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Abstract 
Around one in three Australian homes have installed rooftop solar photovoltaics. The relationship between 
rooftop solar and household income or wealth has been a focus of research in Australia and in other countries. 
Studies in Australia using survey data tend to the conclusion that rooftop solar uptake is positively associated 
with wealth, although not necessarily income. We critique those studies and suggest the conclusion on the 
relationship between wealth and solar installation is not robust. In fact, using data from customers’ electricity 
bills we find a negative relationship between wealth and rooftop solar. However, we do not think our models 
are sufficiently robust to reach a firm conclusion. A richer dataset is needed. Continued effort in this area will be 
valuable considering the possibility that distributed (behind-the-meter) storage will increasingly be paired with 
rooftop solar. This will potentially have a large effect on the recovery of shared network costs.  If it is the case 
that richer households are able to opt-out of increasingly expensive grid-supplied electricity, regressive impacts 
may become significant.  
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• The relationship between household wealth and rooftop solar is not well understood because it is difficult 

to model robustly using available data. 
• Claims that wealth is positively related to solar uptake are not robust when data is segmented to take into 

account the differences in the barriers faced by owners and renters, and homes with and without shared 
roof space.   

• Analysing data from customers’ bills we find that for owner-occupied detached houses wealth and solar 
uptake is negatively related, although this analysis is not sufficiently robust to reach a firm conclusion.  
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1. Introduction 

Across the south and eastern states of Australia, about one in three houses and small businesses 

(2.6m) have now installed rooftop photovoltaics. In total these systems are capable of providing 

around 12 GW of power at their peak on a sunny day.1 These solar homes produce around 19 TWh of 

electricity each year (about 10% of end-use electrical demand). In some regions, solar panels are 

installed in more than one in two eligible roofs. As far as we know this level of distributed (behind the 

meter) solar installation is higher than in other large developed countries.  

 

While rooftop solar was initially heavily subsidised by tax payers and electricity consumers, these 

subsidies declined quickly when solar costs declined and grid-supplied electricity prices rose 

(Mountain & Szuster, 2015). In some regions, rooftop solar continues to receive significant public 

subsidy, albeit means tested.2  

 

While rooftop solar retains political and community support, energy regulators and some community 

groups have increasingly drawn attention to their equity concerns.3 Their arguments have focused, 

mainly, on the claim that solar homes may in future impose costs on electricity networks that those 

solar homes, rather than all consumers should pay for. However, some welfare advocates also contend 

that there is a positive relationship between wealth and rooftop solar.4 Rooftop solar, and its 

continued policy support, has therefore become topical in the context of the broader debate on a 

“just transition” (i.e. socially progressive decarbonization policy). These issues are topical elsewhere 

too. For example, in the United States (Welton & Eisen, 2019) suggest that the acceleration of 

equitable rooftop PV  has an important role to play in clean energy justice. Similar arguments can be 

found with respect to the Global North (Carley & Konisky, 2020) and California (Lukanov & Krieger, 

2019).  

 

With the highest country-level residential rooftop PV uptake that we are aware of, the relationship 

between wealth and PV uptake is topical. We replicate and critique the existing literature, which use 

Australian Bureau of Statistics (ABS) survey data. The ABS survey data provide a rich source of 

information on the households’ socio-economic characteristics (such as net wealth and income) but 

limited information on household electricity consumption, solar production or prices. We also analyse 

                                                           
1 http://www.cleanenergyregulator.gov.au/RET/Forms-and-resources/Postcode-data-for-small-scale-
installations#Smallscale-installations-by-installation-year 
2 In Victoria for example see: https://www.solar.vic.gov.au/solar-panel-rebate 
3 See for example: https://www.aemc.gov.au/rule-changes/allowing-dnsps-charge-exports-network 
4 For example: https://www.aemc.gov.au/sites/default/files/documents/consultation_paper_-
_der_integration_-_updating_regulatory_arrangements_1.pdf 
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a sample of electricity bills from 6,067 houses across the south and eastern states of Australia. The 

bills provides a rich source of information on the prices households actually pay for grid purchases and 

receive for solar exported to the grid, and the amount of electricity consumed (grid consumption and 

self-consumption). Unlike the ABS survey data, our electricity bill data can adjust for heterogeneity in 

electricity prices and end-use consumption, in assessing the relationship between wealth and solar 

uptake.    

 

Unlike the existing studies, our analysis of bill data supports a conclusion that wealth and solar uptake 

are negatively associated. However, rigorous testing of our analysis as well as the literature that relies 

on ABS survey data leads us to the views that strong conclusions on the relationship between wealth 

and solar uptake are not possible. The existing studies and ours suffer from omitted variables. Our 

contribution to the literature is in clarifying that the relationship between wealth and rooftop solar 

uptake remains uncertain in Australia, and in identifying the sort of data that is likely to support a 

confident conclusion. 

 

Section 2 provides background covering relevant literature and descriptive data. Section 3 and 4 

present the methodology and results, respectively. Section 5 discusses the findings. Section 6 presents 

the main conclusions and policy implications.  

 

2. Literature Review  

 

There is an extensive literature on the relationship between income or wealth and solar uptake, in the 

United States in particular. Low-to-moderate income households are less likely to adopt rooftop PV 

than high-income households (Carley and Konisky, 2020). However while solar adopters generally 

skew towards higher incomes, that trend continues to diminish over time and solar adopter incomes’ 

vary considerably and encompass many low-to-moderate income households (Barbose et al., 2021).  

Demand-side explanations for adoption inequity include access to capital, renting rather than owning,  

building form, language barriers, race and ethnicity (Sunter et al., 2019). Supply-side explanations 

include income-targeted marketing (O’Shaughnessy et al., 2021). PV leasing and property-assessed 

financing have increased the diffusion of PV adoption among low and middle income households in 

existing markets and have driven more installations into previously underserved low-income 

communities (Barbose et al., 2021).   
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The Australian literature on the relationship between wealth/income and solar is more limited and 

focussed mainly on establishing whether there is a statistically significant relationship between 

wealth/income and solar uptake, using survey and census data. Best et al. (Best et al., 2019b) apply 

logit models to ABS data from the Survey of Income and Housing (SIH) survey 2015-16 and Household 

Energy Consumption (HEC) survey 2012 to identify economic, social and environmental factors that 

affect solar uptake (and the intention to install solar). They estimate solar uptake and the intention to 

install solar with different combinations of the various factors including wealth. They conclude that 

higher net wealth is generally associated with higher solar uptake (but not the intention to install 

solar); that income does not influence solar uptake, but that income does affect the intention to install 

solar.  

