A Novel Outlier-Robust Kalman Filtering Framework Based on Statistical Similarity Measure

[img]
Preview
Ep44679.pdf - Published Version (953kB) | Preview
Available under license: Creative Commons Attribution

Huang, Y ORCID: 0000-0001-9303-9083, Zhang, Y ORCID: 0000-0003-4548-1111, Zhao, Y ORCID: 0000-0003-1921-4714, Shi, Peng ORCID: 0000-0001-8218-586X and Chambers, JA ORCID: 0000-0002-5820-6509 (2021) A Novel Outlier-Robust Kalman Filtering Framework Based on Statistical Similarity Measure. IEEE Transactions on Automatic Control, 66 (6). pp. 2677-2692. ISSN 0018-9286

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vuir.vu.edu.au/id/eprint/44679
DOI https://doi.org/10.1109/TAC.2020.3011443
Official URL https://ieeexplore.ieee.org/document/9146725
Subjects Current > FOR (2020) Classification > 4007 Control engineering, mechatronics and robotics
Current > Division/Research > College of Science and Engineering
Keywords Heavy-tailed noise; Kalman filter, outliers; statistical similarity measure; separate iterative algorithm
Citations in Scopus 30 - View on Scopus
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login