dark energy research [160]. They have been heavily used in the field of
image processing but could be used for other signals as well. In general, the idea is not
limited to GANs but any other generative model that could represent the latent space in the
fault signals to create new synthetic data.

After model selection, a data set composed of all the fault currents recorded in the
tests would be assembled and used for training. Although being a black-box model of
fault currents, i. e. causality is not explicit, it could then be used to generate similar fault
currents to be incorporated in simulations. They could be simulated at different locations,
in different configurations, and different types of grounding. Studies on the feasibility
and method limitations could then be trivially done with Monte Carlo-like simulations. It
would be portable; anyone that wanted to test their method against VHIFs would only need
the black-box parameters. Moreover, the model could then be studied to understand the
latent space and distributions of features of a VHIF current, generating insights about the
phenomenon behaviour.

A quick mention regarding the modelling of the network at higher frequencies is also
appropriate. There are few works that target more comprehensive modelling of the network
frequency response at higher frequencies. More realistic and detailed models could be
used to rate the suitability of networks with different characteristics for methods relying
on specifics bandwidths. It could also play a significant role in predicting the resonating
frequencies that partial discharges — symptoms of early fault detection and useful for
predictive maintenance — would create so they could be better monitored.

6.1.2 Feasibility Prototype

Building and testing a full-stack prototype, from signal acquisition to communication,
would be a validation experiment that could bring much confidence to the proposed
approach. As previously explained, the prototype presented here represented the processing
part of the implementation; it receives the signals from external devices and classifies
signals in real-time. However, one could build a whole application prototype with the signal
acquisition devices (capacitive voltage divider or sensor), high-frequency sampling (filters
and ADCs), and a communication framework to signal a fault detection. Initial experiments
made with high-speed ADCs showed that even the Beaglebone microcontroller would
be able to handle sampling rates up to 1 MHz. Doing so would require some expertise
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because the only way to run an ADC at 1 MHz sampling rate with the Beaglebone is
via its peripheral processors called programmable real-time units (PRUs). The author
was able to access and code these processors to run the ADC via a parallel port; they
only have Assembly compilers, so the code needs to be written at a low-level language.
This much laborious process could nevertheless be replaced by adding a low-cost FPGA
between the microcontroller and ADC. Still, that would also be at the cost of the expertise
in hardware-level coding to program the FPGA.

6.1.3 Signal attenuation experiments

Another idea for further research based on potential constraints of the current methodology
is assessing signal attenuation/propagation characteristics on power distribution networks.
Such systems are particularly complex due to the number of equipment, the fact that it
can be severely branched with many lateral feeders, presence of non-linear loads, and
distributed generation. Works proposing methods based on travelling-wave theory often
have to make coarse considerations about the system characteristics resulting is less realistic
models. Factors such as ground resistivity, knowledge of the topology of the line, ending
and branching of feeders, and even the consideration of loads can be arbitrarily assumed,
greatly influencing results. One of the problems with signal attenuation/propagation studies,
therefore, is creating a framework where the insights from testing one system could be
generalized to another.

There is the further complication that making such tests in a real functioning feeder is
expensive and onerous. However, the author would like to leave a suggestion for future
researchers conducting HIF tests to make the measurements in different parts of the system,
rather than just at the fault point or substation. In this manner, one can hypothesize theories
about the signal propagation and reach, leading to more confidence in the systems based
on the resulted experimental data, as well as a better understanding of their limitations.
Likewise, to make an attempt at trying to use higher sampling rates so the phenomenon
could also be characterized at different bandwidths. One can argue that it is very probable
that different disturbances will have particular signatures at higher frequencies that could be
used to conceptualize better protection systems. The modern tools of clustering information
and identifying patterns can allow the discovery of compelling insights that were formerly
not possible with just human expertise.

The issue of signal propagation is also linked to the one formerly discussed of network
modelling. One can confidently state that how the signal is going to be propagated has
a substantial influence on the parameters of the system. Therefore, these problems are
somewhat unable to be separately addressed and will require considerable efforts until
better standards and guidelines are achieved.
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6.2 Conclusions

Although the primary goal of this thesis is to propose a VHIF detection method, the process
of achieving it also resulted in notable, related insights. Some came from analysing trends
and distributions in the literature, while others came from hypothesis testing and evidence
gathering for the suitability of the proposed approach. Part of the insights is not counted
as original contribution as they came from contextualizing the information in published
documents. However, findings from original experiments described here were published
in peer-review journals [55–57] as a contribution to knowledge. Both are important for a
holistic discussion of the consequent implications of the work produced in this thesis.

Contextualizing the documents in the related literature resulted in the confirmation of a
few HIF characteristics that are widely accepted, but also revealed the lack of consensus
and proved practical solutions. The most significant evidence for the latter was the $750
million dollars invested in the creation of the Powerline Bushfire Safety Program. The
investment was recommended by the 2009 Victorian Bushfires Royal Commission when
they came to the conclusion that effective commercial solutions to mitigate the powerline-
ignited fires were lacking. The survey of formal peer-review journals corroborates with
this conclusion in most senses. Up to this date, researchers are still proposing novel
and elaborated HIF detection approaches while finding knowledge gaps is previous ones.
Despite key commercial players such as GE, ABB, and Sweitzer had also proposed their
solutions, it is hard to prove that a definite solution is nowhere near. The vegetation ignition
tests presented one further evidence of the unsuitability of the commercial solutions. A
relay with HIF detection function was present during all the tests did not detect any of the
staged faults.

Concerning the relatively elevated number of papers published in this field in the last
decade, they might only exist due to the progress made in HIF modelling. Researchers that
knowledgeably tried to discover the patterns in their data sets and embed them in models
paved the way for many subsequent simulation-based works. Despite their numbers, most
of the modelling-based methodologies still leave many questions open regarding their
capability the generalize to real scenarios. Moreover, another notable conclusion from
investigating the literature is that hardly any works specifically target vegetation as HIF
surface. Although the need for doing so is not apparent, insights on the considerable
variance of HIFs, the fact that commercial solutions can not guarantee their detection, and
their capability to ignite fires make such specification much more relevant. Therefore,
focusing on local vegetation species tested in real, staged faults considerably differentiates
this work from most in the literature.

The amount of data resulted from the vegetation ignition tests allowed the production
of a machine learning-based classifier. This approach was advantageous because machine
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learning avoids the need for a bottom-up method, which might be infeasible given the
complexity of the problem. The sizeable data set also allowed for proper validation as some
of the observations could be partitioned as out-of-sample testing data. The problem of
classifying the observations as faulted or not constituted a supervised learning task, which
means that the algorithm was trained on labelled data with respective classes. In the last
version of the classifier, such classes were ‘Voltage-OFF’, ‘Non-fault’, and ‘Fault’. The
first class was composed of HF sweeps extracted from moments where the HV source was
not connected; hence it only includes the background noise from the test rig. Observations
from the ‘Non-fault’ class were sweeps from recordings made throughout the test days,
with the connection of the HV source, as a way to characterise the network signals. The
observations from the latter class, ‘Fault’, came from a more arbitrary extraction method;
they were the sweeps immediately sampled after the current RMS reached 0.5 A. After
their assembling in a labelled data set, the observations were used to learn many machine
learning algorithms such as KNN, SVM, and decision trees. Ensembles of decision trees,
boosting and bagging, over-performed all tested algorithms in most of the tests. The results
from learning the classifier were favourable: 98.8% accuracy, 97% dependability, and
99.09% security.

The positives results from learning the classifier are significant to VHIF detection and
fire mitigation when their relevancy is considered. Discriminating between the ‘Non-fault’
and ‘Fault’ classes is very challenging, as seen in illustrations and results from Chapter
4. In fact, when only the LF observations are considered, the classifier is not much better
than a coin toss at predicting faults. Although accuracy is a relevant parameter, it is not the
most significant part of the main results; one can find works that claim higher accuracy
values than this. It is instead the fact that such promising results were achieved with
real data (not simulations) from a specific type of HIF having vegetation as conducting
surface. This main contributions here is particularly relevant to the Australian context,
which has people and property seasonally damaged by powerline-ignited bushfires. From
the classifier results, it is also notable that the security value (non-false positives) was
the highest one. The problem of detecting HIF is tightly linked with service continuity
commitment, especially to critical and industrial loads. Tripping the power off the line in
case of false-positive results could be disastrous if exacerbated. Therefore, strategies to
further increase the already high-certainty security were also proposed. The most trivial one
is the implementation of a counter before the trip signal where consequent detections are
needed before disconnecting the power. The less trivial and original idea was proposed as
a feedback method where the previous state of the network is saved in the form of a feature
vector. In this approach, which is adopted in the last version of the method, the newly
sampled signal features are compared to the feedback feature vector and then fed to the
classifier. It is expected that the positive classification results and implementation strategies
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result in generalization on the field, but it is important to be honest and not to exaggerate
the results. One does not need to claim that such a method will effectively detect all types
of faults and conducting surfaces to be relevant. However, it is possible to speculate that
there is a potential use of this approach to detect other similar disturbances given such
positives results and the nature of the phenomena. In any case, considering the favourable
results and the cost of alternatives to help mitigate powerline-ignited fire risk, the solution
proposed here arguably presents a tremendous potential for further investments.

As the supervised learning task is solved through a symbolic approach, the choice of
features and signal processing techniques played part of the role in the method success.
Initial investigations started with power spectral estimators and spectrograms, which are all
Fourier-based techniques that can also be used as signal-representative features. However,
signal representation methods will perform differently depending on signal characteristics
such as if they are stationary or not, or if discontinuities are relevant information. As
expected, Fourier-based predictors underperformed when compared to wavelet ones. This
fact is somewhat in accordance with the knowledge in the literature as wavelets became
the prevalent technique once they were introduced to the field. As they are well localized
in time and logarithmically split the frequency domain, wavelets are more efficient at
representing signals discontinuities and anomalies. Towards the conceptualization of the
final version, wavelet-based features were combined with features from the basis functions
learned from the data set. Such originally developed features serve as matching filters to
recurrent patterns found in the faulted signals.

