
A Real-time Dynamic Concept Adaptive Learning
Algorithm for Exploitability Prediction

This is the Accepted version of the following publication

Yin, Jiao, Tang, Ming Jian, Cao, Jinli, Wang, Hua and You, Mingshan (2021) A
Real-time Dynamic Concept Adaptive Learning Algorithm for Exploitability
Prediction. Neurocomputing. ISSN 0925-2312

The publisher’s official version can be found at
https://www.sciencedirect.com/science/article/abs/pii/S0925231221016167?via%3Dihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/42809/

A Real-time Dynamic Concept Adaptive Learning
Algorithm for Exploitability Prediction

Jiao Yina,b, MingJian Tangc, Jinli Caoa,∗, Hua Wangd, Mingshan Youe

aDepartment of Computer Science and Information Technology, La Trobe University,
Melbourne, VIC 3083, Australia

bSchool of Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing
402160, China

cHuawei Technologies Co. Ltd, Shenzhen 518129, China
dInstitute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, VIC

3083, Australia
eCollege of Information Science and Engineering, Hunan University, Changsha 410082,

China

Abstract

Exploitability prediction has become increasingly important in cybersecurity, as

the number of disclosed software vulnerabilities and exploits are soaring. Re-

cently, machine learning and deep learning algorithms, including Support Vector

Machine (SVM), Decision Tree, deep Neural Networks and their ensemble mod-

els, have achieved great success in vulnerability evaluation and exploitability

prediction. However, they make a strong assumption that the data distribution

is static over time and therefore fail to consider the concept drift problems due

to the evolving system behaviours. In this work, we propose a novel consec-

utive batch learning algorithm, called Real-time Dynamic Concept Adaptive

Learning (RDCAL), to deal with the concept drift and dynamic class imbalance

problems existing in exploitability prediction. Specifically, we develop a Class

Rectification Strategy (CRS) to handle the ‘actual drift’ in sample labels and

a Balanced Window Strategy (BWS) to boost the minority class during real-

time learning. Experimental results conducted on the real-world vulnerabilities

collected between 1988 to 2020 show that the overall performance of classifiers,

including Neural Networks, SVM, HoeffdingTree and Logistic Regression (LR),

∗Corresponding author
Email address: j.cao@latrobe.edu.au (Jinli Cao)

Preprint submitted to Neurocomputing January 14, 2021

improves over 3% by adopting our proposed RDCAL algorithm. Furthermore,

RDCAL achieves state-of-the-art performance on exploitability prediction com-

pared with other concept drift algorithms.

Keywords: Real-time learning, concept drift, class imbalance, class

rectification, balanced window

1. Introduction

Background. Tens of thousands of software vulnerabilities are disclosed to the

public, posing severe cybersecurity threats to the computer systems of modern

organizations [1, 2, 3]. Geographically sensitive vulnerabilities are making the

situation worse. In recent years, more and more software provide location-aware5

services [4, 5], including but not limited to navigation, recommendation and

ticket reservation [6, 7]. Despite the provided convenience in many occupations,

it also poses severe security threats to both individuals and organizations, due to

the possible geographic mapping between cyberspace and real space [8]. People

can be tracked with precise location collected by their phone’s GPS sensors.10

Critical and valuable assets like servers, routers and other physical equipment

and infrastructure can also be located and physically destroyed.

Considering the relatively limited resources for vulnerability patching and

remediation, a critical challenge for security risk management is how to make

a reasonable trade-off between coverage and efficiency. For one thing, firms15

are trying to patch as many disclosed vulnerabilities as possible to provide the

highest level of protection. For another, they have to deprioritise most relatively

low-risk vulnerabilities and only focus on these high-risk ones. Therefore, one

of the most vital factors for effective security risk management is to identify the

most likely to be exploited vulnerabilities accurately.20

Literature review. In industry practice, most organizations prioritize their re-

mediation efforts overly relying on the Common Vulnerability Scoring System

2

(CVSS) 1, which provides a score between 0 to 10 as the overall vulnerability

assessment from multiple perspectives [9]. However, CVSS has been found to be

sub-optimal as being an exploitability indicator. In some cases, it is no better25

than randomly choosing vulnerabilities to remediate [10, 11].

To complement CVSS, researchers seek to construct machine-learning and

deep-learning-based predictive models by leveraging a large collection of multi-

ple open-sourced datasets together [12]. For example, M. Bozorgi et al. adopted

an SVM classifier to predict whether vulnerabilities will be exploited within t30

(t ≥0) days, operating on high dimensional feature vectors extracted from the

text fields, time stamps, cross-references and other entries in the existing vulner-

ability disclosure reports[13]. Paper [14] investigated the binary classification

performance of exploitability prediction on a wide range of machine learning

(ML) classifiers, including SVM, K-Nearest-Neighbors (KNN), Naive Bayes and35

Random Forests, achieving the best testing accuracy of 83% accuracy with SVM

algorithm on data collected from National Vulnerability Database (NVD)2 and

ExploitDB3. In these previous works, text-related features are usually extracted

by traditional statistical text processing techniques, such as Term Frequency-

Inverse Document Frequency (TF-IDF) algorithm and common word counting,40

without capturing the context and obtain semantic features at a high level.

With recent advances in Natural Language Processing (NLP) [15, 16], tech-

niques such as word-embedding, sen2vec and Bidirectional Encoder Represen-

tations from Transformers (BERT) are employed to extract semantic features

from vulnerability descriptions[17, 18], having achieved great success in classifi-45

cation performance. For example, by applying transfer learning to a pre-trained

BERT model, [19] achieved an accuracy of 91% in exploitability prediction.

Despite the advances achieved, upon looking closely, it is fair to say that ex-

isting approaches make strong assumptions with respect to data distributions.

1https://www.first.org/cvss/calculator/3.0
2https://nvd.nist.gov/vuln/data-feeds
3https://www.exploit-db.com/

3

In other words, they assume that all available data share the same data dis-50

tribution, so that use batch learning to train the classifier and adopt hold-out

evaluation to evaluate their models in a randomly separated test set. In fact,

due to the evolving system behaviours and environments, concept drift exists

in data distribution of both vulnerabilities and exploits. As a result, traditional

batch learning and hold-out evaluation could lead to an inflated performance55

because of unveiling unseen data in the future to construct the predictive model.

Challenges. Considering the real-world applications of exploitability prediction,

in this work, we conduct concept drift learning and train the classifier incre-

mentally as new data become available. Besides, a prequential-evaluation or an

interleaved-test-then-train evaluation mode will be used to assess the real-time60

performance of the classifier. It means that each new data would be used to

test the classifier’s performance before training the classifier. Undoubtedly, as

an online learning mode, concept drift learning is more in line with the practical

application than batch learning or offline learning. It also enables the classifier

to capture new concepts when new data arrives. Therefore, it can provide more65

reliable exploitability prediction performance.

On the other hand, compared with batch learning, predicting exploitability

with concept drift learning faces the following challenges due to the dynamic

and incomplete nature of the evolving data.

(1) Class label drift problem. A unique trait of vulnerabilities is that their70

exploitability is chronologically variable. In other words, at one time slice,

a vulnerability may be labelled as ‘unexploitable’, since no corresponding

‘published exploits’ exists. However, several months or years later, the vul-

nerability could become ‘exploitable’ with ‘proof-of-concept’ exploits avail-

able. In batch learning scenario, both vulnerabilities and exploits are col-75

lected at a certain date, thus, the time variation factor and label drift prob-

lem are ignored by previous studies. However, with concept drift learning,

class label drift is a problem that has to be considered when collecting the

vulnerabilities and exploits data, evaluating and updating the classifier over

4

time.80

(2) Dynamic class imbalance problem. In batch learning scenario, all data is

available and the class imbalance status is static and determined. There-

fore, existing solutions, such as resampling samples, generating synthetic

samples and penalizing misclassification samples, could be applied directly.

However, the magnitude of data imbalance is dynamically changing in the85

data stream. Probably, the minority class may become the majority class

in a certain time slice. Therefore, more flexible and sensitive strategies

are urged for handling dynamic class imbalance problem in concept drift

learning.

Contribution. In this paper, we propose an online learning algorithm to address90

the aforementioned two challenges in concept drift learning and improve the

practicability and classification performance for the exploitability prediction

task. In summary, our main contributions are as follows:

(1) We propose a general online learning algorithm, called Real-time Dynamic

Concept Adaptive Learning (RDCAL), consisting of two strategies to im-95

prove the performance of concept drift learning. Specifically, a Class Rec-

tification Strategy (CRS) is designed to handle the ‘actual drift’ in sample

labels, along with a Balanced Window Strategy (BWS) dealing with the

minority class during real-time learning.