 

Best et al. (Best et al., 2021) use household level data from the ABS SIH 2015-16 and 2017-18 to 

estimate a probit model for solar uptake as a function of solar subsidises, (log) wealth and (log) 

disposable income. They conclude that subsidies and wealth drive solar uptake. Consistent with Best 

et al. (Best et al., 2019b) they find income is not significant using the 2015-16 SIH, but is significant (at 

10% level of significance) for the 2017-18 SIH. They recognise that their results may suffer from multi-

collinearity based on the “substantial correlations” between net wealth and other variables. Further 

critique and analysis of the Best et al. (Best et al., 2019b) and Best et al. (Best et al., 2021) follows in 

Sections 3 and 4. 

 

(Best et al., 2019a) use a cross-sectional model to estimate, for each postcode in Australia, the 

proportion of households with solar installed and solar PV capacity. Using postcode level data, they 

match data on small-scale PV installations (Australian PV Institute, 2019) to ABS census data on 

number of dwellings, rented dwellings, flats and apartments, and household income (Australian 

Bureau of Statistics, 2018), as well as solar exposure data (Bureau of Meterology, 2018) and additional 

individual taxation income data (Australian Taxation Office, 2018). They find subsidies, location, 

whether the home is rented and whether the dwelling is a flat or apartment are significant drivers of 

solar uptake at the postcode level. Household and personal income are also a significant drivers of 

solar uptake, except for homes with very low income (less than A$20,799 p/a). However, Best et al. 

(2019a) do not include net wealth as an explanatory variable but do include superannuation as a proxy 

for accumulated capital. They find the proxy measure for accumulated capital is not a significant driver 

of solar uptake, but is a significant driver of solar PV capacity.  

 

3. Data and methodology  
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3.1 Revisiting Best et al. (Best et al., 2019b) and Best et al. (Best et al., 2021) 

Best et al. (Best et al., 2021) draw on the ABS SIH 2015-16 data to examine how solar uptake varies 

with household wealth across Australia.  The Survey of Income and Housing (SIH) is conducted bi-

annually with around 15,000 households across Australia and collects a rich source of socio-economic 

data. Best et al. (Best et al., 2021) do not segment the data by any cohort. Rather, they examine the 

proportion of all households that have solar across the ten net wealth percentiles. However, as we 

will show, wealth is strongly correlated to building form and ownership. We therefore segment the 

ABS SIH data into different cohorts according to ownership and building form, and re-examine how 

solar uptake varies with wealth.  

 

Best et al. (Best et al., 2019b) similarly do not separate the data into owned homes and rented homes 

but instead account for ownership by including a flag for rental properties as a dependent variable in 

their econometric (logit) model. However, as we will show, rent is strongly correlated with wealth: 

rented homes dominate the lowest wealth deciles, conversely for owned homes. Consequently the 

model suffers from multicollinearity. To address this, we replicated the logit model in (Best et al., 

2021) using the ABS SIH 2015-16 (Australian Bureau of Statistics, 2017) for all dwellings  and then apply 

this model to segmented datasets based on ownership and building form. We compare the 

significance, sign and magnitude of the estimated coefficients for each model (as applied to all 

dwellings, owner-occupied, rentals, other dwellings and owner-occupied houses) to assess whether 

the findings presented by Best et al. (2021) are robust when data are appropriately segmented.  

 

3.2 Our Data 

Australian customer group CHOICE5 consented to our use of processed electricity bill data obtained 

from 10,050 unique households. These data were extracted from original PDF-format monthly or 

quarterly electricity bills that household electricity consumers – many of whom were members of 

CHOICE - had uploaded to CHOICE’s website between May and November 2018, in order to make use 

of an online price comparison service “CHOICE TRANSFORMER”.  CHOICE TRANSFORMER offered 

repeated electricity price comparison and customer switching but required the payment of a 

subscription fee if available savings (by switching to cheaper offers) of more than $100 per year were 

found. Customers were recruited mainly through email advertising to CHOICE’s members and 

                                                           
5 www.choice.com.au 
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supporters.  All households were in the contestable retail electricity markets of New South Wales 

(NSW), Victoria (VIC), South-East Queensland (QLD) or South Australia (SA).  

 

The bill data includes information on billing address, postcode, retailer, network service provider, 

state, tariff type, grid consumption in the billing period (kWh), estimated annual bill amount ($), 

volume of solar exported to the grid (kWh) and the solar feed-in price (cents per kWh).  

 

The estimated annual bill calculated by CHOICE TRANSFORMER is based on the electricity prices and 

estimated annual consumption. We obtained data on the type of dwelling (fully detached home, semi-

detached house, townhouse, apartment, unit, flat, etc) is obtained by scraping this information from 

the website www.domain.com.au. 

 

Of the 10,050 household bills, 8,529 (85%) are on flat (single) rate tariffs, and 1,521 (15%) are charged 

on tariffs that vary by time of day and day of week. Time of use customers are excluded from this 

analysis.6 Of the 8,529 records for homes on flat rate tariffs, we further exclude records where the 

dwelling structure could not be determined (1,064 records). Furthermore, since the focus of this 

research is on the relationship between wealth and solar in households that unambiguously have 

control over access to their own roofs (i.e. fully detached houses) we exclude a further 1,398 records 

that are likely to be semi-detached houses, townhouses, apartments, units and flats (noting these 

dwellings are more likely to be rented than owned, as discussed earlier). Our final sample comprises 

6,067 fully-detached houses on flat rate tariffs that are very likely to be owner-occupied.  

 

Households with solar are remunerated for their solar exports to the grid (at their feed-in rate) and 

also obtain value from their solar systems by using their solar-produced electricity to substitute for 

grid supply. To correctly estimate energy consumption, it is therefore necessary to estimate the total 

annual solar generation (this is not measured) and subtract the solar exports to find the residual 

amount of solar generation that is self-consumed. This is then added to the grid purchases to estimate 

the annual electricity consumed in solar homes. The methodology used to estimate gross solar 

production is explained in (Mountain et al., 2020).  