Results from the secondary work and evidence gathering experiments imply some valu-
able VHIFs insights and how they relate to common knowledge in the field. The probably
most relevant one is the use of low-frequency harmonic content for VHIF detection. As
mentioned in Chapter 2, such measurements were used since the beginning of the field.
The third-order harmonic, in specific, was often presented as a reliable HIF predictor due
to the non-linearity of the fault current around zero-crossings. However, as shown in initial
investigations and rarely mentioned in the literature, the HIF fault surface behaves almost
linearly during initial moments of vegetation conduction. This phenomenon should receive
increased importance since fire ignition risk can only be avoided in the initial moments of
a fault. Further evidence came from experiments set to compare the information content
from LF and HF signals. It revealed that only the latter could be used to predict fault
observations reliably, and that although valid for the single-digit vegetation fault current
studied here, it means that HF sampling may be imperative for their detection. In regards to
the nature of phenomena, the application of unsupervised learning helped to illustrate how
the fault signatures are formed. As another novel application in this thesis, the patterns
were deconvolved from other signals, isolated, and illustrated in the time domain to further
result in insights about faulted signals. They corroborated with the descriptions of HIFs
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having an impulsive nature at higher frequencies that creates signal discontinuities on the
feeder current. This impulses in the current, in turn, generate damped oscillatory responses
in the voltage signals due to the second-order nature of the system.

Part of the evidence-gathering work also helped to attest some of the practical feasibil-
ity of the method. The proof-of-concept prototype can be presented as evidence that the
method can be implemented in low-cost computers to work deterministically in real-time.
The concern for computational complexity when working with HF signals is completely
justified. The only reason why the card-sized computer was able to perform the classifica-
tion in real-time is that it was processing sweeps of 20 ms, instead of continuously sampled
data. In this sense, classifying signals via HF sweeps is an entirely novel approach that
could alleviate a substantial part of the computational requirements. Given the favourable
results presented here, one could argue that the sweep approach is an unexplored area that
could be useful for this and other similar problems.

In summary, the results obtained in this thesis attest that investigating the vegetation
ignition data set to create a VHIF detection method was a credible idea. The results suggest
that fault signals can be accurately discriminated and that the approach is practically
feasible. The classification had the favourable effect of working with both phase-to-earth
and phase-to-phase faults. They also show that there are fault signatures in the HF signals,
and for detecting VHIFs, such high-resolution sampling is possibly a requirement. The
methodology and consequent results also have the additional validation aspect of being
accepted in high-ranking peer-reviewed journals. Considering the gravity of the problem
and the specificity of the results regarding the Australian scenario, one can argue that this
solution has a high-potential value for the community. This argument is exceptionally easy
to make when considering that Australia has tens of thousands of kilometres of SWER
lines that are unsuitable for even the most costly and promising three-phase solution. If
anything, the body of work in this thesis attest the value in continuing the research direction
and production of a complete prototype for further testing.
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Appendix A

Experiment and measurement set-up

The real, staged HIF tests were performed in a purpose-built facility in the city of Mel-
bourne. The test rig was assembled in a local substation comprised of two ship containers.
A dedicated feeder connected to the substation transfer bus was designed as the test rig
energy supply. Fig. A.1 illustrates the simplified single-line diagram with the CB (Circuit
Breaker), ACRs (Automatic Circuit Recloser), RCGSs (Remote Control Gas Switch), and
HV resistors. The CB and ACRs have overcurrent, earth fault, and earth fault sensitivity
protection. The illustrated capacitor is a 1.1 nF, 24 kV, coupling capacitor and HV resistors
were included to avoid internal flashovers.

The substation is connected to a sub-transmission system of 66 kV and step down
voltages via two Y-Y transformers. Their grounding connection is floating on the primary
side and impedance grounded on the secondary by neutral earth resistors. Brief information
regarding the feeders was disclosed but the fact that exists at least ten consumer load feeders,
including industrial loads.

In regards to the measurement hardware, the 24-kV coupling capacitors were combined
with bottom-end capacitors to form the dual-channel capacitive voltage divider (LF and
HF channels). Two 125-V bidirectional voltage limiting diode and 350-V spark gaps
were included in the channels to serve as over-voltage protection. In the HF channel, a
110 nF bottom-end capacitor with a 220 ohms shunt resistor branch was introduced to
provide a ratio of 100:1 at high frequencies and high-pass characteristic with 10 kHz
corner frequency. The output signal was processed by a Frequency Device, active 4-pole
Butterworth filter to eliminate the 50 Hz signals and low-order harmonics. Anti-Aliasing
filters, represented in the diagram as the “Low-pass (<1 MHz) filter”, were also included.

The Gen3i HBM was adopted as the data acquisition mainframe, fitted with an HBM
GN401 four-channel optical input card fed by four HBM GN110-2 optoisolated digitizers.
The digitizers operate at a constant 100 MS/s, using anti-aliasing filters and data decimation
to achieve the 2 MSa/s (HF) and 100 kSa/s (LF) sampling rates. The information presented
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in this Appendix were extracted from the Vegetation Conduction Ignition Test Report [4],
where further details are given.

Figure A.1. Unifilar diagram of the feeder and test rig.



Appendix B

Codes

The following are MATLAB codes that exemplify the application of the concepts discussed
in Chapter 3, Methodology. The purpose of all the scripts and functions are summarized:

• ‘Main script example’ - A script that describes the whole process of learning and
testing the classifier; from loading the data set of signals to the validation results
from 10-fold cross-validation.

• ‘sweep_select’ function - Receives the data set of signals and sweep extraction
parameters as input, and returns the selected in-fault sweeps for learning.

• ‘cal_select’ function - Receives the data set of background recordings and extraction
parameters as input, and returns the selected non-fault sweeps for learning.

• ‘psd_calc’ function - Receives the selected sweeps and frequency bands parameters,
and returns the PSD-based features.

• ‘wav_calc’ function - Receives the selected sweeps and wavelet decomposition
parameters, and returns the wavelet-based features.

• ‘app_feed’ function - Post-processing stage. It receives the calculated features and
compares with the features of signals sampled in the same test day.

• ‘classification’ function - Receives the features and labels of observations, and
returns the results of cross-validation.

• ‘load_databases’ script - Loads the voltages and current signals of the fault tests and
background recordings into the workspace, as well as information about the sweep
triggers, fault current thresholds, and other metadata.

• ‘def_prob_day’ function - Receives the metadata of tests enumeration, and returns
the problematic tests to skip in the analysis.
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• ‘tests_ensemble’ script - Script gathering all the test recordings, further loaded as
‘all_voltages_tests.mat’ and ‘all_current_tests.mat’ in the ‘load_databases’ script.

• ‘calibration_ensemble’ script - Script gathering all the calibration recordings, further
loaded as ‘currents_cal.mat’ and ‘voltages_cal.mat’ in the ‘load_databases’ script.

• ‘calibration_ensemble’ script - Script gathering all the triggers recordings, further
loaded as ‘triggers.mat’ in the ‘load_databases’ script.

• ‘Prototype main routine’ script - Example of the C++ routine ran by the Beaglebone
while sampling and classifying signals using MATLAB functions via MATLAB
Coder.

**The shift-invariant sparse coding technique is not included but can be found in the
author’s website [134].
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Main script example
1 %% Initializing

2 close all; clc; clearvars −except Voltages Voltages2 Voltages_cal Currents Currents_cal tests_info

triggers

3
4 trainning_method=1; %1=yes 0=no

5 tests_under_analysis=1:1036;

6 type_to_test=0; %0=all 1=ph_e 2=ph_ph

7 current_thres=0.5; %Current threshold

8 max_eval_win_no=1; %How many best windows after fault to evaluate

9 low_freq_hi_samp_need=0; %Flag to select low_freq signals in win_pos (Voltage2)

10 current_hf_need=0; %Flag to select current sweeps

11
12 %Loading data

13 load_databases; %Voltages Voltages2 Voltages_cal Currents Currents_cal tests_info triggers

14
15 %% Information of tests by day

16
17 % February tests = 75:504

18 % March tests = 505:1038

19 %

20 % Cal ph_e = 36:95

21 % Cal ph_ph = 100:112

22 %

23 % Tests with feedback with ph_e cals (std n_cal) = 336 − 821 / Feb 23 − Mar 20

24 % Tests with feedback with ph_ph cals = 821 − end / Mar 20 − end

25
26 %% Capturing data

27
28 %flag tests to tests to skip and valid tests

29
30 [skipping_tests, all_tests]=def_prob_day(tests_info);

31
32 %Fault singals observations from pos−fault sweeps

33
34 %Calling sweep_select function

35 [~, ~, ~, ~, win_pos, ~, fault_ident, fault_type, day_ident, ~, ~, ~, ~]=...

36 sweep_select(Voltages, Voltages2, Currents, all_tests, triggers, fault_currents,

tests_under_analysis,...

37 trainning_method, current_thres, max_eval_win_no, type_to_test, skipping_tests,

low_freq_hi_samp_need, current_hf_need,...

38 test_days);

39
40 %Non_fault signals observtions from calibration recordings

41
42 n_cal=[36 37 38 39 40 41 42 43 44 47 48 49 50 51 52 53 55 57 58 59 60 61 62 63 64 65 66 77 78 79 80 81

82 83 87 88 89 93 94 95 100 101 102 103 104 105 106 107 108 109 110 111 112];

43
44 volt_source_consi=0; %Discriminate between voltage source on or not 1−yes 0−no (can only to current and

low_freq_hi_samp with 'no'

45 balancing=0; %Balance the amount of observations between pos and cal 1−yes 0−no
46 add_noise=0; % subtitute some cal obs for white noise

47 cal_current_hf_need=0; %Flag to select current sweeps

48 cal_low_freq_hi_samp_need=0; %Flag to select low_freq signals

49
50 [win_cal, cal_ident, voltage_off]=cal_select(Voltages_cal, Currents_cal, n_cal, volt_source_consi,

balancing, add_noise, cal_days, cal_current_hf_need, cal_low_freq_hi_samp_need,length(win_pos));
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51 %TO DO: FIX BALACING, VOLTAGE_SOURCE CONS, AND ADD NOISE WITH 'voltage_off' data

52
53 %to balance

54 %win_cal(voltage_off)=[];

55 %win_cal=win_cal(datasample([1:2466],566,'Replace',false));

56
57 %% Pre−processing
58 trainning_method=1;

59
60 enclosed_norm=0;

61 std_norm=0;

62 downsample_sig=1;

63
64 %Build signals structure

65 signals=struct();

66 for i=1:length(win_cal)+length(win_pos)

67 if i<=length(win_cal)

68 signals(i).voltage=win_cal(i).voltage;

69 else

70 signals(i).voltage=win_pos(i−length(win_cal)).voltage';
71 end

72 end

73
74 %Standardization

75 if std_norm==1

76 for i=1:length(signals)

77 meann=mean(signals(i).voltage);

78 signals(i).voltage=signals(i).voltage−meann;
79 stdd=std(signals(i).voltage);

80 signals(i).voltage=signals(i).voltage./stdd;

81 end

82 end

83
84 %Normalization

85 if enclosed_norm==1

86 for i=1:length(signals)