(2) We demonstrate that RDCAL is classifier-agnostic. Experiments show that100

RDCAL significantly improves the performance of a wide range of classifiers,

including Neural Networks, SVM, Decision Tree and Logistic Regression in

a consecutive batch learning setting.

(3) We achieve state-of-the-art performance on exploitability prediction in data

stream learning scenario, using the proposed RDCAL learning algorithm105

with a fully-connected Neural Networks (DenseNN) classifier, compared

with other five adaptive data stream learning algorithms.

The rest of this paper is organized as follows. Section 2 discusses related

literature, followed by a detailed description of the methodology in Section 3.

5

We then present the exploitability prediction results of the proposed algorithm110

on real-world data from 1988 to 2020 in Section 4, followed by comparison and

discussion with other baseline algorithms. Section 5 concludes the paper and

future work.

2. Related work

We treat the exploitability prediction problem as a concept drift leaning115

problem. This section discusses some of the most important and related litera-

ture in stream learning.

2.1. Concept drift

Concept drift is a phenomenon in which the statistical properties of a target

domain change over time in an arbitrary way [20]. Given a set of samples at a120

period of time [0, t], denoted as S0,t = {d0, d1, · · · , dt}, where di={Xi, yi} is

one data sample or instance observed at time step i, Xi ∈ Rn is a feature vector

in an n-dimensional feature space X and yi is the corresponding label. Let S0,t

follows a certain distribution F0,t(X, y), if F0,t(X, y) 6= Ft+1,∞(X, y), concept

drift occurs at time step t+1. The term ‘concept drift’ at time step t could be125

defined as the change of joint probability of X and y at time step t, denoted

as ∃t : Pt(X, y) 6= P(t+1)(X, y) [20]. Considering that Pt(X, y) is determined by

two parts as Pt(X, y)=Pt(X)×Pt(y|X), there are three main sources triggering

a concept drift.

(1) Virtual drift: Pt(X) 6= P(t+1)(X) while Pt(y|X)=Pt+1(y|X). Since Pt(X)130

drift doesn’t affect the decision boundary, it has been considered a virtual

drift [20, 21].

(2) Actual drift: Pt(y|X) 6= Pt+1(y|X) while Pt(X) = P(t+1)(X). When actual

drift happens, the actual decision boundary changes. If the classifier cannot

update accordingly, the performance will decrease.135

(3) Hybrid drift: a mixture of virtual drift and actual drift.

6

2.2. Concept drift learning

According to when to handle concept drift, there are generally two learning

strategies, namely, lazy and active. For the lazy strategy, concept drift learn-

ing consists of a drift detection process and a drift adaptation process. When140

new data arrives, either data-distribution-based or error-rate-based detection

algorithms are used to detect the occurrence of concept drift. ADaptive slid-

ing WINdow (ADWIN) [22], for example, is a data-distribution-based detection

algorithm, by calculating the absolute value of some statistics over two win-

dows and comparing it with a pre-defined threshold to determine if drift occurs.145

PageHinkley [23], another example of data-distribution-based method, employs

a Page-Hinkley test as a drift detector to monitor the features’ magnitude of

changes. Kolmogorov-Smirnov Windowing (KSWIN) is a concept change detec-

tion method based on the Kolmogorov-Smirnov (KS) statistical test [24]. Drift

Detection Method (DDM) [25], Early Drift Detection Method (EDDM) [26] and150

Drift Detection Method based on Hoeffdings bounds (HDDM) [27] are examples

of concept change detection methods based on learner’s error rate. Once drift

occurs, drift adaptation algorithms will adjust the classifier model accordingly.

For active strategy, the classifier updates constantly and incrementally when

new data is available.155

Generally speaking, the performance of lazy-strategy-based concept drift

learning algorithms are more effective than active-strategy-based methods, due

to less frequency of updating classifier. However, the drift detection process

itself is also resource-consuming. Besides, the performance of lazy strategy

algorithms is greatly limited to the sensitivity of drift detection algorithms.160

For both learning strategies, basically, regarding how to handle concept drift

there are four strategies. Firstly, redesign base classifiers, such as redesigning the

nodes of decision tree [28] or the structures of Neural Networks [29]. Secondly,

retrain or fine-tune the parameters or hyperparameters of the learner[30, 9].

Thirdly, adaptively change the training set formation methods, such as adjust-165

ing training windows, training sample selection strategies and training sample

weights adaptively[31, 32, 33]. Lastly, fusion rules or classifier ensemble algo-

7

rithms are also good choices for drift adaptation [34, 30, 35, 36].

Among these four strategies, ensemble algorithms are the most popular to

reach state-of-the-art performance. On the other hand, it also has a higher170

computational complexity. It is worth noting that these four strategies are not

separated from each other. Instead, they are often combined with each other to

achieve better performance.

3. Real-time dynamic concept adaptive learning

To avoid either the possible omission of concept drift detection with lazy175

strategy or the frequent classifier updating with active strategy, we make a

trade-off. Specifically, this work adopts a consecutive batch learning strategy as

the learning framework for exploitability prediction. With respect to concept

drift adaptation, the proposed RDCAL algorithm involves a combination of

classifier parameter fine-tuning and training set reformation.180

3.1. Consecutive batch learning framework

The workflow of the consecutive batch learning framework adopted by this

work is shown in Fig. 1. As a general concept drift learning framework, it is

algorithm-agnostic. In other words, the feature extraction algorithms, feature

selection algorithms, classifier models and classifier updating strategies used185

in this framework could be flexibly selected without affecting how the whole

framework works. We introduce the involved notations and main processes in

the following subsections.

3.1.1. Feature extraction

As shown in Fig. 1, I={I(1), · · · , I(k), · · · } is a sequence of consecutive raw190

input data batches in chronological order. Each data batch I(k) contains Na raw

samples arriving in a time slice T (k). Different feature extraction and feature

selection algorithms could be used to extract the numerical features X={X(1),

· · · , X(k), · · · } from I, where X(k)={X(k)
1 , X

(k)
2 , · · · , X(k)

Na
} is the feature set

extracted from the k-th input raw data batch I(k); X(k) ∈ RNa×n; Na is the195

8

R
D
C
A
L

Downstream

applications

1. Feature extraction

4. Classifier

update

…

…

…

…

…

2. Data integration

CRS

BWS
3. Prediciton

(1) ()f () ()kf

() ()kf

(1) ()kf +

()kX

()kX () (){ , }k k

cX Y

() (){ , }k k

cX Y
()ˆ kY

() (){ , }k k

r rX Y

() (){ , }k k

b bX Y()k

bW

(1)I (2)I (3)I ()kI (1)kI +

(1)O (2)O (3)O ()kO (1)kO +

()kO

Figure 1: Consecutive batch learning framework.

number of samples in the data batch; n is the dimension of the extracted sample

feature; X
(k)
i ∈ Rn (i ∈ [1, Na]) is the i-th sample in the data batch X(k).

3.1.2. Prediciton

The notations f (1)(·), · · · , f (k)(·), · · · in Fig. 1 represents a sequence of

different status of the same classifier with different parameters, where f (k)(·)200

represents the classifier used to predict the output label at the k-th time slice.

f (k+1) is the sequential status fine-tuned from f (k) based on the labelled data

in the k-th time slice and the learning strategies adopted. If no prior data

or knowledge is available, f (1)(·) could be initialized with random parameters.

Otherwise, it could be initialized with a pre-trained model.205

Once feature X(k) is extracted from raw data batch I(k), the corresponding

predicted label Ŷ (k) could be calculated by (1).

