Robust sample-data H∞ control with stochastic sampling
Gao, Huijun, Wu, Junli and Shi, Peng (2009) Robust sample-data H∞ control with stochastic sampling. Automatica, 45 (7). pp. 1729-1736. ISSN 0005-1098
Abstract
In this paper, the problem of robust H∞ control is investigated for sampled-data systems with probabilistic sampling. The parameter uncertainties are time-varying norm-bounded and appear in both the state and input matrices. For the simplicity of technical development, only two different sampling periods are considered whose occurrence probabilities are given constants and satisfy Bernoulli distribution, which can be further extended to the case with multiple stochastic sampling periods. By applying an input-delay approach, the probabilistic sampling system is transformed into a continuous time-delay system with stochastic parameters in the system matrices. By linear matrix inequality (LMI) approach, sufficient conditions are obtained, which guarantee the robust mean-square exponential stability of the system with an H∞ performance. Moreover, an H∞ controller design procedure is then proposed. An illustrative example is included to demonstrate the effectiveness of the proposed techniques.
Dimensions Badge
Altmetric Badge
Item type | Article |
URI | https://vuir.vu.edu.au/id/eprint/4298 |
DOI | 10.1016/j.automatica.2009.03.004 |
Official URL | http://www.sciencedirect.com/science/article/pii/S... |
Subjects | Historical > Faculty/School/Research Centre/Department > Institute for Logistics and Supply Chain Management (ILSCM) Historical > FOR Classification > 0906 Electrical and Electronic Engineering Historical > SEO Classification > 970109 Expanding Knowledge in Engineering |
Keywords | ResPubID17664, sampled-data systems, H∞ control, input delay, parameter uncertainty, variable sampling |
Citations in Scopus | 301 - View on Scopus |
Download/View statistics | View download statistics for this item |