87 signals(i).voltage=signals(i).voltage−mean(signals(i).voltage);
88 signals(i).voltage=(signals(i).voltage)./22;

89 end

90 end

91
92 %Downsample

93 if downsample_sig==1

94 for i=1:length(signals)

95 signals(i).voltage=filter(Butter_filter_3rd_order_500k,(signals(i).voltage));

96 end

97
98 for i=1:length(signals)

99 signals(i).voltage=downsample(signals(i).voltage,2);

100 end

101 end

102
103 %% Feature calculation (PSD/Wavelet)

104
105 inc_psd=0;

106 regions=[358 367; 774 778; 898 909];

107 inc_wavelet=0;
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108 wav_lvl=4;

109 idxvar=[1:4 13:16];

110 inc_basis=1;

111
112 feat_test=[];

113
114 %PSD features

115 if inc_psd==1

116 psd_feat=psd_calc(signals,regions);

117 feat_test=[feat_test psd_feat];

118 end

119
120 %Wavelet features

121 if inc_wavelet==1

122 %Sum, peaks, std, entropy, kurtosis, ene

123 wav_feat=wav_calc(signals,wav_lvl);

124 feat_test=[feat_test wav_feat(:,idxvar)];

125 end

126
127 %Basis features

128 if inc_basis==1

129 A=load('basis_pre_250s_566_tests_8_bases_100_int_beta_10.mat');

130 A=A.A;

131
132 if downsample_sig==1

133 for i=1:size(A,4)

134 A(:,1,1,i)=filter(Butter_filter_3rd_order_500k,A(:,1,1,i));

135 A1(:,1,1,i)=downsample(A(:,1,1,i),2);

136 end

137 A=A1;

138 clear A1

139 end

140
141 clear test_conv test_conv2 test_conv3 %fix it

142 for o=1:size(signals,2)

143 for i=1:size(A,4)

144 test_conv(:,i)=conv(flip(A(:,1,1,i)),signals(o).voltage);

145 end

146 test_conv2(o,:)=sum(abs(test_conv));

147
148 for i=1:size(test_conv,2)

149 test_conv3(o,i)=wentropy(test_conv(:,i)./1e3,'log energy');

150 end

151 end

152
153 feat_test=[feat_test test_conv2];

154 end

155
156 %% Post−processing
157
158 trainning_method=1;

159
160 apply_feedback=0; %on−off %CAL_IDENT AND DAY_IDENT NEEDS TO BE ALLIGNED w/ SIGNALS

161
162 if apply_feedback==1

163 [feat_test, feedback_vec]=app_feed(feat_test,feat_test,trainning_method,win_cal,win_pos, day_ident,

cal_ident, [], [], [],[]);
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164 end

165
166 resp=ones(1,length(win_cal)+length(win_pos));

167 resp(logical(voltage_off))=0;

168 resp(length(win_cal)+1:end)=2;

169
170 %% Classification

171 [yFit,cv]=classification(feat_test,resp,[],[],[],trainning_method,[]);
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sweep_select function
1 function [voltage_sweep_initial, current_sweep_initial, current_sweep_final, signal_duration, win_pos,

win_cal, fault_ident, fault_type, day_ident, voltage_hf, voltage_lf, current_lf,

voltage_lf_in_fault]=...

2 sweep_select(Voltages, Voltages2, Currents, all_tests, triggers, fault_currents,

tests_under_analysis,...

3 trainning_method, current_thres, max_eval_win_no, type_to_test, skipping_tests,

low_freq_hi_samp_need, current_hf_need, test_days)

4
5 voltage_sweep_initial=[];

6 current_sweep_initial=[];

7 current_sweep_final=[];

8 signal_duration=[];

9 win_pos=[];

10 win_cal=[];

11 fault_ident=[];

12 fault_type=[];

13 day_ident=[];

14 voltage_lf_in_fault=[];

15
16
17
18 %% Getting time inception, fault observations and data

19
20 if trainning_method==1

21 clear win_pos current_lf_in_fault n_win_fault fault_ident fault_type voltage_lf_in_fault

22 end

23
24 for a=1:length(tests_under_analysis)

25
26 test=find(all_tests==tests_under_analysis(a));

27
28 if ~any(test)

29 test=0;

30 end

31
32 %exclude by fault type if selected

33 if type_to_test==1&&trainning_method==1

34 if test>=536

35 test=0;

36 end

37 elseif type_to_test==2&&trainning_method==1

38 if test>=916||test<=535

39 test=0;

40 end

41 end

42
43 if (~any(test==skipping_tests)&&test~=0)||(trainning_method==0&&test~=0) %Test skipping, invalid,

missing tests

44
45 clear voltage_lf current_lf voltage_hf current_hf

46 voltage_lf=Voltages(test).Voltage_LF;

47 current_lf=Currents(test).Current_LF;

48 voltage_hf=Voltages(test).Voltage_HF;

49 current_hf=Currents(test).Current_HF;

50
51 clear incept_time
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52 clear Current_LF_RMS

53 wdn_size=2000; %Rms calculation window size

54 win_over=1000; %Window overlap in rms calculation

55 rms1=1;

56 incp1=1;

57 flag_in_fault=0;

58 flag_rms=0;

59 flag_seq=0;

60 incept_time=−1;
61 for o=1:win_over:length(current_lf)−wdn_size %Calculating current rms and extracting sample of

fault injection and extinguishing

62 Current_LF_RMS(rms1,1)=rms(current_lf(o:o+wdn_size));

63 if Current_LF_RMS(rms1,1)>current_thres&&flag_in_fault==0

64 if flag_rms==0

65 flag_rms=1;

66 flag_inception=o;

67 flag_seq=o;

68 elseif any(flag_rms==1:6)&&o−flag_seq==win_over
69 flag_rms=flag_rms+1;

70 flag_seq=o;

71 elseif any(flag_rms==1:6)&&o−flag_seq~=win_over
72 flag_rms=1;

73 flag_inception=o;

74 flag_seq=o;

75 elseif flag_rms==7

76 incept_time(incp1)=flag_inception+2000;

77 incp1=incp1+1;

78 flag_in_fault=1;

79 flag_rms=0;

80 end

81 elseif Current_LF_RMS(rms1,1)<0.01&&flag_in_fault==1

82 if flag_rms==0

83 flag_rms=1;

84 flag_inception=o;

85 flag_seq=o;

86 elseif any(flag_rms==1:10)&&o−flag_seq==win_over
87 flag_rms=flag_rms+1;

88 flag_seq=o;

89 elseif any(flag_rms==1:10)&&o−flag_seq~=win_over
90 flag_rms=1;

91 flag_inception=o;

92 flag_seq=o;

93 elseif flag_rms==11

94 incept_time(incp1)=flag_inception;

95 incp1=incp1+1;

96 flag_in_fault=0;

97 flag_rms=0;

98 end

99 end

100 rms1=rms1+1;

101 end

102
103 clear source_on_off

104 clear Voltage_LF_RMS

105 wdn_size=2000; %Rms calculation window size

106 win_over=1000; %window overlap in rms calculation

107 rms1=1;
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108 incp1=1;

109 flag_in_fault=0;

110 flag_rms=0;

111 flag_seq=0;

112 source_on_off=−1;
113 for o=1:win_over:length(current_lf)−wdn_size %Calculating voltage rms and extracting sample of

voltage turn on and off

114 Voltage_LF_RMS(rms1,1)=rms(voltage_lf(o:o+wdn_size));

115 if Voltage_LF_RMS(rms1,1)>100&&flag_in_fault==0

116 if flag_rms==0

117 flag_rms=1;

118 flag_inception=o;

119 flag_seq=o;

120 elseif any(flag_rms==1:6)&&o−flag_seq==win_over
121 flag_rms=flag_rms+1;

122 flag_seq=o;

123 elseif any(flag_rms==1:6)&&o−flag_seq~=win_over
124 flag_rms=1;

125 flag_inception=o;

126 flag_seq=o;

127 elseif flag_rms==7

128 source_on_off(incp1)=flag_inception+2000;

129 incp1=incp1+1;

130 flag_in_fault=1;

131 flag_rms=0;

132 end

133 elseif Voltage_LF_RMS(rms1,1)<100&&flag_in_fault==1

134 if flag_rms==0

135 flag_rms=1;

136 flag_inception=o;

137 flag_seq=o;

138 elseif any(flag_rms==1:20)&&o−flag_seq==win_over
139 flag_rms=flag_rms+1;

140 flag_seq=o;

141 elseif any(flag_rms==1:20)&&o−flag_seq~=win_over
142 flag_rms=1;

143 flag_inception=o;

144 flag_seq=o;

145 elseif flag_rms==21

146 source_on_off(incp1)=flag_inception;

147 incp1=incp1+1;

148 flag_in_fault=0;

149 flag_rms=0;

150 end

151 end

152 rms1=rms1+1;

153 end

154
155 if incept_time(1)~=−1
156 %Fixing fault extingshing and source turn off time until the end of the test

157 if length(incept_time)==1

158 incept_time(2)=length(current_lf);

159 end

160
161 if length(source_on_off)==1

162 source_on_off(2)=length(voltage_lf);

163 end



165

164
165 %Sweeping taking and selection

166 least_time=1000; %find the initial sweep of fault inception

167 for o=1:length(triggers(test).trigger_time)

168 time_dif=triggers(test).trigger_time(o)−incept_time(1)/1e5;
169 if time_dif<least_time&&time_dif>0

170 least_time=time_dif;

171 current_sweep_initial=o;

172 end

173 end

174
175 least_time=−1000; %find the sweep of fault extinguishing

176 for o=1:length(triggers(test).trigger_time)

177 time_dif=triggers(test).trigger_time(o)−incept_time(2)/1e5;
178 if time_dif>least_time&&time_dif<0

179 least_time=time_dif;

180 current_sweep_final=o;

181 end

182 end

183
184 least_time=1000; %find the initial sweep of voltage source turned on

185 for o=1:length(triggers(test).trigger_time)

186 time_dif=triggers(test).trigger_time(o)−source_on_off(1)/1e5;
187 if time_dif<least_time&&time_dif>0

188 least_time=time_dif;

189 voltage_sweep_initial=o;

190 end

191 end

192
193 %signalling tests with possible pre_fault_signals (old)

194 if voltage_sweep_initial<current_sweep_initial

195 pre_fault_flag=1;

196 else

197 pre_fault_flag=0;

198 end

199
200 %printing first fault sweeps from the recording

201 if trainning_method==0

202 voltage_sweep_initial

203 current_sweep_initial

204 current_sweep_final

205 signal_duration=length(current_lf)/1e5

206 continue

207 end

208
209 %Collecting low frequency fault signals

210 clear voltage_lf_off_fault %Create vector with low−frequency Voltage sweeps in fault