Ŷ (k) = f (k)(X(k)), (k ≥ 1). (1)

Ŷ={Ŷ (1), Ŷ (2), · · · , Ŷ (k), · · · } represents the sequence of consecutive pre-

dicted label batches, which could be used by downstream applications before

real labels are available.210

9

3.1.3. Data integration

The notation O={O(1), · · · , O(k), · · · } in Fig. 1 represents a sequence of

raw output data stream, where O(k) is the batch collected within T (k), the same

time period with I(k). Note that, the size of O(k) is not necessarily the same as

I(k) and the samples in I(k) and O(k) are not in one-to-one correspondence.215

Considering the situation in cybersecurity, let I(k)= {I(1)1 , · · · , I(k)Na
} be a

batch of latest disclosed vulnerabilities within the time period of T (k), where I
(k)
i

(i=1, · · · , Na) is the i-th vulnerabilities. O(k) is a batch of exploits published

in the same time period T (k). Obviously, O(k) can exploit vulnerabilities in I(k)

and other historical vulnerabilities in I(1), · · · , I(k−1) as well as some unknown220

vulnerabilities not included in O. Exploits in O(k) contain the CVE-ID (a glob-

ally unique vulnerability identier) information of the exploited vulnerabilities,

making it possible to integrate the exploit data batch and the vulnerability data

batch. Specifically, if the vulnerabilities in I(k) are exploited by exploits in O(k),

the corresponding labels are 1 (‘exploitable’), otherwise, are 0 (‘unexploitable’).225

Generally speaking, each raw data in I(k) has a globally unique Sample

Identification (SID), which is also inherited by the data in X(k). Through inte-

grating I and O with the SIDs of raw data, a sequence of class labels in batches

Yc={Y (1)
c , · · · , Y (k)

c , · · · } could be obtained. The subscript c is the capital of

‘current’, which means the labels are obtained by integrating the current output230

data batch O(k) collected in the current time period T k. Y
(k)
c ={Y (k)

c1 , · · · , Y (k)
cNa
}

is the batch labels corresponding to I(k) and X(k). The value of Y
(k)
ci (i=1, 2,

· · · , Na) is calculated by (2).

Y
(k)
ci (i = 1, 2, · · · , Na) =

1, if fSID(X
(k)
i) ∈ fSID(O(k))

0, if fSID(X
(k)
i) 6∈ fSID(O(k))

, (2)

where X
(k)
i is the i-th data in X(k) and the function of fSID(·) is to find out

the appeared SID set.235

10

3.1.4. Classifier update

Let D
(k)
t ={X(k), Yc

(k)} be a labelled training set for the k-th time slice and

W (k) = ones(Na, 1) be the corresponding batch sample weight. The function

ones(·) means to generate an array according to the specified dimensions, filled

with 1. If no learning strategies are applied to optimize the performance of the240

consecutive batch learning framework, classifier would be updated from f (k)(·)

to f (k+1)(·) by fitting D
(k)
t with a sample weight of W (k).

Algorithm 1 is the pseudocode of the above-mentioned consecutive batch

learning framework. Line 3, 4, 5 and 16 are four main steps executed at each

data batch. Lines 6 to 15 related to the RDCAL learning strategy will be245

covered in Section 3.2.

3.2. Real-time dynamic concept adaptive learning

RDCAL is a general learning strategy used to improve the performance

of consecutive batch leaning framework, when existing class label drift and

dynamic class imbalance. Specifically, RDCAL employs a Class Rectification250

Strategy (CRS) to handle the ‘actual drift’ problem and a Balanced Window

Strategy (BWS) to deal with the dynamic class imbalance problem. RDCAL

achieves better performance by optimizing the labelled training set D
(k)
t and the

corresponding sample weight W (k) applied to update the classifier over time.

As shown in Fig. 1, the blue quadrangle named ‘RDCAL’ is the proposed255

learning strategy. The specific implementation of RDCAL is listed in line 6-15

of Algorithm 1. It is worth noting that CRS and BWS are optional for RDCAL.

In real-word applications, they can be implemented separately or combinedly,

depending on the existing problem in the corresponding data stream. However,

if both of them are employed, CRS should be applied before BWS. The detailed260

implementations of CRS and BWS are given in Section 3.3 and 3.4 accordingly.

3.3. Class Rectification Strategy

CRS is designed to handle the class drift problem, which is also described

as an ‘actual drift’ in Section 2.1.

11

Algorithm 1 Consecutive batch learning framework

Input: I={I(1), · · · , I(k), · · · }; Na; O={O(1), · · · , O(k), · · · }; f (1)(·).

Output: X={X(1), · · · , X(k), · · · }; Ŷ={Ŷ (1), Ŷ (2), · · · , Ŷ (k), · · · };

Yc={Y (1)
c , · · · , Y (k)

c , · · · }; Dt={D(1)
t , · · · , D(k)

t , · · · }; f (2)(·), f (3)(·), · · · ,

f (k+1)(·), · · · }.

1: W (k)=ones(Na,1); D
(k)
t =∅

2: for each k ≥ 1 do

3: Feature extraction: extract and select features X(k) ∈ RNa×n from I(k)

4: Prediciton: predict labels Ŷ (k) by calculating Ŷ (k)=f (k)(X(k))

5: Data integration: integrate X(k) and O(k) to obtain D
(k)
t = {X(k), Yc

(k)}

6: if RDCAL== True then

7: if CRS== True then

8: run Algorithm 2 and get D
(k)
r

9: D
(k)
t = D

(k)
t ∪D(k)

r

10: end if

11: if BWS== True then

12: run Algorithm 3 and get D
(k)
b and W

(k)
b

13: D
(k)
t =D

(k)
b ; W (k)=W

(k)
b

14: end if

15: end if

16: Classifier update: update f (k) to f (k+1) based on D
(k)
t and W (k)

17: end for

12

To adjust the classifier in real-time, the sample labels Yc
(k) in the training set265

D
(k)
t of batch k (k ≥1) are the ‘current’ labels determined by the current output

data O(k). Once the label of a sample has changed in a later time, according to

a vanilla consecutive batch learning framework, the classifier has no chance to

learn from the ‘actually drifted’ sample, where ‘vanilla’ means a naive version

without any learning strategy, i.e. Algorithm 1 when RDCAL==False.270

CRS is a strategy to rectify the label of the historical data. Once a class

label drift is detected, the corresponding sample will be added into a rectified set.

The rectified set works as a supplement to the original training set to finetune

the classifier in real-time. Specifically, as shown in Algorithm 1, in a general

consecutive batch learning framework, if RDCAL==True and CRS==True,275

Algorithm 1 will go to Algorithm 2.

For each k-th time slice, the input for Algorithm 2 includes historical ex-

tracted feature batches X (k)
h = {X(1), · · · , X(k−1)}, historical label batches Y(k)

hc

= {Y (1)
c , · · · , Y (k−1)

c }, and the current output batch O(k).

To start with, initialize S=∅ and D
(k)
r =∅, where S is a temporary set to280

hold the SIDs found in the current output batch O(k); D
(k)
r is used to hold all

rectified samples in the current time slice. If k equals 1, because no historical

samples exist to rectify, CRS returns an empty D
(k)
r .

When k >1, there are two steps to form a rectified set. Lines 6-11 in Al-

gorithm 2 specify the first step, obtaining all SIDs appeared in current output285

data O(k). The historical data corresponding to these SIDs may have a class

label drift. Step 2, described in lines 13-20 of Algorithm 2, rectifies the historical

samples one by one. Once a rectified sample xh is identified, set its rectified

label yr to ‘1’ and add this rectified sample {xh, yr} to D
(k)
r .

Finally, a rectified set D
(k)
r for time slice k is returned to Algorithm 1 line 8290

and will be merged with the original D
(k)
t and from a new D

(k)
t as discribed in

Algorithm 1 line 9.

13

Algorithm 2 Class Rectification Strategy

Input: X (k)
h ={X(1), · · · , X(k−1)}; Y(k)

hc ={Y (1)
c , · · · , Y (k−1)

c }; O(k).

Output: D
(k)
r .

1: S=∅; D
(k)
r =∅

2: if k==1 then

3: break

4: else

5: # step (1): obtain SIDs in O(k).

6: for O
(k)
i in O(k) do

7: s=fSID(O
(k)
i)

8: if s 6= ∅ then

9: S=S ∪ {s}

10: end if

11: end for

12: # step (2): rectify history dataset {X (k)
h , Y(k)

hc }.

13: for s in S do

14: for xh, yhc in zip(X (k)
h , Y(k)

hc) do

15: if s == fSID(xh) and yhc==0 then

16: yr=1

17: D
(k)
r =D

(k)
r ∪{xh, yr}

18: end if

19: end for

20: end for

21: end if

22: return D
(k)
r

14

3.4. Balanced Window Strategy

BWS is designed to cope with the dynamic class imbalance problem in stream

learning. The basic idea behind BWS is to keep a balanced training set D
(k)
b at295

each time slice k.

