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Some inequalities for Heinz operator mean

Silvestru Sever Dragomir

Abstract. In this paper we obtain some new inequalities for Heinz
operator mean.

1. Introduction

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, 〈·, ·〉) . We use the following notations for operators and
ν ∈ [0, 1]

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean, and

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2,

the weighted operator geometric mean. When ν = 1
2 we write A∇B and

A]B for brevity, respectively.
Define the Heinz operator mean by

Hν (A,B) :=
1

2
(A]νB +A]1−νB) .

The following interpolatory inequality is obvious

(1) A]B ≤ Hν (A,B) ≤ A∇B

for any ν ∈ [0, 1].
The famous Young inequality for scalars says that if a, b > 0 and ν ∈ [0, 1],

then

(2) a1−νbν ≤ (1− ν) a+ νb

with equality if and only if a = b. The inequality (2) is also called ν-weighted
arithmetic-geometric mean inequality.
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We recall that Specht’s ratio is defined by [11]

(3) S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) if h ∈ (0, 1) ∪ (1,∞) ,

1 if h = 1.

It is well known that limh→1 S (h) = 1, S (h) = S
(
1
h

)
> 1 for h > 0, h 6= 1.

The function is decreasing on (0, 1) and increasing on (1,∞) .
The following inequality provides a refinement and a multiplicative reverse

for Young’s inequality:

(4) S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν ,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν}.
The second inequality in (4) is due to Tominaga [12] while the first one is

due to Furuichi [4].
The operator version is as follows [4], [12] : For two positive operators A,

B and positive real numbers m, m′,M, M ′ satisfying either of the following
conditions:

(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI,
(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI

we have

(5) S
((
h′
)r)

A]νB ≤ A∇νB ≤ S (h)A]νB,

where h := M
m , h

′ := M ′

m′ and ν ∈ [0, 1] .
We observe that, if we write the inequality (5) for 1 − ν and add the

obtained inequalities, then we get by division with 2 that

S
((
h′
)r)

Hν (A,B) ≤ A∇B ≤ S (h)Hν (A,B)

that is equivalent to

(6) S−1 (h)A∇B ≤ Hν (A,B) ≤ S−1
((
h′
)r)

A∇B,

where h := M
m , h

′ := M ′

m′ and ν ∈ [0, 1] .
We consider the Kantorovich’s constant defined by

(7) K (h) :=
(h+ 1)2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1
for any h > 0 and K (h) = K

(
1
h

)
for any h > 0.

The following multiplicative refinement and reverse of Young inequality
in terms of Kantorovich’s constant holds:

(8) Kr
(a
b

)
a1−νbν ≤ (1− ν) a+ νb ≤ KR

(a
b

)
a1−νbν ,

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
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The first inequality in (8) was obtained by Zou et al. in [13] while the
second by Liao et al. [10].

The operator version is as follows [13], [10]: For two positive operators A,
B and positive real numbersm, m′,M, M ′ satisfying either of the conditions
(i) or (ii) above, we have

(9) Kr
(
h′
)
A]νB ≤ A∇νB ≤ KR (h)A]νB,

where h := M
m , h

′ := M ′

m′ , ν ∈ [0, 1] r = min {1− ν, ν} andR = max {1− ν, ν} .
We observe that, if we write the inequality (9) for 1 − ν and add the

obtained inequalities, then we get by division with 2 that

Kr
(
h′
)
Hν (A,B) ≤ A∇B ≤ KR (h)Hν (A,B)

that is equivalent to

(10) K−R (h)A∇B ≤ Hν (A,B) ≤ K−r
(
h′
)
A∇B,

where h := M
m , h

′ := M ′

m′ and ν ∈ [0, 1] .
The inequalities (10) have been obtained in [10] where other bounds in

terms of the weighted operator harmonic mean

A!νB :=
[
(1− ν)A−1 + νB−1

]−1
were also given.

Motivated by the above results, we establish in this paper some new in-
equalities for the Heinz mean. Related inequalities are also provided.