 

                                                           
6 As the CHOICE dataset does not provide the price paid for grid purchases or the amount of electricity 
consumers (or solar exported to the grid for homes with solar) in the peak and off-peak period, the necessary 
data is not available to analyse homes charged a time-varying tariff. Evidence suggests the (vast) majority of 
Australian households are on flat rate tariffs we do not think this approach biases our analysis.  
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The daily fixed charge levied by the household electricity supplier is not available in the CHOICE 

household bill dataset. We estimate the annual fixed (supply) charges as follows: NSW: $365, VIC: 

$402, QLD: $0.90 and SA: $0.8, based on the approximate average of the Standing Offers in 2018.  

 

To estimate the variable price (cents per kWh) price paid for grid-supplied electricity we use the 

estimated annual bill, add back the solar income (the product of the solar exports and feed-in rate), 

deduct the supply charge and divide the resulting numerator by the estimated volume of grid 

purchases.  

 

Our data allows us to account for the effect of electricity bills on households’ likelihood of installing 

solar. To do this it is necessary to estimate the adjusted annual electricity bill (in other words, what 

the bill would be if the household did not have solar). This is done by multiplying the estimated annual 

consumption (after grossing up for the volume of self-consumed solar) by the variable price and 

adding back the supply charge.  

 

The households’ postcode is matched to the 2016 postcode-specific decile Index of Relative Socio 

Economic Advantage and Disadvantage (IRSAD). The IRSAD ranking is used as a proxy for household 

wealth.   

 

3.3 Preliminary data analysis 

Descriptive statistics on the sample of households used for this analysis are reported in Table 1. The 

distribution of our data by state is similar to the true population. Within our sample, 39% of fully 

detached houses are in NSW, 31% in Victoria, 21% in QLD and 10% in SA. The ABS Census of Population 

of Housing 2016 reports a similar distribution for fully detached houses across these four state (NSW 

34%, Vic 31%, QLD 25%, SA 10%) (Australian Bureau of Statistics, 2018). 

 

The proportion of fully detached homes within our sample with solar installed (19%) is also similar to 

that reported in the ABS SIH 2017-18 (Australian Bureau of Statistics, 2019). Specifically, of the 14,060 

responses in the 2017-18 ABS SIH, 6,998 were identified as fully detached houses in the states included 

in our sample (NSW, Vic, QLD and SA) (Australian Bureau of Statistics, 2019). Of these, 22% (1,551) 

had solar installed. As an aside we note that the distribution of ABS SIH fully detached houses across 

these four states does not approximate the population (NSW 24%, Vic 28%, QLD 22%, SA 26%). As 

expected, adjusted annual bill is positively correlated to consumption (0.93) and price (0.22). 

However, price and consumption show almost no association (-0.05). 
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Table 1. Data summary  

  All households Non-solar households  Solar households  
Number  6,067 4,918 1,149 
Consumption (kWh p/a) Median 6,608 6,300 7,949 
 Average 7,858 7,504 9,373 
 Min 50 50 638 
 Max 48,993 38,064 48,993 
Price ($/kWh) Median 0.23 0.23 0.24 
 Average 0.24 0.24 0.26 
 Min 0.00 0.00 0.09 
 Max 1.62 1.62 1.23 
Adjusted Annual Bill ($ 
p/a) 

Median 1,909 
1,824 2,281 

 Average 2,246 2,142 2,689 
 Min 379 379 420 
 Max 13,022 10,330 13,022 
NSW  2,355 1,966 389 
VIC  1,872 1,730 142 
QLD  1,259 839 420 
SA  581 383 198 
Wealth (decile) 1 182 138 44 
 2 219 178 41 
 3 266 197 69 
 4 377 297 80 
 5 425 319 106 
 6 520 381 139 
 7 552 428 124 
 8 819 650 169 
 9 1,153 952 201 
 10 1,554 1,378 176 

 

3.4 Econometric model 

Our goal is to quantify the relationship between the probability that a house has solar and the 

individual characteristics of the house. Our binary dependent variable (𝑦𝑦𝑖𝑖) is 1 (house has solar) or 0 

(house does not have solar. Logit and probit models are suitable when attempting to model a 

dichotomous dependent variable as these methods fit a nonlinear function to that data to better 

enable a prediction the dependent variable equals 0 or 1 (by fitting an S-shaped curve, rather than a 

straight line, between outcomes 0 and 1). The logit model assumes there is a logistic distribution of 

errors, and the probit model assumes there is a normal distribution of errors. Logit and probit models 

yield similar results, however, we prefer the probit model because this enables marginal analysis of 

changes in the probability a household has solar (as opposed to changes in the log of the odds ratio 

the household has solar, as is the case for a logit model).  
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We model the probability a house has solar as 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖,𝛽𝛽) = 1 − 𝜙𝜙(−𝑥𝑥𝑖𝑖′𝛽𝛽), where 𝜙𝜙 is a 

continuous, strictly increasing function that takes a real value and returns a value ranging from 0 to 1.  

It follows that 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 0|𝑥𝑥𝑖𝑖 ,𝛽𝛽) = 𝜙𝜙(−𝑥𝑥𝑖𝑖′𝛽𝛽). In a probit model, the value of 𝜙𝜙 is the cumulative 

distribution function of the standard normal distribution.  

 

We estimate the parameters for 𝑃𝑃𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖,𝛽𝛽) = 1 − 𝜙𝜙(−𝑥𝑥𝑖𝑖′𝛽𝛽) =  𝜙𝜙(𝑥𝑥𝑖𝑖′𝛽𝛽)  using the method of 

maximum likelihood. Using the CHOICE data set, the probit model to estimate the probability a house 

has solar installed is as follows: 

 

Pr�𝑦𝑦𝑖𝑖� =  𝛼𝛼 + 𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 + 𝛽𝛽3𝑆𝑆𝐴𝐴𝑖𝑖 + 𝛽𝛽4𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 + 𝛽𝛽5𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊ℎ𝑖𝑖 + 𝜀𝜀𝑖𝑖                                              

[1] 

where: Pr�𝑦𝑦𝑖𝑖� is the probability the house has solar.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖  is the adjusted annual total bill (but for the installation of solar and including fixed 

annual charges), as described above. 

𝑄𝑄𝑄𝑄𝑄𝑄𝑖𝑖 is a dummy variable for homes in QLD (takes values of 1 if dwelling is in QLD, 0 

otherwise). 

𝑆𝑆𝐴𝐴𝑖𝑖 is a dummy variable for homes in SA (takes values of 1 if dwelling is in SA, 0 otherwise). 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 is a dummy variable for homes in NSW (takes values of 1 if dwelling is in VIC, 0 otherwise). 