Basically, in the vanilla consecutive batch learning framework, the training

set D
(k)
t used to update classifier from f (k)(·) to f (k+1)(·) is imbalanced, no

matter applying CRS or not. To make things worse, the imbalance status within

D
(k)
t changes irregularly and dynamically over time.300

BWS is a strategy to keep a balanced window to dynamically hold the latest

Nb negative samples and Nb positive samples as the balanced training set D
(k)
b

for the current k-th time slice. The class balance size Nb (Nb ≥ Na) is a

hyperparameter of BWS to control the size of each class within D
(k)
b .

To keep D
(k)
b balanced, the samples belonging to the current minority class305

will stay more time slices in the balanced window. To avoid the possible over-

fitting caused by multiple-times training on the same minority class samples,

BWS designs a balanced sample weight W
(k)
b to control the training weight of

each sample. When it is the first time slice at which a sample occurs in D
(k)
b ,

its corresponding balanced sample weight w
(k)
b =1. After that, w

(k)
b is related310

to N , the number of time slices that the corresponding sample has stayed in the

balanced window. Specifically, w
(k)
b can be calculated by (3).

w
(k)
b = αN−1, (N > 1), (3)

where the time decay factor α (α ∈(0,1]) is another hyperparameter for BWS.

Since classes in D
(k)
b are balanced, it can partially solve the class imbalance

problem. W
(k)
b is a mechanism to penalize those samples staying too long atD

(k)
b315

to avoid over-fitting. Combining these two factors, BWS provides an effective

solution to the dynamic class imbalance problem.

Regarding implementation, as shown in Algorithm 1, in a general consecutive

batch learning framework, if RDCAL==True and BWS==True, Algorithm 1

will go to Algorithm 3. For the k-th time slice, the inputs of BWS include320

15

existing training set D
(k)
t and sample weight W (k), the class balance size Nb

and the time decay factor α.

To start with, if k equals 1, no historical balanced dataset and sample weight

are available to work as old data. Therefore, both Dold and Wold are initialized

as ∅, as shown in line 2 of Algorithm 3. Otherwise, the Db
(k) will act as the325

Dold for the next time slice, and Wb
(k) will decay in a rate α and then work as

Wold for the next time slice, as shown in line 15 of Algorithm 3.

For each time slice k, as shown in line 4 of Algorithm 3, we first concatenate

the old data and current existing data to generate the initial balanced dataset

Db
(k) and the corresponding sample weight Wb

(k). Then, check if the sample330

size of each class in Db
(k) is bigger than the pre-set class balance size Nb. If

yes, only keep the latest Nb samples and their balanced sample weights for each

class, as shown in lines 5-14 in Algorithm 3.

Finally, the Db
(k) and Wb

(k) is returned to Algorithm 1 and worked as the

new training set D
(k)
t and sample weight W (k) to update the classifier, as shown335

in lines 12-13 in Algorithm 1.

16

Algorithm 3 Balanced Window Strategy

Input: D
(k)
t ; W (k); Nb; α.

Output: D
(k)
b ; W

(k)
b .

1: if k=1 then

2: Dold = ∅; Wold = ∅

3: end if

4: D
(k)
b = concatenate(Dold, D

(k)
t); W

(k)
b = concatenate(Wold, W (k))

5: get the indexes of all negative samples idx0

6: if len(idx0 > Nb) then

7: idx0 = idx0[-Nb : -1]

8: end if

9: get the indexes of all positive samples idx1

10: if len(idx1 > Nb) then

11: idx1 = idx1[-Nb : -1]

12: end if

13: idx = idx0 ∪ idx1

14: D
(k)
b = D

(k)
b [idx]; W

(k)
b = W

(k)
b [idx]

15: Dold = D
(k)
b ; Wold = α ∗W (k)

b

16: return D
(k)
b ; W

(k)
b

17

4. Experimental study

In this part, we validate the performance of RDCAL to learn the real-time

dynamic patterns on a real-world vulnerability dataset. First, we set the ex-

periments in Section 4.1. Then, we compare the performance of four classifiers,340

namely, DensNN, HoeffdingTree, SVM and LR, when applying and without ap-

plying RDCAL in Section 4.2, to verify if RDCAL is classifier-agnostic. Further-

more, we compared the performance of RDCAL and other five drift adaptation

algorithms on the task of exploitability prediction in Section 4.3. Finally, we

analyse the effects of hyperparameters of RDCAL in Section 4.4.345

4.1. Experimental setting

4.1.1. Dataset

Data source. We validate RDCAL on a real-world dataset containing 140,758

vulnerabilities disclosed between 1988 and 2020. 23,413 of them have found

corresponding exploits in ExploitDB, recognized as positive sample. Specifically,350

the National Vulnerability Database works as the consecutive raw input data

stream I, while ExploitDB provides the consecutive raw output data stream O.

The CVE-ID works as the SID to integrate NVD and ExploitDB.

Data stream trend. Fig. 2 shows the monthly number of disclosed vulnerabili-

ties and exploits from 1988 to 2020, demonstrating the number of disclosed vul-355

nerabilities are soaring and much more than available exploits in recent years.

Therefore, accurate exploitability prediction is of importance to improve the

remediation efficiency through filtering out ‘low-risk’ vulnerabilities.

Dynamic class imbalance status. When dealing with the collected vulnerabilities

and exploits as a real-time data stream, the real-time dynamic class proportion360

of the current label and rectified label is shown in Fig. 3. The dynamic class

proportion is calculated by the Sliding Window Imbalance Factor Technique,

proposed by [9], setting the window size z = 1000. The current label yc of each

vulnerability is obtained following the formula (2), where Na sets to 1. The

18

1988-10 2003-05 2011-09 2020-08
Publish Date

0

500

1000

1500

2000
M

on
th

ly
 N

um
be

r
Vulnerabilities
Exploits

Figure 2: Monthly number of disclosed vulnerabilities and exploits from 1988 to 2020.

rectified label yr of each vulnerability is obtained following Algorithm 3, where365

Na is also set to 1.

1988-11-11 2020-09-09
Publish Date

 0%

20%

40%

60%

80%

100%

Cl
as

s P
ro

po
rti

on

current label: 0
rectified label: 0
current label: 1
rectified label: 1

Figure 3: Real-time dynamic class proportion status comparison of current label and

rectified label from 1988 to 2020.

On one hand, Fig. 3 shows the dynamic changing trends of class imbalance

status. At first, the proportion of class 0 was higher than class 1, and then

decreased moderately to about 40%, which is lower than class 1. But, it went

up to 80% shortly and then stabilized and in the interval of [80%, 100%]. On370

the other hand, Fig. 3 illustrates only a small portion of vulnerabilities suffers

class drift problem. Therefore the proportion of ‘rectified label 1’ drawn in blue

19

line is only a bit higher than the ‘current label 1’ drawn in red dashed line.

Class rectification. To visualize the real-time class rectified vulnerabilities, we

draw Fig. 4. Set Na = 1, and once a vulnerability in I was disclosed, we will375

search for the corresponding exploits published in the same current time slice

(the time period between current vulnerability and last vulnerability disclosed)

in O. These corresponding exploits will be used to rectify all existing vulnera-

bilities. The horizontal axis in Fig. 4 is the exploit publish date and is also the

class rectification date. The vertical axis is the publish date of these rectified380

vulnerabilities.

2007-02-23

CVE-2004-2086
2005-12-31

CVE-2006-3747
2006-02-04

CVE-2008-0843
2007-02-20

Figure 4: Real-time class rectification results.

Taking the date ‘2007-02-23’ as an example. A vulnerability ‘CVE-2007-

1083’ was published on that date. To obtain the current label, we check all the

exploits published on ‘2007-02-23’, Elist = [‘EXPLOIT-DB:25452’, ‘EXPLOIT-

DB:3362’, ‘EXPLOIT-DB:3363’, ‘EXPLOIT-DB:3364’, ‘EXPLOIT-DB:3365’,385

‘EXPLOIT-DB:3366’, ‘EXPLOIT-DB:3367’, ‘EXPLOIT-DB:29641’, ‘EXPLOIT-

DB:29642’, ‘EXPLOIT-DB:29640’, ‘EXPLOIT-DB:29643’]. Execute fSID(Elist),

all exploited vulnerabilities are found, Vlist= [‘CVE-2005-4832’, ‘CVE-2006-

5276’, ‘CVE-2006-0549’, ‘CVE-2005-4832’, ‘CVE-2007-1133’, ‘CVE-2007-1130’,

‘CVE-2007-1131’, ‘CVE-2007-1126’, ‘CVE-2007-1124’, ‘CVE-2007-1127’, ‘CVE-390

20

2007-1125’]. Since ‘CVE-2007-1083’ is not in the list, we can set its current label

as ‘unexploitable’. Check the exploitability of vulnerabilities in Vlist, we find

that only three of them, namely ‘CVE-2005-4832’, ‘CVE-2006-0549’, ‘CVE-

2006-5276’ are labelled as ‘unexploitable’. Therefore, their class labels are recti-

fied from ‘unexploitable’ to ‘exploitable’ on ‘2007-02-23’. Specifically, we mark395

them with red ‘×’ markers and also annotate their ‘CVE-ID’ and publish date

in Fig. 4.