211 if incept_time(1)−source_on_off(1)>2e4
212 voltage_lf_off_fault(:,1)=voltage_lf(source_on_off(1):incept_time(1));

213 end

214
215 clear voltage_lf_in_fault %Create vector with low−frequency Voltage sweeps in fault

216 voltage_lf_in_fault(:,1)=voltage_lf(incept_time(1):incept_time(2));

217
218 clear current_lf_in_fault %Create vector with low−frequency current sweeps in fault

219 current_lf_in_fault(:,1)=current_lf(incept_time(1):incept_time(2));

220
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221 %Creating vector post and pre−fault
222 clear voltage_hf_in_fault %Create vector with High−frequency Voltage sweeps in fault

223 voltage_hf_in_fault(:,1)=voltage_hf(40000*(current_sweep_initial−1)+1:40000*(
current_sweep_final));

224
225 clear current_hf_in_fault %Create vector with High−frequency current sweeps in fault

226 if length(current_hf)>=40000*(current_sweep_final)

227 current_hf_in_fault(:,1)=current_hf(40000*(current_sweep_initial−1)+1:40000*(
current_sweep_final));

228 else

229 current_hf_in_fault=[];

230 end

231
232 clear voltage_hf_off_fault %Create vector with High−frequency Voltage sweeps pre fault

233 if pre_fault_flag==1

234 voltage_hf_off_fault=voltage_hf(40000*(voltage_sweep_initial−1)+1:40000*(
current_sweep_initial−1));

235 faults_pre_fault(test,1)=test;

236 end

237
238
239 % Separating all post−fault sweeps

240 n_win_fault(a)=length(voltage_hf_in_fault)/4e4; %Indicator of how many HF sweep the test

have

241 win_size1=1*4e4; %Window size

242
243 if length(voltage_hf_in_fault)>3e4 % If and fors for different length or position of sweep

taken

244 samp_count=1;

245 while samp_count<=max_eval_win_no&&samp_count<=n_win_fault(a)

246 win_pos(a).voltage((samp_count−1)*win_size1+1:win_size1*samp_count)=
voltage_hf_in_fault((samp_count−1)*win_size1+1:win_size1*samp_count);

247 samp_count=samp_count+1;

248 end

249 fault_ident(a)=tests_under_analysis(a);

250 end

251
252 if (current_hf_need||max_eval_win_no>1)

253 if length(current_hf_in_fault)>3e4 % If and fors for different length or position of

sweep taken

254 samp_count=1;

255 while samp_count<=max_eval_win_no&&samp_count<=n_win_fault(a)

256 win_pos(a).current((samp_count−1)*win_size1+1:win_size1*samp_count)=
current_hf_in_fault((samp_count−1)*win_size1+1:win_size1*samp_count);

257 samp_count=samp_count+1;

258 end

259 end

260 end

261
262 % Separating a single sweep of the post−fault ones / best win

263 % select or not

264 if max_eval_win_no>1&&length(current_hf_in_fault)>3e4

265 clear win_eval

266 if n_win_fault(a)<=max_eval_win_no

267 for o=1:n_win_fault(a)

268 %[c,l] = wavedec(win_pos(a).voltage((o−1)*4e4+1:o*4e4),3,'sym4');
269 %cd3 = detcoef(c,l,3);
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270 %win_eval(o)=sum(abs(cd3));

271 %win_eval(o)=wentropy(cd3,'log energy');

272 win_eval(o)=(rms(win_pos(a).current((o−1)*4e4+1:o*4e4)));
273 end

274 else

275 for o=1:max_eval_win_no

276 %[c,l] = wavedec(win_pos(a).voltage((o−1)*4e4+1:o*4e4),3,'sym4');
277 %cd3 = detcoef(c,l,3);

278 %win_eval(o)=sum(abs(cd3));

279 %win_eval(o)=wentropy(cd3,'log energy');

280 win_eval(o)=(rms(win_pos(a).current((o−1)*4e4+1:o*4e4)));
281 end

282 end

283
284
285 if length(current_hf_in_fault)>3e4

286 best_win=find(win_eval==max(win_eval));

287 else

288 best_win=1;

289 end

290
291 swp_no(a)=best_win−1+current_sweep_initial;
292 if swp_no(a)==0

293 flagx=a;

294 end

295 %test_ident(a)=test;

296
297 win_pos(a).voltage=win_pos(a).voltage((best_win−1)*4e4+1:best_win*4e4);
298 win_pos(a).current=win_pos(a).current((best_win−1)*4e4+1:best_win*4e4);
299
300 if (low_freq_hi_samp_need==1)

301 if (test==213||test==420)

302 win_pos(a).voltage2=Voltages2(test).Voltage_LF_HiSamp(end−4e4+1:end);
303 else

304 win_pos(a).voltage2=Voltages2(test).Voltage_LF_HiSamp((swp_no(a)−1)*4e4+1:swp_no
(a)*4e4);

305 end

306 end

307 else

308 if (test==213||test==420)&&(low_freq_hi_samp_need==1)

309 win_pos(a).voltage2=Voltages2(test).Voltage_LF_HiSamp(end−4e4+1:end);
310 elseif any(current_hf_in_fault)

311 win_pos(a).voltage=win_pos(a).voltage(1:4e4);

312 if low_freq_hi_samp_need==1

313 win_pos(a).voltage2=Voltages2(test).Voltage_LF_HiSamp((current_sweep_initial−1)
*4e4+1:current_sweep_initial*4e4);

314 end

315 end

316 end

317
318 % Signalling of type of test analyzed

319 if length(voltage_hf_in_fault)>3e4

320 if test<536

321 fault_type(a,1)=1; %First windown

322 elseif test<916&&test>535

323 fault_type(a,1)=2; %First windown

324 elseif test>915&&test<971
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325 fault_type(a,1)=3; %First windown

326 elseif test>970&&test<995

327 fault_type(a,1)=4; %First windown

328 end

329 end

330
331 end

332 end

333 end

334
335 if trainning_method==1

336
337
338 fault_type=fault_type(find(fault_type));

339 fault_ident=fault_ident(find(fault_ident));

340
341 %swp_no=swp_no(find(swp_no));

342
343 %test_ident=test_ident(find(test_ident));

344
345 %taking 0 coluns of win_pos

346 zero_coluns=0;

347 for i=1:length(win_pos)

348 if ~any(win_pos(i).voltage)

349 zero_coluns(i)=i;

350 end

351 end

352 win_pos(zero_coluns(find(zero_coluns)))=[];

353 voltage_lf_in_fault(zero_coluns(find(zero_coluns)))=[];

354
355 %Day of test identification

356 clear day_ident

357 for i=1:length(fault_ident)

358 if any(fault_ident(i)==test_days.feb_12)

359 day_ident(i)=121;

360 elseif any(fault_ident(i)==test_days.feb_13)

361 day_ident(i)=131;

362 elseif any(fault_ident(i)==test_days.feb_16)

363 day_ident(i)=161;

364 elseif any(fault_ident(i)==test_days.feb_17)

365 day_ident(i)=171;

366 elseif any(fault_ident(i)==test_days.feb_18)

367 day_ident(i)=181;

368 elseif any(fault_ident(i)==test_days.feb_19)

369 day_ident(i)=191;

370 elseif any(fault_ident(i)==test_days.feb_20)

371 day_ident(i)=201;

372 elseif any(fault_ident(i)==test_days.feb_23)

373 day_ident(i)=231;

374 elseif any(fault_ident(i)==test_days.feb_24)

375 day_ident(i)=241;

376 elseif any(fault_ident(i)==test_days.feb_25)

377 day_ident(i)=251;

378 elseif any(fault_ident(i)==test_days.feb_26)

379 day_ident(i)=261;

380 elseif any(fault_ident(i)==test_days.feb_27)

381 day_ident(i)=271;
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382 elseif any(fault_ident(i)==test_days.feb_27)

383 day_ident(i)=271;

384 elseif any(fault_ident(i)==test_days.mar_3)

385 day_ident(i)=032;

386 elseif any(fault_ident(i)==test_days.mar_5)

387 day_ident(i)=052;

388 elseif any(fault_ident(i)==test_days.mar_6)

389 day_ident(i)=062;

390 elseif any(fault_ident(i)==test_days.mar_13)

391 day_ident(i)=132;

392 elseif any(fault_ident(i)==test_days.mar_16)

393 day_ident(i)=162;

394 elseif any(fault_ident(i)==test_days.mar_17)

395 day_ident(i)=172;

396 elseif any(fault_ident(i)==test_days.mar_18)

397 day_ident(i)=182;

398 elseif any(fault_ident(i)==test_days.mar_19)

399 day_ident(i)=192;

400 elseif any(fault_ident(i)==test_days.mar_20)

401 day_ident(i)=202;

402 elseif any(fault_ident(i)==test_days.mar_23)

403 day_ident(i)=232;

404 elseif any(fault_ident(i)==test_days.mar_24)

405 day_ident(i)=242;

406 elseif any(fault_ident(i)==test_days.mar_25)

407 day_ident(i)=252;

408 elseif any(fault_ident(i)==test_days.mar_26)

409 day_ident(i)=262;

410 elseif any(fault_ident(i)==test_days.mar_27)

411 day_ident(i)=272;

412 end

413 end

414 end

415
416 end
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cal_select function
1 %% Gathering calibration data

2
3 function [win_cal, cal_ident, voltage_off]=cal_select(Voltages_cal, Currents_cal, n_cal,

volt_source_consi, balancing, add_noise, cal_days, cal_current_hf_need, cal_low_freq_hi_samp_need,

n_balancing)

4
5 clear win_cal cal_ident cal_ident2

6 stop_len=0;

7 n_win_cal=1;

8 cal_ident_flag=0;

9 cal_ident_idx=1;

10 voltage_off=[];

11
12 % %Discriminative between voltage source on/off

13 if volt_source_consi==1

14 for a=1:length(n_cal)

15 cal=n_cal(a);

16
17 % Load the calibration test and figure out start and stop time of the

18 % test

19 clear voltage_cal

20 voltage_cal=Voltages_cal(cal).Voltage_HF;

21
22 clear incept_time

23 clear voltage_cal_RMS

24 wdn_size=2000; %Rms calculation window size

25 win_over=1000; %Window overlap in rms calculation

26 rms1=1;

27 incp1=1;

28 flag_in_fault=0;

29 flag_rms=0;

30 flag_seq=0;

31 incept_time=−1;
32 for o=1:win_over:length(voltage_cal)−wdn_size %Calculating calibration starting

33 voltage_cal_RMS(rms1,1)=rms(voltage_cal(o:o+wdn_size));