 𝑊𝑊𝑊𝑊𝑊𝑊𝐴𝐴𝑊𝑊ℎ𝑖𝑖 refers to the ABS IRSAD (takes values from 1 to 10). 

 

We assess the robustness of model to fit our sample data and provide reliable predictions on the 

relationship between wealth and solar uptake using a variety of methods. First, standard t-testing 

determines if the estimated coefficients are statistically significant. A redundant variable test on the 

Wealth variable using the log likelihood ratio (LR) test statistic has a null hypothesis that wealth is a 

redundant variable, and the test statistic follows the 𝜒𝜒2 distribution with 1 degree of freedom. We 

also consider McFadden’s (1974) “pseudo” R2 , a likelihood based statistic, to assess the adequacy of 

the probit model fit of the data. The pseudo R2 is calculated based on a likelihood ratio that calculates 

the improvement in the model over an intercept only model. Similar to the traditional R2, a higher 

value indicates a better fit. However, pseudo R2 values are lower than the traditional R2 (as the model 

is fitting a binary rather than continuous dependent variable) and values between 0.2 to 0.4 are 

considered an excellent fit (McFadden, 1979). 

 

We then evaluate the robustness of the probit model to predict (in-sample) whether a household has 

solar, using three established techniques. First, we generate the expectation-predication 

(classification) table to estimate the correct and incorrect classifications based on a probability success 
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cutoff = 0.5. The classification table provide a contingency table of the predicted responses of the 

model classified against the observed dependent variable. The classification table also reports the 

results of the predicted responses of a constant probability model (only intercept term included). 

“Correct” classifications are obtained when the predicted probability is less than or equal to 0.5 and 

the observed y=0, or when the predicted probability is greater than 0.5 and the observed y=1. The 

weighted average of the percentage of times the model correctly predicts y=1 and y=0 is used to 

measure the overall proportion of times the model correctly predicts whether a house has solar 

installed. The difference in the expectation-predication results for the two models is then compared 

to calculate the percentage increase in prediction accuracy between the informed (our estimated 

probit model) and uninformed (constant probability) models. However, an important limitation to the 

expectation-prediction accuracy is that it relates to the ability of the model to predict all observations 

in the overall sample (where y=1 and y=0, based on the weighted average of correctly predicted 

outcomes) and does not separately measure the ability of the model to predict whether a home has 

solar or does not have solar. As a result, in samples (such as ours) where the data is heavily skewed 

towards homes that don’t have solar, the measure of overall accuracy is misleading. We therefore 

provide the overall weighted measure of the prediction-evaluation tests, but the accuracy of the 

model to predict the subsets of homes with and without solar that is most relevant. 

 

We also perform two goodness-of-fit tests of the model predictions using the Andrews (1988) and 

Hosmer-Lemeshow (1989) tests. These tests assess how well observed events match the expected 

events within subgroups of the model population. First, the data is grouped into deciles based on the 

Hosmer-Lemeshow grouping (subgroups are based on probabilities in which the first group consists 

of observations with the lowest 10% of predicted probabilities, the second group consists of the 

observations with the lowest 20% of predicted probabilities, and so on). The tests compare the fitted 

expected values (where y=1) to the actual values in each decile (for example, if observations in the 

first group have a predicted probability of 0.15 then a correctly specified model would estimate the 

likelihood solar is installed to be approximately 15%). If the difference in the actual and predicted 

probability of solar uptake across each decile is large, the model provides an insufficient fit of the data 

and should be rejected (the null hypothesis is that the model is correctly specified, the test statistic 

follows a 𝜒𝜒2 distribution with g-2 degrees of freedom, and (g) is the number of groupings (10)). The 

Andrews test performs a similar test to assess goodness of fit of the model predictions (using a similar 

data grouping structure). We report the p-values for both tests (a p-value at or below 0.100, 0.05 and 

0.001 indicates the null hypothesis (the model is correctly specified) should be rejected at the 10, 5 

and 1% level of significance, respectively).  
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3.5 Marginal wealth effects 

Marginal wealth effects refer to the incremental change in the probability a home has solar when the 

household’s wealth decile ranking changes by one. Marginal wealth effects cannot be estimated using 

the estimated coefficients of the probit model because the probability the home has solar is 

conditional upon the values of all other explanatory variables (unlike an ordinary least squares model) 

(IHS Markit, 2017). To examine the marginal effect of a change in one explanatory variable on the 

probability the home has solar, the model must be estimated by choosing values for all other 

explanatory variables. Common practice is to examine marginal effects of one explanatory variable by 

holding all other explanatory variables at the mean or median (IHS Markit, 2017). We examine the 

impact of marginal changes in wealth on the probability a house has solar by analysing marginal effects 

at the median adjusted bill ($1,909) and median wealth decile (8) (Table 1). For robustness, we also 

examine marginal effects at the 20th and 80th percentile adjusted bill ($1,238 and $3,884, respectively). 

 

3.6 Out-of-sample predictive accuracy  

We investigate whether our probit model is effective at predicting solar uptake on unseen data. We 

also examine how the performance of our model compares to a logit model, as well as  non-linear, 

tree-based models (Rahman & Fazle, 2011). Both the ABS SIH 2015-16 and CHOICE data sets are 

randomly partitioned into a training set consisting of 75% of the data and a test set consisting of the 

remaining 25%. Our models are trained on the training set, used to predict solar uptake for the test 

set, and scored with reference to the known test set.   

Our comparison models are a decision tree, a random forest and a gradient boosted tree; all of which 

are commonly used in machine learning applications. A decision tree model (Quinlan, 1986) outputs 

a binary tree allowing an unseen data point to be classified by following a path from the root vertex 

of the tree to a leaf (a vertex of order one). A random forest (Ho, 1995) uses a collection of separately 

trained decision trees and classifies an unseen data point by choosing the class selected by most trees. 

Gradient tree boosting (Schapire, 2003) is another way of combining several trees to form a single 

classifier. Random forests are able to avoid the problem of overfitting that a single decision tree 

sometimes suffers from.  In turn, gradient tree boosting (through the use of lightgbm) typically 

produces a higher accuracy model than a random forest when trained on the same data. More 

information on these techniques can be found in the Appendix. 

We fit a decision tree, a random forest, and a logit model to the training sets using scikit-learn, an 

open source machine learning library available for the Python programming language. We fit a 

gradient boosted model to the training sets using lightgbm, a gradient boosting framework available 
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for Python that uses tree-based learning algorithms (Ke et al., 2017). We fit a probit model to the 

training sets using statsmodels, again an open source machine learning library available for Python. 