4.1.2. Evaluation metrics.

As exploitability prediction is binary-classification, we adopt four widely

used evaluation metrics, namely, Accuracy, Precision, Recall and F1 score as

evaluation metrics. Besides, as we deal with stream data, to further evaluate

algorithms over different time slices, the geometric mean (G-mean) is also calcu-

lated as an evaluation metric, following [9]. The definition of G-mean is shown

in (4),

G-mean(x1, x2, · · · , xn) = n
√
x1 × x2 × · · · × xn (4)

where x1, x2, · · · , xn are the n elements to calculate the G-mean of them [9].

4.1.3. Feature extraction and selection400

We extract features from raw input database NVD. Both vulnerability de-

scription and CVSS metrics are available. On one hand, we follow [19] and

apply a fine-tuned BERT model to extract semantic features from vulnerability

description. On the other hand, we select the identical CVSS V2.0 metrics with

[9] as tabular features, applying one-hot encoding to transfer categorical features405

into one-hot numeric arrays. Finally, to reduce the computational complexity,

10 features from each side are selected via Principal Component Analysis (PCA)

to concatenate a 20-dimensional feature set for exploitability prediction.

4.2. RDCAL versus vanilla learning

To verify the effectiveness of RDCAL, we compare the performance of four410

classifiers, namely, DensNN, HoeffdingTree, SVM and LR, when using RDCAL

21

and without using RDCAL. Specifically, DensNN is a fully-connected Neural

Network with a 10-node-hidden layer, implemented with Keras4; HoeffdingTree

is an incremental decision tree induction algorithm, implemented with a python

package, scikit-multiflow5; SVM and LR are two traditional machine learning415

classifiers, implemented with scikit-learn 6. The parameters for these classifiers

keep default setting. When applying RDCAL, the hyperparameters are set as

Na=200, Nb=200 and α=0.4.

Table 1 summarises the experimental results, where classifier with a ‘ Vanilla’

means using Algorithm 1 without RDCAL, while classifier with a ‘ RDCAL’420

means using Algorithm 1 with RDCAL. All classifiers in Table 1 are pre-trained

with the first 100 samples, and then are evaluated in an interleaved-test-then-

train evaluation mode.

Table 1: Overall performance comparison between Vanilla and RDCAL strategy

Classifier Accuracy Precision Recall F1 Score G-mean 4G-mean

DenseNN Vanilla 89.53% 84.21% 74.03% 78.70% 81.41% 0

DenseNN RDCAL 90.31% 81.01% 82.88% 81.92% 83.95% 3.12%

HoeffdingTree Vanilla 89.73% 84.76% 74.32% 79.15% 81.78% 0

HoeffdingTree RDCAL 90.59% 81.61% 83.25% 82.37% 84.37% 3.16%

SVM Vanilla 88.61% 83.03% 70.88% 76.41% 79.45% 0

SVM RDCAL 89.73% 79.06% 82.88% 80.92% 83.05% 4.53%

LR Vanilla 88.10% 80.99% 71.22% 75.77% 78.77% 0

LR RDCAL 88.79% 76.49% 82.11% 79.19% 81.52% 3.49%

Values in columns ‘Accuracy’, ‘Precision’, ‘Recall’ and ‘F1 Score’ are the ge-

ometric mean of these metrics over all time-slice. Columns ‘G-mean’ represents425

the G-mean of these four metrics. The last column ‘4G-mean’ is calculated by

4https://keras.io/api/layers/core layers/dense/
5https://scikit-multiflow.readthedocs.io/en/stable/api/generated/skmultiflow.trees.Hoeffding

TreeClassifier.html#skmultiflow.trees.HoeffdingTreeClassifier
6https://scikit-learn.org/stable/modules/classes.html

22

(5).

4G-mean =
G-mean(C RDCAL)−G-mean(C Vanilla)

G-mean(C Vanilla)
× 100% (5)

Where ‘C Vanilla’ is the Vanilla learning version with the classifier C and

‘C RDCAL’ is the RDCAL learning version.

As shown in Table 1 and Fig. 5, RDCAL can improve the overall per-430

formance of all these four classifiers for more than 3%. Especially, for SVM,

RDCAL learning strategy makes a significant improvement of 4.53%. There-

fore, RDCAL is classifier-agnostic for improving the performance of concept

drift learning with class drift problem and dynamic class imbalance problem.

DenseNN HoeffdingTree SVM LR
Classifier

G-
m

ea
n

81.41% 81.78%
79.45% 78.77%

83.95% 84.37% 83.05% 81.52%

Vanilla
RDCAL

 0%

 1%

 2%

 3%

 4%

 5%

G-
m

ea
n

G-mean

Figure 5: Overall G-mean and 4G-mean comparison between Vanilla and RDCAL

learning strategy over four different classifiers

Table 1 gives more details. For all these four classifiers, RDCAL can increase435

the ‘Accuracy’, ‘Recall’ and ‘F1 Score’, but causes a decrease in the ‘Precision’.

For the exploitability prediction problem, the positive samples are more valuable

than negative samples. In other words, ‘Recall’ is a more important metric than

‘Precision’. Therefore, the reduction in ‘Precision’ caused by the promotion of

‘Recall’ is acceptable. By comparing the G-mean of these four algorithms,440

we can see that HoeffdingTree achieves the best performance among both the

23

‘Vanilla’ version classifiers and the ‘RDCAL’ version classifiers. DenseNN takes

the second place. LR, limited by its simplicity, performs worst.

Fig. 6 presents the corresponding real-time performance of these ‘RDCAL’

version classifiers. The publish date starts from ‘1995-11-01’ instead of from445

1988, because the first 100 samples are used to pre-train the classifiers and

thus are not reported. An interesting result reflected in Fig. 6 is that, in the

early years, HoeffdingTree had an obvious advantage over DenseNN. However,

in recent years, DenseNN gradually catches up and passes HoeffdingTree. A

reasonable guess is that with the accumulation of learning data, the neural450

network algorithm gradually shows its advantages on learning complex data

patterns. Another thing is that the performance of ‘Precision’, ‘Recall’ and ‘F1

Score’ have a similar fluctuating trend with label 1 in Fig. 3.

1995-11-01 2015-08-03 2020-09-11
Publish Date

75%

80%

85%

90%

95%

Ac
cu

ra
cy

DenseNN_RDCAL
HoeffdingTree_RDCAL
SVM_RDCAL
LR_RDCAL

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

70%

80%

Pr
ec

isi
on

DenseNN_RDCAL
HoeffdingTree_RDCAL
SVM_RDCAL
LR_RDCAL

1995-11-01 2015-08-03 2020-09-11
Publish Date

75%

80%

85%

90%

Re
ca

ll

DenseNN_RDCAL
HoeffdingTree_RDCAL
SVM_RDCAL
LR_RDCAL

1995-11-01 2015-08-03 2020-09-11
Publish Date

70%

75%

80%

85%

F1
 S

co
re

DenseNN_RDCAL
HoeffdingTree_RDCAL
SVM_RDCAL
LR_RDCAL

Figure 6: Real-time performance comparison between four different classifiers with

RDCAL learning strategy

4.3. RDCAL versus other drift adaptive algorithms

In this section, we compared the performance of RDCAL with five other455

concept drift adaptation algorithms on the task of exploitability prediction.

The experimental setting for all involved algorithms is specified below.

24

• RDCAL is the proposed consecutive batch learning with RDCAL strategy.

The classifier used in this section is DenseNN and hyperparameters are

set as Na=200, Nb=500 and α=0.9.460

• SAMKNN is the Self Adjusting Memory [31] model which builds an en-

semble with models targeting current or former concepts.

• DWM is the dynamic weighted majority algorithm [34], which keeps a

dynamic online weighted learner ensemble by operations like training,

weighting, removing and adding base learners to cope with concept drift.465

• HTA is the HoeffdingTree Classifier [37] employing ADWIN [22] to detect

concept drift and bootstrapping strategy to get better performance.