2. Upper and lower bounds for Heinz mean

We start with the following result that provides a generalization for the
inequalities (5) and (9):

Theorem 1. Assume that A, B are positive invertible operators and the
constants M > m > 0 are such that

(11) mA ≤ B ≤MA

in the operator order. Let ν ∈ [0, 1] , r = min {1− ν, ν} and R = max {1− ν, ν} .
Then we have the inequalities

(12) ϕr (m,M)A]νB ≤ A∇νB ≤ Φ (m,M)A]νB,

where

Φ (m,M) :=


S (m) if M < 1,

max {S (m) , S (M)} if m ≤ 1 ≤M,

S (M) if 1 < m,

,(13)
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ϕr (m,M) :=


S (M r) if M < 1,

1 if m ≤ 1 ≤M,

S (mr) if 1 < m,

and

(14) ψr (m,M)A]νB ≤ A∇νB ≤ ΨR (m,M)A]νB,

where

ΨR (m,M) :=


KR (m) if M < 1,

max
{
KR (m) ,KR (M)

}
if m ≤ 1 ≤M,

KR (M) if 1 < m,

,(15)

ψr (m,M) :=


Kr (M) if M < 1,

1 if m ≤ 1 ≤M,

Kr (m) if 1 < m.

Proof. From the inequality (4) we have
(16)
xν min

x∈[m,M ]
S (xr) ≤ S (xr)xν ≤ (1− ν) + νx ≤ S (x)xν ≤ xν max

x∈[m,M ]
S (x)

where x ∈ [m,M ], ν ∈ [0, 1], r = min {1− ν, ν}.
Since, by the properties of Specht’s ratio S, we have

max
x∈[m,M ]

S (x) =


S (m) if M < 1,

max {S (m) , S (M)} if m ≤ 1 ≤M,

S (M) if 1 < m,

= Φ (m,M)

and

min
x∈[m,M ]

S (xr) =


S (M r) if M < 1,

1 if m ≤ 1 ≤M,

S (mr) if 1 < m,

= ϕr (m,M) ,

then by (16) we have

(17) xνϕr (m,M) ≤ (1− ν) + νx ≤ xνΦ (m,M)

for any x ∈ [m,M ] and ν ∈ [0, 1].
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Using the functional calculus for the operator X with mI ≤ X ≤MI we
have from (17) that

(18) Xνϕr (m,M) ≤ (1− ν) I + νX ≤ XνΦ (m,M)

for any ν ∈ [0, 1].
If the condition (11) holds true, then by multiplying in both sides with

A−1/2 we get mI ≤ A−1/2BA−1/2 ≤ MI and by taking X = A−1/2BA−1/2

in (18) we get(
A−1/2BA−1/2

)ν
ϕr (m,M) ≤ (1− ν) I + νA−1/2BA−1/2(19)

≤
(
A−1/2BA−1/2

)ν
Φ (m,M) .

Now, if we multiply (19) in both sides with A1/2 we get the desired result
(12).

The second part follows in a similar way by utilizing the inequality

xν min
x∈[m,M ]

Kr (x) ≤ Kr (x)xν ≤ (1− ν) + νx

≤ KR (x)xν ≤ xν max
x∈[m,M ]

KR (x) ,

which follows from (8). The details are omitted. �

Remark 1. If (i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI, h = M
m and

h′ = M ′

m′ then we have

A ≤ M ′

m′
A = h′A ≤ B ≤ hA =

M

m
A,

and by (12) we get

(20) S
((
h′
)r)

A]νB ≤ A∇νB ≤ S (h)A]νB.

If (ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI, then we have

1

h
A ≤ B ≤ 1

h′
A ≤ A

and by (12) we get

S

((
1

h′

)r)
A]νB ≤ A∇νB ≤ S

(
1

h

)
A]νB,

which is equivalent to (20).
If we use the inequality (14) for the operators A and B that satisfy either

of the conditions (i) or (ii), then we recapture (9).

Remark 2. From (12) we get for ν = 1
2 that
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(21)


S (M r)A]B if M < 1,

A]B if m ≤ 1 ≤M,

S (mr)A]B if 1 < m,

≤ A∇B

≤


S (m)A]B if M < 1,

max {S (m) , S (M)}A]B if m ≤ 1 ≤M,

S (M)A]B if 1 < m.

The following result contains two upper and lower bounds for the Heinz
operator mean in terms of the operator arithmetic mean A∇B :

Corollary 1. With the assumptions of Theorem 1 we have the following
upper and lower bounds for the Heinz operator mean

(22) Φ−1 (m,M)A∇B ≤ Hν (A,B) ≤ ϕ−1r (m,M)A∇B

and

(23) Ψ−1R (m,M)A∇B ≤ Hν (A,B) ≤ ψ−1r (m,M)A∇B.

Remark 3. If the operators A and B satisfy either of the conditions (i) or
(ii) from Remark 1, then we have the inequality

(24) S−1 (h)A∇B ≤ Hν (A,B) ≤ S−1
((
h′
)r)

A∇B

and

(25) K−R (h)A∇B ≤ Hν (A,B) ≤ K−r
(
h′
)
A∇B.