For each model, we calculate Accuracy (the percentage of test cases the model classifies correctly) 

and Balanced Accuracy (the arithmetic mean of the class specific accuracies) (Liu et al., 2014). If the 

model performs equally well on either class, then the accuracy and the balanced accuracy will be 

equal. We then define a robust classification model as being one that achieves a balanced accuracy of 

70% or more. 

Since around one in five households in our sample have rooftop solar installed and since our training 

set and test set was selected randomly, this imbalance in the number of data points in each class is 

also reflected there too. A training set consisting of different numbers of representatives from each 

class may result in a model that is biased towards the majority class. As an extreme example, our 

model might assign every test case to the majority class and thereby achieve an accuracy equal to the 

percentage of test cases belonging to the majority class. In other words: an imbalanced training set 

may lead to inflated accuracy scores. To remedy this, we employ two techniques: 

1. Oversampling the minority class in the training set using SMOTE (Synthetic Minority 

Oversampling Technique). 

2. Choosing the balanced accuracy rather than the accuracy as our performance metric. This 

ensures that the performance metric values accuracy at predicting the majority and the 

minority classes equally (Classification - Training a Decision Tree against Unbalanced Data - 

Cross Validated, n.d.). 

 

4. Results 

 

4.1 Revisiting Best et al. (Best et al., 2019b) and Best et al. (Best et al., 2021) 

In Figure 1, we use the ABS SIH 2017-18 to replicate the results of Best et al. (Best et al., 2021). 

Consistent with the results of Best et al. (Best et al., 2021), wealth appears to be positive associated 

with solar uptake.  However, examining the distribution of solar uptake for all dwellings across wealth 

decile does not allow us to isolate the impact on wealth on solar uptake holding the interrelationship 

between ownership, building form and wealth constant. We now proceed to segment the SIH data 

and examine how solar uptake, building form and ownership vary with wealth.   

 

 

 



13 
 

Figure 1. Proportion of homes with solar by wealth decile 

 
Source: (Australian Bureau of Statistics, 2019) 
 

Of the 14,060 respondents in the ABS SIH 2017-18 (Australian Bureau of Statistics, 2019), 11,207 

resided in fully detached houses (80%) and the remainder split between semi-detached dwellings and 

dwellings with shared roof space (11% and 9%, respectively). As Figure 2 shows, building form and net 

wealth are skewed: fully detached houses skew towards upper wealth deciles while other dwellings 

with shared roof space (i.e. flats, units, apartments and semi-detached dwellings) skew towards lower 

wealth deciles.   

 

Figure 2. Proportion of fully detached and other dwellings across each wealth decile  

 
Source: (Australian Bureau of Statistics, 2019) 
 

The ABS SIH reports houses are more likely to be owner occupied (75% of fully detached houses are 

owner occupied, compared to 35% of other dwellings) and dwellings with less/shared roof space are 

more likely to be rented (62% of other dwellings are rented, compared to 23% of fully detached 

houses) (Australian Bureau of Statistics, 2019). Figure 2 shows that owner occupied homes are heavily 

skewed to the higher wealth deciles and renters are heavily skewed to the lower wealth deciles.  
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Figure 3. Proportion of owner occupied homes and renters across each wealth decile 
 

 
Source: (Australian Bureau of Statistics, 2019) 
 

The ABS SIH 2017-18 data shows that the proportion of owned homes with solar is much higher than 

rented homes with solar (24% of owned homes have solar compared to 3% of rented homes 

(Australian Bureau of Statistics, 2019)). Figure 4 shows that when ownership is taken into account, the 

proportion of homes with solar does not vary markedly across wealth deciles (excluding the least 

wealthy homes in the lowest two deciles).  

  

This difference in solar uptake among renters and owners is likely to be explained by transaction costs 

(high density rented properties are likely to require special arrangements to allocate solar production 

on a shared roof to individual renters); property form (rented properties are typically higher density 

and so less roof space in relation to floor space) and property rights (solar installation requires landlord 

approval and system ownership may be assigned to the landlord). Low solar adoption amongst renters 

may also result from “split incentives” (i.e. the proposition that landlords can not recover the cost of 

the solar system in higher rents).  The notion of split incentives is however contested: (Wood et al., 

2012) found no evidence of the split incentives, while Zander (2020) found the contrary.    

 

Figure 4. Proportion of owner occupied homes  and rented homes with solar  

Source: (Australian Bureau of Statistics, 2019) 
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If we segment the ABS SIH 2017-18 data by building type as shown in Figure 3, we see that detached 

homes dominate the dataset, although semi-detached, row or terrace house or townhouse is not too 

far behind. A small fraction of the homes are flats, units or apartments. Solar penetration is clearly 

lower in the lower four wealth deciles for detached, semi-detached, row, terrace or townhouse. 

However there is no obvious trend of proportions of solar households for flat, unit or apartments 

across wealth deciles.  

 

Figure 5. Proportion of dwellings with rooftop solar, by dwelling type and wealth decile 

 
Source: (Australian Bureau of Statistics, 2019) 

  

If we further segment the ABS SIH 2017-18 data into fully detached and owner occupied houses (Figure 

6), we clearly see that wealth is strongly and positively associated with the likelihood of being an 

owner occupier of a fully detached house. Importantly, when we segment the data by ownership and 

building form, there is no observable relation between wealth and solar.    

 

Figure 6. Proportion of owner occupied fully detached houses with solar by wealth decile  

 
Source: (Australian Bureau of Statistics, 2019) 
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In the first column of Table 2, we replicate Best et al. (Best et al., 2019b) for all dwellings (17,429).7 

Columns 2 and 3 present the results for owner-occupied dwellings (12,417) and rented dwellings 

(5,012). As the sample of rented dwellings is biased towards fully detached houses (60%), we also 

replicate Best et al. (Best et al., 2019b) for “other” dwellings (i.e. dwellings other than fully detached 

houses) and this cohort is dominated by renters (61%). The results for “other” dwellings are presented 

in column 4. In the final column, we replicate Best et al. (Best et al., 2019b) for owner-occupied houses 

(10,792).  

The model applied to all dwellings (first column in Table 2 ) produces the second highest pseudo R2 

(0.14) and correctly estimates 83% of observations overall (comprising a 99% correct prediction of the 

14,256 homes without solar and 5% correct prediction of the 3,039 homes with solar). The model also 

satisfies the Andrews and Hosmer-Lemeshow tests (p-values are above 0.100) indicating the model is 

correctly specified.  