• LPPNSE is the Learn++.NSE ensemble classifier [35], which is an incre-

mental learning algorithm for all kinds of concept drift, including addition

or deletion of concept classes.470

• VFDRC is the Very Fast Decision Rules classifier [32], which is an incre-

mental rule learning classifier to adapt with concept drift.

All of the above-mentioned adaptive algorithms except DenseNN are imple-

mented using the python package, scikit-multiflow7 in this paper.

The average results of 10 times of independent experiments are shown in475

Table 2 and Fig. 7. Regarding the overall G-mean, RDCAL performs best at

83.20±0.05%. The second place is HTA at 82.16±0.46%. Next are SAMKNN

and DWM, achieving 81.35±0.07% and 81.05±0.09%. Both LPPNSE and VF-

DRC have poor performance on this task, only obtaining around 74% of G-mean.

As for single metric, Table 2 shows that RDCAL achieves the best Recall at480

86.05±0.10% and best F1 Score at 81.11±0.05% with a large margin above oth-

ers. However, HTA achieves the best Accuracy with a small advantage over

others. It also achieves the best Precision at 81.52±0.59%.

7https://scikit-multiflow.readthedocs.io/en/stable/api/api.html

25

Table 2: Overall performance comparison between RDCAL and other five drift adap-

tation algorithms

Algorithms Accuracy Precision Recall F1 Score G-mean

RDCAL 89.48±0.03% 76.72±0.06% 86.05±0.10% 81.11±0.05% 83.20±0.05%

SAMKNN 89.19±0.04% 81.04±0.06% 76.83±0.11% 78.86±0.08% 81.35±0.07%

DWM 88.22±0.12% 75.30±0.24% 82.52±0.08% 78.73±0.09% 81.05±0.09%

HTA 89.57±0.19% 81.52±0.59% 78.26±1.18% 79.74±0.61% 82.16±0.46%

LPPNSE 84.73±0.12% 70.77±0.34% 71.20±0.16% 70.98±0.18% 74.19±0.17%

VFDRC 84.38±0.75% 69.63±2.08% 72.51±2.12% 70.98±1.09% 74.14±0.99%

Since HTA is an improvement based on HoeffdingTree, we can compare the

performance of HTA with HoeffdingTree Vanilla and HoeffdingTree RDCAL in485

Table 1. The overall G-mean of HoeffdingTree Vanilla is 81.78%, lower than

HTA at 82.16%, showing the effectiveness of HTA in improving the perfor-

mance of HoeffdingTree classifier. However, compared with the G-mean of Ho-

effdingTree RDCAL at 84.37%, it is obvious that RDCAL has a much better

effect on improving the performance of HoeffdingTree.490

Fig. 7 shows the real-time performance on these four metrics. Consistent

with Table 2, RDCAL, SAMKNN, DWM achieve equivalent best performance

on Accuracy; HTA and SAMKNN are the best on Precision; RDCAL alone

achieves the best Recall with an overwhelming advantage; RDCAL and HAT

achieve equivalent good performance on F1 score, followed by SAMKNN and495

DWM. Although, in recent years, the proportion of class 1 goes down sharply to

about 10%, we can see that the Recall of RDCAL is still quite stable, compared

with other algorithms.

Both Table 2 and Fig. 7 demonstrate that RDCAL is the best concept

adaptation algorithm in this exploitability prediction task. RDCAL only adopt500

a single classifier during the whole online learning process. However, its perfor-

mance is even better than ensemble algorithms with multiple classifiers, such as

SAMKNN, DWM and LPPNSE.

26

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

70%

80%

90%
Ac

cu
ra

cy

RDCAL
SAMKNN
DWM
HTA
LPPNSE
VFDRC

1995-11-01 2015-08-03 2020-09-11
Publish Date

50%

60%

70%

80%

Pr
ec

isi
on

RDCAL
SAMKNN
DWM
HTA
LPPNSE
VFDRC

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

80%

Re
ca

ll

RDCAL
SAMKNN
DWM
HTA
LPPNSE
VFDRC

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

80%

F1
 S

co
re

RDCAL
SAMKNN
DWM
HTA
LPPNSE
VFDRC

Figure 7: Real-time performance comparison between RDCAL and other five drift

adaptation algorithms

4.4. Hyperparameter influence analysis

The parameters of classifiers can be learnt from data automatically. How-505

ever, the hyperparameters of RDCAL, namely, Na, Nb and α, should be elab-

orately adjusted. As shown in Table 1, DenseNN RDCAL achieves G-mean of

83.95% by setting Na=200, Nb=200 and α=0.4. However, in Table 2, with the

same DenseNN classifier, RDCAL only achieves 83.20% on G-mean, when set-

ting Na=200, Nb=500 and α=0.9. Therefore, in this section, we discuss how510

these three hyperparameters affect the performance of RDCAL. Besides, since

RDCAL consists of two optional learning strategies, CRS and BWS, we also

discuss the effect of them separately.

Therefore, we study CRS and BWS separately under different settings of

Na, Nb and α in the following subsections. All experiments adopt the same515

consecutive batch learning framework described in Algorithm 1, employing an

identical DenseNN as the classifier. Baseline is Algorithm 1 with neither CRS

nor BWS, setting the consecutive batch size Na to 200.

27

4.4.1. Class Rectification Strategy and Na

To discuss the effect of CRS and Na, we conduct a series of experiments to520

learn the performance of CRS when Na traverses in [50, 100, 200, 500, 1000].

The the real-time performance of different settings is shown in Fig. 8. We

can see that all settings adopting CRS have quite similar performance. Although

Baseline has a higher Precision, solutions with CRS are much better in terms

of Accuracy, Recall and F1 Score, regardless the value of Na. Therefore, CRS525

alone is useful in improving the performance of concept drift learning.

1995-11-01 2015-08-03 2020-09-11
Publish Date

75%

80%

85%

90%

95%

Ac
cu

ra
cy Baseline

Na=50
Na=100
Na=200
Na=500
Na=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

75%

80%

85%

Pr
ec

isi
on Baseline

Na=50
Na=100
Na=200
Na=500
Na=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

70%

75%

80%

85%

Re
ca

ll Baseline
Na=50
Na=100
Na=200
Na=500
Na=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

70%

75%

80%

85%

F1
 S

co
re Baseline
Na=50
Na=100
Na=200
Na=500
Na=1000

Figure 8: Real-time performance comparison of CRS with different Na

Table 3 shows the overall performance comparison. When adopting CRS,

Na=200 achieves the best Accuracy, Recall, F1 Score and the overall G-mean.

All other Na settings achieve over 2% improvement in G-mean than Baseline.

Fig. 9 shows the G-mean and ∆G-mean of CRS with different Na. Ob-530

viously, the best performance is achieved when Na=200, where G-mean is

83.31±0.07% and ∆G-mean is 2.21%.

4.4.2. Balanced Window Strategy and Nb

To discuss the effect of BWS and Nb, α is fixed to 1. Experiments are

designed to compare the performance of BWS when Nb traverses in [50, 100,535

28

Table 3: Overall performance comparison of CRS with different Na

Na Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.56±0.22% 84.02±0.24% 74.52±0.90% 78.89±0.51% 81.56±0.44% 0

50 90.19±0.05% 83.06±0.07% 79.11±0.18% 80.99±0.11% 83.23±0.10% 2.12%

100 90.18±0.02% 83.01±0.10% 79.18±0.15% 80.99±0.05% 83.24±0.04% 2.13%

200 90.21±0.03% 82.96±0.05% 79.40±0.15% 81.08±0.08% 83.31±0.07% 2.21%

500 90.15±0.03% 82.81±0.08% 79.32±0.13% 80.97±0.06% 83.21±0.05% 2.09%

1000 90.12±0.02% 82.68±0.06% 79.36±0.11% 80.91±0.05% 83.17±0.04% 2.04%

50 100 200 500 1000
Consecutive batch size (Na)

83.1%

83.2%

83.2%

83.3%

83.3%

G-
m

ea
n

G-mean
G-mean

2.0%

1.9%

2.0%

2.1%

2.2%

2.3%

2.4%

2.5%

G-
m

ea
n

Figure 9: Performance improvement comparison of CRS with Na

29

200, 500, 1000].

Fig. 10 shows the real-time performance comparison of BWS with differ-

ent selections of Nb. Baseline wins the best Accuracy and Precision, but gets

the worst Recall. As for the F1 Score, Baseline is also among the best. Dif-

ferent settings distinguished each other at the beginning, and then the gaps540

were gradually narrowing down with the two classes became much more bal-

anced. However, in recent years, the gaps began to widen due to the severe

class imbalance.