The following result provides an upper and lower bound for the Heinz
mean in terms of the operator geometric mean A]B :

Theorem 2. With the assumptions of Theorem 1 we have

(26) ω (m,M)A]B ≤ Hν (A,B) ≤ Ω (m,M)A]B,

where

(27) Ω (m,M) :=


S
(
m|2ν−1|

)
if M < 1,

max
{
S
(
m|2ν−1|

)
, S
(
M |2ν−1|

)}
if m ≤ 1 ≤M,

S
(
M |2ν−1|

)
if 1 < m,
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and

(28) ω (m,M) :=



S
(
M |ν−

1
2 |
)

if M < 1,

1 if m ≤ 1 ≤M,

S
(
m|ν−

1
2 |
)

if 1 < m,

where ν ∈ [0, 1].

Proof. From the inequality (4) we have for ν = 1
2

(29) S

(√
c

d

)√
cd ≤ c+ d

2
≤ S

( c
d

)√
cd,

for any c, d > 0.
If we take in (29) c = a1−νbν and d = aνb1−ν then we get

(30) S

((a
b

) 1
2
−ν
)√

ab ≤ a1−νbν + aνb1−ν

2
≤ S

((a
b

)1−2ν)√
ab,

for any a, b > 0 for any ν ∈ [0, 1].
This is an inequality of interest in itself.
If we take in (30) a = x and b = 1, then we get

(31) S
(
x

1
2
−ν
)√

x ≤ x1−ν + xν

2
≤ S

(
x1−2ν

)√
x,

for any x > 0.
Now, if x ∈ [m,M ] ⊂ (0,∞) then by (31) we have

(32)
√
x min
x∈[m,M ]

S
(
x

1
2
−ν
)
≤ x1−ν + xν

2
≤
√
x max
x∈[m,M ]

S
(
x1−2ν

)
,

for any x ∈ [m,M ] .
If ν ∈

(
0, 12
)
, then

max
x∈[m,M ]

S
(
x1−2ν

)
=


S
(
m1−2ν) if M < 1,

max
{
S
(
m1−2ν) , S (M1−2ν)} if m ≤ 1 ≤M,

S
(
M1−2ν) if 1 < m,

and

min
x∈[m,M ]

S
(
x

1
2
−ν
)

=



S
(
M

1−2ν
2

)
if M < 1,

1 if m ≤ 1 ≤M,

S
(
m

1−2ν
2

)
if 1 < m.
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If ν ∈
(
1
2 , 1
)
, then

max
x∈[m,M ]

S
(
x1−2ν

)
= max

x∈[m,M ]
S
(
x2ν−1

)

=


S
(
m2ν−1) if M < 1,

max
{
S
(
m2ν−1) , S (M2ν−1)} if m ≤ 1 ≤M,

S
(
M2ν−1) if 1 < m,

and

min
x∈[m,M ]

S
(
x

1
2
−ν
)

= min
x∈[m,M ]

S
(
xν−

1
2

)
=



S
(
M

2ν−1
2

)
if M < 1,

1 if m ≤ 1 ≤M,

S
(
m

2ν−1
2

)
if 1 < m.

Then by (32) we have

(33) ω (m,M)
√
x ≤ x1−ν + xν

2
≤ Ω (m,M)

√
x,

for any x ∈ [m,M ] .
If X is an operator with mI ≤ X ≤MI, then by (33) we have

(34) ω (m,M)X1/2 ≤ X1−ν +Xν

2
≤ Ω (m,M)X1/2.

If the condition (11) holds true, then by multiplying in both sides with A−1/2

we get mI ≤ A−1/2BA−1/2 ≤MI and by taking X = A−1/2BA−1/2 in (34)
we get

ω (m,M)
(
A−1/2BA−1/2

)1/2
(35)

≤ 1

2

[(
A−1/2BA−1/2

)1−ν
+
(
A−1/2BA−1/2

)ν]
≤ Ω (m,M)

(
A−1/2BA−1/2

)1/2
.

Now, if we multiply (35) in both sides with A1/2 we get the desired result
(26). �

Corollary 2. For two positive operators A, B and positive real numbers m,
m′,M, M ′ satisfying either of the following conditions:

(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤MI,
(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤MI,

we have for h = M
m and h′ = M ′

m′ that

(36) S
((
h′
)|ν− 1

2 |
)
A]B ≤ Hν (A,B) ≤ S

(
h|2ν−1|

)
A]B,
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where ν ∈ [0, 1].