34 if voltage_cal_RMS(rms1,1)>0.3&&flag_in_fault==0

35 if flag_rms==0

36 flag_rms=1;

37 flag_inception=o;

38 flag_seq=o;

39 elseif any(flag_rms==[1:10])&&o−flag_seq==win_over
40 flag_rms=flag_rms+1;

41 flag_seq=o;

42 elseif any(flag_rms==[1:10])&&o−flag_seq~=win_over
43 flag_rms=1;

44 flag_inception=o;

45 flag_seq=o;

46 elseif flag_rms==11

47 incept_time(incp1)=flag_inception+2000;

48 incp1=incp1+1;

49 flag_in_fault=1;

50 flag_rms=0;

51 end

52 elseif voltage_cal_RMS(rms1,1)<0.3&&flag_in_fault==1

53 if flag_rms==0

54 flag_rms=1;
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55 flag_inception=o;

56 flag_seq=o;

57 elseif any(flag_rms==[1:10])&&o−flag_seq==win_over
58 flag_rms=flag_rms+1;

59 flag_seq=o;

60 elseif any(flag_rms==[1:10])&&o−flag_seq~=win_over
61 flag_rms=1;

62 flag_inception=o;

63 flag_seq=o;

64 elseif flag_rms==11

65 incept_time(incp1)=flag_inception;

66 incp1=incp1+1;

67 flag_in_fault=0;

68 flag_rms=0;

69 end

70 end

71 rms1=rms1+1;

72 end

73
74 if length(incept_time)==1

75 incept_time(1)=incept_time(1);

76 incept_time(2)=length(voltage_cal);

77 end

78
79 % Gathering of calibration sweeps in window slices

80 win_size2=1*4e4; %window size

81
82 measu_time=incept_time(2)−incept_time(1)+1;
83 sweeps_cal=fix(measu_time/win_size2); %amount of sweeps of the loaded test

84
85 n_sweeps_call(a)=sweeps_cal; %signalizer

86
87 for i=1:sweeps_cal %

88 win_cal(stop_len+i).voltage=voltage_cal(incept_time+((i−1)*win_size2):incept_time+((i−1)*
win_size2)+(win_size2−1));

89 end

90 stop_len=length(win_cal);

91
92
93 if any(n_cal(a)==cal_days.cal_feb_23)&&cal_ident_flag==0

94 cal_ident(cal_ident_idx:sweeps_cal)=231;

95 cal_ident_flag=1;

96 cal_ident_idx=sweeps_cal;

97 elseif any(n_cal(a)==cal_days.cal_feb_23)

98 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=231;

99 cal_ident_idx=cal_ident_idx+sweeps_cal;

100 elseif any(n_cal(a)==cal_days.cal_feb_24)

101 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=241;

102 cal_ident_idx=cal_ident_idx+sweeps_cal;

103 elseif any(n_cal(a)==cal_days.cal_feb_25)

104 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=251;

105 cal_ident_idx=cal_ident_idx+sweeps_cal;

106 elseif any(n_cal(a)==cal_days.cal_feb_26)

107 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=261;

108 cal_ident_idx=cal_ident_idx+sweeps_cal;

109 elseif any(n_cal(a)==cal_days.cal_feb_27)

110 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=271;
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111 cal_ident_idx=cal_ident_idx+sweeps_cal;

112
113 elseif any(n_cal(a)==cal_days.cal_mar_3)

114 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=032;

115 cal_ident_idx=cal_ident_idx+sweeps_cal;

116 elseif any(n_cal(a)==cal_days.cal_mar_5)

117 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=052;

118 cal_ident_idx=cal_ident_idx+sweeps_cal;

119 elseif any(n_cal(a)==cal_days.cal_mar_6)

120 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=062;

121 cal_ident_idx=cal_ident_idx+sweeps_cal;

122 elseif any(n_cal(a)==cal_days.cal_mar_13)

123 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=132;

124 cal_ident_idx=cal_ident_idx+sweeps_cal;

125 elseif any(n_cal(a)==cal_days.cal_mar_16)

126 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=162;

127 cal_ident_idx=cal_ident_idx+sweeps_cal;

128 elseif any(n_cal(a)==cal_days.cal_mar_17)

129 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=172;

130 cal_ident_idx=cal_ident_idx+sweeps_cal;

131 elseif any(n_cal(a)==cal_days.cal_mar_18)

132 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=182;

133 cal_ident_idx=cal_ident_idx+sweeps_cal;

134 elseif any(n_cal(a)==cal_days.cal_mar_19)

135 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=192;

136 cal_ident_idx=cal_ident_idx+sweeps_cal;

137 elseif any(n_cal(a)==cal_days.cal_mar_20)

138 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=202;

139 cal_ident_idx=cal_ident_idx+sweeps_cal;

140 elseif any(n_cal(a)==cal_days.cal_mar_23)

141 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=232;

142 cal_ident_idx=cal_ident_idx+sweeps_cal;

143
144 elseif any(n_cal(a)==cal_days.cal_mar_24)

145 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=242;

146 cal_ident_idx=cal_ident_idx+sweeps_cal;

147 elseif any(n_cal(a)==cal_days.cal_mar_25)

148 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=252;

149 cal_ident_idx=cal_ident_idx+sweeps_cal;

150 elseif any(n_cal(a)==cal_days.cal_mar_26)

151 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=262;

152 cal_ident_idx=cal_ident_idx+sweeps_cal;

153 elseif any(n_cal(a)==cal_days.cal_mar_27)

154 cal_ident(cal_ident_idx:cal_ident_idx+sweeps_cal)=272;

155 cal_ident_idx=cal_ident_idx+sweeps_cal;

156 end

157
158 end

159 end

160
161
162 %Balancing no. of windows

163 if balancing==1

164 [win_cal,idx]=datasample(win_cal,n_balancing,'Replace',false);

165 cal_ident=cal_ident(idx);

166
167 end
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168
169 if add_noise==1

170 for i=length(win_cal)−19:length(win_cal)
171 win_cal(i).voltage=wgn(4e4,1,10*log10(0.60));

172 end

173 cal_ident(length(cal_ident)−19:length(cal_ident))=datasample(cal_ident,20);
174 end
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psd_calc function
1 %% Calculation of FT features

2 function psd_feat=psd_calc(signals,regions)

3
4 clear pxx

5
6 n_regions=size(regions,1);

7
8 fft_bin=450; %No. of calculated fft bins

9 win_length=1e3;

10 bin_length=1e6/fft_bin;

11
12 for i=1:length(signals)

13 [pxx(i,:),f1] = pwelch(signals(i).voltage,win_length,[],fft_bin*2,2e6);

14 end

15
16 %Normalization

17 % for i=1:size(pxx,1)

18 % total_power=sum(pxx(i,:));

19 % pxx(i,:)=pxx(i,:)./total_power;

20 % end

21
22 psd_feat=zeros(size(pxx,1),n_regions);

23 for i=1:n_regions

24 init_bin=floor(regions(i,1)*1e3/bin_length);

25 final_bin=floor(regions(i,2)*1e3/bin_length);

26 psd_feat(:,i)=max(pxx(:,init_bin:final_bin),[],2);

27 end

28
29 end
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wav_calc function

1 function wav_feat=wav_calc(signals,level)

2
3 % Calculation of wavelet features

4 % 'signals' is the structure organized as signals(i).voltage with the signals

5 % to be calculated

6 % 'level' standard decimated wavelet level

7 % The six different features need to be activated below

8
9 n_level=level; %wavelet level used

10 calc_sum=1; %sum features 1−on 0−off
11 calc_peaks=1; %peaks features 1−on 0−off
12 calc_std=1; %std features 1−on 0−off
13 calc_ene=1; %energy percentual features 1−on 0−off
14 calc_ent=1; %entropy features 1−on 0−off
15 calc_kurt=1; %kurtosis features 1−on 0−off
16
17 clear sum_feat peak_feat std_feat ent_feat kurt_feat ene_feat wav_feat

18 %declaring feature vectors

19 sum_feat=zeros(length(signals),n_level);

20 peak_feat=zeros(length(signals),n_level);

21 std_feat=zeros(length(signals),n_level);

22 ent_feat=zeros(length(signals),n_level);

23 kurt_feat=zeros(length(signals),n_level);

24 ene_feat=zeros(length(signals),n_level+1);

25
26 for i=1:length(signals)

27
28 [c,l] = wavedec(signals(i).voltage,n_level,'sym4');

29
30 for o=1:n_level

31 coef=detcoef(c,l,o);

32 if calc_sum==1 %Sum of coefficients features

33 sum_feat(i,o)=sum(abs(coef));

34 end

35 if calc_peaks==1 %Peak features

36 [~,~,~,p] = findpeaks(double(abs(coef)),'SortStr','descend');

37 peak_feat(i,o)=mean(p(1:fix(length(coef)*0.01)));

38 end

39 if calc_std==1 %STD features

40 std_feat(i,o)=std(coef);

41 end

42 if calc_ent==1 %entropy features

43 ent_feat(i,o)=wentropy(coef,'log energy');

44 end

45 if calc_kurt==1 %Kustosis features

46 kurt_feat(i,o)=kurtosis(coef);

47 end

48 end

49 if calc_ene==1 %Energy features

50 [Ea,Ed] = wenergy(c,l);

51 ene_feat(i,1)=Ea;

52 ene_feat(i,2:end)=Ed';

53 end

54 end

55
56 wav_feat=[sum_feat peak_feat std_feat ent_feat kurt_feat ene_feat];
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57
58 return
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app_feed function

1 function [feat_test, feedback_vec]=app_feed(input,feat_test_input,training_flag,win_cal,win_pos,

day_ident,cal_ident,tests_under_analysis,test_days,testing_win,feedback_vec)

2
3 % Feedback approach

4 %if apply_feedback==1

5
6 tests_days=[121 131 161 171 181 191 201 231 241 251 261 271 032 052 062 132 162 172 182 192 202 232 242

252 262 272];

7 %feedback_for_tests=[231 231 231 231 231 231 231 231 241 251 261 271 032 052 062 132 132 172 182 192 202

232 242 252 262 272];

8 feedback_for_tests=[231 231 231 231 231 231 231 231 241 251 261 271 032 052 062 132 132 172 182 192 202

202 202 202 202 202];

9 cal_tests_days=[231 241 251 261 271 032 052 062 132 162 172 182 192 202 232 242 252 262 272];

10
11
12
13 if training_flag==1

14
15 feedback_vec=zeros(size(feat_test_input,2),length(cal_tests_days));

16
17 for i=1:length(cal_tests_days)