1995-11-01 2015-08-03 2020-09-11
Publish Date

70%

80%

90%

Ac
cu

ra
cy Baseline

Nb=50
Nb=100
Nb=200
Nb=500
Nb=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

50%

60%

70%

80%

90%

Pr
ec

isi
on Baseline

Nb=50
Nb=100
Nb=200
Nb=500
Nb=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

80%

Re
ca

ll Baseline
Nb=50
Nb=100
Nb=200
Nb=500
Nb=1000

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

70%

80%

F1
 S

co
re Baseline

Nb=50
Nb=100
Nb=200
Nb=500
Nb=1000

Figure 10: Real-time performance comparison of BWS with different Nb (α = 1)

Table 4 shows the overall performance comparison. Nb=500 achieves the

best F1 Score at 79.33±0.09% and the overall G-mean at 81.64±0.08%. Base-545

line performs the best on Accuracy and Precision, while Nb=50 achieves the

best Recall. With respect to ∆G-mean, only Nb=500 and Nb=1000 have a

weak advantage over Baseline. Considering their extraordinary performance on

Recall, the reason should be the over-fitting to minority class. BWS will keep

the minority class samples in the balanced window more than one time slice,550

therefore they will be used to update the classifier more than once. Without a

time decay weight, it is very likely to result in over-fitting.

Fig. 11 shows the G-mean and ∆G-mean of BWS with different Nb. The

30

Table 4: Overall performance comparison of BWS with different Nb (α = 1)

Nb Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.58±0.11% 84.17±0.13% 74.32±0.42% 78.83±0.24% 81.52±0.21% 0

50 86.00±0.80% 68.44±1.76% 89.73±1.55% 77.50±0.47% 79.97±0.47% -1.90%

100 87.30±0.12% 70.70±0.23% 88.32±0.25% 78.48±0.07% 80.87±0.06% -0.80%

200 87.89±0.07% 72.02±0.16% 87.97±0.08% 79.16±0.10% 81.48±0.09% -0.05%

500 88.15±0.11% 72.64±0.26% 87.44±0.23% 79.33±0.09% 81.64±0.08% 0.14%

1000 88.26±0.14% 73.21±0.27% 86.51±0.13% 79.29±0.13% 81.59±0.13% 0.09%

best performance is achieved when Nb=500, which is only 0.14% better than

Baseline. Therefore, it is vital to set an appropriate time decay factor to weaken555

the influence of old data when using BWS.

50 100 200 500 1000
Balance size (Nb)

79.5%

80.0%

80.5%

81.0%

81.5%

G-
m

ea
n

G-mean
G-mean

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

G-
m

ea
n

Figure 11: Performance improvement comparison of BWS with different Nb (α = 1)

4.4.3. Balanced Window Strategy and α

Similarly, to discuss the effect of BWS and α, Nb is fixed to 500. Experiments

are designed to compare the performance of BWS when α traverses in [0.3, 0.5,

0.7, 0.8, 0.9, 1].560

Fig. 12 shows the real-time performance comparison of BWS with different

selections of α. In terms of Accuracy, all settings except for α=1 achieves equiv-

alent results. For Precision and Recall, the results are quite different. Generally

speaking, settings achieving good precision usually have poor performance on

31

Recall and vice versa. Performance on F1 Score is highly related to the class565

proportion. For example, when class 1 and class 0 are almost half to half, all

settings have good results, while when the two classes are highly imbalanced,

different settings can make a big difference.

1995-11-01 2015-08-03 2020-09-11
Publish Date

70%

80%

90%

Ac
cu

ra
cy Baseline

=0.3
=0.5
=0.7
=0.8
=0.9
==1

1995-11-01 2015-08-03 2020-09-11
Publish Date

50%

60%

70%

80%

90%

Pr
ec

isi
on Baseline

=0.3
=0.5
=0.7
=0.8
=0.9
==1

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

80%

Re
ca

ll Baseline
=0.3
=0.5
=0.7
=0.8
=0.9
==1

1995-11-01 2015-08-03 2020-09-11
Publish Date

60%

70%

80%

F1
 S

co
re Baseline

=0.3
=0.5
=0.7
=0.8
=0.9
==1

Figure 12: Real-time performance comparison of BWS with different α (Nb=500)

Table 5 shows the overall performance comparison. We can see that the

best overall G-mean is achieved by α=0.9, which is 2.19% better than Baseline.570

Followed by α=0.8 and 0.7. The worst is α=1, which means that BWS only

keeps a balanced window but not weakens sample weights overtime. As we

analysed before, in this case, the performance can decrease because of over-

fitting to the minority class. α=0.3 only gets limited improvement due to the

too fast time decay of minority samples in the balanced window.575

Fig. 13 shows the G-mean and ∆G-mean of BWS with different values of α.

The best performance is achieved with α=0.9, which is 2.19% better than the

Baseline.

According to Tables 3, 4 and 5, the best Na is 200, the best Nb is 500 and

the best α is 0.9. However, these results are obtained by ablation studies, which580

32

Table 5: Overall performance comparison of BWS with different α (Nb=500)

α Accuracy Precision Recall F1 Score G-mean ∆G-mean

Baseline 89.54±0.12% 83.91±0.50% 74.46±0.35% 78.74±0.15% 81.47±0.14% 0

0.3 89.82±0.05% 84.23±0.09% 75.37±0.20% 79.50±0.14% 82.06±0.11% 0.72%

0.5 89.95±0.02% 83.76±0.08% 76.64±0.08% 79.99±0.03% 82.44±0.02% 1.19%

0.7 90.09±0.03% 82.57±0.06% 79.14±0.05% 80.77±0.05% 83.04±0.04% 1.93%

0.8 90.01±0.03% 81.28±0.07% 80.82±0.09% 81.00±0.06% 83.19±0.06% 2.11%

0.9 89.78±0.03% 79.15±0.06% 83.32±0.10% 81.14±0.05% 83.25±0.05% 2.19%

1 87.98±0.23% 72.28±0.61% 87.45±0.42% 79.11±0.19% 81.44±0.18% -0.03%

0.3 0.5 0.7 0.8 0.9 1.0
Time decay factor ()

81.5%

82.0%

82.5%

83.0%

G-
m

ea
n

G-mean
G-mean

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

G-
m

ea
n

Figure 13: Performance improvement comparison of BWS with different α (Nb=500)

33

means only one factor is applied to the consecutive batch learning framework

each time. When applying CRS and BWS at the same time, the best choice for

these three hyperparameters should be tested simultaneously.

4.5. Concluding remarks

We validate the effectiveness of RDCAL by three series of experiments. First,585

the experiments in Section 4.2 demonstrate that RDCAL can improve the per-

formance of four different classifiers in a consecutive batch learning scenario

by more than 3%. Then, the experiments in Section 4.3 show that RDCAL

performs the best among six concept drift adaptation algorithms. Finally, we

discuss the influence of hyperparameters on RDCAL and demonstrate the effec-590

tiveness of CRS and BWS separately. Therefore, RDCAL is indeed classifier-

agnostic and a state-of-the-art concept drift learning algorithm in dealing with

the exploitability prediction problem.

5. Conclusion

We propose a novel Real-time Dynamic Concept Adaptive Learning algo-595

rithm under a consecutive batch learning setting. Specifically, RDCAL consists

of two strategies, namely, Class Rectification Strategy (CRS) and Balanced

Window Strategy (BWS). CRS is designed to handle the ‘actual drift’ in sam-

ple labels and BWS is a strategy to deal with the dynamic class imbalance

problem.600

Our comprehensive experiments show that RDCAL can significantly improve

the performance of a wide range of classifiers, including Neural Networks, SVM,

Decision Tree and Logistic Regression in exploitability prediction. Besides, RD-

CAL achieves state-of-the-art performance on a real-world dataset containing

140,758 vulnerabilities, compared with other five adaptive data stream learning605

algorithms.

The effectiveness of concept drift adaptation algorithms, including RDCAL,

highly depends on the characteristics of data. In the future, we will further

explore the generalization of RDCAL to applications in other domains.

34

Declaration of Competing Interest610

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

Acknowledgement

The work of Jiao Yin was partially supported by the Science and Technology615

Research Program of Chongqing University of Arts and Sciences, China (Grant

No. P2020RG08), the Science and Technology Research Program of Chongqing

Municipal Education Commission of China (Grant No. KJ202001344049955)

and the Natural Science Foundation of Chongqing Science and Technology Com-

mission, China (Grant No. cstc2019jcyj-msxmX034).620

References

[1] M. Tang, J. Yin, M. Alazab, J. C. Cao, Y. Luo, Modelling of extreme

vulnerability disclosure in smart city industrial environments, IEEE Trans-

actions on Industrial Informatics (2020) 1–1.