3. Related results

We call Heron means, the means defined by

Fα (a, b) := (1− α)
√
ab+ α

a+ b

2
,

where a, b > 0 and α ∈ [0, 1] .
In [1], Bhatia obtained the following interesting inequality between the

Heinz and Heron means

(37) Hν (a, b) ≤ F(2ν−1)2 (a, b)

where a, b > 0 and α ∈ [0, 1] .
This inequality can be written as

(38) (0 ≤)Hν (a, b)−
√
ab ≤ (2ν − 1)2

(
a+ b

2
−
√
ab

)
,

where a, b > 0 and α ∈ [0, 1] .
Making use of a similar argument to the one in the proof of Theorem 1

we can state the following result as well:

Theorem 3. Assume that A, B are positive invertible operators and ν ∈
[0, 1] . Then

(39) (0 ≤)Hν (A,B)−A]B ≤ (2ν − 1)2 (A∇B −A]B) .

Moreover, if there exists the constants M > m > 0 such that the condition
(11) is true, then we have the simpler upper bound

(40) (0 ≤)Hν (A,B)−A]B ≤ 1

2
(2ν − 1)2

(√
M −

√
m
)2
.

Kittaneh and Manasrah [5], [6] provided a refinement and an additive
reverse for Young inequality as follows:

(41) r
(√

a−
√
b
)2
≤ (1− ν) a+ νb− a1−νbν ≤ R

(√
a−
√
b
)2

where a, b > 0, ν ∈ [0, 1], r = min {1− ν, ν} and R = max {1− ν, ν} .
If we replace in (41) ν with 1−ν, add the obtained inequalities and divide

by 2, then we get

(42) r
(√

a−
√
b
)2
≤ a+ b

2
−Hν (a, b) ≤ R

(√
a−
√
b
)2
,

where a, b > 0, ν ∈ [0, 1].
We also have by (42) that, see [7] and [8]:

Theorem 4. Assume that A, B are positive invertible operators and ν ∈
[0, 1] . Then

(43) 2r (A∇B −A]B) ≤ Hν (A,B)−A]B ≤ 2R (A∇B −A]B) .
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Since (2ν − 1)2 ≤ 2 max {1− ν, ν} for any ν ∈ [0, 1] , it follows that the
inequality (39) is better than the right side of (43).

In [2], by using the equality

(44)
a+ b

2
+

2ab

a+ b
− 2
√
ab =

(√
a−
√
b
)4

2 (a+ b)
≥ 0

for a, b > 0, the authors obtained the interesting inequality

(45)
1

2
[A (a, b) +H (a, b)] ≥ G (a, b) ,

where A (a, b) is the arithmetic mean, H (a, b) is the harmonic mean and
G (a, b) is the geometric mean of positive numbers a, b.

Now, if we replace a by a1−νbν and b by aνb1−ν in (45) then we get the
following result for Heinz means

(46)
1

2

[
Hν (a, b) +H−1ν

(
a−1, b−1

)]
≥ G (a, b)

for any for a, b > 0 and ν ∈ [0, 1] .
Since

1

2 max {a, b}
≤ 1

a+ b
≤ 1

2 min {a, b}
,

then by (44) we have

(47)
1

4

(√
a−
√
b
)4

max {a, b}
≤ 1

2
[A (a, b) +H (a, b)]−G (a, b) ≤ 1

4

(√
a−
√
b
)4

min {a, b}
,

for any for a, b > 0.

Since
(√

a−
√
b
)2

= 2 [A (a, b)−G (a, b)] ,(√
a−
√
b
)2

max {a, b}
=

(√
a−
√
b
)2

(
max

{√
a,
√
b
})2 =

1−
min

{√
a,
√
b
}

max
{√

a,
√
b
}
2

and (√
a−
√
b
)2

min {a, b}
=

max
{√

a,
√
b
}

min
{√

a,
√
b
} − 1

2

,

then the inequality (47) can be written as

1

2

1−
min

{√
a,
√
b
}

max
{√

a,
√
b
}
2

[A (a, b)−G (a, b)](48)

≤ 1

2
[A (a, b) +H (a, b)]−G (a, b)
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≤ 1

2

max
{√

a,
√
b
}

min
{√

a,
√
b
} − 1

2

[A (a, b)−G (a, b)] ,

for any for a, b > 0.
If a, b ∈ [m,M ] ⊂ (0,∞) , then by (48) we get

1

2

(
1−

√
m

M

)2

[A (a, b)−G (a, b)] ≤ 1

2
[A (a, b) +H (a, b)]−G (a, b)

(49)

≤ 1

2

(√
M

m
− 1

)2

[A (a, b)−G (a, b)] .

Similar results may be stated for the corresponding operator means, how-
ever the details are nor presented here.
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