18 %feedback_vec(:,i)=mean(feat_test_input(cal_ident==cal_tests_days(i),:));

19 feedback_vec(:,i)=prctile(feat_test_input(cal_ident==cal_tests_days(i),:),90);

20 end

21
22 for i=1:length(win_cal)

23 for o=1:length(cal_tests_days)

24 if cal_ident(i)==cal_tests_days(o)

25 feat_test(i,:)=input(i,:)./feedback_vec(:,o)';

26 end

27 end

28 end

29
30 for i=1:length(win_pos)

31 for o=1:length(tests_days)

32 if day_ident(i)==tests_days(o)

33 feat_test(length(win_cal)+i,:)=input(length(win_cal)+i,:)./feedback_vec(:,cal_tests_days

==feedback_for_tests(o))';

34 end

35 end

36 end

37 else

38
39 day_of_test=[];

40
41 if any(tests_under_analysis==test_days.feb_12)

42 day_of_test=121;

43 elseif any(tests_under_analysis==test_days.feb_13)

44 day_of_test=131;

45 elseif any(tests_under_analysis==test_days.feb_16)

46 day_of_test=161;

47 elseif any(tests_under_analysis==test_days.feb_17)

48 day_of_test=171;

49 elseif any(tests_under_analysis==test_days.feb_18)

50 day_of_test=181;

51 elseif any(tests_under_analysis==test_days.feb_19)



178

52 day_of_test=191;

53 elseif any(tests_under_analysis==test_days.feb_20)

54 day_of_test=201;

55 elseif any(tests_under_analysis==test_days.feb_23)

56 day_of_test=231;

57 elseif any(tests_under_analysis==test_days.feb_24)

58 day_of_test=241;

59 elseif any(tests_under_analysis==test_days.feb_25)

60 day_of_test=251;

61 elseif any(tests_under_analysis==test_days.feb_26)

62 day_of_test=261;

63 elseif any(tests_under_analysis==test_days.feb_27)

64 day_of_test=271;

65 elseif any(tests_under_analysis==test_days.feb_27)

66 day_of_test=271;

67 elseif any(tests_under_analysis==test_days.mar_3)

68 day_of_test=032;

69 elseif any(tests_under_analysis==test_days.mar_5)

70 day_of_test=052;

71 elseif any(tests_under_analysis==test_days.mar_6)

72 day_of_test=062;

73 elseif any(tests_under_analysis==test_days.mar_13)

74 day_of_test=132;

75 elseif any(tests_under_analysis==test_days.mar_16)

76 day_of_test=162;

77 elseif any(tests_under_analysis==test_days.mar_17)

78 day_of_test=172;

79 elseif any(tests_under_analysis==test_days.mar_18)

80 day_of_test=182;

81 elseif any(tests_under_analysis==test_days.mar_19)

82 day_of_test=192;

83 elseif any(tests_under_analysis==test_days.mar_20)

84 day_of_test=202;

85 elseif any(tests_under_analysis==test_days.mar_23)

86 day_of_test=232;

87 elseif any(tests_under_analysis==test_days.mar_24)

88 day_of_test=242;

89 elseif any(tests_under_analysis==test_days.mar_25)

90 day_of_test=252;

91 elseif any(tests_under_analysis==test_days.mar_26)

92 day_of_test=262;

93 elseif any(tests_under_analysis==test_days.mar_27)

94 day_of_test=272;

95 end

96
97 feed_to_use=feedback_for_tests(day_of_test==tests_days);

98 for i=1:length(testing_win)

99 feat_test(i,:)= input(i,:)./feedback_vec(:,cal_tests_days==feed_to_use)';

100 end

101 end
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classification function
1 % Trainning classifier/classificating new data

2
3 function [yFit,cv]=classification(feat_test,resp,feat_test_input,resp_input,cv,trainning_method,

classifier_trained)

4
5 if trainning_method==1

6
7 t = templateTree('NumVariablesToSample','all','MinLeafSize',20);

8
9 %to test in kfold

10 cv = fitcensemble(feat_test,resp,'Method','Bag','NumLearningCycles',350,'Prior','uniform',...

11 'kfold',10);

12
13 %For 3 classes

14 [yFit,sFit] = kfoldPredict(cv);

15 conf_mat=confusionmat(resp,yFit)

16 accuracy=sum(diag(conf_mat))/size(feat_test,1)

17 dependability=1−(sum(conf_mat(3,1:2))/sum(conf_mat(3,:)))
18
19 %For 2 classes

20 % [yFit,sFit] = kfoldPredict(cv);

21 % conf_mat=confusionmat(resp,yFit)

22 % accuracy=(conf_mat(1 ,1)+conf_mat(2,2))/length(resp)

23 % dependability=conf_mat(2,2)/(conf_mat(2,1)+conf_mat(2,2))

24 % security=conf_mat(1,1)/(conf_mat(1,1)+conf_mat(1,2))

25
26 else

27 if classifier_trained==0

28
29 t = templateTree('NumVariablesToSample','all','MinLeafSize',20);

30 %t = templateTree('MaxNumSplits',10,'NumVariablesToSample','all','MinLeafSize',5,'Prior','

uniform');

31
32 % prior uniform

33 cv = fitcensemble(feat_test_input,resp_input,'Method','Bag','NumLearningCycles',350,'Learners',t

);

34
35 end

36
37 yFit = predict(cv,feat_test);

38
39 end
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load_databases script
1 if (exist('Voltages') ~= 1)

2 load('all_voltages_tests.mat'); %Voltage tests database

3 end

4
5 if (exist('Currents') ~= 1)

6 load('all_current_tests.mat'); %Current tests database

7 end

8
9 if (exist('Currents_cal') ~= 1)

10 load('currents_cal.mat'); %Calibration currents

11 end

12
13 if (exist('Voltages_cal') ~= 1)

14 load('voltages_cal.mat'); %Calibration voltages

15 end

16
17 if (exist('Voltages2') ~= 1)

18 if low_freq_hi_samp_need==1

19 load('voltage_tests2.mat'); %High frequency (sweeps) sampling of the LF channel

20 else

21 Voltages2=[];

22 end

23
24 end

25
26 load('triggers.mat'); %HF time triggers

27 load('tests_info.mat'); %Tests numbering and types

28 load('fault_currents.mat'); %fault current threshold adopted in the tests

29 load('voltage_cal_off_index.mat'); %sweeps of calibration with no voltage source (most used n_cal config

)

30 load('test_days.mat'); %Day which the tests were executed with numbers

31 load('cal_days.mat'); %Day which the cal were executed with numbers

32
33 load('Butter_filter_3rd_order_500k.mat'); %Load butterworth filter for downsample

34
35 load('butter_3rd_5kk_samp_1kk_CF.mat');
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def_prob_day function
1 function [skipping_tests, all_tests]=def_prob_day(tests_info)

2
3 %% Defining types of faults (ph_e_tests, ph_ph_tests, bush_tests, grass_tests)

4
5 %Corrupted/missing

6 broken_tests=[1,19,330,085,105,160,708:745];

7
8 ph_ph_tests=zeros(380,1);

9 bush_tests=zeros(55,1);

10 ph_e_tests=zeros(535,1);

11 grass_tests=zeros(24,1);

12
13 p1=1;

14 p2=1;

15 p3=1;

16 p4=1;

17 for i=1:length(tests_info)

18 if ~any(tests_info(i,1)==broken_tests)

19 if tests_info(i,2)==1

20 ph_ph_tests(p1,1)=tests_info(i,1);

21 p1=p1+1;

22 elseif tests_info(i,2)==2

23 bush_tests(p2,1)=tests_info(i,1);

24 p2=p2+1;

25 elseif tests_info(i,2)==3

26 ph_e_tests(p3,1)=tests_info(i,1);

27 p3=p3+1;

28 elseif tests_info(i,2)==4

29 grass_tests(p4,1)=tests_info(i,1);

30 p4=p4+1;

31 end

32 end

33 end

34
35 all_tests=[ph_e_tests;ph_ph_tests;bush_tests;grass_tests];

36
37 % Tests recording

38 % From 1 to 535 = Phase to earth faults

39 % From 536 to 915 = Phase to Phase faults

40 % From 916 to 970 = Bush faults

41 % From 971 to 994 = Grass faults

42
43 %% Defining problem tests

44
45 % ph_e_tests

46 %Tests with more than one fault inception

47 tests_more_inception1=[15;179;413];

48 %Tests with no fault current

49 tests_no_current1=[45;46;47;119;236];

50 %Tests with no fault sweeps

51 tests_no_sweeps1=[83;163;168;227;282;291;294;328;523;525];

52 %Faults that do not have sweeps with 40k samples

53 non_std_samp1=165;

54 %tests with pre_fault signal

55 tests_pre_fault1=[1;2;14;395];

56
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57 %ph_ph_faults

58 %Tests with more than one fault inception

59 tests_more_inception2=[570;571;574];

60 %Tests with no fault current

61 tests_no_current2=567;

62 %Tests with no fault sweeps

63 tests_no_sweeps2

=[594;597;603;606;609;620;621;623;630;640;646;656;661;662;665;666;671;675;748;779;785;790;794;795;

64 821;831;862;872;679;680;681;682;683;684];

65 %Faults that do not have sweeps with 40k samples

66 non_std_samp2=[536;537;538;539;540;541;542;543;544;545;546;547];

67 %tests with pre_fault signal

68 tests_pre_fault2=[548;549;550;551;552;553;554;555;556;557;558;559;560;561;562;563;564;569;573;913];

69
70 %bush_faults

71 %Tests with more than one fault inception

72 tests_more_inception3=[919;927;928;937;941;943;945;951;952;953;963;965];

73 %Tests with no fault current

74 tests_no_current3=[];

75 %Tests with no fault sweeps

76 tests_no_sweeps3=[931;954;955];

77 %Faults that do not have sweeps with 40k samples

78 non_std_samp3=[];

79 %tests with pre_fault signal

80 tests_pre_fault3=[916;917;918;919;927;933;935;936;940;944;956;957;967;968;969;970];

81
82 %grass_faults

83 %Tests with more than one fault inception

84 tests_more_inception4=974;

85 %Tests with no fault current

86 tests_no_current4=[975;976;978;980;986;987;988;989;990;991;992;993;994];

87 %Tests with no fault sweeps

88 tests_no_sweeps4=[971;972;983;985];

89 %Faults that do not have sweeps with 40k samples

90 non_std_samp4=[];

91 %tests with pre_fault signal

92 tests_pre_fault4=981;

93
94 %Defining tests to skip

95 skipping_tests1=[tests_more_inception1; tests_no_current1; tests_no_sweeps1; non_std_samp1];