The estimated coefficients for solar uptake by owner-occupied dwellings are almost identical to those 

for all dwellings (second column in Table 2). However, the model does not perform as well when 

applied to owner-occupied dwellings only: the pseudo R2 falls by half (down from 0.14 to 0.07), the 

Andrews and Hosmer-Lemeshow tests find the model is not correctly specified, and the overall 

proportion of correctly predicted outcomes falls to 77% (comprising 99% of correctly predicted homes 

without solar and 6% correctly predicted homes with solar).  

The estimated coefficients for rented dwellings only (third column in Table 2) are similar for wealth, 

income, building form, and number of bedrooms. However, occupancy (persons, employed persons, 

number of dependent children), pension income and number of credit cards are no longer found to 

be statistically significant. As was the case with owner occupied dwellings, the model when applied to 

rented dwellings does not perform as well:  the pseudo R2 falls to 0.08, the model satisfies the Hosmer-

Lemeshow test but fails the Andrews test (meaning we cannot be certain the model is correctly 

specified) and even though the expectation-prediction increases to 97% overall, the model does not 

accurately predict any rental home with solar within the sample (all of the 4,849 houses without solar 

are accurately predicted, whereas none of the 163 houses with solar are correctly predicted).  

The model applied to other dwellings that are predominantly rented (fourth column in Table 2) 

produces substantively different results. Importantly, the estimated co-efficient on the wealth 

variable is not statistically significant. Although the model produces a markedly higher the pseudo R2 

                                                           
77 We replicate model (5) from Table 2 (Best et al., 2019b) as this model is less likely to suffer from multi-
collinearity (as there is no net wealth (log) squared term) and provides the second highest pseudo R2. 2015-16 
ABS SIH microdata are filtered in line with the methodology described in (Best et al., 2019b)(Best et al., 2021) . 
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(0.21) and is considered a good fit of the data, the model fails the Andrews test (suggesting the model 

is not correctly specified).  

The model applied to owner-occupied houses (fifth column) indicates wealth is a positive and 

statistically significant driver of solar uptake. However, the magnitude of the effect is estimated to be 

around 25% lower than the wealth effect estimated by the original model (first column). Furthermore, 

the model is an extremely poor fit of the data (pseudo R2 0.06) and Andrews and Hosmer-Lemeshow 

tests both indicate the model is not correctly specified.  

In summary, when the data are segmented to take into account ownership and/or building form, the 

Best et al. (Best et al., 2019b) model produces different results and the positive wealth effect does not 

necessarily hold.  Furthermore, there is strong evidence to suggest the model does not provide a 

reasonable fit of the data and is not correctly specified. On this basis, we suggest the data and model 

used by Best et al. (Best et al., 2019b) do not produce sufficiently robust results to conclude there is a 

positive wealth effect.  

  



18 
 

Table 2. Best et al. (Best et al., 2019b) replication results for all dwellings and other dwelling cohorts  

  All dwellings  
n=17,429 

Owner 
occupied (all 
dwellings) 
n=12,417 

Rented (all 
dwelling) 
n=5,012 

Other dwellings 
(owner 
occupied and 
rented)  
n=3,243 

Owner-occupied 
houses n=10,792 

Net wealth, log Co-
efficient 0.19 *** 0.19  *** 0.18  ** 0.17  0.14 *** 

 Std. error 0.027  0.030  0.072   0.109  0.264  

Income, log Co-
efficient -0.01  -0.01   0.01   0.01  0.01  

 Std. error 0.027  0.028  0.097   0.127  0.029  
Private pension div. by 

income 
Co-

efficient 0.59 *** 0.58  *** -0.07   0.45  0.59 *** 

 Std. error 0.112  0.133  1.306   0.438  0.119  

Long property tenure Co-
efficient -0.22 *** -0.23  ***   -0.14  -0.30 *** 

 Std. error 0.059  0.059    0.397  0.061  

Rent Co-
efficient -1.60 ***     -1.90 ***   

 Std. error 0.107      0.376    

Apartment Co-
efficient -1.82 *** -1.86  *** -1.47  ***     

 Std. error 0.246  0.279  0.524       

Bedrooms Co-
efficient 0.22 *** 0.20  *** 0.51  *** 0.59 *** 0.15 *** 

 Std. error 0.030  0.031  0.109   0.145  0.033  

Persons Co-
efficient 0.19 *** 0.21  *** -0.07   0.58 *** 0.17 *** 

 Std. error 0.033  0.034  0.125   0.152  0.036  

Employed persons Co-
efficient -0.13 *** -0.15  *** 0.06   -0.42 *** -0.11 *** 

 Std. error 0.032  0.033  0.153   0.153  0.034  

Dependent children Co-
efficient -0.14 *** -0.18  *** 0.15   -0.42 * -0.14 *** 

 Std. error 0.041  0.043  0.140   0.218  0.044  

Mortgage Co-
efficient -0.02  0.00     0.09  -0.11 * 

 Std. error 0.057  0.058    0.267  0.062  

Credit cards Co-
efficient 0.08 *** 0.09  *** -0.02   -0.17  0.10 *** 

 Std. error 0.023  0.024  0.091   0.105  0.024  

Region fixed effects  Yes  Yes  Yes  Yes Yes  

McFadden’s R-squared  0.14  0.07   0.08   0.21 0.06  

Hosmer-Lemeshow test  0.170 0.010*** 0.184 0.364 0.130*** 

Andrews test  0.153 0.004*** 0.100* 0.000*** 0.137*** 
Expectation-Prediction 
evaluation test (%)  82.66 77.04 96.75 95.81 75.17 

 
Notes: An ***, ** and * indicates statistical significance at the 1, 5 and 10 per cent level, respectively. P-values 
are reported for the Hosmer-Lemeshow and Andrews tests.  

 

4.2 Our estimation results 

The estimation results and model diagnostics for equation [1] using the CHOICE data are reported in 

Table 3. Adjusted bill is statistically significant and positively related to the likelihood solar is installed. 
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Wealth is also statistically significant however the model estimates a negative relationship between 

wealth and solar uptake. All state dummy variables are also statistically significant.  