[2] M. Tang, M. Alazab, Y. Luo, Big data for cybersecurity: Vulnerability625

disclosure trends and dependencies, IEEE Transactions on Big Data 5 (3)

(2019) 317–329.

[3] E. Zhang, F.-H. Liu, Q. Lai, G. Jin, Y. Li, Efficient multi-party private

set intersection against malicious adversaries, in: Proceedings of the 2019

ACM SIGSAC Conference on Cloud Computing Security Workshop, 2019,630

pp. 93–104.

[4] N. A. H. Haldar, J. Li, M. Reynolds, T. Sellis, J. X. Yu, Location prediction

in large-scale social networks: an in-depth benchmarking study, The VLDB

Journal 28 (5) (2019) 623–648.

35

[5] J. Li, K. Deng, X. Huang, J. Xu, Analysis and applications of location-635

aware big complex network data, Complexity 2019.

[6] Q. Zeng, M. Zhong, Y. Zhu, J. Li, Business location selection based on

geo-social networks, in: International Conference on Database Systems for

Advanced Applications, Springer, 2020, pp. 36–52.

[7] P. Vimalachandran, H. Liu, Y. Lin, K. Ji, H. Wang, Y. Zhang, Improving640

accessibility of the australian my health records while preserving privacy

and security of the system, Health Information Science and Systems 8 (1)

(2020) 1–9.

[8] E. Zhang, M. Li, S.-M. Yiu, J. Du, J.-Z. Zhu, G.-G. Jin, Fair hierarchical

secret sharing scheme based on smart contract, Information Sciences 546645

(2020) 166–176.

[9] J. Yin, M. Tang, J. Cao, H. Wang, M. You, Y. Lin, Adaptive online learning

for vulnerability exploitation time prediction, in: Web Information Systems

Engineering – WISE 2020, Springer, 2020, pp. 252–266.

[10] J. Ruohonen, A look at the time delays in cvss vulnerability scoring, Ap-650

plied Computing and Informatics 15 (2) (2019) 129–135.

[11] J. Jacobs, S. Romanosky, I. Adjerid, W. Baker, Improving vulnerability

remediation through better exploit prediction, Journal of Cybersecurity

6 (1) (2020) tyaa015.

[12] M. Alazab, M. Tang, Deep Learning Applications for Cyber Security,655

Springer, 2019.

[13] M. Bozorgi, L. K. Saul, S. Savage, G. M. Voelker, Beyond heuristics: learn-

ing to classify vulnerabilities and predict exploits, in: Proceedings of the

16th ACM SIGKDD international conference on Knowledge discovery and

data mining, ACM, 2010, pp. 105–114.660

36

[14] M. Edkrantz, A. Said, Predicting cyber vulnerability exploits with machine

learning., in: SCAI, 2015, pp. 48–57.

[15] J. Huang, M. Peng, H. Wang, J. Cao, W. Gao, X. Zhang, A probabilistic

method for emerging topic tracking in microblog stream, World Wide Web

20 (2) (2017) 325–350.665

[16] H. Jiang, R. Zhou, L. Zhang, H. Wang, Y. Zhang, Sentence level topic

models for associated topics extraction, World Wide Web 22 (6) (2019)

2545–2560.

[17] E. R. Russo, A. Di Sorbo, C. A. Visaggio, G. Canfora, Summarizing vul-

nerabilities descriptions to support experts during vulnerability assessment670

activities, Journal of Systems and Software 156 (2019) 84–99.

[18] J. Du, S. Michalska, S. Subramani, H. Wang, Y. Zhang, Neural attention

with character embeddings for hay fever detection from twitter, Health

information science and systems 7 (1) (2019) 21.

[19] J. Yin, M. Tang, J. Cao, H. Wang, Apply transfer learning to cybersecu-675

rity: Predicting exploitability of vulnerabilities by description, Knowledge-

Based Systems (2020) 106529doi:https://doi.org/10.1016/j.knosys.

2020.106529.

[20] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept

drift: A review, IEEE Transactions on Knowledge and Data Engineering680

31 (12) (2018) 2346–2363.

[21] S. Ramı́rez-Gallego, B. Krawczyk, S. Garćıa, M. Woźniak, F. Herrera, A

survey on data preprocessing for data stream mining: Current status and

future directions, Neurocomputing 239 (2017) 39–57.

[22] A. Bifet, R. Gavalda, Learning from time-changing data with adaptive685

windowing, in: Proceedings of the 2007 SIAM international conference on

data mining, SIAM, 2007, pp. 443–448.

37

http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106529
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106529
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2020.106529

[23] J. Gama, R. Sebastião, P. P. Rodrigues, On evaluating stream learning

algorithms, Machine learning 90 (3) (2013) 317–346.

[24] C. Raab, M. Heusinger, F.-M. Schleif, Reactive soft prototype computing690

for concept drift streams, Neurocomputing.

[25] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection,

in: Brazilian symposium on artificial intelligence, Springer, 2004, pp. 286–

295.

[26] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda,695

R. Morales-Bueno, Early drift detection method, in: Fourth international

workshop on knowledge discovery from data streams, Vol. 6, 2006, pp. 77–

86.

[27] I. Fŕıas-Blanco, J. del Campo-Ávila, G. Ramos-Jimenez, R. Morales-Bueno,

A. Ortiz-Dı́az, Y. Caballero-Mota, Online and non-parametric drift detec-700

tion methods based on hoeffdings bounds, IEEE Transactions on Knowl-

edge and Data Engineering 27 (3) (2014) 810–823.

[28] A. Bifet, R. Gavaldà, Adaptive learning from evolving data streams, in:

International Symposium on Intelligent Data Analysis, Springer, 2009, pp.

249–260.705

[29] J. Yin, M. You, J. Cao, H. Wang, M. Tang, Y.-F. Ge, Data-driven hierar-

chical neural network modeling for high-pressure feedwater heater group,

in: Australasian Database Conference, Springer, 2020, pp. 225–233.

[30] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-multiflow: A multi-

output streaming framework, Journal of Machine Learning Research 19 (72)710

(2018) 1–5.

URL http://jmlr.org/papers/v19/18-251.html

[31] V. Losing, B. Hammer, H. Wersing, Knn classifier with self adjusting mem-

ory for heterogeneous concept drift, in: 2016 IEEE 16th international con-

ference on data mining (ICDM), IEEE, 2016, pp. 291–300.715

38

http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html
http://jmlr.org/papers/v19/18-251.html

[32] P. Kosina, J. Gama, Very fast decision rules for classification in data

streams, Data Mining and Knowledge Discovery 29 (1) (2015) 168–202.

[33] S. Ren, B. Liao, W. Zhu, Z. Li, W. Liu, K. Li, The gradual resampling

ensemble for mining imbalanced data streams with concept drift, Neuro-

computing 286 (2018) 150–166.720

[34] J. Z. Kolter, M. A. Maloof, Dynamic weighted majority: An ensemble

method for drifting concepts, Journal of Machine Learning Research 8 (Dec)

(2007) 2755–2790.

[35] R. Elwell, R. Polikar, Incremental learning of concept drift in nonstationary

environments, IEEE Transactions on Neural Networks 22 (10) (2011) 1517–725

1531.

[36] H. Li, Y. Wang, H. Wang, B. Zhou, Multi-window based ensemble learning

for classification of imbalanced streaming data, World Wide Web 20 (6)

(2017) 1507–1525.

[37] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams,730

in: Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, 2001, pp. 97–106.

39

	Introduction
	Related work
	Concept drift
	Concept drift learning

	Real-time dynamic concept adaptive learning
	Consecutive batch learning framework
	Feature extraction
	Prediciton
	Data integration
	Classifier update

	Real-time dynamic concept adaptive learning
	Class Rectification Strategy
	Balanced Window Strategy

	Experimental study
	Experimental setting
	Dataset
	Evaluation metrics.
	Feature extraction and selection

	RDCAL versus vanilla learning
	RDCAL versus other drift adaptive algorithms
	Hyperparameter influence analysis
	Class Rectification Strategy and Na
	Balanced Window Strategy and Nb
	Balanced Window Strategy and

	Concluding remarks

	Conclusion