96 skipping_tests2=[tests_more_inception2; tests_no_current2; tests_no_sweeps2; non_std_samp2];

97 skipping_tests3=[tests_more_inception3; tests_no_current3; tests_no_sweeps3; non_std_samp3];

98 skipping_tests4=[tests_more_inception4; tests_no_current4; tests_no_sweeps4; non_std_samp4];

99 skipping_tests=[skipping_tests1; skipping_tests2; skipping_tests3; skipping_tests4];

100
101 %Tests with low_range/questionable sampling

102 tests_low_range

=[958,959,960,961,962,964,966,686,687,688,689,690,691,693,694,695,696,697,698,699,700,701,702,703,704,705,

103 706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724];

104
105 %Tests marked invalid by the report

106 invalid_tests

=[536;537;538;539;540;541;542;543;544;545;546;547;548;549;550;551;552;553;554;555;556;557;558;559;

107 560;561;562;563;564;916;917;918;919;1;2;3;565;566;567;568;569;570;571;572;573;574;575;576;577;578;

108 579;580;581;582;583;4;5;6;7;8;9;10;11;12;13;584;14;15;585;16;586;587;38;971;972;973;974;400;401;

109 668;669;670;672;674;676;678;483;484;778;795;796;797;825;834;835;863];
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110
111
112 %Tests with perciaveble pre_faults

113 tests_pre_fault=[tests_pre_fault1; tests_pre_fault2; tests_pre_fault3; tests_pre_fault4];

114
115 %Tests with perciaveble pre_faults that are not invalid

116 real_tests_pre_fault=[395;913;927;933;935;936;940;944;956;957;967;968;969;970;981];

117
118 %Final vector skipping_tests

119 skipping_tests=[skipping_tests; tests_low_range'; invalid_tests];
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tests_ensemble script
1 close all; clc; clear all;

2 load('tests_info.mat'); %Load types of fault

3
4 %% Defining broken tests

5 asd=[708:745];

6 asd=asd';

7 broken_tests=[1;19;330;085;105;160;asd];

8
9 %% Defining types of faults

10 p1=1;

11 p2=1;

12 p3=1;

13 p4=1;

14 for o=1:1038 % create ph_ph_tests, bush_tests, ph_e_tests, grass_tests

15 if ~any(broken_tests==o)

16 if tests_info(find(tests_info(:,1)==o),2)==1

17 ph_ph_tests(p1,1)=o;

18 p1=p1+1;

19 end

20 if tests_info(find(tests_info(:,1)==o),2)==2

21 bush_tests(p2,1)=o;

22 p2=p2+1;

23 end

24 if tests_info(find(tests_info(:,1)==o),2)==3

25 ph_e_tests(p3,1)=o;

26 p3=p3+1;

27 end

28 if tests_info(find(tests_info(:,1)==o),2)==4

29 grass_tests(p4,1)=o;

30 p4=p4+1;

31 end

32 end

33 end

34
35 all_tests=[ph_e_tests;ph_ph_tests;bush_tests;grass_tests];

36
37 % Tests recording

38 % From 1 to 535 = Phase to earth faults

39 % From 536 to 915 = Phase to Phase faults

40 % From 916 to 970 = Bush faults

41 % From 971 to 994 = Grass faults

42
43 %% Data gathering

44
45 for test_gat=1:length(all_tests)

46 Test=num2str(all_tests(test_gat,1));

47 if all_tests(test_gat,1)<100

48 Test=strcat('0',Test);

49 end

50 if all_tests(test_gat,1)<10

51 Test=strcat('0',Test);

52 end

53
54 Filename=strcat('VT',num2str(Test),'.pnrf');

55 FromDisk=actxserver('Perception.Loaders.PNRF');

56 Data=FromDisk.LoadRecording(Filename);
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57
58 for PLoop=1:4

59 if PLoop==1||3

60 ItfData = Data.Recorders.Item(1).Channels.Item(PLoop).DataSource(1);

61 ItfData.get;

62 SegmentsOfData = ItfData.Data(−200, 200);

63 WaveformData = SegmentsOfData.Item(1).Waveform(4, 1, 1e8, 1);

64 if PLoop==1

65 Voltages(test_gat).Voltage_LF(:,1)=WaveformData(1,:);

66 end

67 if PLoop==3

68 Currents(test_gat).Current_LF(:,1)=WaveformData(1,:);

69 end

70 end

71
72 if PLoop==2||4

73 ItfData = Data.Recorders.Item(1).Channels.Item(PLoop).DataSource(2); %Locate Data

74 ItfData.get; %Data info

75 SegmentsOfData = ItfData.Data(−200, 200); %Select time interval of data

76 if PLoop==2

77 for o=1:SegmentsOfData.get.Count

78 WaveformData = SegmentsOfData.Item(o).Waveform(4, 1, 1e8, 1); %Collect Data

79 position=length(WaveformData)*(o−1);
80 for p=1:length(WaveformData)

81 Voltages(test_gat).Voltage_HF(p+position,1)=WaveformData(1,p);

82 end

83 end

84 end

85 if PLoop==4

86 for o=1:SegmentsOfData.get.Count

87 WaveformData = SegmentsOfData.Item(o).Waveform(4, 1, 1e8, 1); %Collect Data

88 position=length(WaveformData)*(o−1);
89 for p=1:length(WaveformData)

90 Currents(test_gat).Current_HF(p+position,1)=WaveformData(1,p);

91 end

92 end

93 end

94 end

95 end

96 end

97 clc;
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calibration_ensemble script
1 %% Data gathering

2 broken_tests=[6; 7; 8; 9; 10; 46; 56;67];

3 for test_gat=1:67

4 if ~any(test_gat==broken_tests)

5 Test=num2str(test_gat);

6 if test_gat<100

7 Test=strcat('0',Test);

8 end

9 if test_gat<10

10 Test=strcat('0',Test);

11 end

12
13 Filename=strcat('VT_Test_site_calibration',num2str(Test),'.pnrf');

14 FromDisk=actxserver('Perception.Loaders.PNRF');

15 Data=FromDisk.LoadRecording(Filename);

16
17 for PLoop=1:4

18 if PLoop==1||3

19 ItfData = Data.Recorders.Item(2).Channels.Item(PLoop).DataSource(1);

20 ItfData.get;

21 SegmentsOfData = ItfData.Data(−200, 200);

22 WaveformData = SegmentsOfData.Item(1).Waveform(4, 1, 1e8, 1);

23 if PLoop==1

24 Voltages_cal(test_gat).Voltage_LF(:,1)=WaveformData(1,:);

25 end

26 if PLoop==3

27 Currents_cal(test_gat).Current_LF(:,1)=WaveformData(1,:);

28 end

29 end

30
31 if PLoop==2||4

32 ItfData = Data.Recorders.Item(2).Channels.Item(PLoop).DataSource(2); %Locate Data

33 ItfData.get; %Data info

34 SegmentsOfData = ItfData.Data(−200, 200); %Select time interval of data

35 if PLoop==2

36 for o=1:SegmentsOfData.get.Count

37 WaveformData = SegmentsOfData.Item(o).Waveform(4, 1, 1e8, 1); %Collect Data

38 position=length(WaveformData)*(o−1);
39 for p=1:length(WaveformData)

40 Voltages_cal(test_gat).Voltage_HF(p+position,1)=WaveformData(1,p);

41 end

42 end

43 end

44 if PLoop==4

45 for o=1:SegmentsOfData.get.Count

46 WaveformData = SegmentsOfData.Item(o).Waveform(4, 1, 1e8, 1); %Collect Data

47 position=length(WaveformData)*(o−1);
48 for p=1:length(WaveformData)

49 Currents_cal(test_gat).Current_HF(p+position,1)=WaveformData(1,p);

50 end

51 end

52 end

53 end

54 end

55 else

56 Voltages_cal(test_gat).Voltage_LF=[];
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57 Currents_cal(test_gat).Current_LF=[];

58 Voltages_cal(test_gat).Voltage_HF=[];

59 Currents_cal(test_gat).Current_HF=[];

60 end

61 end

62 clc;
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Prototype main routine
1 /* ============ Includes ============== = */

2
3 #include <stdio.h> /*Std libraries*/

4 #include <stdlib.h>

5 #include <errno.h>

6 #include <alsa/asoundlib.h>

7 #include <iostream>

8 #include <fstream>

9 #include <unistd.h>

10
11 //#include "rt_nonfinite.h" /*Matlab header*/

12 #include "classify1.h"

13 #include "feat_calc.h"

14 #include "sep_sweep.h"

15
16 //#include "gperftools/profiler.h" /*Performance analiser*/

17
18 /* ============ ALSA Related Globals ============== = */

19 static const char *device = "plughw:1,0";

20 static snd_pcm_t *capture_handle;

21
22 /* hwparams and default settings */

23 #define HWPARAMS_FORMAT SND_PCM_FORMAT_S24_LE

24 #define HWPARAMS_CHANNELS 1

25 #define HWPARAMS_RATE 48000

26 #define HWPARAMS_PERIOD_FRAMES 48000

27
28 static struct {

29 snd_pcm_format_t format;

30 unsigned int channels;

31 unsigned int rate;

32 snd_pcm_uframes_t period_frames;

33 snd_pcm_uframes_t buffer_frames;

34 } hwparams = {

35 .format = HWPARAMS_FORMAT,.channels = HWPARAMS_CHANNELS,.rate =

36 HWPARAMS_RATE,.period_frames = HWPARAMS_PERIOD_FRAMES };

37
38 /* ============ Globals ============== = */

39
40 #define BUFSIZE (48000) /*Amount of samples to read*/

41 int const size_print = 512; /*Samples to print for plotting*/

42 int buf[BUFSIZE*2]; /*Buffer to sample size*/

43 static double buf2[BUFSIZE * 2]; /*Buffer to separate sweep*/

44 static double sweep[40000]; /*sweep buffer*/

45 static double features[8]; /*features buffer*/

46
47 static int first_time = 1; /*first time execution flag*/

48 static int output;

49 static float sweep_print[size_print];

50
51 /*Flags*/

52 static int secs1; /*iteration flag*/

53 static int secs2; /*flag of first sweep*/

54 //static int avails[60];

55
56 static int open_stream(snd_pcm_t **handle, const char *name, char* dir)



189

57 {

58 snd_pcm_hw_params_t *hw_params;

59 snd_pcm_sw_params_t *sw_params;

60 //snd_pcm_uframes_t *period_size = &hwparams.period_frames;

61 //snd_pcm_uframes_t buffer_size;

62
63 const char *dirname = (strcmp(dir, "SND_PCM_STREAM_PLAYBACK") == 0) ? "PLAYBACK" : "CAPTURE";