 

Table 3. Equation [1] estimation results 

Variable Coefficient Std. Error 
C -       0.88***   0.068  
ADJBILL          0.00***   0.000  
FLAGSA          0.48***   0.063  
FLAGQLD          0.55***   0.048  
FLAGVIC -       0.36***   0.054  
WEALTH -       0.05***   0.007  
McFadden’s R-squared 0.09 
Redundant variable (LR) test 0.000*** 
Hosmer-Lemeshow test 0.583 
Andrews test 0.499 
Expectation-Prediction evaluation test (%) 81.18 

Notes: An *** indicates statistical significance at the 1 per cent level. P-values are reported for the redundant 
variable, Hosmer-Lemeshow and Andrews tests.  

 

McFadden’s R-squared is low suggesting the model does not provide a good fit of the data. This score 

is comparable to the results produced by (Best et al., 2021) using a similar number of explanatory 

variables. The model satisfies the Andrews and Hosmer-Lemeshow tests, indicating the model is 

correctly specified. The classification table of the expectation-predication evaluation tests (where the 

probability success cutoff = 0.5) shows that our models correctly estimate 81% of the observations 

overall (comprising 99% of the 4,893 homes without solar and 3% of the 1,117 homes with solar). We 

reject the null hypothesis that wealth is a redundant variable using the LR test, confirming the relation 

between wealth as a driver of solar uptake.  

 

4.3 Marginal wealth effects   

On the basis of the estimated coefficients from equation [1], we estimate the probability a house has 

solar (assuming the house pays the 20th, 50th and 80th percentile adjusted bill, and separately for each 

state by setting the relevant state flags to one). As Figure 7 shows, there is a strong negative 

relationship between household wealth and solar uptake for houses that pay the median adjusted bill 

(and this relationship holds for the 20th and 80th percentile adjusted bills also).8 Despite differences in 

the probability of solar uptake across states (solar uptake is highest in QLD and lowest in VIC), the 

impact of wealth on solar uptake (as measured by the gradient of the line) is similar across all states. 

                                                           
8 These results are available from the authors upon request.  
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Further, wealth and solar uptake are almost perfectly negatively correlated for all states (simple 

correlation coefficient between wealth decile and probability house has solar is -1.000, -0.997, -1.000 

and -0.998 for QLD, Vic, SA and NSW, respectively).    

 

Figure 7. Summary marginal effects at median adjusted bill, by wealth decile  

 

 
 

 

4.4 Out-of-sample predictive accuracy  

 

Table 4. compares out-of-sample classification performance for the decision tree, random forest and 

gradient boosted tree with the performance of a logit and probit model using the CHOICE data set 

for both the original training data and the oversampled training data.  
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Table 4.  Classification performance for decision tree, random forest and boosted tree using CHOICE data  

Model Accuracy  Balanced Accuracy 

Probit & Logit models probit model  80% 54% 

probit model, oversampling 75% 63% 

logit model 80% 51% 

logit model, oversampling 63% 62% 

Decision tree models decision tree 73% 56% 

decision tree, oversampling 69% 55% 

random forest 80% 55% 

random forest, oversampling 76% 59% 

boosted tree  80% 54% 

boosted tree, oversampling 75% 59% 

 

Table 5. compares out-of-sample classification performance for the decision tree, random forest and 

gradient boosted tree with the performance of a logit and probit model using the ABS SIH data set, 

filtered to include only owner occupied homes, for both the original training data and the oversampled 

training data. 

Table 5. Classification performance for decision tree, random forest and boosted tree using ABS SIH data 
(owner occupied homes only). 

Model Accuracy  Balanced Accuracy 

Probit & Logit models probit model  77% 50% 

probit model, oversampling 47% 54% 

logit model 77% 50% 

logit model, oversampling 23% 50% 

Decision tree models decision tree 66% 53% 

decision tree, oversampling 58% 51% 

random forest 73% 52% 

random forest, oversampling 63% 54% 

boosted tree  76% 50% 

boosted tree, oversampling 61% 55% 

 

When used to train classification models, both the CHOICE and the ABS SIH data set used by Best et 

al. (Best et al., 2019b) lead to balanced accuracy scores that do not indicate a robust classifier. We 

reiterate that these results do not contradict our assessment of the goodness-of-fit of specific 



22 
 

generalized linear models; a model can fit the available data well but be a poor classifier of unseen 

data. 

For the ABS SIH data set, the situation in the case of the logit model is stark: both standard and 

oversampled models perform the same as a naïve classification model would (one classifying all 

unseen data as not having solar panels). Clearly, therefore, we should be reluctant to draw any firm 

conclusions on variable association from such a model. 

We note that, in the case of the CHOICE data set, the (oversampled) probit model classifies unseen 

data best. The balanced accuracy score (63%) while falling short of the robust score (above 70%) is 

higher than the 50% achieved from the ABS SIH data. Nevertheless we conclude that drawing 

categorical conclusions from the generalized linear models fitted to the CHOICE data may not be 

appropriate.  

 

5. Discussion  

What is the relationship between household wealth and rooftop solar in Australia? Our assessment is 

that the existing literature has not adequately accounted for the relationship between property 

ownership, building form, wealth and solar uptake. When breaking the data into “owned”, “rented”, 

“other dwellings” and “owner occupied houses” cohorts, we observe that solar uptake is not 

associated with household wealth. When the modelling is applied to the segmented data, we do not 

find wealth to be a significant driver of solar uptake for “other dwellings”. For the remaining cohorts, 

there is a statistically significant positive relationship between wealth and solar uptake. But the model 

provides a poor fit of the data, fails classification tests and is likely mis-specified. On this basis, we 

suggest that the model’s results can not be relied upon.  

 

Our own analysis relies on a much more parsimonious model based on data obtained from a sample 

of customers’ bills from which we know or can estimate location (by state), end-use consumption 

volumes, electricity prices and wealth (proxied by IRSAD decile). This model finds a statistically 

significant inverse relationship between wealth and solar uptake. The model provides a comparable 

fit of the data and satisfies in-sample prediction tests. However, our model fails the out-of-sample 

classification tests, albeit only marginally. Our approach can be criticized also for not actually 

measuring wealth (wealth is proxied by IRSAD score of the postcode that the house is located in) and 

by using group (post-code) level data. While we concede our “wealth” measure is proximate, such 

group level criticism is only likely to undermine the plausibility of the relationship we find, if individual 
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household wealth is systematically different to the “wealth” (as measured by IRSAD) of the post codes 

in which the house is located. We have no reason to suppose that such systematic difference exists.  

 

Nevertheless the relatively poor predictive accuracy of our model suggests that a richer dataset is 

likely to be needed in order to confidently conclude that wealth and solar installation is negatively 

associated. This would include information on real-world factors that are likely to impact solar 

installation decisions. Such factors might include cluster/peer effects (see for example (Palm, 2017)) 

solar installation customer acquisition strategies that target specific areas or customer cohorts (see 

for  example (O’Shaughnessy et al., 2021) of this in the U.S.); or local regulations that may promote or 

undermine solar installation (such as heritage protections or building codes). More generally, we 

suggest that research that is able to include some of the individual, social and information predictors 

– see (Alipour et al., 2020) with the consumption, production, irradiance and wealth/income is likely 

to be able to provide more confident estimation of the probability that households install rooftop 

solar.   Finally, while public subsidy for rooftop solar is generally now much smaller than in the early 

years, untangling the effect of past subsidies will be valuable in concluding with greater certainty on 

the relationship between wealth and solar uptake. 

 

6. Conclusion and policy implications 

The relationship between wealth and solar uptake by Australian households is not well understood. 

Our critique of the existing studies suggests claims that solar uptake is positively related to household 

wealth is not robust when data are appropriately segmented by ownership and/or building form. Our 

analysis of bills finds that wealth is negatively related to solar uptake in detached owner-occupied 

houses. However we do not consider the modelling results presented here, or in previous studies, to 

be adequately robust at predicting solar uptake as a function of household wealth.  

  

Confident estimation of the relationship between solar uptake and wealth is valuable in assessing the 

case for means-tested policy support. This is likely to become even more important if behind-the-

meter batteries paired with solar become popular. This is because greater self-consumption of rooftop 

solar will have a significant impact on the recovery of shared grid costs. More generally, broadening 

the research agenda to understand better the range of demand-side and supply-side factors affecting 

distributed production and storage uptake will be valuable.  
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Appendix  

Below we provide additional details on the three tree-based models used in the paper. In each case 

we use features (either the CHOICE data set or the ABS data set) to predict the value of a response 

variable (solar uptake) in a process known as supervised learning. More details on all three methods 

can be found in (Hastie et al., 2021), or (for the mathematically inclined) (Hastie et al., n.d.). 

 

The set of possible values for our response variable is {0,1} where 1 represents a household with solar 

and 0 a household without solar. Our features are one of three types: real valued (such as wealth), 

categorical (such as number of persons in household) and binary (such as whether the household is in 

Victoria or not). The set of all possible values for the features is known as the feature space (𝐹𝐹) and 

the aim of a supervised learning method is to use the training data to construct a function 𝑓𝑓:𝐹𝐹 →

{0,1} such that the value 𝑓𝑓 takes on an element of the test set matches the real value as often as 

possible. 

 

Decision Tree 

A decision tree is produced by partitioning the feature space into hyper-rectangles (a higher 

dimensional analogue to the two dimensional rectangle) and then constructing a function 𝑓𝑓 � that is 

constant on each hyper-rectangle. The resultant function can be visualized as a binary tree with each 

leaf representing one of the hyper-rectangles; this aids in interpreting the model and is one reason for 

its popularity.  

 

The algorithm we have used to produce the decision tree (implemented in the scikit-learn Python 

package) constructs the tree iteratively. At each stage in the construction of the tree, it examines all 

possible ways to further partition the feature space and chooses the one with the lowest gini impurity.  

Decision trees trained in this way can often be overly complex and over-fit the training data. For this 

reason we have also used two other tree-based methods to train a classifier. 

 

Random Forest 

A random forest consists of many decision trees and is an example of an ensemble learning method. 

For an element of the test set, a decision tree 𝑓𝑓𝑖𝑖 outputs a predicted response, and the random forest 

𝑓𝑓 is then defined as the response selected most often by the collection of trees.  

To train the decision trees, we use a technique known as bootstrap aggregating. For example, to 

produce a random forest model consisting of 𝐴𝐴 trees using a training set of size 𝑛𝑛, we produce 𝐴𝐴 

synthetic training sets of size 𝑛𝑛 by randomly sampling the original training set with replacement, and 
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then use these synthetic training sets to produce the collection of trees. This typically leads to better 

model performance on unseen data by decreasing the sensitivity of the model to the training set and 

thus decreasing the probability of over-fitting the training set. 

 

Gradient Tree Boosting 

Gradient tree boosting is another ensemble learning method built from decision trees. It builds up a 

model 𝑓𝑓 iteratively. At the first step of the iteration, we fit a decision tree 𝑓𝑓1 to the training set. Given 

the features 𝑥𝑥𝑗𝑗 and response 𝑦𝑦𝑗𝑗 of an element of the training set we can calculate the difference  

ℎ1�𝑥𝑥𝑗𝑗� =  𝑓𝑓1�𝑥𝑥𝑗𝑗� −  𝑦𝑦𝑗𝑗 

The values ℎ1�𝑥𝑥𝑗𝑗� can then be considered new response variables for the training set, and so we can 

fit a decision tree 𝑓𝑓2 to this adjusted training set. We terminate this process after the 𝑘𝑘th stage to 

produce our final model 𝑓𝑓𝑘𝑘. 

Gradient tree boosting algorithms typically outperform both individual decision trees and random 

forests in classification problems, but come at the expense of lower interpretability of the model. 
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The ABS Census of Population and Housing (“the census”) is conducted every four to five years and 

provides another source of information to help explore the relationship between rooftop solar and 

household socio-economic characteristics including income, ownership and location (i.e. postcode) 

(Australian Bureau of Statistics, 2018). Based on the information from the census, the ABS also ranks 

each post-code to an Index of Relative Socio-economic Advantage and Disadvantage (IRSAD) that 

varies between 1 (lowest) to 10 (highest) (Australian Bureau of Statistics, 2016). Data on rooftop solar 

installations by postcode from 2001 to 2021 is available from (Clean Energy Regulator, 2021). Mapping 

the data on solar installations to occupied private dwellings by postcode using the ABS census data 

provides another avenue to explore the relation between solar and wealth.  

 

Figure 4 shows the rooftop solar penetration in 2012, 2017 and 2021 ranked by IRSAD decile. The chart 

shows similar rooftop solar penetration except in the lowest socio-economic decile and the highest 

two deciles where the penetration declines relative to other deciles, increasingly so comparing 2012 

to 2021. 

 

Figure 8. Solar homes as percentage of occupied private dwellings by IRSAD decile  

 
Source: (Australian Bureau of Statistics, 2016, 2018; Clean Energy Regulator, 2021) 
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