64 int err;

65
66 /*Opening pcm*/

67 if (strcmp(dir, "SND_PCM_STREAM_PLAYBACK") == 0) {

68 if ((err = snd_pcm_open(handle, name, SND_PCM_STREAM_PLAYBACK, 0)) < 0) {

69 fprintf(stderr, "%s (%s): cannot open audio device (%s)\n",

70 name, dirname, snd_strerror(err));

71 return err;

72 }

73 }

74 if (strcmp(dir, "SND_PCM_STREAM_CAPTURE") == 0) {

75 if ((err = snd_pcm_open(handle, name, SND_PCM_STREAM_CAPTURE, 0)) < 0) {

76 fprintf(stderr, "%s (%s): cannot open audio device (%s)\n",

77 name, dirname, snd_strerror(err));

78 return err;

79 }

80 }

81
82 /*Allocating pcm structure*/

83 if ((err = snd_pcm_hw_params_malloc(&hw_params)) < 0) {

84 fprintf(stderr, "%s (%s): cannot allocate hardware parameter structure(%s)\n",

85 name, dirname, snd_strerror(err));

86 return err;

87 }

88
89 if ((err = snd_pcm_hw_params_any(*handle, hw_params)) < 0) {

90 fprintf(stderr, "%s (%s): cannot initialize hardware parameter structure(%s)\n",

91 name, dirname, snd_strerror(err));

92 return err;

93 }

94
95 if ((err = snd_pcm_hw_params_set_access(*handle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED)) < 0)

{

96 fprintf(stderr, "%s (%s): cannot set access type(%s)\n",

97 name, dirname, snd_strerror(err));

98 return err;

99 }

100
101 if ((err = snd_pcm_hw_params_set_format(*handle, hw_params, hwparams.format)) < 0) {

102 fprintf(stderr, "%s (%s): cannot set sample format(%s)\n",

103 name, dirname, snd_strerror(err));

104 return err;

105 }

106
107 //if ((err = snd_pcm_hw_params_set_rate(*handle, hw_params, hwparams.rate, NULL)) < 0) {

108 if ((err = snd_pcm_hw_params_set_rate(*handle, hw_params, hwparams.rate, 0)) < 0) {

109 fprintf(stderr, "%s (%s): cannot set sample rate(%s)\n",

110 name, dirname, snd_strerror(err));

111 return err;

112 }
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113
114 if ((err = snd_pcm_hw_params_set_channels(*handle, hw_params, hwparams.channels/*2*/)) < 0) {

115 fprintf(stderr, "%s (%s): cannot set channel count(%s)\n",

116 name, dirname, snd_strerror(err));

117 return err;

118 }

119
120 if ((err = snd_pcm_hw_params_set_period_size(*handle, hw_params,

121 hwparams.period_frames, 0)) < 0) {

122 fprintf(stderr, "%s (%s): error in period assign(%s)\n",

123 name, dirname, snd_strerror(err));

124 return err;

125 }

126
127 if ((err = snd_pcm_hw_params(*handle, hw_params)) < 0) {

128 fprintf(stderr, "%s (%s): cannot set parameters(%s)\n",

129 name, dirname, snd_strerror(err));

130 return err;

131 }

132
133 snd_pcm_hw_params_free(hw_params);

134
135 if ((err = snd_pcm_sw_params_malloc(&sw_params)) < 0) {

136 fprintf(stderr, "%s (%s): cannot allocate software parameters structure(%s)\n",

137 name, dirname, snd_strerror(err));

138 return err;

139 }

140 if ((err = snd_pcm_sw_params_current(*handle, sw_params)) < 0) {

141 fprintf(stderr, "%s (%s): cannot initialize software parameters structure(%s)\n",

142 name, dirname, snd_strerror(err));

143 return err;

144 }

145 if ((err = snd_pcm_sw_params_set_avail_min(*handle, sw_params, BUFSIZE)) < 0) {

146 fprintf(stderr, "%s (%s): cannot set minimum available count(%s)\n",

147 name, dirname, snd_strerror(err));

148 return err;

149 }

150 if ((err = snd_pcm_sw_params_set_start_threshold(*handle, sw_params, 0U)) < 0) {

151 fprintf(stderr, "%s (%s): cannot set start mode(%s)\n",

152 name, dirname, snd_strerror(err));

153 return err;

154 }

155 if ((err = snd_pcm_sw_params(*handle, sw_params)) < 0) {

156 fprintf(stderr, "%s (%s): cannot set software parameters(%s)\n",

157 name, dirname, snd_strerror(err));

158 return err;

159 }

160
161 return 0;

162 }

163
164 static int sampling() {

165
166 int err;

167
168 if (first_time == 1) {

169 if ((err = open_stream(&capture_handle, device, "SND_PCM_STREAM_CAPTURE")) < 0)
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170 {

171 fprintf(stderr, "cannot open strem\n",

172 snd_strerror(err));

173 return err;

174 }

175
176 if ((err = snd_pcm_start(capture_handle)) < 0) {

177 fprintf(stderr, "cannot prepare audio interface for use(%s)\n",

178 snd_strerror(err));

179
180 return err;

181 }

182
183 printf("%s", "PCM ready\n");

184
185 }

186
187 memset(buf, 0, sizeof(buf));

188
189 int count = 0;

190 while (count < 48000) {

191 int avail;

192
193 int err;

194
195 if ((err = snd_pcm_wait(capture_handle, 500)) < 0) {

196 fprintf(stderr, "poll failed(%s)\n", strerror(err));

197 return err;

198 }

199
200 //avails[secs1]=snd_pcm_avail_update(capture_handle);

201
202 while (avail < BUFSIZE) {

203 avail = snd_pcm_avail_update(capture_handle);

204 }

205
206 snd_pcm_readi(capture_handle, buf, avail);

207
208 for (int i = 0; i < 48000; i++) {

209 buf2[i] = buf2[48000 + i];

210 }

211
212 for (int i = 0; i < 48000; i++) {

213 buf2[48000+i] = buf[i];

214 count += 1;

215 }

216
217 if (first_time == 1) {

218 count = 0;

219 first_time = 0;

220 }

221
222 if (avail > 48000) {

223 printf("Warning: More samples in pcm buffer than allocated %u \n", (avail−48000)
);

224 //snd_pcm_drop(capture_handle);

225 //return err=1;
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226 //return err=−1;
227 }

228 }

229
230
231 //std::ofstream file;

232 //file.open("result2", std::ios::app);

233 ////for (int p = 0; p < 40000; p++) {

234 //file << avail << " ";

235 ////}

236 //file.close();

237 ////fflush(file);

238
239
240 //std::ofstream file;

241 //file.open("buf2", std::ios::app);

242 //for (int p = 0; p < 96000; p++) {

243 //file << buf2[p] << " ";

244 //}

245 //file.close();

246
247 //secs1++;

248
249 return err;

250
251 }

252
253 int main(int argc, char *argv[]){

254
255 printf("%s", "Starting... \n");

256
257 FILE * f_flags = fopen("flags", "w");

258 f_flags = fopen("flags", "w");

259 fprintf(f_flags, "data_ready=1\nfault_flag=0\n");

260 fclose(f_flags);

261
262 FILE * temp = fopen("result", "wb");

263 fwrite(sweep_print, sizeof(float), size_print, temp);

264 fclose(temp);

265
266 sleep(5);

267
268 int err;

269 if ((err = system("amixer −c 1 set Mic 0%")) == 1) {

270 fprintf(stderr, "Fail at setting capture gain. Is sound card connected?");

271 system("lsusb −v 2>&1 1>/dev/null");

272 }

273
274 //ProfilerStart("classifier.prof");

275
276 // for (int secs = 0; secs < 1; secs++) {

277 // while(true){

278
279 //for (int secs = 0; secs < 2; secs++) {

280 while (true) {

281
282 err = sampling();
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283
284 sep_sweep(buf2, sweep);

285
286 /*Check sweep output*/

287 //if (sweep[1] != 0) {

288 // if (secs2 == 0) {

289 // FILE * temp2 = fopen("result2", "w");

290 // for (int i = 0; i < 40000; i++) {

291 // fprintf(temp2, "%f\n", sweep[i]);

292 // }

293 // fclose(temp2);

294 // }

295 // else {

296 // FILE * temp2 = fopen("result2", "a");

297 // for (int i = 0; i < 40000; i++) {

298 // fprintf(temp2, "%f\n", sweep[i]);

299 // fflush(temp2);

300 // }

301 // }

302 //}

303
304 if (sweep[1] != 0) {

305
306 /*Check buf*/

307 //if (secs1 == 0) {

308 // FILE * temp2 = fopen("result2", "w");

309 // for (int i = 0; i < 96000; i++) {

310 // fprintf(temp2, "%f\n", buf2[i]);

311 // }

312 // fclose(temp2);

313 //}

314 //else {

315 // FILE * temp2 = fopen("result2", "a");

316 // for (int i = 0; i < 96000; i++) {

317 // fprintf(temp2, "%f\n", buf2[i]);

318 // fflush(temp2);

319 // }

320 //}

321
322 feat_calc(sweep, features);

323
324 output = classify1(features);

325
326 /*Check output*/

327 /* if (sweep[1] != 0) {

328 if (secs2 == 0) {

329 FILE * temp2 = fopen("result2", "w");

330 fprintf(temp2, "%d\n", output);

331 fclose(temp2);

332 }

333 else {

334 FILE * temp2 = fopen("result2", "a");

335 fprintf(temp2, "%d\n", output);

336 fclose(temp2);

337
338 }

339 }
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340 secs2++; */

341
342 /*Sweep_print to plot*/

343 FILE * f_flags = fopen("flags", "w");

344 fprintf(f_flags, "data_ready=0\nfault_flag=%d\n", output);

345 fflush(f_flags); /*fclose(f_flags);*/

346
347 for (int p = 0; p < size_print; p++) {

348 sweep_print[p] = sweep[p * (40000 / size_print)];

349 }

350
351 FILE * temp = fopen("result", "wb");

352 fwrite(sweep_print, sizeof(float), size_print, temp);

353 fclose(temp); /*fflush(f_flags);*/

354
355 f_flags = fopen("flags", "w");

356 fprintf(f_flags, "data_ready=1\nfault_flag=%d\n", output);

357 fclose(f_flags); /*fflush(f_flags);*/

358
359 }

360
361 secs1++;

362
363 if (err < 0) {

364 printf("%s","Error in main\n");

365 //break;

366 }

367
368 }

369
370 //ProfilerStop();

371 snd_pcm_close(capture_handle);

372 //break;

373 printf("%s", "Restarting program... \n");

374
375
376 // }

377 }
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